
On the Cost of Phrase-Based Ranking

Matthias Petri Alistair Moffat
Department of Computing and Information Systems

The University of Melbourne
matthias.petri, ammoffat@unimelb.edu.au

ABSTRACT
Effective postings list compression techniques, and the efficiency
of postings list processing schemes such as WAND, have signifi-
cantly improved the practical performance of ranked document re-
trieval using inverted indexes. Recently, suffix array-based index
structures have been proposed as a complementary tool, to sup-
port phrase searching. The relative merits of these alternative ap-
proaches to ranked querying using phrase components are, how-
ever, unclear. Here we provide: (1) an overview of existing phrase
indexing techniques; (2) a description of how to incorporate recent
advances in list compression and processing; and (3) an empiri-
cal evaluation of state-of-the-art suffix-array and inverted file-based
phrase retrieval indexes using a standard IR test collection.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: content analysis and
indexing—indexing methods; H.3.4 [Information Storage and Re-
trieval]: systems and software—performance evaluation.

1. INTRODUCTION
Postings list processing schemes such as WAND [2] have greatly

decreased the cost of similarity computations for bag-of-words re-
trieval; and postings list storage schemes such as Elias-Fano codes
have also reduced the cost of manipulating document-level postings
lists [12]. But phrases are sometimes a further part of similarity
computations such as BM25 and language models, and including
them in similarity computations requires additional information,
which must be either explicitly stored in the index, or computed
at query time. A range of storage schemes have been proposed
that provide different query time, storage space, and retrieval effec-
tiveness trade-offs [4, 11, 19]. Of especial interest is the relative
performance of traditional inverted index-based schemes and suf-
fix array-based indexes. The latter have received significant recent
attention because they support arbitrary phrase searching.

We compare storage schemes that support phrases as part of
ranked queries, when evaluated via list processing schemes such
as WAND. Specifically, we define a collection D of N documents
D = d0, . . . , dN−1. Each document consists of a non-empty string
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGIR’15, August 09-13, 2015, Santiago, Chile.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3621-5/15/08 ...$15.00.
http://dx.doi.org/10.1145/2766462.2767769.

of symbols drawn from an alphabet Σ of size σ consisting of the
parsed word tokens of the collection. We additionally define a se-
quence C = d0$d1$d2 . . . dN−1$ consisting of the concatenation
of the documents in D, separated by a symbol $ 6∈ Σ. The length
of C is given by n. A phrase P consists of a pattern P[0 . . .m− 1]
drawn from Σ, where m ≥ 2. The frequency of P in document di
is denoted by fi,P . We seek to address the following requirement:
Sorted Document Listing with Frequencies – Preprocess a docu-
ment collection D such that, given an arbitrary phrase P , an in-
creasing sequence of NP document identifiers 〈i, . . . , j〉 can be
efficiently computed, together with the frequencies fi,P , . . . , fj,P ,
where dk ∈ D and fk,P > 0 for each k ∈ 〈i, . . . , j〉.
The sorted document listing can then be used as a component in a
similarity computation using algorithms such as WAND, exactly as
if it had been drawn directly from a pre-computed phrase index.

2. PHRASE INDEXING SCHEMES
Five broad categories of phrase indexing scheme have been pro-

posed, with combinations providing other trade-offs.

Positional. A list of term positions is stored, relative to the start
of each document (hierarchical), or as absolute positions within D
[17]. The relative representation requires less space, but at the cost
of increased run-time performance, since intersection has to be per-
formed both at the document and at the positional level. To answer
phrase queries using absolute positions, the positional lists of the
terms are intersected using an algorithm such as SvS [4], then con-
verted to an increasing list of document identifiers and frequencies
by mapping each position to a corresponding document number.

Pre-computation. Instead of performing list intersection at query
time, the final set of 〈i, fi,P 〉 pairs can be stored in the index and
accessed when needed by queries. Storage limits mean that pre-
computing postings lists for all phrases is impossible, and tech-
niques have been explored to choose lists to be computed, includ-
ing analyzing query logs [3, 19] and using collection statistics [13].
Indexing only a subset of the phrases implies that either other ways
of creating lists at query time must be provided too, or that retrieval
effectiveness must be sacrificed.

Suffix-Array. Suffix arrays and suffix trees have primarily been
used to support regular pattern searches over a continuous text; but
suffix array-based structures can also be used for the sorted docu-
ment listing problem [10, 11]. All suffix array-based indexes are
structured as follows. First, a suffix array SA[0 . . . n − 1] over C
is constructed. Then an array DA[0 . . . n − 1] is added, to store
the document number in which each suffix appears. To compute a
document listing, the interval SA[sp, ep] containing all suffixes pre-
fixed by P is determined, by searching the suffix array. The unique

document identifiers and their frequencies in DA[sp, ep] are then
determined, using one of several possible methods. In this work
we compare three suffix array-based indexes that provide a range
of time-space trade-offs.

As a suffix array baseline we use the SORT [6] index. It re-
places SA by a compressed suffix array (CSA) [14], which reduces
the space required; and stores DA as an array using ndlog2Ne
bits. To determine document identifiers and frequencies for a range
DA[sp, ep], it is copied to a temporary vector and sorted using a
standard integer sorting algorithm. One additional pass produces
the list of all NP pairs 〈i, fi,P〉 matching P . The second option,
Sadakane’s (SADA) index [15] also uses a CSA to find 〈sp, ep〉. But
instead of storing DA explicitly, it is emulated using a bitvector of
length n that marks the document boundaries. Two range minimum
query (RMQ) data structures are used, and each unique document
identifier in the range is processed only once. In addition, for each
document di a separate CSA is stored, to determine fi,P . The third
variant (WT) stores DA using a wavelet tree [5]. After determin-
ing DA[sp, ep], the wavelet tree supports retrieval of the NP pairs
〈i, fi,P〉 in sorted order in O(NP log σ) time [16].

Navarro [11] provides details of these mechanisms.

Next Word Indexing. Instead of storing position lists for all unique
terms in Σ, positions for all unique bi-grams in C can be stored [19].
This requires additional space, but intersection of long phrases can
be performed efficiently, as the bi-gram lists are shorter than the
corresponding term lists. Williams et al. [19] explore additional
trade-offs where only some bi-gram lists are stored explicitly, based
on common phrases identified in a query log.

Document Surrogates. Direct sequential search for phrases can be
carried out in parsed documents if a small number of candidates
is identified via an initial document-level search process. These
methods make use of the “direct” file that is maintained by some
search systems. Other indexes tailored towards proximity queries
also cannot efficiently be used to answer phrase queries [1, 20].

3. LISTS AND INTERSECTION
Indexes that make use of postings lists store sorted sequences

of integers, both as part of the underlying document level inverted
index, and as part of the positional index. Compression techniques
such as OptPforDelta [4] and representations based on Elias-Fano
codes [12, 18] allow compact storage of sorted lists, and support
fast execution. One of our purposes in this work is to explore the
benefits of these new structures in the context of phrase processing.

Packed Binary. One of the most effective encoding schemes for
postings lists is OptPforDelta [21], which compresses blocks of in-
tegers using a fixed width b, storing values larger than 2b−1 as ex-
ceptions using a secondary codec. The underlying structure of the
code, and the availability of SIMD instructions to assist the process
[9], means that implementations can be very fast, and well-suited
to hierarchical indexes. On the other hand, absolute positional in-
dexes require encoding schemes which support large integers, and
while all of the methods described can be adapted to support 64-bit
values, underlying SIMD instructions may not be available, and de-
coding may be slower. Similarly, compression schemes tuned for
positional information may be slower than document level com-
pression codecs [20].

Bitvector Hybrids. Kane and Tompa [7] combine bitvector repre-
sentations and standard compression techniques. Each postings list
in the index is either stored completely as a bitvector; partially us-
ing a bitvector for the first part and then a compressed representa-
tion for the tail; or fully compressed. But bitvectors are only viable

if the set being represented is dense across the domain. For ex-
ample, a bitvector representing a domain of N ≈ 25 million docu-
ments requires≈ 3 MiB. The domain is much sparser when storing
positional information; and for a collection containing n ≈ 23 bil-
lion words, a bitvector would be 2.8 GiB. That is, the methods of
Kane and Tompa (and the earlier work of Culpepper and Moffat
[4]) are not suited to storing positional information.

Elias-Fano Codes. The Elias-Fano (EF) representation for increas-
ing sequences has been rediscovered recently and applied to post-
ings lists [18]. Elias-Fano codes provide a principled way of in-
cluding bitvectors into postings list representations. Each number
is split up into low and high parts. The high parts of the numbers
in a sequence are stored as unary encoded differences in a bitvec-
tor; the low parts in binary using a fixed number of bits. Ottaviano
and Venturini [12] show that a block-partitioned two-level EF rep-
resentation can compete in both space and time with other forms
of posting list compression. Like some other coding methods, the
partitioned EF scheme exploits locality within postings lists. Docu-
ment reordering, typically based on source URLs, produces clusters
of similar documents and hence non-uniform postings lists, and can
improve compression effectiveness and list processing speed by up
to 40% [7]. However, these clusterings schemes are not applicable
to improving compression for lists of term positions [20].

Intersection. Conjunctive bag-of-words queries and phrase search-
ing using positional indexes both rely on list intersection, with skip
information or bitvectors used to improve intersection speed [4,
7]. Elias-Fano codes directly include bitvectors, and Vigna [18]
demonstrates how the bitvector representing the high parts of the
sequence can be used as part of the compressed representation of
the sequence, as well as an auxiliary structure to support fast skip-
ping. Ottaviano and Venturini [12] show that Boolean conjunctive
queries using EF codes outperform OptPforDelta schemes, support
64-bit integers, and are competitive to other representations opti-
mized to support fast list intersection.

4. EXPERIMENTS
Dataset and Methodology. We use the standard GOV2 test collec-
tion of the TREC 2004 Terabyte Track, stored in URL-sort order.
To ensure reproducibility we extract the integer token sequence C
from Indri1 using default parameters without removing stop-words.
We index sequences of length |C| = n = 23,468,782,575 consist-
ing of N = 25,205,179 documents and σ = 39,177,922 unique
word tokens. The raw collection uses≈ 426 GiB, which is reduced
to 71 GiB of 26-bit binary term identifiers after tokenization. All
experiments were run on a server equipped with 148 GiB of RAM
and two Intel Xeon E5640 processors each with a 12 MiB L3 cache.

To evaluate query performance, we traverse the suffix tree over
C and assign phrases according to: a band 1 ≤ b ≤ 5 where
10b ≤ NP < 2 × 10b; a band b ≤ l ≤ 7, where the phrase’s
least frequent term occurs between 10l and 2× 10l times in C; and
by phrase length 2 ≤ m ≤ 6. Each bucket was capped at 1,000
phrases; because of the three dimensional nature of the categoriza-
tion, some had fewer. All reported timings are median per-query
elapsed times, with all index components fully memory-resident.

Index Sizes and Implementation. Figure 1 shows space use. The
suffix array-based indexes are roughly the size of C, or larger. The
CSA shared by all suffix array methods requires 21 GiB. The SORT
method adds an uncompressed DA array of 70 GiB, whereas the
WT method uses a wavelet tree over DA (WTD), which is stored
1http://www.lemurproject.org/indri/

|C|

SORT

WT

SADA

NW

EF

RELPOS

0 25 50 75 100
Index Size [GiB]

INVIDX PLISTS CSA LCSA WTD DA METADATA

Figure 1: Space usage for indexes for GOV2. The dotted line shows
the size of the tokenized collection.

using hybrid bitvectors [8], and requires only 49 GiB. The SADA
method uses a local CSA (denoted LCSA in Figure 1) for each doc-
ument; these are implemented using the method described by Gog
et al. [6]. The metadata for SADA includes the two RMQ structures.
These index arrangements reflect the current (practical) state-of-
the-art for succinct indexes for the sorted document listing with
frequencies problem. The components were partially provided by
and implemented using the current version of the sdsl library [6];
our additional code is also available.2

The three inverted file-based indexes share the same document-
level inverted index (INVIDX), implemented with uniform parti-
tioned EF lists (UEF) with blocksize 128. The document identifiers
and frequencies require 5.5 GiB, matching the values reported by
Ottaviano and Venturini [12]3. The inverted indexes additionally
require 2 GiB metadata used for list offsets, document permuta-
tions, and WAND list max scores. The positional data is represented
using absolute offsets, but for comparison we also include the size
of an positional index that uses relative positions (RELPOS). This
approach reduces the size significantly, but is slower than the abso-
lute positional index [17]. The absolute index requires additional
metadata to map absolute position offsets in C to document iden-
tifiers, implemented using a uncompressed bitvector of length n
which marks each document boundary in C. Constant time rank
operations are used to achieve the mapping [11]. The nextword
index (NW) stores absolute positions for all 473,366,430 bi-grams
in GOV2. While there are techniques that only partially store lists
[3, 13, 19], we measure the exhaustive case in which all bi-grams
are indexed. The position lists of NW are stored using UEF codes,
and require 55 GiB, still less than the three suffix-based indexes.

Document Level Retrieval. As a preliminary, we compare the per-
formance of suffix array and inverted file-based methods in the con-
text of bag-of-words conjunctive Boolean queries. Four indexes
are used: the UEF and WT methods already described; plus regu-
lar Elias-Fano (EF) and OptPforDelta (OP4) encoded postings lists.
The latter two require indexes of 8.3 GiB and 5.7 GiB respectively;
and in the EF, UEF, and OP4 methods, intersection is achieved via
the set-versus-set (SvS) approach. The WT index supports conjunc-
tive queries by performing intersection operations, as described by
Gagie et al. [5]. For each query term, the range SA[sp, ep] is deter-
mined. These are then processed simultaneously using the wavelet
tree over DA, to determine document identifiers which contain all
terms. This approach has not yet been compared empirically to
inverted file-based intersection approaches, hence our interest.
2https://github.com/mpetri/pos-cmp
3Yan et al. [21] report 4.1GiB but the basis of this is unclear, and may
involve stopping or other index reduction techniques.

Queries EF UEF OP4 WT

TREC 2005 0.92 1.51 1.28 77.78
TREC 2006 2.32 3.71 3.12 148.90

Table 1: Median conjunctive Boolean bag-of-words retrieval times,
in milliseconds, over GOV2.

Band EF NW SORT WT SADA

b = 1 0.09 0.08 0.11 0.37 0.37
b = 2 0.69 0.38 0.12 1.59 2.65
b = 3 6.43 1.20 0.22 9.09 25.36
b = 4 62.69 2.09 1.34 34.36 222.41
b = 5 522.20 52.66 13.61 226.17 1922.13

Table 2: Median phrase materialization times, in milliseconds, over
GOV2, using 1,000 queries in each bucket except when b = 5 (421
queries), with 10b ≤ NP < 2 × 10b in the b th band. The pattern
length is fixed atm = 3, and the smallest list size band at l = b+2
for queries in the b th band.

All queries of length m ≥ 2 in the TREC 2005 and 2006 Ter-
abyte Track efficiency tasks are used in this experiment, 34,495 and
94,253 queries respectively. Table 1 shows median query times, in
milliseconds. The relative times of the inverted file-based indexes
are broadly similar to those reported in recent studies [7, 12], ex-
cept that our OP4 index is faster than the UEF index. This is in
contrast to what was reported by Ottaviano and Venturini [12], a
difference that we attribute to optimizations done in the NEQ skip
method they used. All studies to date agree that EF is faster than
OP4, but requires more space.

The three inverted file-based indexes outperform the WT index
by a considerable margin. This is a consequence of the random
memory accesses required to work the wavelet tree, compared to
fast sequential processing of postings lists in the inverted file in-
dexes. That is, the WT index is not competitive in either space
or time. However, the WT index can also answer phrase queries,
whereas additional positional information is required before in-
verted file indexing schemes can do the same (Figure 1).

Phrase Materialization. We turn to our main interest – the query-
time generation of postings lists for phrases, ready for incorpora-
tion in ranked retrieval such as WAND-based evaluation of the BM25
scoring regime. Similarity computations using WAND can be per-
formed efficiently, meaning that materializing additional postings
lists must also be fast if it is not to dominate execution times. For
example, Ottaviano and Venturini [12] report average BM25 com-
putation times of ≈ 9 milliseconds for GOV2.

Table 2 shows median query times to materialize phrase lists for
synthetic queries of length m = 3, categorized according to the
band corresponding to the result size NP . For each band b, we fix
the smallest position list size l to be b + 2. That is, the smallest
postings list for each query is ≈ 100 times larger than NP for
that query. For small b, the cost of phrase materialization using
all methods is within the cost of performing a WAND computation.
As b becomes larger, the WT method becomes uncompetitive; once
b = 5, both SADA and EF require too much time to be included
in a similarity computation. The simple SORT method and NW
index remain competitive. Surprisingly, the fastest index for bands
b ≥ 2 is the simple SORT index, which copies and sorts parts of
DA. Unlike SADA and WT, the performance of SORT is dependent
on ep− sp, which can be much larger thanNP . But SORT does not
perform random accesses, and instead makes use of fast localized

Output Band b = 1 Output Band b = 3

0.1

1

10

100

1k

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Smallest List Band [l]

Ti
m

e
[m

s]
EF SADA

Figure 2: Phrase materialization times for EF and SADA, in mil-
liseconds over GOV2, for queries where 10b ≤ NP < 2× 10b for
b = 1 and b = 3 for smallest list sizes l ∈ b . . . 7. Patterns lengths
are in the range m ∈ 2 . . . 6.

integer sorting. Its drawback is the space required – 98 GiB, more
than the other indexes.

In the previous experiment the size of the input for EF is fixed
to be a constant ratio of the output size. The performance of list
intersection-based methods depends on the size of the smallest list
to be intersected, whereas all suffix array based methods only de-
pend on the size of NP . Figure 2 shows the phrase materialization
cost for patterns with b = 1 and b = 3, varying l, the minimum list
length band, over b ≤ l ≤ 7. The time to process a phrase query
using SADA depends primarily on the output size, rather than the
lengths of the terms’ position lists. In contrast, the EF run time sig-
nificantly increases as l grows. In particular, EF is faster than SADA
for small l (for example, for b = 3 and l = 4, EF takes 1.22 mil-
liseconds, compared to 18.16 for SADA), but is more than an order
of magnitude slower for phrases containing no infrequent terms.

Additional Trade-offs. We have evaluated a selection of index types
in our phrase list comparison. Other combinations have also been
proposed, with different time and space trade-offs. The nextword
index (NW) in our experiments stores positional lists for all unique
word bi-grams in C. Williams et al. [19] examine hybrid schemes,
in which only certain bi-gram lists are stored, reducing the space
required. Similarly, Petri et al. [13] propose a mixed arrangement
which pre-computes document/frequency lists up to a certain size
threshold. Smaller lists are materialized at query time by process-
ing DA, similar to the SORT index. A nextword index could also
be used to materialize missing lists in this scheme. Another option
is to avoid storing DA explicitly, and extract document numbers
from the CSA by storing an additional bitvector marking document
boundaries. This change would greatly reduce the storage cost of
the index, but would add ep−sp calls to suffix array values and rank
operations, adversely affecting query time. That is, this method can
only be viable for small 〈sp, ep〉 ranges.

Construction Cost. Our primary focus has been on phrase list ma-
terialization times. But construction costs are also a factor to be
considered when choosing an index. The cost of building the suffix
array-based indexes is an order of magnitude higher than inverted
file-based indexing methods [6], and constructing SA for large pars-
ings requires RAM not available in commodity hardware.

5. CONCLUSION
We compare inverted file indexes to suffix-based alternatives.

The WT index is uncompetitive in both time and space for conjunc-
tive Boolean retrieval; and all suffix-based indexes are larger than
their inverted file-based counterparts. For phrase components, the
SADA and WT methods are fast to materialize short lists, but slow

considerably when there are many answers. Regular positional list
intersection can produce phrase lists efficiently if the smallest in-
tersected list is short. The nextword index (NW) is smaller than all
suffix array indexes, and provides materialization times which are
reasonably fast. The simple SORT index processes phrase queries
rapidly even for large b, but uses nearly 100 GiB RAM. These var-
ious relativities are determined by the number of answers and the
frequency of the smallest input term, and in future work we will
more fully categorize the respective zones of applicability.

Acknowledgment. This work was funded by the Australian Re-
search Council’s Discovery Project scheme (project DP140103256),
and by the Victorian Life Sciences Computation Initiative (grant
VR0052), an initiative of the Victorian Government, Australia.

References
[1] D. Arroyuelo, S. González, M. Marín, M. Oyarzún, and T. Suel. To

index or not to index: Time-space trade-offs in search engines with
positional ranking functions. In Proc. SIGIR, pages 255–264, 2012.

[2] A. Z. Broder, D. Carmel, H. Herscovici, A. Soffer, and J. Zien. Ef-
ficient query evaluation using a two-level retrieval process. In Proc.
CIKM, pages 426–434, 2003.

[3] A. Broschart and R. Schenkel. High-performance processing of text
queries with tunable pruned term and term pair indexes. ACM Trans.
Inf. Sys., 30(1):5, 2012.

[4] J. S. Culpepper and A. Moffat. Efficient set intersection for inverted
indexing. ACM Trans. Inf. Sys., 29(1):1, 2010.

[5] T. Gagie, G. Navarro, and S. J. Puglisi. New algorithms on wavelet
trees and applications to information retrieval. Theor. Comp. Sc., 426-
427:25–41, 2012.

[6] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice:
Plug and play with succinct data structures. In Proc. SEA, pages 326–
337, 2014.

[7] A. Kane and F. W. Tompa. Skewed partial bitvectors for list intersec-
tion. In Proc. SIGIR, pages 263–272, 2014.

[8] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Hybrid compression of
bitvectors for the FM-index. In Proc. DCC, pages 302–311, 2014.

[9] D. Lemire and L. Boytsov. Decoding billions of integers per second
through vectorization. Soft. Prac. & Exp., 45(1):1–29, 2015.

[10] S. Muthukrishnan. Efficient algorithms for document retrieval prob-
lems. In Proc. SODA, pages 657–666, 2002.

[11] G. Navarro. Spaces, trees and colors: The algorithmic landscape of
document retrieval on sequences. ACM Comp. Surv., 46(4.52), 2014.

[12] G. Ottaviano and R. Venturini. Partitioned Elias-Fano indexes. In
Proc. SIGIR, pages 273–282, 2014.

[13] M. Petri, A. Moffat, and J. S. Culpepper. Score-safe term-dependency
processing with hybrid indexes. In Proc. SIGIR, pages 899–902, 2014.

[14] K. Sadakane. New text indexing functionalities of the compressed
suffix arrays. J. Alg., 48(2):294–313, 2003.

[15] K. Sadakane. Succinct data structures for flexible text retrieval sys-
tems. J. Disc. Alg., 5(1):12–22, 2007.

[16] T. Schnattinger, E. Ohlebusch, and S. Gog. Bidirectional search in a
string with wavelet trees. In Proc. CPM, pages 40–50, 2010.

[17] D. Shan, W. X. Zhao, J. He, R. Yan, H. Yan, and X. Li. Efficient phrase
querying with flat position index. In Proc. CIKM, pages 2001–2004,
2011.

[18] S. Vigna. Quasi-succinct indices. In Proc. WSDM, pages 83–92, 2013.
[19] H. E. Williams, J. Zobel, and D. Bahle. Fast phrase querying with

combined indexes. ACM Trans. Inf. Sys., 22(4):573–594, 2004.
[20] H. Yan, S. Ding, and T. Suel. Compressing term positions in web

indexes. In Proc. SIGIR, pages 147–154, 2009.
[21] H. Yan, S. Ding, and T. Suel. Inverted index compression and query

processing with optimized document ordering. In Proc. WWW, pages
401–410, 2009.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Petri, M;Moffat, A

Title:
On the Cost of Phrase-Based Ranking

Date:
2015

Citation:
Petri, M. & Moffat, A. (2015). On the Cost of Phrase-Based Ranking. Proceedings of the
38th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp.931-934. ACM. https://doi.org/10.1145/2766462.2767769.

Persistent Link:
http://hdl.handle.net/11343/58272

http://hdl.handle.net/11343/58272

