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 Abstract- In this work we present an ultra low energy, ‘on-
sensor’ image processing architecture, based on cellular array 
of spintronic neurons.  The ‘neuron’ constitutes of a lateral spin 
valve (LSV) with multiple input magnets, connected to an 
output magnet, using metal channels.   The low resistance, 
magneto-metallic neurons operate at a small terminal of 
~20mV, while performing analog computation upon photo 
sensor inputs. The static current-flow across the device 
terminals is limited to small periods, corresponding to magnet 
switching time, and, is determined by a low duty-cycle system-
clock. Thus, the energy-cost of analog mode processing, 
inevitable in most image sensing applications, is reduced and 
made comparable to that of dynamic and leakage power 
consumption in peripheral CMOS units. Performance of the 
proposed architecture for some common image sensing and 
processing applications like, feature extraction,  halftone 
compression and digitization, have been obtained through 
physics based device  simulation framework, coupled with 
SPICE. Results indicate that the proposed design scheme can 
achieve ~100X reduction in computation energy, as compared to 
the state of art CMOS designs, that are based on conventional 
mixed-signal image acquisition and processing schemes.     
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I.   INTRODUCTION  

Recent years have seen a sustained thrust towards integration of 
increasingly complex image processing functionality on CMOS 
photo-sensor arrays, for real-time [1, 2, 5, 7], and high speed 
imaging applications [3, 8]. In almost all such designs, analog-mode 
computation is inevitably present, in some form or the other. As a 
result, in most of the ‘on-sensor’ image processing architectures, 
analog units like, comparators, current mirrors and ADC’s present 
in each of the pixels, account for most of the computation energy 
per frame [40-42]. Apart from on-sensor image quantization, 
emerging high-performance vision-IC’s incorporate several low and 
middle-level image processing tasks, like, averaging, edge 
detection, motion detection, and object tracking. Such operations 
often involve cellular processing of pixels values, based on near-
neighborhood computation using cellular neural networks (CNN) 
[9, 10].  Analog, rather than digital-mode, processing has been 
argued to be suitable for such computations, owing to compactness 
of the analog modules [4]. However, most of the recent designs 
reported large power consumption, especially, for high frame rates, 
resulting, mainly, from the analog processing elements [1-10]. 
Moreover, design of analog circuits becomes increasingly more 
challenging at scaled technology nodes, and, power consumption for the 
same performance can increase for several common analog circuits 
[11]. Therefore, conventional analog designs may not be the most 
suitable candidates for high integration-density and low cost signal 

processing hardware, needed for the fast evolving imaging technology. 
Hence, it is desirable to look for alternate device technologies that can 
carry out the analog processing tasks at low energy and low real-estate 
cost.     
             In this work, we explore the application of spintronic 
devices, based on lateral spin valve (LSV), in image acquisition and 
processing hardware. An LSV constitutes of nano-magnets 
connected through non-magnetic metal channels (fig. 1a) [12-19]. 
The nano-magnets in an LSV can interact and undergo spin transfer 
torque (STT) induced switching. Logic schemes based on LSV have 
been explored by several authors [14-18].  

 
 Fig. 1(a) Lateral spin valve (b) five input majority gate               
 
         Analog characteristics of the current mode switching scheme 
employed in an LSV, make it suitable for non-Boolean computation 
like majority evaluation (fig. 1b), and, enable it to handle analog 
inputs. In [21, 22, 43] it was shown that, a spin majority gate with 
adjustable spin injection strength of the input magnets and 
appropriate clocking of the output magnet mimics neuron operation. 
Such a magneto-metallic device can operate at a small terminal 
voltage (~20 mV) and can be employed in low power analog 
computation.                
                In this work we present the application of such a 
‘spintronic neuron’, in an ‘on-sensor’ image processing architecture.  
We show that, the spintronic neurons can be integrated with CMOS 
transistors to arrive at spin-CMOS hybrid processors (PE). In such a 
PE, the analog-mode computation can be carried out with the help 
of the neurons, at ultra low energy cost. Apart from ultra low 
voltage operation, the fast switching of the neuron-magnets also 
help in reducing the computation energy. This comes from a clock 
synchronized computation scheme, where the static current flows 
only for a period close to nano-magnet switching time, which can 
be very small, as compared to the highest frame rates of practical 
interest.                          
                Rest of the paper is organized as follows. Device structure 
for the spintronic neuron is described in section 2. Section 3 briefly 
introduces the concept of cellular neural network. Circuit level 
integration of the neuron device to realize the CNN functionality is 
presented in section 4. Section 5 presents simulation results for 
some common image processing applications. Section 6 briefly 
describes the simulation framework used in this work. In section 7 



we discuss the performance and prospects of the proposed scheme.  
Finally, section 8 concludes the paper.   

II   SPIN BASED NEURON MODEL  

In this section we introduce the spintronic neuron model. The basic 
device operation for LSV structures, with decoupled read and write 
paths, is first explained. We then describe the functionality of the 
neuron device that is based on these structures.  
A.  Lateral spin valves (LSV) with decoupled read and write paths  

 
Fig. 2 (a) LSV with non-local STT switching, (b) Read-write 
decoupled LSV with local STT switching. (c) three terminal 
schematic model of LSV with decoupled read-write 
  
 
Two different LSV structures with decoupled read and write paths 
are shown in fig.2. 
              The device in fig.2a employs ‘non-local’ spin torque for 
nano-magnet switching [12, 13]. The figure shows a high-
polarization (P) input magnet m1 which acts as a spin injector and a 
low-polarity output magnet m2, which forms a magnetic tunnel 
junction (MTJ) with a fixed magnet m3.  Charge current injected 
into the channel through m1 gets spin polarized according to the 
polarity of m1. Spin-polarized charge current is modeled as a four 
component quantity, one charge component Ic, and three spin 
components (Ix, Iy, Iz) [14, 15]. The charge component flows into the 
lead. A portion of the spin component however, is absorbed by the 
low-P interface of m2 and exerts spin torque on it. Rest of the spin 
component is lost into the lead.  Owing to the separation of the spin 
component, responsible for spin-torque, from the charge-current 
flow, this scheme is regarded as ‘non-local’ spin transfer torque 
(STT) switching [12, 13]. Experimentally, ~20% efficiency for non-
local spin injection (ratio of spin absorbed by the output magnet to 
the spin current injected into the channel) in LSV has been 
demonstrated [12, 15]. However, simulation based analysis shows 
that, this efficiency can be further enhanced by geometrical 
optimization of the device structure [18, 21, 22].   
           The second LSV structure, shown in fig. 2b, employs a 
relatively larger size for the output magnet m2, in order to achieve 
decoupled read and write. Around 60% of its top area (35nm x 
20nm) is occupied by a metal lead through which the switching 
current flows, whereas, a smaller portion (15nm x 20nm) is used as 
a read-port that constitutes of an MTJ. Note that, although, the input 
current flows only though a part of m2, its small dimension 
(60x20x1) ensures mono-domain behavior and switching of the 
entire magnet is achieved.  But, the switching current required, for 

the same switching time, is almost twice as compared to the case, 
when the extended area of the magnet, forming the read port is 
absent. Owing to the direct current injection into output magnet, this 
structure can, however, achieve higher spin-injection efficiency.  
For a high polarity interface of m1 (P~0.9) and a low polarity 
interface of m2 (P~0.1), almost ~90% injection can be obtained 
provided the channel length is within the spin diffusion length of the 
channel material (~1µm for copper) [15].                          
        Both the LSV structures can be represented as a three-port unit 
(fig. 2c). The input port(s), I, the lead terminal, L, and the detection 
terminal D. The input currents flow between the terminals I and L, 
i.e., through a low resistance, metallic path. Hence, a small terminal 
voltage across these two terminals can drive the required switching 
current. The terminal D is used to detect the state of the output 
magnet, m2, without injecting static current into the high resistance 
tunneling barrier (using dynamic CMOS latch discussed later). 
          Next, we show the application of the LSV structures 
described above in realizing the neuron functionality.  
 
B. Neuron device             
Fig. 3 shows the device structure for neuron based on LSV. It 
constitutes of an output magnet m1 with MTJ based read-port, and 
three input magnets, m2-m4. The two anti-parallel, stable 
polarization states of a magnet lie along its easy axis (fig. 3). The 
direction orthogonal to the easy axis is an unstable polarization state 
for the magnet and is referred as its hard-axis [14, 16]. The two 
input magnets, m2 and m3, possess anti-parallel spin-polarization, 
and, have their easy-axis parallel to that of m1. The preset magnet m4 
shown in fig. 3, however, has its easy-axis orthogonal to that of m1, 
and is used to implement current-mode Bennett-clocking [14, 16]. A 
current pulse input through m4, presets the output magnet, m1, along 
its hard axis (fig. 4). The preset pulse is overlapped with the 
synchronous input current pulses received through the magnets, m2 
and m3. After removal of the preset pulse, m1 switches back to its 
easy axis, which is parallel to that of m2 and m3. The final spin 
polarity of m1 depends upon the difference ∆I, between the spin 
polarized charge current inputs through m2 and m3, (fig. 1b). Hard-
axis, being an unstable state for m1, even a small value of ∆I, effects 
deterministic easy-axis restoration. Note that, the lower limit on ∆I 
for deterministic switching is imposed by the thermal noise in the 
output magnet [14, 21]. Thus, the neuron device essentially acts as 
an ultra low voltage spin-mode comparator.     

 
Fig. 3 Spintronic neuron with two complementary inputs. 
                
                In [22] we showed that the spin based neuron discussed 
above can be integrated with programmable conductive elements 
like memristors [49], to realize low-power computational neural 
networks. In this work we show that with the help of CMOS 
transistors, operating in deep-triode region, the device can be used 
to implement ultra low power processer (PE) for CNN based image 
processing architecture. 



               In the next section we introduce the CNN paradigm. 
Following this we describe circuit schemes employed to realize the 
CNN functionality with the neuron model described above.   

 
Fig. 4 Timing waveform for the proposed neuron model     
       

II.  CELLULAR NEURAL NETWORK : MATHEMATICAL 

MODEL  

Cellular neural network (CNN) can be regarded as a fusion of 
artificial neural network (ANN) and cellular automata [4, 9, 10, 27-
29]. It borrows the basic information processing functionality, i.e., 
the ‘integrate and fire’ operation upon weighted inputs, from neural 
networks. The concept of computation based on neighborhood 
influence, on the other hand, is akin to cellular automata. This class 
of computation has been found to be highly suitable for several 
image processing applications, which essentially involve processing 
of pixel neighborhoods in a parallel fashion. 
                   Fig. 5 shows a cellular neural network array with 3x3 
rectangular neighborhoods. Each cell is connected to its eight 
surrounding neighbors through a 3x3 feedback-weight template A. 
A(0,0) denotes the self feedback term. The feed-forward template of 
a cell, B (or the input-weight template), determines the connectivity 
to the neighborhood inputs. In a CNN, each neuron performs 
‘integrate and fire’ operation upon the weighted combination of its 
neighborhood inputs and outputs in a recursive manner.  

 
Fig.5. CNN architecture with 3x3 neighbourhood connectvity 
 
The standard expression for a CNN cell state is given by eq. 1 [27]. 
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Where, x(t) is the cell state at time t, A and B are the feedback and 
feedforward template defined above, u(t)  is the input to cell from its 
3x3 neighborhood N and z is the cell-bias. The cell output is denoted 
by y(t) which is related to the cell state x(t) with a non-linear 

transfer-function. Time domain dicretization of the CNN state 
equation leads to eq. 2 [28].        

( , ) ( , )

( , ) ( , )

( , ; , ). ( )

( , ; , ). ( ) ( , )

( )
kl

k l N i j

kl

k l N i j

ij A i j k l y k

B i j k l u k i j

x k

z
∈

∈

− −

=

+− −

+∑

∑
                                 (2) 

Discrete time CNN (DTCNN) employs a step transfer function 
given by eq. 3. 
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            Although, in literature, DTCNN templates for image 
processing applications have been generally obtianed for bipolar 
output levels, the network functionality is preserved for any two 
values for the binary states. Hence, DTCNN templates obtained for 
bipolar transfer function given by f(x),  in general, can be used for a 
step transfer function with arbitrary binary levels. For instance , the 
effect of a non-zero offset in f(x) can be included in eq. 2 by adding 
an offset matrix, U, with all elements equal to the offset value (eq. 
4).    
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           In order for the cell state to remain unchanged, we only need 
to update the cell-bias z, as in eq. 5. 
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Unipolar inputs and unipolar neuron transfer-function reduces the 
complexity of hardware realization significantly. Hence, we chose 
unipolar binary states for the neurons in this work, resulting in the 
neuron transfer-function given by eq. 6. 

{1 ( 1) 0
0 ( 1) 0( ) '( ( 1))ij ij

ij

ij

if x k
if x ky k f x k

−− −
−

− >
−− <−= − =                              (6) 

            Application of a step transfer function limits the value of a 
cell output y(i,j) to binary levels of f’(x). The input u(i,j), however, 
can assume continuous values corresponding to the range of pixel 
intensity. 
                In the spin-CMOS hybrid PE proposed in this work, the 
two input magnets (m2 and m3 in fig. 3) of the neuron device shown 
in fig. 3 are used to realize the inter-neuron connectivity through A 
and B templates respectively.  All the neighboring outputs y(i,j) 
(/inputs u(i,j) ) linked to a neuron with positive  A(i,j)’s (/B(i,j)’s) 
connect to one of the inputs, say m2, whereas, those, assosiated with 
negative terms in the template matrices, connect to the other input  
m3. The circuit techniques employed to realize a DTCNN processor 
(PE) with the spintronic neuron is described in the next.          

III.  DTCNN ARCHITECTURE WITH SPINTRONIC NEURONS  

 
In this section we describe the design of spin-CMOS hybrid PE that 
implements the DTCNN funtionality for on-sensor image 
processing. The inputs signal u(i,j) for a cell, is the associated 
photo-sensor input.  Transistors of weighted dimensions are used as 
deep-triode region current sourses (DTCS), to implement A and B 
templates. The neuron in a PE, receives sensor input signals and 
outputs of its neighboring PE’s through the DTCS’s in the form of 
charge current. The current mode signals combine in the metal 
channel of the neuron, where the Bennett clocking of the output 
magnet realizes, eq. 3. A dynamic-CMOS detection unit however, 
converts the bipolar spin information pertaining to the state of the 



neuron-magnet, into unipolar voltage-level. Hence, the final PE 
output is given by eq. 6. The circuit operation corresponding to 
these step are described in the following paragraphs. 
 

 
Fig. 6 (a) Circuit for B-template realization   (b) deep-triode region 
characteristics of the DTCS transistor M3 driven by the sampled 
photo-sensor voltage. 
 
Fig. 6 shows a photodiode that converts the illumination intensity 
received at a pixel into a voltage signal. The transistor M1 first 
presets the photodiode capacitance to Vdd-Vt, where Vdd is the 
supply voltage and Vt is the threshold voltage of the transistor. The 
capacitance is then discharged by the photodiode current, rate of 
discharge being proportional to the incident illumination intensity 
[7]. At the end of discharge period of a fixed duration, the transistor 
M2 samples the photodiode voltage. The sampled voltage at the gate 
of M3 ranges from Vdd-Vt to 0V, corresponding to the illumination 
intensity at the pixel. M3 supplies input current to the neurons 
located in the 3x3 neighborhood of the pixel through separate and 
weighted fingers, with dimensions corresponding to the elements of 
the B template. A second DC level Vdd-∆V is used in the design, in 
order to exploit the low-voltage operation of the spintronic neurons.  
It connects to the lead terminal of the neurons as shown in fig. 6a. 
The current supplied by M3 therefore, flows through a small 
terminal voltage ∆V, which can be of the order of ~10mV. Note 
that, since the resistance of M3 is significantly higher than that of the 
magneto-metallic neurons, it accounts for most of the ∆V-voltage 
drop. Fig. 6b shows that the output current of M3 is a fairly linear 
function of the sampled gate voltage for the deep-triode region 
operation.            
                 Fig. 7 shows the circuit scheme used to realize the A-
template. The corresponding simulation waveforms are shown in 
fig. 8. When the clock is low, output of the dynamic-CMOS latch is 
precharged to Vdd.  The latch is activated at the positive edge of the 
clock signal. The two load branches of the latch are connected to the 
detection terminal, D, of the neuron and a reference MTJ 
respectively. The latch compares the difference between the 
effective resistances in its two load branches through a transient 
discharge current. It drives negligible static current into the high 
resistance  neuron-MTJ stack. For the anti-parallel state of the 
neuron-MTJ ( which can be regarded as the ‘firing state’), the latch 
drives the DTCS transistor Ms shown in the figure. Ms, in turn, 
supplies current to the neighbouring neurons through separate 
weighted fingers corresponding to the A template.  After a time 
delay that is sufficient for the latch to evaluate and settle to its final 
value, the neuron device receives the preset current through a clock 
driven DTST (fig. 8). Note that, a delayed preset pulse with respect 
to the clock edge ensures that the latch evaluates correctly according 
to the neuron-MTJ state stored in the previous evaluation cycle. 
Once evaluated, the latch can not change its state until it is 
precharged again, despite the flipping of the neuron MTJ. At the 
positive edge of the clock, the latches in all the PE’s evaluate 

simeltaneously and conditionally drive their respective DTCS 
outputs. Hence, a neuron recieves input currents from its neighbors, 
during the period when the clock is high. 

 
Fig. 7 CMOS detection unit senes the state of the neuron magnet 
and transmits current mode signal to the neighboring neurons 
through a deep triode current source transistor. 
 
           As soon as the preset signal goes low, the neuron magnet 
settles to one of its stable states, depending upon the overal spin 
current received through its inputs. Thus, the recursive operation of 
DTCNN PE, given by eq. 2 is realized by the application of an 
appropriate clocking scheme. Note that, the current supplied by the 
DTCS outputs of the latches also flow across the two supply levels, 
Vdd and Vdd-∆V, as shown in fig. 7.  

 
Fig. 8 Simulation waveform for DTCNN operation of the spin-
CMOS hybrid PE. 
 
              Fig. 9a shows the layout for the CMOS circuitry employed 
in the spin-CMOS hybrid PE. It shows that a major portion of the 
PE area is occupied by the triode-region sourse-transistors (M3 in 
fig.6a and Ms in fig. 7 ).  As mentioned earlier, in order to realize 
non-overlapping inter-neuron connectivity, we employed separate 
fingers in the source transistors. Moreover, a matched layout of the 
fingers was considered. Fig. 9b shows the values of A and B 
templates for two common applications, halftoning and edge 
detection ( results for which have been given in sec. 5). As 
mentioned before, for an application specific design, the fingers of 
DTCS’s are weighted according to the templates. In the simplest 
case, for a given connectivity, number of fingers equal to the weight 



(matrix element) magnitude can be chosen. The sign of the weight, 
determines the connectivity, to one of the complementary input of 
the corresponding neuron. 

 
Fig. 9 (a)  Layout of the CMOS circuit (90 nm technology)  in the 
PE showing that the source transistors occupy larger portion of the 
PE area. (b) DTCNN templates for edge detection and halftoning  

 
As discussed before, application of current mode Bennett-clocking 
reduces the required amount of current injection for a neuron, per- 
input, to few microamperes. Hence, the multi-finger DTCS 
transistors can supply the required current even at a small terminal 
voltage ∆V.  Therefore, two DC supply levels separated by a 
difference of ~20mV can be chosen. This achieves reduced static 
power consumption for current-mode inter-neuron signalling.  
                  As long as input currents of the neurons are large enough 
to overcome the impact of thermal noise in the neuron-magnet, the 
precision of computation achievable, with the proposed scheme, is 
limited, mainly, by the supply noise. As the  accuracy of on-chip 
DC supply regulation, in the state of art technology is limited to 
~0.1% [44], high precicion imaging applications may seem out of 
scope of the proposed design. However, the use of dual supply rails 
proposed in this work may significantly compensate this 
disadvantage. Differential supply lines can significantly mitigate the 
impact of the noise sources, that lead to common-mode fluctuations. 
Hence a thorough modelling and analysis of this effect needs to be 
considered, in order to assess the noise tolerance of the proposed 
scheme. In the present work, we have included the effect of supply 
and process variations,  and we discuss these in the next section  on 
simulation framework.    

IV.  SIMULATION FRAMEWORK  

The device simulation used in this work is based on self-consistent 
solution of spin-transport and Landau-Lifshitz-Gilbert equation 
(LLG) for the neuron device, and, has been benchmarked with 
experimental data on spin valves [14-16].  Effective noise field was 
included in LLG (based on stochastic LLG [14]) in order to account 
for the thermal noise on  device performance [14]. Simulation of 
MTJ is based on self-consistent solution of LLG and spin transport. 
Fig. 10 depicts the device-circuit co-simulation framework 
employed in this work to assess the system level performance. 
Behavioral model for the neuron device, derived from the physics 
based equations, was used for simulating large image processing 
arrays. CMOS design parameters like, voltage levels, clock duty 
cycle, required current injection and the associated transistor sizing 
etc, were determined on the basis of device characteristics. On the 
other hand, state of art circuit limitations were considered in 
determining appropriate operating conditions for the spin device.  
                In order to account for the CMOS process variation upon 
system performance 15% 3σ variations in transistor threshold was 
considered. Independent noise sources (with uniform distribution) 
were added to the two supply lines corresponding to 0.1% peak-to-

peak voltage fluctuation. The effect of these variations have been  
shown in the next section. 

 
Fig. 10 Device-circuit co-simulation framework used in this work 

V.   APPLICATION SIMULATION  

In the following sub-sections we present simulation results for some 
common image processing applications like edge detection, 
halftoning and digitization.   

A. Feature extraction 

          
Fig. 11. Result of edge detection from a grey-scale image 
 
Edge detection (fig. 11) is one of the most common image 
processing steps, applied in vision applications [30, 31].  As an 
example, motion detection  (fig. 12) employs comparison between 
the edge maps of a still background, sampled one after the other. 
This can be achieved by employing extra storage registers per PE to 
store a sequence of edge maps.   

      
Fig. 12 Motion detection on the basis of  temporal difference in 
edge maps. 
B.  Halftone compression and sensisng 
Halftoning is a process in which a grey scale image is recorded as 
(or compressed into) a binary image, with just two levels, in a way 
such that important details in the image are preserved [33]. Several 
algorithms for decompressing halftone images have been proposed 
in literature [32]. This technique can be used for sensing, storing 
and transmitting images in bandwidth limited sytems. Simulation 
result for halftoning of a statellite image is shown in fig. 13. Fig. 14 



shows the halftoned image of Lenna along with the effect of 
reduction in ∆V upon the halftone output.  With decreasing ∆V the 
effect of noise becomes increasingly more prominent. 

 
Fig. 13 Simulation results for halftoned image of a satellite picture. 

 
Fig. 14 (a) Halftone of Lenna (b) effect of reduction in ∆V upon the 
output, with 0.1% supply noise and constant DTCS width (i.e. 
reducing current and increasing % noise) 

C. Digitization   
 

Successive-approximation-register (SAR) analog-to-digital 
converter (ADC) is one of the most common data converters 
employed for on-sensor image quantization (fig 15a) [33]. The data 
conversion algorithm employed in an SAR-ADC can be explained 
as follows. To begin the conversion, the approximation register is 
initialized to the midscale (i.e., all but the most significant bit 
(MSB) is set to 0. At every cycle a digital to analog converter 
(DAC) produces an analog level corresponding to the digital value 
stored in the register, and, a comparator compares it with the input 
sample. If the comparator output is high, the current bit (MSB) 
remains high, else, it is turned low and the next bit is turned high. 
The process is repeated for all the bits. At the end of conversion, the 
SAR stores the digitized value for the pixel intensity, which can be 
read out in a column-wise manner from the sensor array. 

 
Fig. 15(a) SAR ADC block diagram (b) compact and low power 
SAR ADC using spintronic neuron. 
 

In a cicuit implementation of SAR-ADC, most of the power 
consumption results form the comparator and the DAC units [33]. 
The SAR unit consists of a bank of CMOS latches and a simple 
control logic, which consumes negligible power as compared to the 
analog units. 
          As the SAR-ADC essentially employs recursive evaluation, 
akin to the CNN equation, the PE circuit decribed in the previous 
section can be easily extended to realize a compact and low power 
N-bit SAR-ADC. In the schematic diagram for the proposed ADC, 
shown in fig. 15b,  the DTCS M1 converts the sampled output of the 
photo sensor into a current signal, that is injected into one of the 
inputs of a three input neuron.  The SAR simply consists of a bank 
of N CMOS latches, which in turn drive N different fingers of the 
DTCS M2. The multiple fingers of M2 are binary weighted (for 
N=8, the weakest transistor having  4X minimum length and 
minimum width, and largest transitor having 8 fingers with 4X 
minimum width and minimum length) and hence, it acts as a 
compact DAC and injects current into the second complementary 
input of the neuron. Current mode Bennett-clocking of the neuron, 
using the third input (a preset magnet, not shown in fig. 15b), at the 
beginning of each conversion stage, realizes the comparator 
operation. Note that, in the proposed  ADC design, the analog 
computation current flows across the two supply levels, i.e., across a 
small terminal voltage ∆V, thereby, resulting in small power 
consumption. Moreover, in each frame, the current flow is restricted 
to the small period of conversion just after the data is sampled.  
                  Fig. 16 shows the simulation results for an 8-bit SAR-
ADC based on the proposed scheme. Degradation in image quality 
due to supply noise can be perceived. Note that, in this work we 
have not considered any coupling between the two supply levels and 
independent noise sources have been used in simulation. Hence a 
thorough analysis of the proposed differential supply scheme would 
be needed to assess the computation precision, achievable by the 
proposed hardware. 

 
 
Fig. 16 Simulation result of spin-CMOS hybrid 8 bit-SAR-ADC and 
the effect of lowering ∆V upon the output, with 0.1% supply noise 
and constant current (by increasing DTCS widths). 

VI.  DESIGN PERFORMANCE  

  Fig. 17 depicts the architecture for on-sensor image processing [7]. 
Such a design employs PE’s integrated on each of the photo-cell. 
The output of the photo-detectors are directly processed by the PE’s 
and the result is read out column-wise.  



                      In such an architecture, the total energy dissipation 
per-input frame can be expressed as the sum of computation energy 
(Ecomp), the read-out energy (Eread) and the energy that is wasted in 
the form of leakage current (Eleak).  

tot comp read leakageE E E E= + +                                                         (7) 

In  this work, Ecomp can be expressed as a sum of neuron-preset-
energy, (the energy associated with current mode Bennett-clocking), 
Epreset, the energy associated with current mode inter-neuron 
signaling, Eevl,   and the dynamic switching energy in the PEs’, 
Edynamic (including energy consumption due to clocking). A first 
order expression for these components can be derived using the 
design parameters, namely, the two supply levels Vdd and Vdd-∆V, 
the read-out voltage Vread, the preset time Tpre, the evaluation time 
Ievl, the effective switched capacitance in a PE, CPE, the bit-line 
capacitance CBL, the word-line capacitance CWL, number of cells in 
the array NxN, the switching activity factor, α, and the number of 
iteration required per-frame for a given operation, M:  

2

2 2

2 2

( )

( )
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comp preset evaluation dynamic

pre pre evl evl PE dd

pre pre evl evl PE dd

E N M E E E

N M VT I VT I C V

N M VT I VT I C V

α

α

= + +

= ∆ + ∆ +

= ∆ + ∆ +

                               (8) 

            The read-out energy, in the case of column-wise read-out 
can be obtained using the effective bit-line capacitance that is 
switched to read out K bit data per PE from the entire N x N frame, 

' ' 2

2 2

( ( ) )

( )
read BL dd read WL

BL

E KN N C V V C V

KN C V

α α= +

≈
                                   (9)                                           

 
Fig. 17 An on-sensor image processing architecture contains PE’s 
embedded into the pixel locations, and an addressing arrangement 
for reading out the PE outputs in a column-wise manner.            
                   
                  Eleak can be ignored, as there are well known gating 
techniques that can make the leakage power for the PE’s negligibly 
small during the read-out period.  
                 The results given in table-1, based on the design 
parameters in table-2 and table-3, indicate that for the proposed 
architecture, Ecomp is of the same order as Eread. Hence, the energy 
component, related to static power consumption due to analog-mode 
computation, can become comparable to that associated with 
dynamic power consumption in the peripheral digital-circuits.    
            As described earlier, the advantage of using the proposed 
spin-CMOS hybrid scheme for analog computation comes from two 
main factors. The first, static current flow across a very small 
voltage ∆V, and the second,  pulsed operation of the spintronic 
neurons with a narrow pulse-clock. Although, gating of analog 
modules in low frame rate image processing architectures have been 
proposed [45], gating of analog circuits for high frame rates can be 
challenging. Moreover, it might be difficult to gate analog cirucits 
with a pulse-width of a few nano-seconds, which is possble with the 
spintronic neurons. 

           Comparison with on-sensor image processing designs for 
feature extraction, given in table-IV, shows more than two orders of 
magnitude improvement in computation energy. Note that, the 
effect of technology scaling has been included through a 
mutiplicative factor of S2 , where, S is the ratio of the technology 
scale between the reference design and the presented work (90nm 
CMOS) [48]. Figure of merit (FOM) is evaluated on the basis of 
computation energy per frame (as given under table-V),    
           Table-V compares the performance of the proposed SAR-
ADC with some recent CMOS designs. Note that ADC is one of the 
few analog modules for which power consumption reduces with 
scaling [11, 48]. Results show that the spin-CMOS hybrid ADC can 
achieves ~50x low power consumption, as compared to some of the 
latest designs.  

   
                      In this work we have assumed two supply sources Vdd 
and Vdd- ∆V. It can be assumed that charge supplied by the higher 
supply, is restored in the second source, and, can be utilized by 

Vdd 900mV CPE 6fF

∆V 20mV N 256

(Ievl) 60µA M, K :  

Ipre 120µA ADC 8 , 8

Tevl 12ns Edge det. 3 , 1

Tpre 2ns halfton 4,  1

CBL 200fF CBL
200fF

Vread 100mV α 0.5

Ku2 (biaxial
anisotropy)

2x106 erg/cm3

Magnet
Size
(nm3)

neuron 60x20x1

DWM 350x80x10

Hk ( coercively) 5KOe

Ms( saturation 
magnetization)

500emu/cm3

polarization
constant

High: 0.9 
Low: 0.1

Damping 
coefficient

0.007

Channel 
material

Cu

Channel spin 
flip length

1µm

resistivity 7Ω-nm

Frame
rate:  
10000 fps

Ecomp Eread Power

8- bit
quantization

13nJ 8nJ 180µW

Edge
detect.

4nJ 1nJ 40µW

Halfton. 6nJ 1nJ 50µW

Design Performance for 256x256 arrayDesign Parameters (90nm CMOS )

Magnet-Parameters

Table-I Table-II

Table-III

Ref
8 bit

CMOS
tech.

Fs Power
(W)

Spintronic
ADC (W)

FOM**
ratio

[35] 0.18µ 370KHz 32 µ 0.04µ 133

[36] 0.18µ 500kh 7.75µ 0.06µ 32

[37] 0.25µ 100KHz 31µ 0.012µ 40

[38] 90nm 10M 70µ 1µ 70

[39] 90nm 20Mhz 290µ 4µ 72

Table-V
Comparison of the proposed ADC with state of art CMOS design

CMOS
Tech
(T)

Fps 
(frame 
rate)

N 
( # PE)

Power FOM* FOM(proposed
)/ FOM (given)

[45] 0.35µ 2000 32x32 600µW 3.4x103 253

[4] 0.6µ 100k 1x1 85µW
(per PE)

1.1x103 200

[31] 0.25µ 4000 128x128 20mW 3.2x103 470

[46] 0.35µ 2000 160x120 25mW 1.5x103 560

[47] 0.35µ 100 1 0.06µW 1.66x103 500

Table-IV
Comparison  with CMOS designs for feature extraction

*FOM = 
(S2) x(#PE x Fps )/Power

**FOM =  (S2) /Power      S : technology 
scaling ratio



other circuit components in a large-scale, heterogenous architecture. 
Effect of supply noise needs a more thorough analysis. Supply 
routing techniques, that can exploit the differential supply scheme 
employed in this work to mitigate the effects of supply noise, need 
to be explored.  
                 Though, high precision computation  on analog images 
may seem challenging with the technology limits associated with 
supply noise, the proposed scheme can be highly suitable for several 
low-level and middle-level analog image processing applications, 
for which, the conventional mixed signal designs consume large 
amount of power. 

 

VII.  CONCLUSION  

In this work we explored the application of the proposed spintronic 
neuron, in on-sensor image processing applications. It was shown 
that a spin-CMOS hybrid PE can handle analog processing 
functionality in an highly energy-efficient manner.  The theoritical 
analysis presented, showed that, substituting some of the 
conventional analog processing units in an image acquision and 
processing hardware, by the spintronic neuron, can achieve ultra 
low power computation. This can facilitate the design of very high 
integration density hardware for sensory signal acquisition and 
processing.  
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