Optimised Scheduling of Online Experiments

Eugene Kharitonov*?, Craig Macdonald?, Pavel Serdyukov?, ladh Ounis?
'Yandex, Russia
2University of Glasgow, UK
Hkharitonov, pavser}@yandex-team.ru
2{craig.macdonald, iadh.ounis}@glasgow.ac.uk

ABSTRACT

Modern search engines increasingly rely on online evalua-
tion methods such as A/B tests and interleaving. These
online evaluation methods make use of interactions by the
search engine’s users to test various changes in the search
engine. However, since the number of the user sessions per
unit of time is limited, the number of simultaneously running
on-line evaluation experiments is bounded. In an extreme
case, it might be impossible to deploy all experiments since
they arrive faster than are proccessed. Consequently, it is
very important to efficiently use the limited resource of the
user’s interactions. In this paper, we formulate the novel
problem of schedule optimisation for the queue of the online
experiments: given a limited number of the user interac-
tions available for experimentation, we want to re-order the
queue so that the number of successful experiments is max-
imised. In order to build a schedule optimisation algorithm,
we start by formulating a model of an online experimenta-
tion pipeline. Next, we propose to reduce the task of finding
the optimal schedule to a learning-to-rank problem, where
we require the most promising experiments to be ranked
first in the schedule. To evaluate the proposed approach, we
perform an evaluation study using two datasets containing
82 interleaving and 35 A/B test experiments, performed by
a commercial search engine. We measure the quality of a
schedule as the number of successful experiments executed
under limited user interactions. Our proposed schedulers
obtain improvements of up to 342% compared to the un-
optimised baseline schedule on the dataset of interleaving
experiments and up to 43% on the dataset of A/B tests.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval

Keywords: online evaluation; interleaving; A/B tests

1. INTRODUCTION

Online experimentation methods have increasingly attract-
ed attention from researchers and practitioners. The major
search engines such as Google [22] and Bing [12] have de-
veloped large-scale online experimentation pipelines. Ko-

havi et al. [12] claimed that the number of A/B tests de-
ployed by Bing grew exponentially over the years.

We define an online experiment as a single unit of the on-
line evaluation that aims to test a single change in the search
engine. An online experiment might span weeks and affect
millions of user sessions. An experiment where the tested
change proved to improve a considered metric with respect
to the baseline system is further referred to as a successful ex-
periment. We assume that obtaining a large number of such
successful experiments per unit of time is important for the
evaluation pipeline as a whole, as it allows a search engine
to evolve quickly. In a typical scenario, several groups work
on improving the search engine’s ranking simultaneously and
in different areas (e.g. ranking algorithms, ranking features).
However, when tested online, the majority of their changes
turn out to be useless or harmful [10].

Since the number of experiments grows with the intensity
of the search engine development, after some point, these ex-
periments need to “compete”for a limited resource of user in-
teractions available to the search engine. These observations
lead us to the idea of optimising the order of the online ex-
periments: we need to order the schedule of the experiments
so that the most promising experiments are performed first.
Indeed, the earlier a successful comparison is performed, the
earlier the corresponding change will be deployed. In an ex-
treme case, when the experiments are arriving faster than
they are proccessed, it is also beneficial to schedule only the
promising experiments, without spending resources on the
less promising ones.

In this paper, we study the problem of the online exper-
iment schedule optimisation. We start with formally de-
scribing the model of the experimentation pipeline and the
requirements for the scheduling algorithms. Further, we con-
centrate on the effectiveness-related experiments, where the
changes that affect the ranking of the results are tested. We
propose to reduce the problem of the optimal scheduling
of such experiments to a learning-to-rank problem, consid-
ering pointwise and pairwise formulations. We describe a
rich feature representation of the online experiments, used
in the machine learning step. Finally, we perform a thorough
evaluation study of the efficiency of the resulting scheduling
algorithms. The contributions of this work are three-fold:
¢ We formulate the novel problem of the optimal scheduling

of online experiments;
¢ We propose to reduce the problem of the optimal schedul-

ing of the experiments to a learning-to-rank problem, and
consider pointwise and pairwise formulations of this learning-
to-rank problem;

¢ We thoroughly evaluate the proposed scheduling algorithms.



The remainder of this paper is organised as follows. After
discussing the related work in Section 2, we briefly review
how online experiments are typically performed and describe
our experimentation pipeline in Section 3. In Section 4 we
discuss how the scheduling problem can be reduced to a
learning-to-rank machine learning problem. In Section 5 we
discuss the datasets we use in our evaluation study. The
evaluation methodology is described in Section 6. The eval-
uation results we obtained are discussed in Section 7. We
conclude the paper and discuss future work in Section 8.

2. RELATED WORK

Our work relates to existing research in improving the ef-
ficiency of online experimentation, as discussed below.

Tang et al. [22] described the multi-layer framework of
overlapping experiments used in Google. The motivation
of this framework is to build a scalable online experimenta-
tion mechanism. The core idea of the framework is to use
different layers of experiments, with each layer being associ-
ated with a set of variables influencing the user experiments.
This allows each user interaction to participate in several
experiments simultaneously. For instance, one of these ex-
periments can compare two ranking algorithms, another can
evaluate changes in the Ul, etc. A similar framework is used
by the Bing search engine [12].

Our work shares the same goal: to make the online exper-
imentation pipeline more efficient, but extends [22] further.
Even in the framework proposed by Tang et al., in some lay-
ers (e.g. the ranking layer) we might want to run the most
promising experiments earlier or experiments might arrive
faster than they could be processed. As a result, the prob-
lem of the optimal scheduling of these experiments is still
an issue. We consider a complementary approach: assum-
ing that only a part of the experiments can be successful,
we propose to schedule the queue of the experiments so that
more successful experiments are performed.

Notable efforts [9, 18, 23] have been applied to improve
the sensitivity of the interleaving experiments, so that each
interleaving experiment can be finished faster. Yue et al. [23]
proposed a machine-learned approach to interpret click feed-
back from the users, so that the intrinsic noise of the clicks
is reduced. Chapelle et al. [1] additionally considered some
simple heuristic weighting schemes that can be used while
aggregating the user’s clicks in a single impression. We study
a complimentary approach to increase the experimentation
efficiency: under the optimising schedule, more successful
experiments can be performed.

An important step in our approach is to predict how likely
a particular experiment is to be successful. Hofmann et al. [4]
proposed to estimate the interleaving comparison outcomes
by treating historical user sessions as comparison events be-
tween tested alternatives. Kharitonov et al. [9] used the
historical click data to calculate the expected difference in
the number of clicks each interleaving alternative receives
after an interleaving experiment is deployed. This step can
be considered as a predictor of the experiment’s result. In
a recent work, Li et al. [14] proposed to leverage historical
click data and natural variance in the search engine’s result
pages to predict the results of A/B tests.

In this work, we also use historical click data to predict
the interleaving experiment outcome. However, there are
considerable differences with the above discussed work [4,
9, 14]. Indeed, predicting an outcome of an experiment is
just one of the steps of our proposed experiment scheduling
approach. Moreover, the historical click data forms only a

part of the features we use in our study: we additionally
consider features that are based on the offline effectiveness-
based evaluation, and online exploration.

Radlinski and Craswell [17] studied the agreement be-
tween the offline evaluation metrics, such as nDCG@n or
Precision@n, and the results of interleaving experiments.
Their work is related to our research, since they demon-
strated that some metrics, such as nDCG@n, have a sta-
tistically significant correlation with the outcomes of inter-
leaving experiments. This fact implies that offline evalu-
ation metrics can be useful in predicting the interleaving
experiment results. A similar experiment was performed by
Chapelle et al. [1], who measured the correlation between
DCG@5 and the absolute online metrics used in A/B tests.

However, since the agreements reported in [1, 17] are not
perfect, the following question arises: Can a better predic-
tion can be achieved by using other features apart from the
search result effectiveness? In our evaluation study we ad-
dress this question. Further, Radlinski and Craswell [17]
performed their study on a dataset containing three experi-
ments with major changes, and two experiments with minor
improvements. However, major changes are rare in mod-
ern commercial search engines. Similarly, the analysis of
the absolute online metrics used in A /B tests, performed by
Chapelle et al. used a dataset of 6 comparisons. In contrast,
we use two datasets, containing 82 real-life interleaving ex-
periments and 35 A/B tests, performed by a commercial
search engine as part of its development. Thus, we argue
that our study uses more representative datasets.

Overall, to the best of our knowledge, our paper is the
first work that studies the optimisation of the schedule of
the online experiments. However, our work finds a solid
foundation in the research discussed above.

3. ONLINE EXPERIMENTATION

In the next section we shortly review how online exper-
iments are performed (Section 3.1) and the model of the
experimentation pipeline we consider (Section 3.2).

3.1 Evaluation Methods

Suppose, we want to compare two different ranking algo-
rithms, referred to as A (the current system) and B (the
tested improvement). There are two popular online evalua-
tion approaches to do that: A/B tests and interleaving.

A /B tests An intuitive way to compare two systems is
to split users in two groups, the treatment and the control
group. Each group of users is served by one of the algo-
rithms (A or B). After collecting the user behaviour data
in the experiment e, an online user satisfaction metric o is
calculated for A (ca(e)) and B (op(e)). If the collected
data suggests that the alternative B demonstrates statisti-
cally significant improvement in the selected user metric (i.e.
op(e) >st.s ca(e) = B > A) then the experiment is con-
sidered as successful. We use the clickthrough rate online
metric, which indicates the ratio of the clicked result pages
in the query stream. The inverse of the clickthrough rate,
the abandonment rate is frequently used in the literature,
e.g. [1, 2, 19]. Our approach does not rely on the specific
properties of the metric used, so it can be applied with any
of the existing online metrics.

Interleaving In an interleaving experiment, result pages
are generated by interleaving (mixing) results from both al-
ternatives. Next, the user’s click feedback is interpreted in
order to derive which of the tested algorithms provides the
users with a better results ranking.



While the scheduling approaches discussed in this paper
can be applied to any of the existing interleaving methods
[5, 8, 17, 18], in our evaluation study we use a dataset of
Team Draft-based [17] interleaving experiments. The Team
Draft modification we use leverages the deduped binary click
aggregation scheme [1], which proved to be sensitive, i.e.
allowing a faster convergence rate. In a user interaction,
alternative A (B) is assigned with credit equal to the total
number of clicks its results received in the interaction. If
the top k results in A and B are identical, then the clicks
on these results are ignored. After that, in each user inter-
action the alternative that has more credit is defined as a
winner. If both alternatives have equal credits, the result
of the comparison in this interaction is a tie. In an experi-
ment e we denote the number of user interactions with ties
as ties(A, B), the number of interactions won by A (B) as
wins(A) (wins(B)). The outcome of the experiment e is the
following quantity [1]:

wins(B) + ities(A, B) 1

se) = wins(A) + wins(B) + ties(A,B) 2 (1)

If s(e) is significantly above zero, then it is concluded that B
outperforms A (B > A) and the experiment e is successful.

3.2 Experimentation pipeline

In this paper, we work under a particular case of the ex-
perimentation pipeline. We specify this model by describing
three assumptions, as discussed below:

A1 The upper bound of the user interactions available for
each experiment (the experiment’s budget) is pre-defined
and equal to T'.

In practice, usually the part of the query stream used for a
single experiment is fixed and set to several percent [12]. At
the same time, the size of the query traffic of a search engine
is influenced by various factors, including the time of the day,
the day of the week, and the season of the year. However,
we assume that the experiments are deployed long enough
that the per-day variations of traffic are averaged out, while
the seasonal variations are smooth enough not to influence
the size of the traffic while experiments are performed. This
can be achieved by fixing the duration of the experiments to
be of a size of a week or two [12]. This assumption allows
us to simplify the schedule planning and evaluation steps.

A2 Once an experiment is started, it is never interrupted.

After an experiment is started it is never stopped (such an
interruption is referred to as preemption [13]) until one of
the two outcomes is achieved: one of the alternatives (A
or B) wins the comparison, or the experiment’s budget n is
entirely exhausted. In the case of interleaving experiments,
where no early stopping scheme is available, we assume that
the experiment is always performed until its budget is ex-
hausted. On the other hand, in the case of A/B tests, an
experiment might be stopped before using all interactions
if an early stopping mechanism is used, such as the scheme
proposed in Section 4.3 of [12].

Notably, a currently running experiment is never stopped,
even if a new experiment comes to the queue and it turns out
to be more promising. Although this restriction can result in
a sub-optimal use of the user interactions, this assumption
ensures some desired properties of the experiments. First,
it is generally accepted to deploy online experiments for an
integer number of weeks of continuous time, so that every
week day is represented in the experimental data [12]. Thus
the situation where a 7 day experiment is started on Mon-

day, stopped on Tuesday, and continued next Monday is not
desirable as not each day of the week is covered. Moreover,
interrupting an A/B experiment with another experiment
might result in increased variance in the observations (due
to the carry-over effect [11]), and thus reduce the sensitivity
of the experiments. At the same time, most of the changes
at search engines are relatively small and hence are diffi-
cult to detect immediately. As a result, the metrics used
in A/B tests should be measured for a relatively long and
continuous period of time. Finally, this assumption makes
the whole pipeline predictable and understandable, which is
an important property of a production-level system.

As new experiments continually arrive in the queue, it is
possible that an old experiment will not be executed for a
long time, i.e. it starves. The question arises as how to han-
dle this case: should we prioritise old experiments over new
ones? In this paper, we work with the following assumption:
A3 It is acceptable for some experiments to starve. The ex-

periments should “compete equally” no matter how long

ago they arrived in the queue.
This assumption simplifies modelling the queue and makes
the scheduling algorithm easy to understand and predict. To
alleviate the consequences of infinite starving in a real-life
production setting, the scheduling algorithm can be accom-
panied by a manually handled queue. Experiments that are
essential to be deployed despite the predictions of the sched-
uler can be deployed in this manual queue, if necessary.

The task of the scheduler we study is to sort the queue
of the experiments, so that the number of successful ex-
periments performed under the limited number of the user
interactions is maximised. When studying this task, the ex-
act implementation of the experimentation pipeline does not
play an important role. We only require A1-A3 to hold. For
instance, two experiments can run parallel for two weeks, us-
ing 5% of the user interaction stream each, or the first exper-
iment can be deployed for a week on 10% of the traffic, fol-
lowed by the second experiment. From the scheduling point
of view, we do not differentiate between these two cases.

4. OPTIMISING THE SCHEDULE

In this section, we firstly formulate the problem of opti-
mised scheduling (Section 4.1), using the assumptions dis-
cussed in Section 3.2. Since this formulation relies on feature-
based machine learning, in Section 4.2 we describe the fea-
ture representation of the online experiments we use. Fi-
nally, in Section 4.3 we describe our approach to reduce the
scheduling problem to a learning-to-rank problem.

4.1 Scheduling Model

The aim of the scheduler is to maximise the number of suc-
cessful experiments performed. We firstly define “the prob-
ability of success” P(e) for an experiment e € E. This prob-
ability is equal to the frequency of the experiment’s success
(B winning A), if it was repeatedly deployed. Given a fixed
schedule S, the expected number of successful experiments
is equal to

|E|

O =3 P(SG)I [Z nsg <T

where T is the number of user interactions available for the
experimentation, ng(;) is the number of interactions used
for the jth experiment in the schedule (S(j)), and I(-) is the
indicator function. To optimise the number of successful ex-
periments, we use a greedy, shortest job first-like, scheduling

(2)




Input: Set of sessions Q
Output: The click model parameters for each
document u: a., Sy
a «0;aP <0
s 0,52 «0
Init beta priors: a, = 1,as =1,8, =1,8: =1
foreach session s € Q do
foreach result u above or on the last clicked
position do
\ a{? — aE +1
end
foreach clicked result u do
\ al —all +1 P sP+1
end
u < last clicked document in s
sﬁ/ — siv +1

end
foreach u do
N N
ay, +aq Su +as
Gu = D aetBa 5% SDvactss
end

Algorithm 1: Training the sDBN model, as described by
Chapelle et al. [3].

algorithm. This algorithm prioritises the interleaving exper-
iments such that the experiments that are ranked higher are
expected to be likely more successful. Overall, the greedy
scheduling algorithm can be organised as follows. Suppose, a
set of the experiments Eq is available in the queue, currently
ordered according to schedule So = {es,(1)s - €50 ([Eo|) }-
Importantly, the queue is ordered so that if an experiment
e; is ranked earlier in the schedule than another e;, then this
necessarily implies that the first experiment e; has a higher
probability of being successful. Denoting the position of the
experiment e in the queue S as S 71(@), this requirement can
be formalised as follows:

So (e:) < Sp '(e;) = P(ei) > Pley) (3)

In the next step, a set of new experiments E,e. arrives in
the queue: E; = Eg|JEnew. After that, for each new ex-
periment e, the estimate of its probability of success P(e) is
calculated. A new schedule S is obtained by sorting the full
set of experiments E; so that Equation (3) holds. Once a
currently running experiment finishes, the firstly scheduled
algorithm (S(1), with the highest value of P(e)) is deployed.
Under the assumptions A1-A3 this algorithm is optimal®:

FACT 1. Assume the probability of success P(e) is avail-
able for each experiment e € E. Then the greedy scheduling
algorithm is optimal, i.e. it mazimises Equation (2).

To run this greedy algorithm, a procedure to estimate the
probability of an experiment’s success is required. To build
such an algorithm, we propose to use a learning-to-rank ap-
proach. Further, we discuss the feature representation used
in our work (Section 4.2) and the machine learning algo-
rithms (Section 4.3).

4.2 Features

We divide our features into three groups: effectiveness-
based features, click model-based features, and the online
exploration features. All of these features characterise a par-
ticular pair of compared systems A and B. For this reason,
most of the features (except for one, interleaving-specific,

'Due to space constraints, the proof is omitted here.

feature) can be used for scheduling A /B tests and interleav-
ing experiments.

Effectiveness-based group (12 features) The commonly
accepted way to evaluate the difference between two ranking
algorithms is to assess their quality within the offline eval-
uation paradigm. Under this paradigm, a set of previously
labelled queries are submitted to both alternatives. After re-
trieving the search result lists (SERPs), they are intersected
with the available document labels. Finally, the quality of
the ranking is represented by one of the offline metrics, such
as Precision@N, ERR@N [2], DCG@N [6].

To get a fine-grained representation of the experiments, we
vary the cut-off depth and the way the unlabelled documents
are treated while calculating these metrics. We calculate the
average values of the metrics for both alternatives, while
considering non-labelled documents as irrelevant. Next, we
calculate the averages of the same metrics only for queries
where both alternatives (A and B) have all top-N documents
labelled. This procedure was applied to Precision@1, Pre-
cision@3, ERR@3, DCG@3, ERR@5, and DCG@5 metrics.
To get a feature representation for an experiment e from
the averages of the metrics, we calculate the differences be-
tween the averaged values over the queries of the metrics
for both alternatives tested in the experiment (e.g. the dif-
ference between the averaged values of Precision@1 of alter-
natives A and B is a feature). Thus each experiment is as-
sociated with (Precision@1, Precision@3, ERR@3, DCG@3,
ERR@5, DCG@5) x (unlabelled documents are treated as
irrelevant, or the corresponding pairs of SERPs are ignored)
=6 X 2 = 12 effectiveness-based features.

Click model-based group (3 features) The relevance
judges can misinterpret queries and misunderstand the user’s
intentions. A possible way to address this is to use implicit
feedback from the real users. In this work, we use pre-trained
user click models to predict how users will behave once they
are presented with a result page from A or B. Specifically,
we train a Simplified Dynamic Bayesian Network (sDBN) [3]
click model using a separate part of the dataset. Under the
sDBN click model, for a fixed query, each document u has
two parameters defined: the probability of the user click-
ing on the document if it was examined (attractiveness) a.,
and the probability that the document will satisfy the user,
if it was clicked, s,. These parameters are calculated by
Algorithm 1, proposed by Chapelle et al. [3].

After that, we use this pre-trained click model to calculate
the following features. First, we calculate the difference in
the probabilities of the user satisfaction (as defined by the
sDBN model) by the result pages of A and B (Algorithm 2).
We calculate the value of this difference for two cut-off lev-
els, considering three and five top-ranked results from both
alternatives. We use only the top-ranked results, as they are
likely to have sufficient click data in the logs. Second, we
calculate the expected difference in the number of clicks for
alternatives A and B in the interleaving experiment (Algo-
rithm 3). The latter feature is used only for the scheduling
of the interleaving experiments, as it is designed to simulate
an interleaving experiment. We use a cut-off level of five.

In Algorithms 2 & 3 we use the following notation. The set
of interleaved result lists generated for the query is denoted
as L, and the probability of showing the interleaved result
list L; to the users is f;.

Online exploration group (1 feature) A completely dif-
ferent approach to gain useful information about an experi-
ment e is to perform a preliminary deployment for a short pe-
riod of time. After this, we calculate a feature representing



Input: Parameters of the click model, a., s,; the result
page R, the cut-off level k
Output: The probability of the user’s satisfaction with
R7 Psat
// Pasat is the probability of the user’s dissatisfaction
Pdsat «~1
for r < 1 to min(k, |R|) do
// u is the document on the rth position
u <+ R(r)
//update the probability of dissatisfaction
Pdsat — Pdsat : (]- - ausu)
end

Psat<_l_Pdsat
Algorithm 2: Calculating the probability of the user’s sat-

isfaction with the result page R.

the outcome of this preliminary experiment (Equation (1)
for interleaving, and op(e) — oga(e) for A/B tests). To cal-
culate this feature in our model, we sample a pre-defined
number of user interactions from the experiment data. As
the number of interactions sampled can greatly influence the
prediction quality (i.e. if we sample sufficiently enough in-
teractions while doing exploration we might not need the
experiment itself), in our empirical study we vary this num-
ber to gain additional insights into the relative usefulness of
this feature. This exploration step is akin to the exploration
step in the muti-armed bandit setup [21]. Indeed, given a
set of experiments (“arms”), we need to identify which of
them is more likely to be successful. However, the pipeline
requirements we work under do not permit the use of the
existing bandit algorithms, as A2 assumes that a deployed
experiment cannot be interrupted.

Feature aggregation After calculating the effectiveness-
based and click model-based features, we additionally aggre-
gate them by averaging over four groups according to the
query length measured by the number of space-separated
terms: (1) all queries, (2) queries of length of 1, (3) queries
of length of 2, (4) queries of length of 3 and longer. The
exploration feature is not included in this aggregation step.
Our intuition behind this feature aggregation step is that
it allows the machine-learned algorithms to detect cohorts
of queries where the main change in the experiment occurs.
For instance, if major relevance changes are observed in the
group of long queries, which are likely to be rare, the click
model-based features can be less useful. As a result of this
aggregation, each interleaving experiment e € E is repre-
sented as a point in a space of (124 3) -4+ 1 = 61 features.
Similarly, each A /B test is represented as a point in a feature
space with (124 2) -4+ 1 = 57 dimensions.

Different sets of features might be useful in different sce-
narios. For instance, in some interleaving experiments, such
as those that test changes in the personalisation algorithms,
the personalised relevance labels might be unavailable. In
contrast, the exploration-based feature can be valuable in
this case. On the other hand, the click model-based features
can be less useful for the experiments where only the ranking
of the long-tail queries is affected. We argue that combining
all these groups of features can improve the performance.

4.3 Learning Framework

To apply a greedy scheduling algorithm, we need to es-
timate the experiments’ probability of success. We con-
sider this problem as a ranking problem, and further discuss
pointwise and pairwise learning-to-rank approaches to it.

Table 1: Descriptive statistics of the datasets.

Dataset #Exp B wins A Impressions: Min  Median Mean Max Total
Interleaving 82 31 178K 1M 2M 39M 174M
A/B tests 35 10 1.4M 42M 54M 196M  1899M

Input: Parameters of the click model, a,, s.; the set of
interleaved result lists, L, the cut-off level k.
Output: The expected difference D in the number of
clicks obtained by alternatives A and B.
//Pe(r) denotes the probability of examining the rth
position
P.(1)+ 1
foreach L; € L do
for r < 1 to min(k, |L;|) do
// u is the document on the rth position
u <+ L;(r)
//update the expected difference
D« D+ fiP.(r)au(I[r from A] —1I[r from B])
//probability of examining the next document
P.(r+1) <« Pe(r) (1 — ausu)
end

end
Algorithm 3: Calculating the expected difference in clicks
obtained by A and B in an interleaving comparison.

Pointwise A simple approach to predict the experiment’s
probability of being successful is to train a classifier that dis-
criminates successful experiments from others. We associate
experiments with one of the two classes {0,1}: y(e) =1I[B >
A]. Informally, the experiments for which B statistically
significantly outperforms A are considered as instances of
the positive class 1. All other experiments, including those
where no statistically significant difference between A and B
was found, belong to the negative class 0. In the second step,
we train a machine learning algorithm to predict the class of
the considered experiment. We use two popular methods to
build such a binary classifier. First, we use logistic regression
with L1 regularisation [16]. The regularisation parameter is
tuned by a ten-fold cross-validation on the training set. Sec-
ond, we use the gradient boosted trees algorithm provided in
the GBM package for R [20]. The parameters (e.g. number
of trees) are tuned throught cross-validation.

Pairwise In the pointwise approach all positive examples
are treated equally. However, in some of the experiments,
the difference between the alternatives is bigger. With ev-
erything else being equal, it is better to deploy such experi-
ments earlier, as the corresponding search engine’s improve-
ment is larger. This idea is naturally represented by the
pairwise learning-to-rank paradigm. We firstly define a set
PP of pairs of experiments (e;, e;) € E x E such that the out-
come of the first experiment in the pair is higher than that
of the outcome of the second. P formulated as follows:

P = {(ei,e;) : o(e;) > o(ej),ei,e; € E}

where o(e) = s(e) for the interleaving experiments, and
o(e) = op(e) —oa(e) in the case of A/B tests.

We use the GBM [20] package for R to find the function
f(re) that minimises the number of misordered pairs. As an
alternative pairwise ranker we use RankingSVM [7].

S. DATASETS

Before discussing the experimental study in the next sec-
tion, we briefly describe the datasets used in this paper.



The first dataset consists of the subset of the interleaving
experiments performed by Yandex during a five week pe-
riod in Spring 2014. The sample contains 82 interleaving
experiments, 31 of which were successful (the alternative B
outperformed A statistically significantly, p < 0.05). The
experiments test changes in the non-personalised ranking of
the search engine. The second dataset contains 35 A /B tests,
performed over a period of two months in Winter/Spring
2014. In 10 A/B tests, B outperformed A by a statistically
significant margin (p < 0.05). On average, the A/B tests
and interleaving experiments were deployed for 10 days.

Salient statistics of the datasets are provided in Table 1.
The number of interactions per experiment varies, as each
experiment was selected to be deployed for time periods of
different length, or for different shares of the query stream.
The interleaving experiments were performed using the Team
Draft interleaving method with the deduped binary scoring
scheme, as described in Section 3. The parameters of the
sDBN model [3] used for calculating the click model-based
features (Section 4.2) are estimated using a separate query
log sample from a two-week period. All experiments in the
datasets were deployed after this period. All online experi-
ments were deployed on the Russian market.

6. EVALUATION METHODOLOGY

Since our proposed scheduling algorithm relies on predict-
ing the outcomes of the online experiments, we split our
evaluation study in two steps: (1) evaluating the experiment
outcome prediction, (2) evaluating the quality of the sched-
ules obtained by our proposed scheduling algorithms. We
formulate three research questions that we aim to address:

(RQ1) Is it possible to predict the outcomes of the online
experiments using the pre-experimental data only, so that
the quality of the predictions is improved in comparison with
the random order?

(RQ2) What are the best performing prediction algorithms?

How do the proposed features compare to each other?

(RQ3) How do the learned approaches compare in terms
of the quality of the schedules they generate?

As we discuss in Section 6.4, the random order we compare
to in RQ1 is not an artificial baseline, instead it reflects the
stochastic order of the experiments arriving to the experi-
mentation pipeline if no scheduling is performed. In other
words, we consider the performance of the randomised order
to be similar to the performance of an unoptimised schedule.
Notably, each of the groups of features, discussed in Section
5.2, can be considered as a simple predictor of the experi-
ment outcome. Indeed, the experiments in the queue can be
ordered according to their DCG scores, or the experiment
outcome prediction, based on the click modelling, or based
on the results of the exploration step. To obtain additional
insights into the relative importance of the features, we ad-
ditionally investigate the performance of the schedulers that
sort experiments according to the separate features.

6.1 Prediction quality

Since our goal is to schedule the successful experiments
with a higher priority, it is natural to measure the quality of
the schedule ranking as the fraction of the correctly ordered
pairs of the experiments. In an ideal ranking, successful ex-
periments (B = A) are deployed first. Moreover, it is natural
to require the successful experiments with higher difference
between A and B to be scheduled earlier. This idea can be
represented by the Area Under Curve (AUC) quality met-

Input: Number of user interactions available for an
experiment n; the total number of available
user interactions T'; A set of experiments [

Output: Estimated values of AUC(S) and Q(5).

A+—0; Q«+0

foreach train, test <

RandomStrati fiedSplit(E, nSplits = 100) do

Train the ranker: C <« fit(train)

Greedily schedule the test experiments:

S + predict(C, test)

Update the AUC estimate:

A+ A+ AUC(S)

Initialise the estimate of @@ for the current split:

Qi +~—0

Calculate the bootstrapping estimate Q;:

while ¢ < N do

The remaining experimentation budget:

T+ T

Starting with the first experiment:

j+«1 .

while j < |S| and T'> 0 do

Sample n sessions from experiment S(j)

data < sample(S(j))

Check if the experiment is successful, based

on data:

if B > A then

| Qi<+ Qi+1

end

Reduce the budget by the number of sampled

sessions and proceed to the next experiment:
T=T-nj+j+1
end
end
Q+— Q+ Qi
end
Calculate averages of the metrics across the splits:
Q(S) + WQ, AUC(S) + m/l

Algorithm 4: The bootstrap-based evaluation protocol.

ric of a classifier S separating successful experiments from
unsuccessful ones [15].

We firstly define the set of pairs of experiments R =
{(ei,1,€i,2)}: that are used in the evaluation. This set con-
tains all the pairs of experiments such that at least one of
the experiments has the alternative B winning the compar-
ison with p < 0.05 and the relative scores of B are different
when compared across experiments. We impose the first re-
quirement as we are not interested in evaluating how good
a particular scheduling algorithm is at ranking unsuccessful
experiments. The AUC metric AUC(S) of a schedule S can
be calculated using the following expression:

> I[(S7 (er) = ST (e2)) (o(e1) — a(e2)) < 0]

AUC(S) = 2e2=E R

(4)
where o(e) = op(e) —oa(e) in the case of the A/B tests and
o(e) = s(e) for the interleaving experiments.

6.2 Evaluating the Schedule

While the AUC measure as defined in the previous section
is intuitive, it evaluates the quality of the predictions only,
not the quality of the resulting schedule. However, there is
a noteworthy difference. Indeed, the AUC metric reflects a
scenario where there are enough resources (user impressions)



to deploy all the required experiments, but an approach to
deploy the promising experiments first is needed. Indeed,
a scenario when one cannot deploy all the available exper-
iments due to restricted resources is possible. In this case,
AUC is less suitable, as it also measures the quality of the
ranking of the experiments that cannot be deployed. Thus,
we propose to measure the quality of the scheduling algo-
rithm as the number of the successful experiments it can fit
in the number of available user interactions.

Consider a schedule S, representing the order of the ex-
periments to be run, S = {eg1), €s(2)---, €s(jg|) }- Ideally, the
schedule should allow us to run and finish as many experi-
ments where B wins, as possible. At the same time, we have
a limited number of the user interactions that can be used
in the experiments, denoted 7. Thus, we are interested in
minimising the following measure, similar to Equation (2):

> ()

Q(S) measures the number of experiments with B winning
the comparison (I[B(e) = A(e)]), under the limited number
of user interactions T', as only the experiments that are per-
formed before T is reached (3°7_, n(e;) < T') can contribute
to Q(S). Notably, the metric Q(S) can be considered as a
generalisation of Precision@R. Indeed, if the number of in-
teractions available for each experiment n(e;) = n = const is
large enough for any experiment to have a definite outcome,
then Q(S) =~ precision@QR, where R = L.

6.3 Statistical Methodology

To evaluate a quality of a schedule S, we perform a boot-
strap estimation of the metric values AUC(S) and Q(S)
using the datasets described in the previous section. This
estimation is performed in several steps. First, we select
the experiment that S schedules to run first, S(1). After
that, we compare the number of the interactions required
to perform the experiment n to the available limit T". If the
required number is less than 7', we continue, and stop other-
wise. From the available dataset of user interactions for the
experiment S(1), we perform a bootstrap sampling of the
user interactions until the stopping criterion is met. After
that, we proceed to the next scheduled experiment, S(2).
Again, we sample the user interactions until the stopping
criterion is met. We proceed, until the limit 7T is reached,
and calculate the value of Q(S) according to Equation (5).
We repeat this described procedure N times and, as a re-
sult, it provides us with the bootstrapped estimates of the
performance of the tested scheduler.

Further, as the machine learning-based approaches require
separated testing and training set, we repeat the described
quality estimation algorithm with the train-test split varied.
Each split is obtained by randomly selecting 10% of the ex-
periments in the dataset as a test set, with the remaining
experiments used for training. The splits are performed in
a stratified manner, so that the distribution of the success-
ful experiments is the same in training and test sets. The
evaluation algorithm is formally described in Algorithm 4.

We ensure that the total number of user impressions used
in the evaluation is equal for all evaluated schedulers. If
a scheduler performs an exploration step, we subtract the
number of sessions used for exploration from the overall ex-
perimentation budget T'.

i

QS = > (]I[B(e) = A(e)] - T [Zn(ei) <T

i=1..]S| j=1

Table 2: Performance of the scheduling algorithms,
measured by AUC on the dataset of interleaving ex-
periments. The values in bold outperform other val-
ues in the same row, p < 0.05 (excluding UB).

#sample
Rnd CM DCG ERR UB
- 0.51+0.03 0.77+0.02 0.7T10.02 0.7410.02 1.0+0.0
Explore LR SVM LGBM PGBM
0 - 0.761+0.02  0.7210.03 0.8310.01 0.8110.02
0.01-T  0.6210.02 0.7610.02 0.7310.02 0.8310.01 0.8110.02
0.02-T 0.70+0.02 0.77+0.02  0.74+0.02 0.83+10.01 0.8210.02
0.05-T 0.77£0.02  0.77x0.02  0.7410.02 0.8310.01 0.8210.02
0.10-T 0.8310.02 0.78+0.02 0.7540.03 0.8510.01 0.84410.02
0.20-T 0.88410.03 0.79+40.02 0.77+0.03 0.86+0.01 0.86+10.02

Table 3: Performance of the scheduling algorithms,
measured by AUC on the dataset of A/B tests.
The value in bold outperforms other values with the
same exploration step size (excluding UB), p < 0.05.

#sample #sample
Rnd DCG ERR UB
0.4940.0a4 0.5610.04 0.5910.03 1.00+0.00
Explore LR Explore LR
0 - 0.6810.04 0.05-7  0.59+0.04 0.6610.03
0.01-T 0.56+0.03 0.67+0.04 0.10-T 0.6440.04 0.66+0.03
0.02-T 0.544+0.03 0.67+0.04 0.20-T  0.73+0.04 0.65+0.03

6.4 Baselines

Random The first baseline we consider assigns a random
order to the online experiments. Since experiments arrive
stochastically to the queue, we believe that the performance
of this baseline is a good indicator of the average perfor-
mance of the un-prioritised schedule that never re-arranges
the incoming experiments. In other words, this baseline is
not an artificial one, but instead it reflects the performance
of the real-world schedules. As this paper is the first to ad-
dress the problem of the online experiment scheduling opti-
misation, more elaborate baselines do not exist.

UpperBound The UpperBound scheduler provides us
with an upper bound on the possible scheduler performance.
In case of the interleaving experiments, UpperBound sorts
the experiments in the queue according to the values s(e)
of the experiment’s outcome (Equation (1)). For the A/B
tests data, UpperBound sorts the experiments according to
the obtained value of og(e) — oca(e). This baseline uses the
data produced by the experiment, which is unavailable be-
fore the experiment was performed.

7. RESULTS AND DISCUSSION

We use the following notation in this section. The Upper-
Bound, and Random baseline schedulers are denoted as UB
and Rnd, respectively. The schedulers based on the point-
wise predictors, logistic regression and GBM, are referred to
as LR, and LGBM, respectively. The schedulers based on
pairwise RankingSVM and GBM, are denoted as SVM and
PGBM, respectively. Finally, the schedulers based on the
single DCG@3, ERR@3, and Explore features are referred to
as DCG, ERR, and Explore. When calculating the effective-
ness metrics used in the effectiveness-based schedulers DCG
and ERR, we consider unlabelled results as non-relevant.

CM denotes the scheduler that ranks experiments accord-
ing to the click model-based feature, which calculates the
expected difference in the number of clicks A and B will
obtain in the interleaving experiment. We include it as it



Table 4: The quality of the scheduling algorithms measured by Q(S) on the dataset of the interleaving
experiments. The values in bold outperform other in the same scenario (T, #sample), p < 0.05 (except for

UB).
#sample T=3-10° T=45-10°
Rnd CM DCG ERR Rnd CcM DCG ERR UB

- 0.60+0.05 1.994012 1.04+013 1.2040.12 2.4240.11 | 0.58+0.06 2.20+0.14 1.371011 1.424013 2.70+0.11

FExplore LR SVM LGBM PGBM Ezxplore LR SV M LGBM PGBM
0 - 1141014 1451014 1931010 2.1710.0s - 1.3910.16 1.711014 2.2810.14 2.5610.12
0.01-T 0.78+0.07 1.1440.13 1444015 1.87+0.11 2.18+0.08 | 0.85+0.07 1.3740.13 1.73+0.13 2.3540.11  2.5440.11
0.02-T  0.89+0.12 1.1310.10 1441014 1.9010.10 2.131+0.0s | 1.00+0.0s8 1.39+0.13 1.69+0.11 2.3210.14 2.5410.14
0.05-T 1.0640.08 1.1240.10 1.34+0.13 1.91+011 2.1040.08 | 1.2640.10 1.4440.14 1.6940.11 2.30+0.11  2.50+0.11
0.10-T 1.1840.00 1.04+0.10 1.354+0.13 1.8140.11 2.0240.00 | 1.4540.11  1.3640.14 1.87+0.12 2.30+0.11  2.5040.14
0.20-T 1311010 0.941011 1.201011 1.5710.09 1.8310.0s | 1.68+0.13 1.2610.08 1.7110.10 2.1910.14 2.4610.12

Table 5: The quality of the scheduling algorithms
measured by Q(S) on the dataset of A/B tests. The
values in bold outperform other with the same ex-
ploration step size (except for UB), p < 0.05.

#sample #sample
Rnd UB DCG ERR
- 0.4240.03  0.9210.06 - 0.54+0.03 0.6110.03
Explore LR Explore LR
O - 0.60i0.04 005 -T 0-52i0.03 0-57i0.04
0.01-T 0.46i0_03 0.59i0_04 0.10-T 0.56i0.04 0.56i0_04
002 N T 0.48i0_03 0.57i0_0(,‘ 020 . T 0.61i0.04 0.5710_04

resembles the interleaving experiment outcome prediction
feature used in [9] and thus it is interesting to compare to
it. However, as it simulates an interleaving comparison, we
do not include it as a scheduler for the A/B test evaluation.
As the A/B tests dataset is smaller than the interleav-
ing dataset, and it has considerably fewer successful exper-
iments and thus less training data (Section 5), we found
that the use of more elaborated pairwise and GBRT-based
techniques did not result in any improvements over a basic
logistic regression-based scheduler LR. For this reason, in
the experiments based on the A /B tests, we report only LR.
We use the Wilcoxon test to compare the performance
of the schedulers (excluding UpperBound). The reported
confidence intervals correspond to 95% confidence.

7.1 Prediction Quality

In Tables 2 and 3, we report the results of our evaluation
of the quality of the experiment outcome prediction algo-
rithms, measured on the datasets of the interleaving and
A/B test experiments, respectively. The quality is mea-
sured by AUC, and the measurement is performed by Al-
gorithm 4. The values in bold statistically significantly out-
perform other values in the same row/exploration step size
(p < 0.05). We set the number of user interactions T avail-
able for running all experiments such that each experiment
in the test parts of the datasets is deployed for 10° and 2-10°
interactions for the interleaving experiments and A /B tests,
respectively (A/B tests require more user interactions [1]
due to lower sensitivity). The number of user interactions
used in the exploration step is varied, we report it in the
corresponding cells (#sample). We measure the size of ex-
ploration step as a fraction of the total number of available
impressions 7. For instance, if #sample = 0.05 - 7', then a

scheduler uses 0.05 - T interactions for exploration. These
interactions are uniformly divided among the test experi-
ments. For fairness, we ensure that the same number of im-
pressions is used for each schedule evaluation step, whether
the evaluated scheduler uses exploration or not.

From the top parts of Tables 2 & 3, we firstly notice that
the baselines demonstrate their expected behaviour. In-
deed, the UB scheduler achieves the highest performance
possible (1.0), and Rnd has an AUC close to 0.5, indicat-
ing that under a random permutation, the probability of
the correct ordering of the pair of experiments is equal to
the probability of the inverse ordering. Next, we notice
that the effectiveness-based experiment outcome predictors,
ERR and DCG, as well as the click model-based CM per-
form better than the randomised baseline. However, the
AUC scores of DCG, ERR, and CM schedulers (e.g. 0.77,
0.74, and 0.77, respectively, Table 2) are far from 1. This
implies that there is a considerable room for improvement.
Indeed, on examination of the performance of the machine-
learned schedulers that do not perform exploration (bottom
parts of Tables 2 & 3, #sample = 0), we observe that these
schedulers (e.g. LR 0.76, LGBM 0.83, and PGBM 0.81 for
the interleaving dataset; LR 0.68 for the A/B tests dataset)
can achieve a performance higher than that of the Random
scheduler and of the schedulers based on individual non-
exploratory features (DCG, ERR, and CM). On the inter-
leaving experiments dataset (Table 2), the AUC score of the
LGBM scheduler is 8% better than that of the best of the
schedulers that are based on a single feature (DCG, 0.83
vs. 0.77, p < 0.01), and considerably better than that of the
Random scheduler (0.83 vs. 0.51, p < 0.01). Similarly, on the
A/B tests dataset (Table 2), the machine-learned scheduler
LR outperforms the best effectiveness-based scheduler ERR
(0.68 vs. 0.59, 15% improvement, p < 0.01), and the Ran-
dom scheduler (0.68 vs. 0.49, 63% improvement, p < 0.01).

These observations allows us to answer RQ1: it is possible
to outperform the random scheduler in the task of predicting
the experiment outcome by combining different features in
the machine learned schedulers, such as LGBM and LR.

As the number of the user interactions available for ex-
ploration grows, the performance of the exploration-based
scheduler Ezplore too: on the interleaving experiments dataset,
its AUC score starts from 0.62 when 0.01-7 interactions are
used, and increases up to 0.88 when 0.20 - T interactions
are used. A similar behaviour is observed on the A/B tests
dataset: the AUC score grows from 0.56 to 0.73.

Interestingly, the machine-learned schedulers demonstrate
a comparable performance when little or no exploration is



used. Indeed, on the interleaving experiments dataset, LGBM
achieves an AUC of 0.83 when exploration is not used, which
is comparable to the score of Ezplore using 0.10 - T interac-
tions for exploration (Table 2, 0.83). Similarly, on the A/B
tests dataset, Table 3, LR with no exploration obtained an
AUC of 0.68, close to the AUC score of Explore with 0.1-T
interactions used for exploration. This indicates that the use
of the machine-learned algorithms can considerably reduce
the number of user interactions used in the exploration step.

On comparing the machine-learned schedulers on the in-
terleaving dataset, we note that more advanced LGBM &
PGBM schedulers achieve higher scores than LR and SVM.
This relation holds for all sizes of the exploration step (#sam-
ple) we consider.

These observations allow us to answer RQ2. On the in-
terleaving experiment dataset, LGBM outperforms other
schedulers, and it improves over the best effectiveness-based
scheduler DCG by a margin of 8%. On the A/B tests
dataset, among the non-exploratory schedulers, LR demon-
strates the highest performance with 15% improvement over
the best effectiveness-based FRR scheduler. When all sched-
ulers are considered on the dataset of A/B tests, Explore
(#sample = 0.2 - T') achieves the highest performance.

7.2 Evaluating the Schedule

In Table 4, we report our results obtained when evalu-
ating the quality Q(S) of the scheduling algorithms on the
interleaving experiments dataset. To get additional insights
into the performance of the scheduling algorithms, we vary
the total number of user interactions available for the exper-
imentation 7, T € {3-10°,4.5-10°}. In both cases, after
the scheduler ranks the experiments in the test set, we de-
ploy the three? experiments ranked first for evaluation. The
user interactions left after performing the exploration step
are split for these three experiments uniformly, e.g. the non-
exploratory schedulers, such as FRR, run these three most
promising experiments for 10° and 1.5-10° interactions. The
interactions used for exploration are distributed among the
test experiments uniformly.

First, we note that the performance of the Random sched-
uler is considerably lower than the upper bound (e.g. 0.60
vs. 242, T = 3 - 105). This indicates that the quality of
a random, un-scheduled queue can be markedly improved.
Next, we observe that the effectiveness-based schedulers,
DCG and ERR, outperform the random baseline by a con-
siderable margin (e.g. FRR 1.42 vs. 0.58, 144% improve-
ment, p < 0.01, T'=4.5- 105). Consequently, one can get
an improved scheduling quality even by simply sorting the
queue of the experiments by the effectiveness scores obtained
in the offline evaluation. DCG performs slightly worse than
ERR (e.g. 1.37 vs. 1.42, T = 4.5 - 10°). Interestingly, CM
demonstrates the highest performance among the schedulers
that do not use exploration and machine learning, and out-
performs ERR by a considerable margin (e.g. 1.99 vs. 1.20,
T = 3-10%). Notably, by performing a short exploration
step where only 0.01 - T' interactions are used, up to 47%
improvement might be obtained in comparison with the un-
scheduled (Random) baseline (Ezplore 0.85 vs. Rnd 0.58,
T=45-10°p< 0.01). This can be extremely useful in the
cases where no relevance judgements are available, such as
for the evaluation of the personalised ranking algorithms.

2We believe this is a reasonable choice, as in each cross val-
idation split the test set contains less than 10 experiments.

The effectiveness-based schedulers are markedly outper-
formed by the machine-learned scheduling algorithms. The
best-performing algorithm, PGBM, outperforms the best
effectiveness-based scheduler FRR, by 81% (2.17 vs. 1.20,
T = 3-10°, no exploration) and 80% (2.56 vs. 1.42, T =
4.5 -10%, no exploration). Moreover, PGBM outperforms
Random by 262% (T = 3 -10°) and 342% (T = 4.5 - 10°).

The quality of the schedule generated by the Explore sched-
uler grows as the number of the user interactions used for
exploration grows (0.78, 0.89, 1.06, 1.18, 1.31) for the ex-
ploration sample sizes of T'- {0.01,0.02,0.05,0.10,0.20}, left
part of Table 4). The score of 1.31 corresponds to an im-
provement of 144% with respect to Rnd. However, when the
machine-learned schedulers are considered (e.g., PGBM) the
increased exploration actually harms the performance of the
scheduler, as interactions are spent on exploration, instead
of being spent on running the experiments. The same effect
is observed on the right part of Table 4.

On comparing the results with 7' varied (left and right
parts of Table 4, T is the total number of user interactions
available for experimentation) we notice that as T increases,
the values of the Q(S) metric increase for all tested sched-
ulers. In particular, the upper bound of the scheduling per-
formance grows from 2.42 to 2.70. This result is intuitive:
as we fixed the number of experiments we are attempting
to deploy, more user interactions are available for running
an experiment, and thus the number of experiments where
no statistically significant difference between A and B is de-
tected, is reduced. Some of the experiments “become” suc-
cessful, and the metric values grow.

In Table 5 we report the Q(S) metric, measured on the
dataset of A/B tests. We set the number of interactions
available for the experimentation pipeline 7' to be equal to
4-10°%, and deploy the two first ranked experiments. Simi-
larly to the study performed on the interleaving dataset, we
observe that the “natural” stochastic scheduler Rnd has a
performance considerably lower than the upper bound UB
(0.42 vs. 0.92). This indicates a possibility of improvement.
Indeed, the effectiveness-based schedulers such as DCG and
ERR outperform Rnd (e.g., Rnd 0.42 vs. ERR 0.61). On
this dataset, Fxplore with #sample = 0.20-7, ERR, and LR
demonstrate similar performance, and outperform Random
by 43%. A possible explanation for LR performing close to
the individual features is the small size of the dataset.

To obtain an additional insight into the behaviour of the
schedulers, we vary the overall number of user interactions
available to the experimentation pipeline (7') in a pre-defined
set T =m-10°,m € {1,...,6}, and measure the quality Q(S)
of the resulting schedules. At each step, we try to deploy
m experiments scheduled first for evaluation. We run this
study only on the interleaving dataset, as it has more exper-
iments. We report the results in Figure 1. From Figure 1
we observe that in all situations Rnd is dominated by other
schedulers, including the effectiveness-based scheduler FRR.
Ezplore with #sample = 0.10-T demonstrates a performance
similar to ERR. Interestingly, CM outperforms both ERR
and Fxplore by a considerable margin, and is close to PGBM
that uses exploration. In each situation PGBM with no ex-
ploration demonstrates the best performance.

We now can answer RQ3. On the interleaving experi-
ments dataset, the machine-learned schedulers demonstrate
the best performance: LGBM outperforms the random base-
line by 342% maximum, and the closest effectiveness-based
scheduler, ERR, by up to 81%. In turn, by using the ERR



Figure 1: Quality Q(S) of the best schedulers as the
number of the user sessions available grows, mea-
sured on the interleaving dataset. PGBM 0.0 and
PGBM 0.10 are almost indistinguishable.

— Explore 0.10 -- ERR Upper Bound
A CcMm Random PGBM 0.0
25
//
20 -
@ s
S A

/

o000 200000 300000 400000 500000 600000

T, impressions

scheduler, an improvement of 144% over the un-scheduled
queue can be obtained. Finally, by performing an explo-
ration step using 0.20-7" user interactions, Fxplore improves
over the baseline by up to 190% on the interleaving dataset.
When the A/B tests dataset is considered, an improvement
over the baseline of 45% can be achieved by using the non-
exploratory LR. A similar improvement can be obtained by
using Fzplore that samples 0.20 - T" interactions.

Our evaluation study allowed us to answer all of the stated
research questions. Our obtained results suggest that the
random (“natural”) order of the experiment schedule can
be improved by the greedy scheduling algorithm, both for
interleaving and A/B tests. A considerable improvement
can be achieved when the greedy scheduling algorithm uses
effectiveness measurements (ERR and DCG), or the pre-
experimental click data (CM). A further improvement is ob-
served on the interleaving dataset when the greedy schedul-
ing algorithm was used with the predictions from PGBM.
Finally, Ezplore demonstrated a good performance, which
can be important for a practical application, as it does not
require document labels and pre-experimental click data.

8. CONCLUSIONS

In this paper, we stated the problem of the optimal schedul-
ing of the online experiments. We described an experimenta-
tion pipeline model and formulated the optimal scheduling
problem. Next, we introduced a greedy scheduling algo-
rithm that ranks experiments according to their predicted
probability of success. This algorithm allowed us to reduce
the scheduling problem to a learning-to-rank problem. We
studied pointwise and pairwise formulations of this learning-
to-rank problem. To obtain a feature representation of the
experiments, we considered relevance-based, click model-
based, and exploration features. Finally, we performed a
thorough evaluation study, examining how our proposed ap-
proaches compare to each other and to the baselines in terms
of the prediction quality and the quality of the resulting
schedules. We used two datasets that contain interleaving
and A/B test experiments.

Our findings suggest that our proposed machine-learned
schedule optimisation algorithms outperform the randomised,
“natural” schedule by up to 342% when the number of the
successful experiments performed under a limited number
of available user interactions is measured on the dataset of

the interleaving experiments. We also showed that a simple
scheduler that ranks experiments according to their rank-
ing effectiveness can achieve a smaller, but still a consider-
able improvement over the “natural” random baseline (up to
144% on the interleaving dataset, and up to 43% on A/B
tests). Our study also suggests that an exploration-based
scheduler can achieve a considerable improvement over an
unoptimised schedule (43% improvement on the A/B tests
dataset, 118% on the dataset of interleaving experiments).
Notably, this can by applied for experiments where neither
relevance judgements, nor historical click data is available.

An interesting direction for future work is to develop a
two-stage scheduler, which uses offline-available features to
pre-select experiments for exploration.

9. REFERENCES

[1] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue.
Large-scale validation and analysis of interleaved search
evaluation. ACM TOIS, 30(1):6, 2012.

[2] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Expected
reciprocal rank for graded relevance. In CIKM 2009.

[3] O. Chapelle and Y. Zhang. A dynamic bayesian network click
model for web search ranking. In WWW 2009.

[4] K. Hofmann, S. Whiteson, and M. de Rijke. Estimating
interleaved comparison outcomes from historical click data. In
CIKM 2012.

[5] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic
method for inferring preferences from clicks. In CIKM 2011.

[6] K. Jirvelin and J. Kekéldinen. Cumulated gain-based
evaluation of IR techniques. ACM Trans. Inf. Syst.,
20(4):422-446, 2002.

[7] T. Joachims. Optimizing search engines using clickthrough
data. In KDD 2002.

[8] T. Joachims. Evaluating retrieval performance using
clickthrough data. In J. Franke, G. Nakhaeizadeh, and I. Renz,
editors, Text Mining. Physica/Springer Verlag, 2003.

[9] E. Kharitonov, C. Macdonald, P. Serdyukov, and I. Ounis.
Using historical click data to increase interleaving sensitivity.
In CIKM 2013.

[10] R. Kohavi, T. Crook, R. Longbotham, B. Frasca, R. Henne,
J. L. Ferres, and T. Melamed. Online experimentation at
Microsoft. Data Mining Case Studies, page 11, 2009.

[11] R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker,
and Y. Xu. Trustworthy online controlled experiments: Five
puzzling outcomes explained. In KDD 2012.

[12] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and
N. Pohlmann. Online controlled experiments at large scale. In
KDD 2013.

[13] J. Y. Leung. Handbook of scheduling: algorithms, models, and
performance analysis. CRC Press, 2004.

[14] L. Li, J. Y. Kim, and I. Zitouni. Toward predicting the outcome
of an A/B experiment for search relevance. In WSDM 2015.

[15] C. X. Ling, J. Huang, and H. Zhang. AUC: a statistically
consistent and more discriminating measure than accuracy. In
IJCAT 2003.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. JMLR 2011.

[17] F. Radlinski and N. Craswell. Comparing the sensitivity of
information retrieval metrics. In SIGIR 2010.

[18] F. Radlinski and N. Craswell. Optimized interleaving for online
retrieval evaluation. In WSDM 2013.

[19] F. Radlinski, M. Kurup, and T. Joachims. How does
clickthrough data reflect retrieval quality? In CIKM 2008.

[20] G. Ridgeway. The GBM package. R Foundation for Statistical
Computing, Vienna, Austria, 2004.

[21] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[22] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer. Overlapping
experiment infrastructure: More, better, faster
experimentation. In KDD 2010.

[23] Y. Yue, Y. Gao, O. Chapelle, Y. Zhang, and T. Joachims.
Learning more powerful test statistics for click-based retrieval
evaluation. In SIGIR 2010.



