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ABSTRACT
Modelling term dependence in IR aims to identify co-occur-
ring terms that are too heavily dependent on each other to
be treated as a bag of words, and to adapt the indexing and
ranking accordingly. Dependent terms are predominantly
identified using lexical frequency statistics, assuming that
(a) if terms co-occur often enough in some corpus, they are
semantically dependent; (b) the more often they co-occur,
the more semantically dependent they are. This assump-
tion is not always correct: the frequency of co-occurring
terms can be separate from the strength of their seman-
tic dependence. E.g. red tape might be overall less fre-
quent than tape measure in some corpus, but this does not
mean that red+tape are less dependent than tape+measure.
This is especially the case for non-compositional phrases, i.e.
phrases whose meaning cannot be composed from the indi-
vidual meanings of their terms (such as the phrase red tape

meaning bureaucracy).
Motivated by this lack of distinction between the frequency

and strength of term dependence in IR, we present a princi-
pled approach for handling term dependence in queries, us-
ing both lexical frequency and semantic evidence. We focus
on non-compositional phrases, extending a recent unsuper-
vised model for their detection [21] to IR. Our approach,
integrated into ranking using Markov Random Fields [31],
yields effectiveness gains over competitive TREC baselines,
showing that there is still room for improvement in the very
well-studied area of term dependence in IR.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3.3 [Information Search and Retrieval]
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1. INTRODUCTION
Frege’s principle of compositionality posits that the mean-

ing of an expression is a function of the meanings of its con-
stituent expressions and the ways they combine [59]. Ap-
plied to linguistics by Montague, this principle implies that
the meaning of some text is not just the collective mean-
ing of its words, but also a function of how these words
are arranged. Whereas this holds most of the times, oc-
casionally language is non-compositional, i.e. the meaning
and arrangement of words alone is not enough to convey
the overall semantics. E.g. the phrase red tape (meaning
bureaucracy) is not a tape of type red. This linguistic phe-
nomenon is known as non-compositionality.

The challenges posed by non-compositionality have spur-
red Natural Language Processing (NLP) research in auto-
matic non-compositionality detection, e.g. in nouns [1, 47],
verb-noun [20] and verb-particle [30] combinations, using
techniques such as latent semantic analysis [20], composi-
tional translations to multiple languages [44], sense induc-
tion [22] and word space models [23, 42]. An active line of
research focuses on distributional and vector-based models
of word and phrase meaning leading to vector-space models
for compositionality [8, 35, 41]. These advances have not
penetrated IR research notably (with the exception of [33],
discussed in Section 2), despite long and persistent IR inter-
est in term dependence. A resulting risk is that the strength
of term dependence may be consistently miscalculated in IR.
We explain this next.

In IR, dependent terms are predominantly identified using
lexical frequency statistics: if terms co-occur often enough in
some typically large dataset, they are assumed to be depen-
dent, and the strength of their dependence is typically as-
sumed proportional to their frequency of co-occurrence, e.g.
see [10, 34]. Simply stated, the more frequently two terms
co-occur, the more dependent we assume they are. This as-
sumption is not always correct. In linguistics, the frequency
of term co-occurrence can be somewhat separate from the
strength of semantic dependence. Even though the former
can be indicative to some extent of the latter, their relation
is not symmetric. E.g. red tape might be overall less fre-
quent than tape measure in some corpus, but this does not
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mean that red+tape are semantically less dependent than
tape+measure; quite the contrary. Non-compositionality
lies at the heart of this because non-compositional terms
are maximally dependent, regardless of their frequency of
co-occurrence. So, whereas the strength of term depen-
dence within compositional phrases, e.g., tape measure,

white horse, can be reasonably approximated by their fre-
quency of co-occurrence in a corpus, this is not true for
non-compositional phrases, like red tape, dark horse.

Motivated by this lack of distinction in IR between fre-
quency of term co-occurrence and strength of term depen-
dence, we present a principled approach for treating term
dependence in queries. This approach extends a recent un-
supervised model for detecting non-compositional phrases
using lexical frequency and semantic evidence [21]. The
main idea consists of (a) substituting a term in a phrase by a
synonym (e.g. red tape would become scarlet tape) and
(b) measuring the semantic divergence of the replacement
phrase from the original phrase. If their meanings diverge,
the original phrase is more likely to be non-compositional. If
however their meanings do not diverge much (e.g. tax of-

fice would become tax bureau), then the original phrase
is less likely to be non-compositional. We extend the vec-
tor space model proposed for measuring this divergence in
[21] with a probabilistic model that measures the Kullback-
Leibler divergence between the language models of the orig-
inal and replacement phrase (Sections 3-4). We apply both
approaches to detect strongly dependent query terms, which
we then treat in a non-bag of words fashion during ranking
(Section 6). Experiments with 350 TREC queries show that
our approaches consistently outperform competitive base-
lines, and are particularly effective for 2-, 3-, and 4-term
queries in the web search task.

2. RELATED WORK
Broadly speaking, efforts to model term dependence, also

known as term co-occurrence, adjacency and lexical affini-

ties1 in IR, typically model phrases found in queries and/or
documents, motivated by the intuition to consider as more

relevant those documents in which terms appear in the same
order and patterns as they appear in the query, and as less

relevant those documents in which terms are separated [51].
These efforts were initiated mainly in the 1980s, and intensi-
fied in the 1990s, reporting retrieval benefits. Later, efforts
decreased: baseline performance improved, and the cost as-
sociated with linguistic processing was not worth the small
benefits over the already improved baselines [54].

Generally, term dependence is detected using either sta-
tistical or linguistic information. Research began with the
early work on statistical term associations [6, 14, 24, 56] and
syntax-based approaches [3, 7, 45], continuing with work on
probabilistic term dependence models [15, 46, 60, 61, 63],
syntactic methods [5, 32, 49, 50] and statistical approaches
[10, 25, 26]. From the mid-1990s onwards, research focused
on hybrid methods combining syntactic and statistical ap-
proaches of phrase processing [9], phrase-based enhancement
of the indexed term representations [64], and phrase-based
term weighting [37, 39, 57]. More recent research has focused
on statistical methods, primarily using language modelling

1Dependence, co-occurrence, adjacency and lexical affinities
are not synonyms [16], but in IR they are used interchange-
ably.

[31, 34, 36, 52, 55] but not exclusively [28, 40], while atten-
tion has also been given to term dependence and efficient
large-scale indexing [12, 27]. The Markov Random Field
(MRF) model of term dependence [31] reported significant
improvements in retrieval effectiveness.

Several more recent studies address term dependence, for
instance using heuristics [58], formalising the term position
in the document [29], or extending the MRF model to con-
cepts [4], all reporting positive findings. This continued in-
terest in term dependence may indicate that it is still an
open problem. However, to our knowledge, none of these
approaches addresses non-compositionality, except Michel-
bacher et al. [33], who focus primarily on the automatic de-
tection of the head modifier inside non-compositional phrases
and use IR as a task illustrating that the information they
detect can be useful. They experiment with a small non-
TREC dataset and report statistically significant gains in
retrieval precision.

3. NON-COMPOSITIONALITY
DETECTION (NCD)

Non-Compositionality Detection (NCD) aims to identify
the presence and strength of non-compositional phrases in
language. This is typically realised as a measurement, i.e.
through some function that outputs a compositionality score
for a phrase. Given a scale of such scores, the minimum and
maximum reflect the total absence of compositionality (non-
compositionality), e.g. red tape, and complete composi-
tionality, e.g. tax office, respectively. Sliding along such a
scale corresponds to moving across phrases of various levels
of compositionality, practically facilitating the comparison
of phrases on the grounds of their term dependence. We
reason that such a comparison may be useful to IR, where
systems need to process differently queries at different po-
sitions of this scale, i.e. keyword-based (= compositional)
queries such as London transportation, and queries con-
taining heavily dependent terms (=non-compositional) such
as red tape AL register car.

This section presents how we use non-compositionality to
model term dependence in IR. Among the various NCD ap-
proaches outlined in Section 1, we use the recent approach of
[21] because it is unsupervised, resource-efficient, and per-
forms competitively on benchmark tests. We extend this
NCD approach, which uses vector spaces, by adding a sec-
ond estimation of non-compositionality, this time probabilis-
tic. In addition, we formally express the methodological de-
scription of [21] as a model of query perturbation, and we
model non-compositional term dependence specifically for
IR queries, not general phrases like [21], with considerations
to data constraints in an IR context.

3.1 Non-compositionality in queries
Given a query, we aim to detect the presence and strength

of non-compositionality in it. Kiela and Clark [21] posit that
non-compositional phrases can be identified by substituting
each of the original words in them, one at a time, by some
other relevant/synonymous term, and comparing the mean-
ing of each phrase resulting from the substitution to the
meaning of the original phrase. The more they diverge, the
less compositional the original phrase is. E.g. replacing car

by vehicle in import car gives import vehicle, which is
semantically similar to the original, but replacing red by



scarlet in red tape gives scarlet tape, which is seman-
tically different from the original. Hence, red tape is less
compositional than import car. The core idea is that such
substitutions are likely to have a low impact on the semantics
of compositional phrases, but a high impact on the seman-
tics of non-compositional phrases. The resulting semantic

divergence is then approximately inversely proportional to
compositionality.

Conceptually, we see this approach as applying perturba-
tions over some signal in order to study the resulting effects
upon the signal. In our case, the signal is the query and the
perturbation is the replacement of a query term by another
term. We express this perturbation as follows: Let Sq(I ;T )
be the semantic space S of query q containing the ordered set
of terms T , where I is the information conveyed by T . Let T̄
denote the ordered set of query terms where one of them has
been replaced by another term (e.g., a synonym). I.e., T̄ is
the perturbation of T . Then, the non-compositionality Nq ,
and the compositionality Cq of query q, can be expressed
as a function of the divergence ψ of the resulting seman-
tic spaces ψ(Sq(I ;T ), Sq(I ; T̄ )), for all m = |T | divergences
resulting from all substitutions:

Nq = f{ψ(Sq(I ;T ), Sq(I ; T̄ ) : T̄ ∈ {T1, . . . , Tm})} (1)

Cq = g(Nq) (2)

where f is typically some summation or averaging function
over the set of divergences, and g is some decreasing func-
tion, e.g. g(x) 7→ 1/x . Thus, non-compositionality increases
with semantic divergence, but compositionality decreases
with semantic divergence.

Unless constrained, such perturbations risk drifting se-
mantically further away than intended, e.g., if two out of all
three terms in a query are replaced simultaneously. Kiela
& Clarke address this using two constraints, which we also
adopt: (a) only one term is replaced at a time, and (b) a term
is replaced by its synonym or a closely related term such as
a hyper- or hyponym2. We identify a further risk of degrad-
ing performance by considering too many synonyms: The
set of perturbations for query q consisting of terms t1 · · · tm,
where sj is a synonym of tj , is:

{p1, . . . , pm} =
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where pm denotes themth perturbation. As a term may have
more than one synonym, of various grades of synonymity, the
set of perturbations can grow to include all synonyms of the
query terms. A selection process must control the perturba-
tions so that: (a) “best possible” synonyms (as opposed to
near-synonyms) are used, and (b) the number of perturba-
tions is minimised, i.e. we perturb the queries no more than
necessary for computing their compositionality. We thus use
one perturbation per query term and experimentally show
(in Section 6) that this suffices for IR. Other tasks, including
NCD per se, may require more perturbations per term.

2We henceforth refer to all forms of closely related terms as
synonyms.

3.2 Semantic divergence
Computing the divergence in Equation 1 requires that

both the query and perturbations be represented in some
semantic space that is tractable and amenable to measure-
ment. Kiela & Clarke propose vector spaces (Section 3.2.1).
We propose probability spaces as a complementary repre-
sentation (Section 3.2.2). We present and experiment with
both.

3.2.1 Vector Space
We re-express the vector space representation of Kiela &

Clarke for queries and their perturbations as follows. Let
~v(q) and ~v(pj) be the vector of query q and its perturba-
tion pj respectively. The semantic divergence ψ between
the query and its perturbation can be modelled as the dis-
tance d between their vectors (ψ ≈ d), where d is some
appropriate distance function. This d can be chosen as any
vector distance function, e.g. Euclidean, Chebychev, or the
better-known Cosine we use here. Then, assuming a sum-
mation function f in Equation 1, the non-compositionality
of a query containing terms t1 · · · tm of k synonyms is:

1

mk

m
∑

j=1

k
∑

i=1

d(~v(q), ~v(pij)) (3)

where pij is the perturbation t1 · · · tj−1sijtj+1 · · · tm and sij
is the ith synonym of term tj . Using one synonym per term
only (as we do) reduces this to:

1

m

m
∑

j=1

d(~v(q), ~v(pj)) (4)

The main idea is to represent a query and its perturba-
tion as vectors, so that we can interpret their distance as se-
mantic divergence. Practically this means mapping ψ from
Equation (1) to d above. Dating back to Salton, the IR and
NLP literature abounds with variations of how the above
vector representation can be implemented and interpreted,
any of which can be used here. We describe how we build
the vectors and how we compare their distance in Section 4.

3.2.2 Kullback-Leibler Divergence
We now present our probabilistic representation of queries

and their perturbations. The high-level difference from the
previous representation is that instead of representing a query
as a vector of terms, we represent it as a distribution of
events, where the events correspond to terms. Such repre-
sentations are called probabilistic because they allow com-
puting the probability of an event occurring, i.e. the proba-
bility of a term occurring in the query. When these probabil-
ities are interpreted in a frequentist way, they are approxi-
mated by relative frequencies (i.e. normalised word counts).
In text processing, this is known as language modelling.

We reason that, if queries and their perturbations are rep-
resented as event distributions, then their divergence can
be computed using standard methods, one of the better
known being their Kullback-Leibler divergence (KLD). Even
though KLD is not a distance metric (it is not symmetric),
it is widely used in IR to approximate the semantic distance
between texts, where higher KLD values indicate more di-
vergence. We apply this to compute the semantic divergence
ψ in Equation 1, by building a language model for the query
and each perturbation. Then, their KLD should be pro-
portional to the semantic divergence ψ in Equation (1), i.e.



(ψ ≈ KLD). Let LMq and LMp denote the language mod-
els of query q and perturbation p respectively. Their KLD
is:

KLD(LMq ||LMp) = LMq log
LMq

LMp

(5)

We next describe how we build LMq , LMp and how we
operationalise Equation (5).

4. MODEL INDUCTION
Both vector and probability space representations pre-

sented above approximate how different a perturbation is
from the original query, albeit in different ways. This sec-
tion describes their exact mechanics.

We start by describing what the above vectors and lan-
guage models actually consist of. As the approach is the
same for both queries and their perturbations, we hence-
forth refer to their union as Q. For each term t ∈ Q, we
build a context window as follows: we extract bags of terms
occurring within a window of maximum n terms away from
t in some large document corpus, so that the window con-
sists of 2n + 1 terms. E.g., if n=5, then we consider 11
terms in total: 5 (immediately preceeding t) + t + 5 (im-
mediately succeeding t). The underlying assumption is that
all the terms in a document have some relationship to all
other terms in the document, modulo window size, outside
of which the relationship is not taken into consideration. In
statistical NLP this is a standard way of inducing word se-
mantics from “the company they keep”, a.k.a. distributional
semantics [11]. These context windows provide the ingre-
dients of the vector and probabilistic representation of our
queries and perturbations, explained next.

4.1 Vector representation
After all context windows of a term t ∈ Q are extracted,

we compute a term weight vector wt for t with the aim of
capturing the salience of term t. Kiela & Clarke show that
such weights can function in a discriminative way for the
task of NCD. For each query, we generate a term weight
vector by combining the term weight vectors of the terms
in the query. Next we explain how we compute the weights
of the individual query terms and the weight of the whole
query or perturbation.

4.1.1 Individual Term Weights
Kiela & Clarke experiment with these five well-known

weighting schemes, adapted to the context window scenario,
(even though they only report results from LTU), which we
also use:

ATC [43]:

wit =

(

0.5 + 0.5 × fit
maxf

) log( N
n(t)

)

√

∑N

i=1

((

0.5 + 0.5× fit
maxf

)

log
(

N
n(t)

))2
(6)

LTU [48]:

wit =
(log(fit) + 1.0) log N

n(t)

0.8 + 0.2 Mi

av.M

(7)

Mutual Information (MI) [38]:

wit = log

fjt
N

∑
N
j=1

fjt

N
×

∑Mi
k=1

fik

N

(8)

Okapi [18]:

wit =

(

fit

0.5 + 1.5× Mi

av.M
+ fit

)

× log

(

N − n(t) + 0.5

fit + 0.5

)

(9)

TFxIDF [53]:

wit = log(fit)× log

(

N

n(t)

)

(10)

where wit is the weight of term t in context window i; fit
is the frequency of t in context window i; N is the total
number of context windows; n(t) is the number of context
windows containing t; Mi is the number of terms in context
window i; av.M is the average number of terms in all context
windows; and maxf is the maximum frequency of any term
in any context window.

To construct a vector ~v(t) for each t ∈ Q, we extract the
context windows for t, which we denote cwt. For each term,
t′, represented by an entry in ~v(t), the corresponding weight
is computed as the average of wit′ for i ∈ cwt.

4.1.2 Query/Perturbation Weights
Having built such a vector for each t ∈ Q, the vector

of the entire query or perturbation can be constructed in
several ways, for instance as the element-wise sum of the
vectors of its terms, or as their dilation, or as their pointwise
multiplication. We choose the latter because it has been
shown more effective for semantic vector representations in
NLP [21, 35]. The final query vector ~q for query q consisting
of terms t1 · · · tm is:

~v(q) = ~v(t1)⊙ · · · ⊙ ~v(tm) (11)

where ⊙ is the binary operator on equal-length vectors of
real numbers defined by (x1, . . . , xn)⊙ (y1, . . . , yn) = (x1 ×
y1, . . . , xn × yn). The perturbation vectors are built identi-
cally to this. Note that as ⊙ is associative and commutative,
the jth component of ~v(q) is simply the product of all the
jth components of the vectors ~v(t1), . . . , ~v(tm).

As Kiela & Clarke point out, using pointwise multiplica-
tion has a somewhat ‘reverse’ effect on the semantic dis-
tance: overlapping components (i.e. terms appearing in
common contexts) are stressed; since their vectors have little
overlap outside the non-compositional meaning, their per-
turbations also have little overlap, resulting in a smaller
change in distance when perturbed. Another effect of point-
wise multiplication is that the frequency of terms occurring
in the context windows of a query term will be strength-
ened: if a term t has a high weight in both ~v(t) and ~v(t′), it
will have a high weight in ~v(t) ⊙ ~v(t′); however, low weight
in either one of ~v(t) or ~v(t′) will correspond to low weight
in ~v(t) ⊙ ~v(t′). This means that the vectors of the terms
of non-compositional queries, which will in general occur in
very different contexts, will have entries with fairly low ab-
solute values. In contrast, for compositional queries, substi-
tuting a term by its synonym may yield constructions that



can be expected to occur in a number of contexts wildly dif-
ferent from the original, hence will have markedly different
contextual statistics and thus greater distance d.

4.2 Language modelling representation
The alternative representation we propose for queries and

perturbations is to use the set of all context windows of the
terms in a query or perturbation to build a respective lan-
guage model LMq , LMp (introduced in Equation 5). There
exist various ways of building language models from term
counts, involving some sort of smoothing of the counts; we
use two among the best known, Laplace and Simple Good-

Turing.
Laplace (or add-one) estimates the probability of a term

t in the language model of query q, PLP (q, t), as:

PLP (q, t) =
cq,t + 1

Cq + V
(12)

where cq,t is the count of t in q, Cq is the count of all terms
in the context windows of q, and V is the number of terms
in the language model of q. We compute it identically for
perturbations (replacing q by p above).

For sparse data over large vocabularies, Laplace tends to
make a very big change to the counts and resulting prob-
abilities because it moves too much probability mass to all
unseen events (zero counts). We could move a bit less mass
by adding a fractional count rather than 1 (e.g. add “δ-
smoothing” [17]), but that would require choosing δ dynami-
cally, risking inappropriate discounting for many counts, and
producing overall counts with poor variances [19]. For these
reasons, we also apply Simple Good-Turing [13] smoothing,
which uses (i) the counts of hapax legomena (events occur-
ring once) to estimate the counts of unseen events, and (ii)
double counts, i.e. the frequency of a frequency. Simple
Good-Turing estimates the probability of a term t with fre-
quency r in the language model of query q, PGT (q, t), as:

PGT (q, t) =
(r + 1) · S(ffr+1)

Cq · S(ffr)
for r > 0 (13)

where ff is a vector with frequencies for term frequencies,
Cq is as defined as in Equation 12, and S is a function fitted
through the observed values of ff to get the expected count
of these values (see [13] for more). For zero count values the
probability is calculated as follows:

PGT (q, t) =
ff1
Cq

for r = 0 (14)

where ff1 is the frequency of frequency of hapax legomena.
We normalise the resulting language model to sum to 1.
Simple Good-Turing is known to perform well, especially
for large numbers of observations drawn from large vocabu-
laries.

The above two smoothing methods produce a language
model for each term per query or perturbation. To produce
one language model for the whole query or perturbation, we
sort the language models of their terms and combine them
in four different ways: (1) summing their values in quantiles
2 & 33; (2) averaging their values in quantiles 2 & 3; (3)
multiplying their values; (4) using the median of their values.
Overall, the above 2 smoothing methods × 4 combinations
produce 8 language modelling variations of NCD.
3We use quantiles 2 & 3 to avoid outliers.

5. DISCUSSION OF OUR NCD APPROACH
Both representations (vector and probability space) of the

NCD approach we present are parameterised over the no-
tion of semantic divergence, which we operationalise with
different weightings, each corresponding to some variation
of computing this divergence. Our use of semantic diver-
gence, measured typically as a real number in the model,
corresponds to the observation that compositionality is not
dichotomous: phrases in general are not only compositional
or non-compositional; rather, a fine-grained range of compo-
sitionality exists, a fact corroborated by human raters asked
to score degrees of compositionality [2, 30]. Suitable diver-
gence functions that could mimic the scores of human raters
may exist, but we have not attempted to do so.

We have also not attempted to estimate the semantic ‘ac-
curacy’ of the phrases resulting from each perturbation, i.e.
the extent to which they are non-sensical, even though Kiela
& Clarke state that this is possible with their approach [21].
We estimate solely the divergence between the query and a
perturbation, and not how much sense the perturbed phrase
makes, for two reasons: (a) we reason that the semantic di-
vergence should in principle suffice for indicating composi-
tionality as we intend to use it in IR; (b) to our knowledge,
no scalable automatic approach can adequately approximate
such a semantic assessment for query logs.

Another point of departure from Kiela & Clarke is our
treatment of query terms as a list, i.e. a set endowed with a
strict order. In principle, all computations presented, both
by Kiela & Clarke and by us, can be used with ordinary (i.e.,
unordered) sets of terms too, as has also been done with
term dependence models in IR [31]. We use strictly ordered
sets because non-compositionality is never manifested in lan-
guage in any other way, for instance by mixing the order
of non-compositional terms, or by interrupting them by an-
other term. E.g., red tape can function non-compositonally
(and mean bureaucracy) only when the terms red and tape

appear adjacent and in that specific order. Ergo, no vari-
ation of red .+ tape or tape .+ red (in RegEx notation)
can have the non-compositional meaning of bureaucracy.

Finally, perturbations are common in science, and the
practice of perturbing queries has even been used in IR be-
fore, albeit for different reasons. For instance Vinay et al.
[62] employ different query (and document) perturbations
for query performance prediction: by altering the query term
weights, they observe the documents retrieved, and study
the relationship between the amount, or sensitivity of per-

turbation and the quality of the ranking. Our approach,
apart from having a different overall scope, namely term de-
pendence as opposed to query performance prediction, also
differs from [62] in that it applies a linguistically informed
selection process for each perturbation: we replace query
terms by their synonyms, not by varying their respective
term weights within some range.

6. EVALUATION

6.1 Using NCD for selective term dependence
This section presents experiments aiming to quantify the

effectiveness of processing query term dependence, not as
a bag of words, but as a ‘set phrase’ of strict ordered ad-
jacency, i.e. matching documents that contain an identical
(ordered & uninterrupted) sequence of terms. The main
idea is to use NCD to select which among a batch or stream



of queries contain dependent terms, and process only those
queries as a ‘set phrase’; the rest of the queries can be pro-
cessed as a bag of words. For this initial study, we focus on
the non-compositionality of the whole query, not of phrases
within queries.

We use the non-compositionality score of each query (com-
puted with any of the 5 vector space or 8 language modelling
variants presented in Section 4) as a proxy of term depen-
dence. This allows to detect queries more likely to be non-

compositional, hence more likely to contain highly depen-
dent terms, rather than those queries that are strictly non-

compositional. We do this by ranking queries by their non-
compositionality and selecting the θ least compositional.
These θ queries are processed with the MRF model of fully
dependent query terms; the rest of the queries in the batch
are treated as a bag of words.

6.2 Experimental Setup

6.2.1 Baselines & Our Methods
We use three baselines: (1) bag of words for all queries,

which allows for no term dependence; (2) the MRF model of
sequentially dependent query terms [31], which treats as a
‘set phrase’ only adjacent query terms; (3) the MRF model
of fully dependent query terms [31], which treats as a ‘set
phrase’ the whole query. We compare these baselines against
our selective term dependence approach that treats as a ‘set
phrase’ the whole query iff the NCD score of this query
indicates that it is likely to be non-compositional; this is
controlled by the threshold θ presented above.

All three baselines and our 13 NCD variants use a uni-
gram, query likelihood, Dirichlet-smoothed language model
for ranking. Note that we use ‘language model’ in two dif-
ferent ways in this work, for two entirely different compu-
tations: (a) to estimate the semantic divergence between
queries and perturbations (in Section 3.2.2), and (b) to rank
documents with respect to queries.

6.2.2 Data & Tuning
We use the TREC 6-8 queries (301-450, title only) of

the AdHoc track with Disks 4-5 (minus the Congressional
Records for TREC7-8), and queries 1-200 of the Web AdHoc
tracks of TREC 2009-2012 with ClueWeb09B4 (see Table 1).
We extract the distributional semantics of the NCD model
(i.e. build the context windows) from Disks4-5 for queries
301-450, and from ClueWeb09B for queries 1-200. We use
no stemming and remove stop words from the queries only
(as in [31]). We use Indri 5.85 for indexing and retrieval of at
most 1000 documents per query. We evaluate retrieval effec-
tiveness using standard measures of early and deep precision
(MAP, NDCG@10, P@10).

The Dirichlet ranking model includes a parameter µ that
we tune as follows: µ ∈ {100, 500, 800, 1000, 2000, 3000, 4000,
5000, 8000, 10000}. We also vary the number θ of least com-
positional queries selected each time: θ ∈ 1 . . . 45 per TREC
batch of 50 queries. All tuning is done per evaluation mea-
sure using 3-fold cross validation. We report the average
of the three test folds. For NCD we extract the first syn-
onym suggested by WordNet6 (to be used for perturbing the
query). For these initial experiments, we do not vary the

4http://lemurproject.org/clueweb09.php/
5http://www.lemurproject.org/
6http://wordnet.princeton.edu

Table 1: Datasets
Disks4-5 ClueWeb09B

# Documents 556077 50220423
# Queries 301-450 1-200
TREC track TREC6-8 AdHoc Web09-12 AdHoc

Table 2: Query length (without stopwords)
#1 #2 #3 #4 #5

DISKS4-5 11 56 76 7 -
CWEB09B 57 65 63 13 2

value of the window of co-occurrence described in Section 4:
we set n = 5, i.e. the context window size is 11.

6.3 Findings
Table 3 shows the retrieval precision of our baselines and

NCD approaches. Each cell also displays the % of queries
that are treated as a ‘set phrase’. For the MRF models,
100% means that all queries are treated as a ‘set phrase’, in-
cluding single-term queries, for which this treatment makes
no difference over a bag of words treatment. Overall, our
NCD approaches outperform all baselines at all times. The
improvement over the strongest baseline is modest (up to
>+3.5% for MAP with ATC, >+3.3% for NDCG@10 with
MI, and >+4.5% for P@10 with MI), however it is con-
sistent for both datasets and for all evaluation measures
(deep and early precision). This means that the performance
gain spans across the range of relevant documents (those re-
trieved in the top ranks, but also those retrieved further
down). Unlike earlier findings that the use of co-occurrence
information tends to reduce retrieval effectiveness [46], pos-
sibly due to the fact that the term relationships modelled
may have little discriminating power [31], we notice an over-
all modest but clear gain in effectiveness.

Breaking this down to a per-query basis (cf. the two top
plots in Fig. 1), the following two findings emerge. (I) The
scale of improvement is higher than that of deterioration:
between ∼+0.13 and -0.07 for MAP; and between +0.68 and
-0.4 for NDCG@10, for our Laplace sum approach (chosen
illustritatively) from the strongest baseline (MRF with full
dependence). (II) More queries improve than deteriorate by
our approach. Hence, the improvements in Table 3 are not
artificially inflated by outliers that might affect the means
of the evaluation measures, but are rather representative of
the whole body of queries.

Furthermore, we show examples of queries yielding the
highest and lowest precision difference from the strongest
baseline in Table 5. The best queries are not strictly non-
compositional; however they do have strongly contextualised
semantics and term co-dependence. E.g. french lick re-

sort casino does not denote some other meaning than a
particular casino, but it is presumably irrelevant to the se-
mantics of the verb to lick and french as a language or na-
tionality. Most of the best queries in Table 5 are web queries,
which often tend to include abbreviations and acronyms,
e.g. vbart sf. These are not non-compositional either,
but rather idiomatic or colloquial phrases of strong term
dependence, and are selected by our NCD approach be-
cause they are likely to diverge in meaning if perturbed
(i.e. it is not possible to express their meaning alterna-
tively, for instance by near-synonyms). Hence, using NCD
to approximate strong term dependence is effective in these



Table 3: Retrieval precision of the 3 baselines (in grey rows) vs. our 13 non-compositionality approaches.
Bold marks >highest baseline. The star * marks best overall per measure & collection. %DQ is the % of
queries processed as dependent (the rest of the queries in the batch are processed as bags of words).

METHOD
DISKS4-5 CWEB09B DISKS4-5 CWEB09B DISKS4-5 CWEB09B

MAP %DQ MAP %DQ NDCG@10 %DQ NDCG10 %DQ P@10 %DQ P@10 %DQ
Bag of words .1905 – .1151 – .4276 – .3502 – .3907 – .4167 -
Sequential Dependence [31] .1814 100% .1077 100% .3983 100% .3463 100% .3687 100% .4120 100%
Full Dependence [31] .1933 100% .1151 100% .4341 100% .3514 100% .4007 100% .4176 100%

L
A
N
G
.
M

O
D
E
L Laplace sum .1948 63% .1188 34% .4406 70% .3596 18% .4047 67% .4317 30%

Laplace average .1948 63% .1186 34% .4406 70% .3596 18% .4047 67% .4307 36%
Laplace median .1947 67% .1176 51% .4390 48% .3585 18% .4060 67% .4278 31%
Laplace multiplication .1948 48% .1182 46% .4388 36% .3617 22% .4040 59% .4303 22%
GoodTuring sum .1940 81% .1168 50% .4402 57% .3618 31% .4040 79% .4288 28%
GoodTuring average .1940 81% .1167 50% .4402 57% .3618 29% .4040 79% .4288 26%
GoodTuring median .1949 73% .1168 56% .4422 51% .3583 15% .4067* 51% .4283 32%
GoodTuring multiplication .1943 71% .1171 29% .4390 59% .3623 28% .4053 72% .4302 22%

V
E
C
T
O
R ATC .1950* 77% .1191* 47% .4446* 55% .3604 31% .4053 56% .4308 53%

LTU .1948 75% .1184 40% .4444 51% .3592 29% .4053 52% .4278 33%
MI .1946 81% .1188 51% .4445 59% .3631* 32% .4053 52% .4364* 52%
Okapi .1948 73% .1180 48% .4427 57% .3597 20% .4040 57% .4293 21%
TFIDF .1941 56% .1175 30% .4422 61% .3605 39% .4053 53% .4294 30%

Table 4: Retrieval precision for 2/3/4-term queries with our three best non-compositionality approaches. (±
%): difference from the strongest baseline. Rest of notation as in Table 3.

DISKS4-5
METHOD 2 terms (56 queries) 3 terms (76 queries) 4 terms (7 queries)

MAP %DQ MAP %DQ MAP %DQ
Bag of words .1994 – .1985 – .1181 –
Sequential Dependence [31] .1953 100% .1722 100% .1120 100%
Full Dependence [31] .2022 100% .1976 100% .1143 100%
GoodTuring median .2115* (+4.6%) 48% .2046* (+3.1%) 45% .1245* (+5.4%) 29%
ATC .2114 (+4.5%) 48% .2046* (+3.1%) 46% .1245* (+5.4%) 29%
MI .2114 (+4.5%) 48% .2046* (+3.1%) 46% .1245* (+5.4%) 29%

DISKS4-5
METHOD 2 terms (56 queries) 3 terms (76 queries) 4 terms (7 queries)

NDCG@10 %DQ NDCG@10 %DQ NDCG@10 %DQ
Bag of words .4331 – .4699 – .3549 –
Sequential Dependence [31] .4183 100% .3685 100% .3394 100%
Full Dependence [31] .4174 100% .4421 100% .3768 100%
GoodTuring median .4855* (+12.1%) 32% .4968* (+5.7%) 33% .3902* (+3.6%) 29%
ATC .4855* (+12.1%) 32% .4968* (+5.7%) 33% .3902* (+3.6%) 29%
MI .4855* (+12.1%) 32% .4968* (+5.7%) 33% .3902* (+3.6%) 29%

DISKS4-5
METHOD 2 terms (56 queries) 3 terms (76 queries) 4 terms (7 queries)

P@10 %DQ P@10 %DQ P@10 %DQ
Bag of words .4018 – .4286 – .3000 –
Sequential Dependence [31] .3909 100% .3429 100% .3000 100%
Full Dependence [31] .3873 100% .4208 100% .3400* 100%
GoodTuring median .4545* (+13.1%) 20% .4649* (+8.5%) 30% .3400* (±0.0%) 29%
ATC .4527 (+12.7%) 20% .4649* (+8.5%) 30% .3400* (±0.0%) 29%
MI .4527 (+12.7%) 20% .4649* (+8.5%) 30% .3400* (±0.0%) 29%

CWEB09B
METHOD 2 terms (65 queries) 3 terms (63 queries) 4 terms (13 queries)

MAP %DQ MAP %DQ MAP %DQ
Bag of words .1290 – .1391 – .1046 –
Sequential Dependence [31] .1126 100% .1235 100% .0949 100%
Full Dependence [31] .1234 100% .1377 100% .0982 100%
GoodTuring median .1371 (+6.3%) 43% .1480 (+6.4%) 43% .1120 (+7.1%) 15%
ATC .1368 (+6.0%) 48% .1519 (+9.2%) 46% .1128* (+7.8%) 23%
MI .1368 (+6.0%) 48% .1520* (+9.3%) 46% .1128* (+7.8%) 23%

CWEB09B
METHOD 2 terms (65 queries) 3 terms (63 queries) 4 terms (13 queries)

NDCG@10 %DQ NDCG@10 %DQ NDCG@10 %DQ
Bag of words .4003 – .2907 – .3552 –
Sequential Dependence [31] .3671 100% .2902 100% .2409 100%
Full Dependence [31] .3412 100% .2958 100% .3213 100%
GoodTuring median .4142 (+3.5%) 32% .3267 (+10.4%) 33% .3873* (+9.8%) 31%
ATC .4143 (+3.5%) 34% .3291* (+11.3%) 35% .3838 (+8.1%) 31%
MI .4142 (+3.5%) 34% .3291* (+11.3%) 35% .3838 (+8.1%) 31%

CWEB09B
METHOD 2 terms (65 queries) 3 terms (63 queries) 4 terms (13 queries)

P@10 %DQ P@10 %DQ P@10 %DQ
Bag of words .4894 – .3600 – .3538 -
Sequential Dependence [31] .4318 100% .3550 100% .2692 100%
Full Dependence [31] .4167 100% .3617 100% .3615 100%
GoodTuring median .5152 (+5.3%) 20% .4067 (+12.4%) 21% .4154* (+14.9%) 38%
ATC .5167* (+5.6%) 25% .4100* (+13.4%) 19% .4154* (+14.9%) 38%
MI .5167* (+5.6%) 25% .4100* (+13.4%) 19% .4154* (+14.9%) 38%



cases. Our worst performing queries consist of phrases for
which many more variants that denote the same meaning
exist. E.g. tv show, television programme/broadcast,

signs/symptoms/indications heart attack/failure, etc.
Restricting this type of queries to strict ‘set phrase’ match-
ing limits the retrieval scope significantly with resulting drops
in performance.

Next we focus the analysis on two pertinent aspects of our
approach: the number of strongly term dependent queries
selected and retrieval performance for 2-4 term queries.

6.3.1 Number of least compositional queries
The number of queries treated as a ‘set phrase’ is lower

for our approach than for MRF by ∼1/3 for Disks4-5 and
∼2/3 for ClueWeb09B, or by ∼1/4 for Disks4-5 and ∼1/3
for ClueWeb09B if we ignore 1-term queries (statistics in
Table 2). Compositionality and term dependence in general
cannot be measured for single terms, hence 1-term queries
are ignored.

Since we treat the number θ of least compositional queries
as a tuneable parameter, one may wonder to what extent the
gains we report are due to tuning as opposed to the inherent
strength of our approach in detecting term dependence. To
answer this, Fig. 2 shows the MAP and NDCG@10 of our MI
approach across the range of θ values for ClueWeb09B (we
can confirm similar trends for P@10 and Disks4-5, and our
other NCD approaches). We see that our approach outper-
forms the strongest baseline (marked by a horizontal line)
consistently across the range of θ, peaking when roughly
θ =80 least compositional queries (out of 200, or 143 if one
excludes 1-term queries) are treated as strongly term depen-
dent. Practically this means that our approach can be used
without necessarily tuning θ and is likely not to give large
fluctuations in both early and deep precision.

6.3.2 Queries of 2-4 terms
Finally, we focus on queries of 2, 3 and 4 terms because

these are the most likely to include strong term dependence,
hence they are ideal for comparing our approaches to the
MRF models.

Table 4 shows the retrieval precision of our baselines and
our three best NCD approaches (marked by * in Table 3)
specifically for queries of these lengths. Again all our ap-
proaches outperform all baselines at all times. The only
exception is for 4-term queries in Disks4-5 and P@10, where
our methods perform equally to the strongest baseline (no
gain, no loss). Overall, our NCD approaches outperform
the strongest baseline by up to ∼>+5% for MAP, ∼>+6%
for NDCG@10, and ∼>+8% for P@10, on average. The
two middle and lower plots in Fig. 1 show that these im-
provements are not due to outliers, but are instead spread
over the queries. Fig. 1 illustrates this for 2- and 3-term
queries w.r.t. MAP and NDCG@10, but we confirm that
the same trend applies to 4-term queries and P@10. Hence,
for queries of length 2-4, i.e. predominantly phrasal queries,
our approaches outperform all baselines notably. This find-
ing, combined with the relative robustness of the threshold
θ discussed above, mean that our approach could be used
as part of the IR pipeline, e.g. for ∼80% of the incoming
queries of length 2-4. Note that these types of queries form
the majority of all queries, at least in our TREC data (see
Table 2), hence they are not a negligible sample.
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Figure 1: Sorted per-query difference (y-axis) in
MAP/NDCG@10 between the strongest baseline
(Full Dependence) and our Laplace sum method,
for all, 2-term, & 3-term queries in DISKS4-5 &
CWEB09B. The horizontal line marks the baseline
(points above are gains). Each point is a query.
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Figure 2: MAP & NDCG@10 (y-axis) vs. θ most
non-compositional queries in CWEB09B according
to MI (x-axis). The horizontal line marks the base-
line. Each point is a query.

Table 5: Queries with most gain/loss from NCD.
Best Worst

bart sf tv show

ct jobs industrial espionage

french lick resort casino export controls cryptography

civil right movement signs heartattack



7. DISCUSSION
The relative gains in retrieval precision reported above

should not be considered as indications of accurate non-
compositionality detection. The suitability of our proposed
probabilistic representation of queries and their perturba-
tions in particular remains to be evaluated for NCD accu-
racy. Moreover, several of our choices of NCD settings can
be further explored, e.g. synonymy selection or smoothing
choices. In this initial study we opted for default or popu-
lar settings, where possible. For these reasons, we have re-
frained from making a quantitative comparison between the
vector space and probability space NCD variations, other
than reporting the retrieval precision they yield. This means
that the NCD variations we present are not necessarily cal-
ibrated to this domain or task. Calibrating them could po-
tentially improve performance even more, but would incur
some computational cost, the major bulk of which would
likely lie in the extraction of context windows from some
large dataset. In an IR scenario, this can be done offline, and
is perhaps not too distant from the query analytics widely
used.

Regarding our data, the query sets we use are ‘curated’
by TREC, in the sense that those queries that are perhaps
not understood by human assessors, or for which no rele-
vant documents are easily found during pooling, may have
been omitted. This selection may have affected non- or low-
compositionality queries. This agrees with the finding that
the number of IR benchmark queries that contain strongly
dependent terms in general is small [65]. Unfiltered query
logs may contain more such queries, making our approach
potentially even more useful in such a practical setting.

8. CONCLUSIONS
We presented an approach for detecting strongly depen-

dent query terms using the linguistic property of non-compo-
sitionality. Non-compositional meaning cannot be induced
from the meanings of individual words or their arrangement
in a query. E.g., hot dog is not a type of dog that is hot,
but rather a type of food. We used unsupervised measure-
ment of non-compositionality to approximate the detection
of strongly dependent query terms. Such queries are chal-
lenging to IR because they cannot be processed to some
reasonable accuracy by bag of words approaches. Moti-
vated by this, we focussed not on how these queries can
be treated during ranking (there is a lot of literature in
this area generally for term dependence, which can be ap-
plied here), but on how these queries can be selected from
a batch or stream of incoming queries. This specific ques-
tion has so far been addressed by assuming that the more
frequently terms co-occur in a query, the more dependent
they are. This assumption is however not always true, be-
cause frequency is not always proportional to the strength
of semantic association. The unsupervised method for mea-
suring non-compositionality that we used is recent and uses
vector spaces [21]. We extended it by adding a probabilis-
tic representation that uses Kullback-Leibler divergence. We
experimentally showed that all variants of our approach were
effective in selecting which queries to treat as term depen-
dent and resulted in gains for both early and deep precision
(> 5%) with respect to a range of baselines (standard bag
of words and competitive MRF with sequential and full de-
pendence [31]).

In the future we plan to analyse the amount of non- or
low-compositionality queries in real-life query logs, as op-
posed to TREC data. As discussed in Section 7, there may
be more low-compositionality queries in those samples. We
also intend to investigate optimal ways of measuring non-
compositionality within a query, as opposed to considering
the non-compositionality of a query as a whole as we did
here. Another interesting direction is the direct mapping of
the non-compositionality score of a query into the strength
of its term dependence used during ranking. In this initial
study we treated all queries selected as least-compositional
in the same way as fixed phrases processing them identically;
in doing so, we ignored their grades of non-compositionality.
Modelling this may yield further improvements and is an
interesting research question in its own right.
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