
The “write once, run anywhere” slogan is synonymous with the Java programming

language. The Java run-time library provides application developers with the ability to write code

in one single language and the confidence that the code will execute without modification on vir-

tually any hardware, any operating system, and any application environment. Developers are freed

from the costs of porting their applications to a myriad of target platforms and worse, of maintain-

ing those multiple-code bases. Of course, powerful cross-platform run-time systems have existed for

many years, dating back to Lisp, Smalltalk, and

many other interpreted languages. However,

Java is the first to achieve widespread popularity

among commercial developers.

The Java Factor

M
A

TS
U

34 June 1998/Vol. 41, No. 6 COMMUNICATIONS OF THE ACM

Sandeep Singhal and Binh Nguyen

When Sun Microsystems introduced Java in
1995, the language was primarily used for devel-
oping applets—downloadable mini-applica-
tions that could be embedded inside Web
pages and executed in browsers. If cross-plat-
form portability was the only advantage of Java,
the language probably would have gone no fur-
ther. However, in the three years since its commercial
introduction, Java has emerged as a first-class pro-
gramming language that is being used for everything
from embedded devices to enterprise servers. The lan-
guage today is seeing use in a wider range of applica-
tions than any other language, including C and C++.

Java Language and Platform Attraction
The Java programming language [4] is a strongly
typed, object-oriented language that borrows heavily
from the syntax of C++ while avoiding many of the
C++ language features that lead to programming
errors, obfuscated code, or procedural programming.
Removed from C++ are pointers and pointer arith-

metic, operator overloading, struct and union, and
multiple inheritance. All public Java functions are vir-
tual (and private virtual functions are not supported),
and the goto statement is gone. Its strong typing
means arbitrary type conversions are disallowed.
Instead of requiring the application to manage its
heap-allocated memory, the Java run-time environ-
ment provides automatic garbage collection, enabling

application developers to minimize the dual dan-
gers of memory leaks and erroneous memory

references.
Java is designed to directly support OO

programming. All data and functions must be
encapsulated within classes, much like

Smalltalk. Interfaces are first-class language con-
structs and are enforced by the type system. A class

may be declared to implement multiple interfaces
simultaneously, though it may only inherit from one
implementation class. The Java run time includes class
libraries that provide high-level interfaces for GUI pro-
gramming, I/O, multithreading, and networking [6].

Using Java, one can restrict the set of resources
(files, threads, network, and so forth) that applications
may access on the local machine. Though originally
intended to support the execution of untrusted applets
downloaded from the Web, the need for security has
proven to be important in a broader context. The next
version of Java [7] will support security restrictions on
a per-class basis, allowing the simultaneous execution

11100011100000011110000001111111000010101
01010101010101010101010100000111110101010

http://crossmark.crossref.org/dialog/?doi=10.1145%2F276609.276616&domain=pdf&date_stamp=1998-06-01

COMMUNICATIONS OF THE ACM June 1998/Vol. 41, No. 6 35

ACM
This page is intentionally blank.

of “trusted” and “untrusted” applications or the
deployment of applications that dynamically load
“add-on” components from untrusted third parties.

In all, Java exposes a relatively simple, powerful and
elegant programming model. It is object oriented and
therefore conforms naturally to the established design
patterns [3] used throughout the standard class
libraries. In this section, James Cooper discusses how
the Java language facilitates elegant OO design choices.

Java source code is compiled into bytecodes that are
interpreted at run time by a virtual machine (VM)
[11]. These bytecodes give Java its portability; as long
as a virtual machine exists for the target platform, the
Java application should be able to execute without
intervention. Classes are loaded into the virtual
machine on demand either from the local file system or
over the network from a Web server. As the code is
loaded into the VM, a verifier ensures the bytecodes are
valid and properly constructed. As the bytecodes are
executed, a just-in-time (JIT) compiler can perform
dynamic optimizations, including converting the
bytecodes into native machine instructions for faster
execution.

Widespread adoption of Java is driving rapid
improvements in Java VM performance and the per-
formance of JIT compilers. The ubiquity and power of
the Java run-time platform have made it into an attrac-
tive target platform for a variety of other programming
languages. For example, the NetRexx language [2], a
scripting language intended for non-programmers, is
compiled into Java bytecodes and can therefore be exe-
cuted in the standard Java run-time environment.

Application Environments Big and Small
People are probably most familiar with Java’s tradi-
tional uses, namely Web applets and desktop applica-
tions. However, these uses for Java are evolving rapidly
from the simple data entry and user scripting tasks of
the past. The new Java Media APIs [8] support 2D and
3D graphics, playback and recording of multimedia
data, speech recognition and synthesis, and even tele-
phony. Together, these APIs enable the development of
powerful Java applications rivaling those otherwise
developed using native operating system functions.

Java is even adopting new roles over the Internet.
Integrated with the Virtual Reality Modeling Lan-
guage (VRML) for describing interactive 3D scenes,

Java allows the introduction of dynamic behavior
models for VRML objects and multiuser interactions
in these virtual worlds. In this section, Don Brutzman
describes VRML and how it leverages the Java lan-
guage. To enable a new generation of networked appli-
cations, new Java toolkits support the interactive
sharing of data and events by multiple users. The Java
Shared Data Toolkit (JSDT) [9] from JavaSoft and
Shared Data Objects (SDO) [5] from IBM are exam-
ples of these new application environments.

At one extreme, Java is being used in embedded
devices for smart cards and digital cash, telephones,
television set-top boxes, and household appliances. For
Java, these applications actually represent a return to
Java’s roots, for James Gosling’s research group at Sun
originally designed the language specifically for these
environments. Scaled-back versions of the Java class
libraries, Personal-Java, Embedded-Java, and JavaCard
[10], execute with minimal memory requirements.
Using the portable Java run time, devices can provide
encryption and authentication services, as well as basic
network communications and data exchange. For
devices with a display screen, the application developer
can implement a basic GUI, including a Web browser.

When running on embedded devices, current Java
applications lack the ability to explicitly manage how
much memory and CPU time are given to each exe-
cuting task. Moreover, the application cannot assess
what system resources are available to determine
whether a particular task should execute. In his article,
Kelvin Nilsen explores how the Java environment can
be augmented to address the issues facing real-time
Java applications.

The Java language is rapidly becoming an integral
part of the enterprise environment, where it provides
the glue between transaction monitors, persistent stor-
age, and concurrency, object life cycle, and naming ser-
vices. Using the Enterprise JavaBeans (EJB) component
model [1, 12], one might purchase a data storage con-
tainer (such as a database) and transaction monitor
(supporting concurrency, distribution, replication, and
so forth) from one vendor; one might purchase business
logic (such as a system for managing bank accounts)
from another vendor. After customizing the business
logic and integrating other independently developed
software components, the application developer uses
EJB tools to link the business logic to the container.

36 June 1998/Vol. 41, No. 6 COMMUNICATIONS OF THE ACM

The Java language is rapidly becoming an integral part of the enterprise

environment, where it provides the glue between transaction monitors,

persistent storage, and concurrency, object life cycle, and naming services.

Most important, the application logic can be ported to
use a different container without modification.

Enterprise computing stands to benefit considerably
from the use of Java. For example, portability across a
range of persistence services means application can be
migrated from an entry-level transaction system to a
high-throughput distributed transaction system as
requirements change. Persistent storage can be re-
targeted between a flat file, a relational database, or an
object database based on price-performance demands.
Enterprise Java has support from all the major systems
vendors including Oracle, Sybase, and IBM.

An integral part of the Java enterprise computing
model is the specialized business logic that supports
particular types of applications. For example, in their
article, Kathy Bohrer, Verlyn Johnson, Anders Nilsson,
and Bradley Rubin describe a general distributed busi-
ness object framework that supports a variety of com-
mon business objects such as Currency, Business
Partner, and Address. This framework is being cus-
tomized to support particular applications, including
financial account management, order processing, and
warehouse/inventory management.

Interestingly enough, this emergence of enterprise
computing brings Java back to its Web roots. Mod-
ern Web servers (better referred to as application
servers) provide support for servlets—Java applica-
tions that are invoked in response to HTTP requests.
Servlets provide Web users with an entry point for
accessing and manipulating a wide-range of enterprise
data. As Java code, servlets can use Java Database
Connectivity (JDBC) to access SQL databases, Java
Naming and Directory Interface (JNDI) to access
LDAP and other corporate directory information, and
EJBs to access transaction and persistence services.
Ultimately, Java is serving to fulfill the vision of pro-
viding ubiquitous access to information.

Getting Started
Now is an exciting time for Java. The language
promises to touch our lives in numerous ways, whether

it be in our ATM and debit cards, our telephones, our
household appliances, our desktop computers, or the
payroll and ordering systems used by our employers.
For this reason, and because of its overall simplicity
and relative purity as an OO language, Java is rapidly
becoming the subject of first-year programming
courses. Paul Tyma summarizes the arguments for and
against Java in the first article of the section.

Fortunately, there are plenty of resources available to
learn more about Java. Please see the accompanying
box for some pointers.

References
1. Copeland, G. S. Claussen, Conner, M. and Hambrick, G. Enterprise Pro-

gramming with Java. Oct. 1997.
2. Cowlishaw, M. NetRexx-Easier Java Programming. Java Report 2, 6 (June

1997), 45–48.
3. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley, Reading Mass.,
1995.

4. Gosling, J. Joy, B. and Steele, G. The Java Language Specification Addison-
Wesley, Reading Mass., 1996.

5. International Business Machines, Corp. Shared Data Objects; www.alpha-
Works.ibm.com/.

6. JavaSoft, Inc. Java Development Kit 1.1.5; www.javasoft.com/jdk/1.1/.
7. JavaSoft, Inc. Java Development Kit 1.2; www.javasoft.com/jdk/1.2/.
8. JavaSoft, Inc. Java Media; java.sun.com/products/java-media/.
9 . JavaSoft, Inc. Java Shared Data Toolkit; developer.javasoft.com/ devel-

oper/earlyAccess/jsdt/.
10. JavaSoft, Inc. Products and APIs; java.sun.com/products.
11. Lindholm, T. and Yellin, F. The Java Virtual Machine Specification. Addison-

Wesley, Reading, Mass., 1997.
12. Thomas, A. Enterprise JavaBeans: Server component model for Java;

java.sun.com/products/ejb/white_paper.html.

Sandeep Singal (singhal@us.ibm.com) is a research staff
member in the IBM T.J Watson Research Center in Hawthorne, NY.
Binh Nguyen (binhn@us.ibm.com) is a senior software
engineer in the IBM Software Solutions Division in Research
Triangle Park, NC.

Java is a trademark of Sun Microsystems, Inc.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

© 1998 ACM 0002-0782/98/0600 $5.00

c

COMMUNICATIONS OF THE ACM June 1998/Vol. 41, No. 6 37

Books
P. Niemeyer, J. Peck, Exploring Java,
Second Edition, O’Reilly, 1997.
C. Horstmann and G. Comell, Core Java 1.1, Volume I:
Fundamentals, Prentice-Hall, 1997.
C. Horstmann and G. Comell, Core Java 1.1, Volume II:
Advanced Features, Prentice-Hall, 1997.
D. Berg and S. Fritzinger, Advanced Techniques for
Java Developers, Wiley, 1998.

Magazines
Java Report; www.sigs. com/jro.
Java World; www.javaworld.com/.
Pure Java Developer’s Journal; www.cobb.com/pjd/.

Usenet
See the comp.lang.java newsgroup hierarchy as
well as comp.compilers.tools.javacc.

POINTERS BOX

