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ABSTRACT

B-CUBED metrics have recently been adopted in the evaluation of
clustering results as well as in many other related tasks. However,
this family of metrics is not well adapted when datasets are un-
balanced. This issue is extremely frequent in Web results, where
classes are distributed following a strong unbalanced pattern. In
this paper, we present a modified version of B-CUBED metrics to
overcome this situation. Results in toy and real datasets indicate
that the proposed adaptation correctly considers the particularities
of unbalanced cases.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information search
and retrieval—clustering

Keywords

Evaluation, Search results clustering, Unbalanced datasets

1. INTRODUCTION
Evaluation of partitions obtained as a result of clustering algo-

rithms is a challenging task. Two main kinds of metrics can be
identified: supervised and unsupervised metrics. In this paper, we
will deal with the former. In the information retrieval area, a recent
study proposed the use of a family of metrics known as B-CUBED
[1], which is used when clusters of documents are evaluated. These
new metrics successfully satisfy a set of formal constraints that in-
clude problematic situations such as Cluster Homogeneity, Clus-
ter completeness, Rag Bag, and finally, Cluster size vs. quantity.
Each of these constraints evaluate a different situation that must be
solved with a good evaluation metric. However, in the particular
case of unbalanced datasets, these metrics fail to identify the cor-
rect solution [4]. The particularity of an unbalanced dataset is that
one of the classes covers most of the document collection. Namely,
this is the case when the set of documents to be clustered is domi-
nated by one class, e.g., one of the classes covers a high percentage
of documents and the remaining documents belong to many small
classes. This is not a strange situation. Indeed, this is a recurrent
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case when the Web Search Results Clustering (SRC) problem is
studied. SRC consists in grouping Web results in meaningful clus-
ters where each cluster should “hopefully” correspond to a unique
topic. Moreover, it is often the case that topics are not equally dis-
tributed in Web results. For example, consider the results obtained
with a search engine and presented in Figure 1. Note that mainly
two topics can be found in the results, the animal and the car. The
total number of images related to the animal is almost 5 times the
number of images related to the car1. This example clearly illus-
trates the existence of unbalance between the two classes2. In gen-
eral, this behaviour can be observed in several Web SRC datasets
including ODP239 [3], MORESQUE [7] and WEBSRC401 [6].
For this reason, the use of clustering evaluation metrics must be
verified in unbalanced cases. This is recurrently present in the SRC
problem as well as in other clustering problems.

Figure 1: Commercial search engine results for the query

“jaguar”. 57 Web image results visualized, 47 of which are re-

lated to the animal and only 10 to the car.

In this paper, we present an evaluation of the B-CUBED met-
rics family using SRC datasets. Our results support the idea that
B-CUBED give high scores to algorithms that follow similar distri-
butions to the topics and otherwise, low scores even when cluster
are randomly assigned. This can be explained by saying that B-
CUBED metrics were also designed to penalize the erroneous links
created between two classes more than putting documents in the
wrong class [2]. Finally, we show how B-CUBED metrics can be
modified to consider the evaluation of datasets that present the un-
balanced issue. The remainder of this paper includes a description
of B-CUBED clustering metrics and their modifications in Section
2. Experiments and results are presented in Section 3 and finally,
discussion and conclusions are presented in Sections 4 and 5.

1Surrounded by the dotted blue rectangle.
2Many reasons could explain this distribution, however, how it af-
fects user interaction with Web results is out of the scope of this
paper.



2. ADAPTED B-CUBED FOR SRC
SRC algorithms have been evaluated with several supervised and

unsupervised clustering metrics. In the former category, B-CUBED
metrics have received a lot of attention in recent years. Similarly,
SRC has also privileged these metrics but their impact in this par-
ticular problem is not clearly discussed. The particularities of the
SRC problem motivate our efforts to develop an adapted version of
these metrics.

2.1 B-CUBED metrics
B-CUBED metrics were originally proposed in [2], but exhaus-

tively studied in [1] where it is shown that they can successfully
evaluate partitions in situations included in defined formal con-
straints. Full comparison with illustrated examples can be found in
[1]. B-CUBED F-measure (Fb3 ), Precision (Pb3 ) and Recall (Rb3 )
are defined in Equations 1, 2 and 3.
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where πi is the cluster solution i and π∗
i is the gold standard of the

category i and N is the total number of documents.

2.2 Adapted B-CUBED metrics
Two main parameters of B-CUBED metrics can be modified.

First, the α parameter in Equation 1 can vary to alter the impor-
tance of Pb3 and Rb3 . This issue will be discussed in section 3. Sec-
ond, the number of elements considered to calculate the Precision
or Recall, i.e., the number of inputs received by g0(·, ·) and g∗0(·, ·)
can be extended to three or more elements. The new formulation to
allow the use of several elements3 is presented in Equation 4.

g0(~x) =
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1⇐⇒∃l : ∀xi ∈~x,xi ∈ πl

0,otherwise

g∗0(~x) =
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l
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(4)

Note that because more possible combinations are considered,
the normalization factors in Equation 2, 1

|πi|
or 1

|π∗
i |

must be mod-

ified. After mathematical factorization, the normalization value is
cancelled by the modified Precision (Pmod

b3
) and it is factorized in

terms of Rb3 by the modified Recall (Rmod
b3

). Factorized versions of
the adapted B-CUBED metrics are presented in Equation 5.
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3The number of elements will be determined by the size of~x.

Note that, when the number of elements considered by the g0
functions is equal to 2, i.e. |~x|= 2, then the Fmod

b3
= Fb3 . In partic-

ular, the new Fmod
b3

tends to give less importance to partitions with
high Recall and benefits Precision preserving the α parameter.

3. EXPERIMENTS AND RESULTS

3.1 Datasets
In our experiments, we use a total of five toy examples that in-

clude four classical clustering situations as well as one situation
that represents the unbalanced case. These toy examples are in-
cluded in the first row of Table 1. Note that for each example, a
left and right partition is included. In all cases, the right partition
is considered a more adequate solution. Finally, in order to show
the impact in real situations, we perform experiments in three SRC
datasets: ODP239 [3], MORESQUE [7] and WEBSRC401 [6].

3.2 Clustering algorithms
SRC ALGORITHMS: A host of classical and recent algorithms

were used: LINGO, STC and CascadeSRC. LINGO is based on
the spectral decomposition of a term-document matrix to define the
respective clusters. Finally, labels are assigned by choosing the
best representative for each found cluster. STC clusters documents
based on a suffix tree. Clusters are determined from the tree by
selecting the longest set of strings which are used as labels. Cas-
cadeSRC [5] is a two level combination algorithm that preserves
the quality in terms of intra-document similarity offered by LINGO
and the compactness offered by STC.

RANDOM ALGORITHMS: Two random algorithms are studied
to verify the impact of document distribution in the obtained par-
titions. First, the UniformRand algorithm assigns documents to
each cluster in such a way that, in the end, each partition contains
equally sized clusters. Secondly, the UltraShapedRand algorithm
imitates the unbalanced SRC distribution. In this case, if k clusters
are required, then for the clusters c1, ..,ck−1 only one document is
randomly assigned and the remaining documents are assigned to
cluster ck. Note that this distribution is an extreme case of SRC but
allows to show the difference from a uniform distribution.

3.3 Formal Constraints
The formal constraints are listed as Cluster Homogeneity, Clus-

ter completeness, Rag Bag and Cluster size vs. quantity. Cluster

Homogeneity consists in giving a higher score to partitions where
clusters contain elements of only one class, Cluster completeness
gives higher scores to partitions where classes are represented by
few clusters, Rag Bag gives higher scores to partitions where only
one cluster contains different classes than to several clusters con-
taining different classes. Finally, Cluster size vs. quantity gives
higher scores to partitions where few clusters are provided but sep-
arates most classes. In addition to these formal constraints, the
Unbalanced constraint was recently added by [4] and evaluates if
a misclassification is present in a big class or in a small one. This
constraint gives better scores when the incorrect classified element
is from the biggest class. Results using the examples proposed by
[1] and [4]4 are shown in Table 15. For each example, the first col-
umn shows the value obtained with the metric for the left partition,
the second column shows the result for the right partition and the

third column indicates if the formal constraint is satisfied (!) or

4The original example was slightly modified to put only one mis-
classified document in each evaluated partition.
5All metrics can be found in [7] and [1].



C. Homogenity C. Completeness Rag Bag C. size vs q. Unbalanced 4 + 1 F.C.

Purity 0.71 0.79 ! 0.79 0.79 # 0.56 0.56 # 1.00 1.00 # 0.96 0.96 # $

Inv. Purity 0.79 0.79 # 0.79 0.79 # 1.00 1.00 # 0.69 0.92 ! 0.96 0.96 # $

F&M 0.47 0.49 ! 0.47 0.53 ! 0.61 0.61 # 0.85 0.85 # 0.95 0.94 # $

RandIndex 0.68 0.70 ! 0.68 0.70 ! 0.72 0.72 # 0.95 0.95 # 0.94 0.94 # $

Adj.RandIndex 0.25 0.28 ! 0.24 0.31 ! 0.40 0.40 # 0.80 0.80 # 0.79 0.79 # $

Jaccard 0.31 0.33 ! 0.31 0.36 ! 0.38 0.38 # 0.71 0.71 # 0.90 0.89 # $

F-measure 0.71 0.79 ! 0.79 0.79 # 0.56 0.56 # 1.00 1.00 # 0.96 0.96 # $

Pb3 0.60 0.69 ! 0.69 0.69 # 0.49 0.56 ! 1.00 1.00 # 0.93 0.95 ! $

Rb3 0.70 0.70 # 0.71 0.76 ! 1.00 1.00 # 0.69 0.88 ! 0.96 0.93 # $

Fb3 0.64 0.69 ! 0.70 0.72 ! 0.55 0.71 ! 0.82 0.93 ! 0.94 0.93 # $

Pmod
b3

0.60 0.69 ! 0.69 0.69 # 0.49 0.56 ! 1.00 1.00 # 0.93 0.95 ! $

Rmod
b3

(|~x|= 3) 0.45 0.45 # 0.56 0.57 ! 1.00 1.00 # 0.46 0.77 ! 0.93 0.86 # $

Fmod&0.9
b3

0.58 0.66 ! 0.67 0.68 ! 0.52 0.58 ! 0.90 0.97 ! 0.93 0.95 ! "

F0.9
b3

0.61 0.70 ! 0.69 0.70 ! 0.52 0.58 ! 0.96 0.99 ! 0.93 0.94 ! "

Table 1: Satisfaction of formal constraints with common SRC metrics: Examples.

not (#). Finally, the column “4+1 F.C.” indicates if the five formal
constraints are satisfied simultaneously.
Note that none of current metrics can satisfy all constraints. In-

deed, Fb3 satisfies the first 4 F.C., but misses the correct identifica-
tion of the best partition for the unbalanced case as reported by [4].
However, the proposed modifications Fmod&0.9

b3
(with |~x| = 3) and

F0.9
b3

manage to correctly classify all the formal constraints using
the parameter α = 0.9. Indeed, positive values are obtained start-
ing from α = 0.7, but to achieve a more general solution α = 0.9
was selected. Our choice is motivated by the reduction of the bias
generated by unbalanced datasets namely for the SRC task. It is
important to remark that when α > 0.5, Precision receives more
importance than Recall.

3.4 Results in SRC datasets
A total of 10 runs were performed for each random algorithm.

Fmod&0.9
b3

and F0.9
b3

average values of the two random algorithms
are presented in Table 2 for different k values (from 2 to 20) and
using the three SRC datasets. The UltraShapedRand algorithm be-
haves better than the UniformRand when evaluated with both met-
rics using the mentionned datasets6. Although when k = 2 both
algorithms score similarly, the differences get larger as the num-
ber of k partitions grows. This was observed for both metrics in the
three datasets. However, when k= 20, the differences are larger for
Fmod&0.9
b3

than F0.9
b3

. It is because F0.9
b3

gives high importance to Pre-
cision allowing to get good performance by just getting more clus-
ters. Indeed, when the number of clusters is increasing, the number
of elements by cluster must be reduced. This situation reduces the
chances of putting together elements from different classes which
implicitly increases Precision.
When using MORESQUE and ODP239, F0.9

b3
gives better scores

to the UltraShapedRand algorithm as the number of k partitions
increases. Again, this situation is given by the parameter α = 0.9,

6This situation was also observed for the Fb3 metric.

which gives higher importance to Precision than Recall. However,
this situation is not the same for Fmod&0.9

b3
. This metric does not

always give better scores to this situation and partitions with higher
numbers of clusters may not be preferred. This is an important
issue, because results suggest that F0.9

b3
will prefer partitions with

clusters that contain a unique document which is not the case in any
of the used datasets.

A summary of three SRC algorithms (LINGO, STC, CascadeSRC)
using Fb3 , F

0.9
b3

and Fmod&0.9
b3

is presented in Table 3. Note that for

MORESQUE and ODP239, F0.9
b3

and Fmod&0.9
b3

give better scores to
the SRC algorithms than to the random strategies, as it is expected
for a good evaluation metric7. Unfortunately, the behaviour is dif-
ferent for WEBSRC401, where none of the metrics manages to cor-
rectly assign the scores when compared with the random strategies.
However, as shown in [6], WEBSRC401 is a hard SRC dataset. But
this still raises discussion.

4. DISCUSSION
Although many clustering evaluation metrics exist, none of them

can consider all possible situations. Indeed, new metrics could be
proposed to simultaneously deal with the formal constraints as well
as adapt to the specific task. However, as shown in Table 1, this is a
hard task. Moreover, we have presented Fmod&0.9

b3
which is a mod-

ified version of the B-CUBED metrics. Our proposal manages to
correctly classify the examples used to validate the initial 4 for-
mal constraints and the case for unbalanced datasets. Note that a
simple α parameter modification (the F0.9

b3
metric) also manages

to correctly classify the examples, but fails when it is evaluated in
real datasets. It is mainly due to the fact that too much importance
to Precision is given thus privileging partitions with many clusters
formed by few documents. On the other hand, the Fmod&0.9

b3
not

7This is not an evident situation. Remember that, as shown by [4],
Fb3 can not select the correct partition in unbalanced datasets.



k

2 4 6 8 10 12 14 16 18 20

F0.9
b3

MORESQUE
UniformR. 0.3282 0.3179 0.3103 0.3105 0.3081 0.3102 0.3097 0.3135 0.3134 0.3184
UltraSh.R. 0.3483 0.3586 0.3706 0.3814 0.3940 0.4028 0.4049 0.4048 0.3992 0.3812

ODP239
UniformR. 0.2534 0.2567 0.2617 0.2702 0.2752 0.2826 0.2908 0.2975 0.3053 0.3112

UltraSh.R. 0.2601 0.2745 0.2885 0.3042 0.3162 0.3276 0.3383 0.3448 0.3497 0.3464

WEBSRC401
UniformR. 0.5921 0.5422 0.5097 0.4850 0.4574 0.4451 0.4330 0.4208 0.4139 0.3994
UltraSh.R. 0.6453 0.6393 0.6407 0.6381 0.6472 0.6380 0.6402 0.6393 0.6438 0.6432

Fmod&0.9
b3

MORESQUE
UniformR. 0.2700 0.1672 0.1248 0.1138 0.1096 0.1095 0.1105 0.1113 0.1079 0.1114
UltraSh.R. 0.3479 0.3568 0.3666 0.3727 0.3775 0.3724 0.3489 0.3154 0.2590 0.1890

ODP239
UniformR. 0.2298 0.1721 0.1355 0.1129 0.0972 0.0894 0.0798 0.0747 0.0683 0.0638
UltraSh.R. 0.2599 0.2739 0.2870 0.3005 0.3091 0.3134 0.3119 0.2947 0.2573 0.1940

WEBSRC401
UniformR. 0.4614 0.2144 0.1350 0.1079 0.0871 0.0782 0.0875 0.0722 0.0702 0.0649
UltraSh.R. 0.6108 0.6040 0.6053 0.6029 0.6119 0.6030 0.6048 0.6039 0.6079 0.6081

Table 2: Fmod&0.9
b3

and F0.9
b3

results for partitions obtained with different k clusters of the UltraShapedRandom (UltraSh.R.) and the

UniformRandom (UniformR.) algorithms using real datasets. In bold the best score for each random algorithm.

Fb3 F0.9
b3

Fmod&0.9
b3

MORESQUE
STC 0.4602 0.5715 0.4186

LINGO 0.3989 0.5784 0.3497
CascadeSRC 0.4602 0.4386 0.3874

ODP239
STC 0.4027 0.4369 0.3410

LINGO 0.3461 0.5162 0.2902
CascadeSRC 0.4229 0.3463 0.3303

WEBSRC401
STC 0.4293 0.6135 0.3618
LINGO 0.3095 0.5758 0.2279
CascadeSRC 0.6665 0.6349 0.5955

Table 3: Fb3 , F
0.9
b3

and Fmod&0.9
b3

results for partitions obtained

with STC, LINGO and CascadeSRC using real datasets. In

bold the best score by metric and dataset.

only deals with the formal constraints but is also not disoriented
by the random algorithms. Note from Table 2 that for the Uni-
formRandom, Fmod&0.9

b3
reduces the assigned score as the number

of clusters increases. On contrary, for the UltraShapedRand, it in-
creases until a certain point from which it starts to decrease. These
behaviours were observed for both algorithms in the three datasets.
These results could inspire the development of (1) new analysis

to identify more cases (such as the unbalanced) that must be consid-
ered in the SRC problem, (2) new metrics or adaptations of exist-
ing ones to satisfy the 4+1 studied formal constraints and (3) SRC
strategies that consider adapted optimization functions to obtain the
satisfaction of the formal constraints. Regarding the last one, some
of the existing algorithms implicitly capture these characteristics,
i.e., classical SRC algorithms, such as LINGO and STC, generate
shapes similar to UltraShapedRand without explicitly including it
in their algorithm. This situation could explain why these are hard
to beat algorithms. Indeed, the classical K-means algorithm gen-
erates partition shapes similar to the UniformRand algorithm and
usually its performance is under what is obtained with LINGO or
STC.

5. CONCLUSIONS
This paper presents a study about B-CUBED metrics and pro-

poses an non-trivial adaptation of the Fb3 to be used in the SRC
problem. Unbalanced datasets are implicitly used in the SRC prob-
lem and it is a frequently ignored issue in recent studies. Several ex-

periments were performed in toy examples and real datasets. Main
findings indicate that our proposed metric (Fmod&0.9

b3
with |~x|= 3) is

the only one to correctly classify the toy examples in the evaluation
of the formal constraints including the unbalanced case, and at the
same time, able to give adequate scores when comparing SRC algo-
rithms against random algorithms with unbalanced shapes. New re-
search in SRCmust consider the effect of using unbalanced datasets
by using adapted metrics to achieved more adequate results. Simi-
larly, existing metrics based on Fb3 must reconsider the unbalanced
effect in the datasets. Our immediate work consists in the explo-
ration of bigger sizes for |~x| that will help in the understanding of
this parameter.
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