
Injection Attacks on 802.11n MAC Frame Aggregation

Pieter Robyns, Peter Quax, Wim Lamotte
iMinds/tUL/UHasselt

Expertise Centre for Digital Media
Wetenschapspark 2

3590 Diepenbeek, Belgium
{pieter.robyns, peter.quax, wim.lamotte}@uhasselt.be

ABSTRACT
The ability to inject packets into a network is known to
be an important tool for attackers: it allows them to ex-
ploit or probe for potential vulnerabilities residing on the
connected hosts. In this paper, we present a novel practi-
cal methodology for injecting arbitrary frames into wireless
networks, by using the Packet-In-Packet (PIP) technique to
exploit the frame aggregation mechanism introduced in the
802.11n standard. We show how an attacker can apply this
methodology over a WAN – without physical proximity to
the wireless network and without requiring a wireless inter-
face card. The practical feasibility of our injection method
is then demonstrated through a number of proof-of-concept
attacks. More specifically, in these proof-of-concepts we il-
lustrate how a host scan can be performed on the network,
and how beacon frames can be injected from a remote lo-
cation. We then both analytically and experimentally es-
timate the success rate of these attacks in a realistic test
setup. Finally, we present several defensive measures that
network administrators can put in place in order to prevent
exploitation of our frame injection methodology.

Keywords
Wireless security, injection attack, frame aggregation

Categories and Subject Descriptors
C.2.0 [Computer-communication networks]: Security
and protection.

General Terms
Experimentation, Security

1. INTRODUCTION
Throughout the years, several amendments have been

made to the original Institute of Electrical and Electron-
ics Engineers (IEEE) 802.11 standard in order to meet the

Copyright ACM, 2015. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in WiSec’15, June 22–26, 2015.
DOI: http://dx.doi.org/10.1145/2766498.2766513.

increasing throughput demands of wireless networks. The
first amendment to increase the data rate as the result of
improvements on both the Physical (PHY) layer and the
Medium Access Control (MAC) layer is 802.11n [13, 20].
Here, a key improvement on the PHY layer is the introduc-
tion of Multiple Input, Multiple Output (MIMO) technol-
ogy, where multiple spatially separated antennas are used
on both the receiver and transmitter to create multiple spa-
tial streams [14] and reduce multipath interference. Another
addition is the optional usage of an increased channel band-
width of 40 MHz instead of 20 Mhz [13, 20].

Besides these improvements on the PHY layer, the effi-
ciency of the MAC layer needed to be improved as well in
order to go beyond speeds of 100 Mbps. Here, the most no-
table efficiency improvement is frame aggregation [20], which
allows a station to transmit or receive multiple MAC frames
in a single PHY frame, reducing overhead due to headers and
interframe spacing. All of the improvements on the PHY
and MAC layer combined increase the theoretical maximum
raw data rate of 802.11n to 600 Mbps [26, 13], which ul-
timately resulted in 802.11n devices dominating the Wi-Fi
market in 2013 [1].

Despite the beneficial effect of PHY and MAC layer im-
provements on the data rate, these additions introduce new
opportunities for security issues to arise. In the case of
802.11n, frame aggregation is especially interesting to look
at. Although the standard specifies aggregation principles,
frame structures and the general mechanisms, it provides
mere guidelines for the actual implementation [14]. It is up
to developers to implement their own aggregation schemes
that determine when, why and even how to aggregate in-
dividual frames [27, 8]. Such schemes are typically imple-
mented in the device driver or on the device firmware.

In this paper, we will explore the frame aggregation mech-
anism introduced in the 802.11n standard. We will show how
the frame aggregation algorithm provided by the 802.11n
standard introduces a remote arbitrary frame injection vul-
nerability on MAC hardware that implements this algo-
rithm. In the remainder of this section, we will detail all of
our contributions, and describe several related works. Sec-
tion 2 describes the properties and implementation of the
802.11n frame aggregation mechanism, which is required
knowledge for understanding our attack. Next, in Section 3,
we describe the attack itself, along with a feasibility study
and a discussion of the results and potential impact. In Sec-
tion 4 we propose several measures that can be put in place
to defend against our attack. Finally, Section 5 describes
our conclusions and potential future work.

1.1 Related work and contributions
Goodspeed et al. introduced the Packet-In-Packet (PIP)

technique [12] in 2011, and applied it to IEEE 802.15.4 [10,
12]. Additionally, they used this technique to inject raw
PHY layer frames into 802.11b networks for data rates of
up to 2 Mbps [11]. Barisani et al. demonstrated in 2013
how, in rare cases, the PIP technique can be applied to 802.3
wired links [2]. In 2014, Jenkins et al. used the PIP tech-
nique for fingerprinting 802.14.5 and ZigBee receivers[15].
Similar PIP principles have been used by Dabrowski et al.
in order to embed barcodes inside other barcodes [6]. Os-
smann et al. propose a defense against PIP in the field of
radio communications by using error correcting codes [19].
Finally, Sassaman et al. describe how formal language the-
oretic methods can be used as a defense against injection
attacks in general [25].

Our main contribution is a methodology for remote arbi-
trary frame injection into wireless networks that implement
the 802.11n standard or newer standards such as 802.11ac.
This is accomplished by applying PIP principles to the MAC
frame aggregation mechanism. To the best of our knowledge,
this approach has not been demonstrated before. Previously,
the PIP technique could only be used to perform frame in-
jection attacks on 802.11b networks [11] by tricking the radio
into interpreting a raw PHY layer packet which is embedded
in the payload of another packet. As Goodspeed et al. men-
tioned in their work, several complications and challenges
exist that limit the practical feasibility of this approach:

• The symbol set used in the Physical Layer Convergence
Protocol (PLCP) Protocol Data Unit (PPDU) must be
included in the symbol set used for the injected pay-
load. Otherwise it will not be possible to inject a valid
PHY layer header. For example: if the data portion
of the frame is modulated using Complementary Code
Keying (CCK), it will be difficult for an attacker to in-
ject a valid PLCP preamble, which is modulated using
Differential Binary Phase Shift Keying (DBPSK).

• Even if a favorable symbol set is used, the data rates
must be compensated for. The 802.11 standard spec-
ifies different data rates for different sections of the
frame. For example, the PLCP preamble must always
be transmitted using the 1 Mbps DBPSK modulation.
The SIGNAL field of a PPDU however, can then indi-
cate to use a higher data rate for the remainder of the
frame [14].

• 802.11 PLCP Service Data Units (PSDUs) are scram-
bled using a 127-bit sequence, which must be ac-
counted for by the attacker.

• If the modulation technique uses differential signaling,
the attacker must account for this as well.

The methodology presented in our work removes all of
these complications by operating on the MAC layer. Con-
sequently, our injection method can be applied regardless of
the chosen data rate, symbol set, signal whitening, or mod-
ulation technique. Hence, the practical exploitability and
attack surface of frame injection attacks is increased. To
justify our claim of practical feasibility, we present two re-
alistic proof-of-concept attacks and estimate their success
rate. Since this success rate depends on the aggregation be-
havior of the wireless Network Interface Controller (NIC),

this aspect is briefly discussed as well. Finally, we propose
several defensive measures which can be applied to prevent
exploitation of our attack.

2. BACKGROUND
Before we discuss our injection attack, we will give a brief

overview of some of the relevant PHY and MAC layer fea-
tures introduced in 802.11n. These features have notable
implications for Goodspeed’s PIP attack, as well as the in-
jection attack that we will discuss in Section 3.

2.1 PHY features
On the PHY layer, two features added in 802.11n have

some interesting properties for this research. First, there are
the added PLCP frame formats, which have additional fields
and hence additional capabilities in comparison to previous
versions of the standard. Secondly, there is a set of new
Modulation and Coding Schemes (MCSs) for higher data
rates which we used throughout our experiments.

2.1.1 PLCP frame format
The PLCP acts as an interface between the PHY and

MAC layers. It defines a frame format named the PLCP
Protocol Data Unit (PPDU), which consists of a PLCP
Preamble, PLCP Header, and a PSDU. In 802.11n, the
PPDU can have several formats depending on the capabili-
ties of the transmitting device:

• Non-High Throughput (HT) format: legacy frame for-
mat as specified by previous versions of the standard.

• Mixed format: format that is backwards compatible
with the 802.11 a/g format.

• Greenfield format: HT frame format that can only be
used by devices that are 802.11n compatible.

The fields specified in the PPDU contain the parameters
that determine how the device hardware should transmit a
packet. Examples of such parameters are the modulation
scheme, transmission length, and aggregation flag. Figure 1
shows the generic PLCP frame format. Naturally, a frame
transmitted using a certain set of parameters can only be
received by a device that supports said parameters. This set
of supported parameters is also referred to as the capability
set of the device.

2.1.2 MCS
The MCS is determined by the index specified in the MCS

field of the PPDU. The mapping between indices and the
corresponding mandatory rates is given in Table 1. The last
column of the table indicates the data rate when a short
Guard Interval (GI) is used.

2.2 MAC features
802.11n related extensions of the MAC layer include

changes in the frame format and the addition of two types
of frame aggregation that were introduced in order to re-
duce MAC layer overhead: MAC Service Data Unit (MSDU)
aggregation or A-MSDU, and MAC Protocol Data Unit
(MPDU) aggregation or A-MPDU.

Figure 1: PLCP and MAC frame structures

Data rate (Mb/s)
MCS Modulation Coding GI SGI

0 BPSK 1/2 6.5 7.2
1 QPSK 1/2 13.0 14.4
2 QPSK 3/4 19.5 21.7
3 16-QAM 1/2 26.0 28.9
4 16-QAM 3/4 39.0 43.3
5 64-QAM 2/3 52.0 57.8
6 64-QAM 3/4 58.5 65.0
7 64-QAM 5/6 65.0 72.2

Table 1: MCS parameters for mandatory 20 MHz [14].

2.2.1 MAC frame format
The MAC frame format is defined in the MPDU. Its origi-

nal frame structure is extended with an optional HT Control

header field as shown in Figure 1. The presence of this field
is indicated by the Order subfield of the Frame Control field
[14]. Other new additions are the HT Capabilities and HT
Operation Information Elements (IEs), which are included
in the Beacon frames of the Access Point (AP), and in the
Probe Requests and (Re)Association Requests of stations
[8].

The MPDU of the MAC layer is equivalent to the PSDU
of the PHY layer. The higher layer payload of the frame is
included in the MSDU field of the MPDU.

2.2.2 Aggregate MSDU
With A-MSDU aggregation, the transmitter collects mul-

tiple MSDU subframes from the LLC sublayer and prepends
them with an A-MSDU subframe header, which is struc-
turally equivalent to an 802.3 header: it contains the Desti-
nation Address (DA), Source Address (SA), and Length of
the MSDU subframe as shown in Figure 2a.

The MSDU subframes are aggregated and transmitted in a
single MPDU when either the maximum A-MSDU size (7935
bytes) is reached, or when the transmission delay reaches
a predefined threshold. Each A-MSDU subframe must be
followed by a number of zero padding bytes, so that the
length is a multiple of 4 bytes. The final A-MSDU subframe
has the A-MSDU Present flag in the QoS header set to true.
Furthermore, the DA and SA fields of the MSDUs must be
identical to respectively the Receiver Address (RA) and
Transmitter Address (TA) fields of the MPDU [14].

A disadvantage of this aggregation method is that it per-
forms poorly in situations where the packet error rate is high
[9]. This is due to the fact that there is only a single Cyclic
Redundancy Check (CRC) for the entire aggregate frame.

2.2.3 Aggregate MPDU
A-MPDU aggregation collects multiple frames from the

MAC sublayer and aggregates them in a single PHY frame

of maximum 65,535 bytes. Here, each subframe is prepended
with an A-MPDU delimiter as shown in Figure 2b. As with
A-MSDU aggregation, each subframe is padded with zero
bytes so that its length is a multiple of 4.

For the subframes to be valid, they must have the same
RA and Duration fields, i.e. the receiving host and frame
lengths must be the same, and the same KeyID field must
be provided in case encryption is enabled. The maximum
subframe size is 4095 bytes [14].

The A-MPDU delimiter of a subframe is shown in Figure
2b, and contains the following fields:

• Reserved: Unused bits with a possible future applica-
tion.

• Length: Length of the A-MPDU subframe in bytes.
This length can be 0 bytes, in which case the A-MPDU
delimiter is used for padding purposes.

• CRC: 8-bit CRC of the Reserved and Length fields.

• Delimiter signature: Pattern that indicates the start
of an A-MPDU subframe. This pattern is defined as
the ASCII value for the character “N”.

Note that contrary to A-MSDU aggregation, a packet er-
ror in one subframe does not result in the entire aggregate
frame being dropped. Instead, only the erroneous subframe
is dropped. If the subframe error occurred in the A-MPDU
delimiter, the 802.11n specification suggests that the next
Delimiter signature should be searched for according to
the algorithm in Listing 1.

void parse mpdu (int l ength)
{

int o f f s e t = 0 ;
while (o f f s e t+4 < l ength)
{

i f (va l id mpdu de l im i t e r (o f f s e t) &&
mpdu len (o f f s e t) <= (length − (o f f s e t +4)))

{
recv mpdu (o f f s e t +4, mpdu len (o f f s e t)) ;
o f f s e t += 4 + 4 ∗ ((mpdu len (o f f s e t)+3)/4) ;

}
else
{

o f f s e t += 4 ;
}

}
}

Listing 1: A-MPDU scanning and parsing algorithm [14, p.
2661]

In essence, this algorithm searches for any A-MPDU de-
limiter signature on a 4-byte boundary. If a valid delimiter
signature has been found, the recv_mpdu function will be
called. This function will check whether the value specified

(a) A-MSDU frame structure (b) A-MPDU frame structure

Figure 2: Frame structure of A-MSDUs (a) and A-MPDUs (b).

in the CRC field of the A-MPDU delimiter is correct, and
if so, strips the delimiter and sends the number of bytes
specified in the Length field of the A-MPDU delimiter as an
individual MPDU up to the MAC protocol driver for further
processing. Note that because this algorithm is performed
by the hardware MAC component of the chip, it is not pos-
sible to observe the A-MPDU in its entierity on the host.
Only the individual MPDUs will be visible to the firmware
and driver of the device.

Our hypothesis is that the above algorithm can be ex-
ploited by an attacker. Observe that since the symbol set
and data rate used by the payload data is the same as the
symbol set and data rate used by the A-MPDU delimiter, a
vulnerability is introduced: if one subframe has an incorrect
delimiter, the scanning algorithm will overflow into the pay-
load and parse this payload as if it were header data. An
attacker can therefore define their own subframe boundaries
by using a specially crafted payload.

3. FRAME INJECTION ATTACK
We have investigated whether our hypothesis is correct

and whether the A-MPDU frame aggregation mechanism
can be exploited in practice. We found that this is indeed
the case and demonstrate a proof-of-concept remote frame
injection attack. This attack allows an attacker to inject
arbitrary frames into 802.11n networks from any location,
by leveraging the PIP technique [12] at the data link layer.
For this attack to succeed in practice, a number of conditions
must be true:

• The last hop between the attacker and the victim
transmits packets wirelessly.

• Encryption is disabled. In other words, the AP is an
open network (e.g. hotspot, internet cafe, airport, or
other open AP).

• The AP and associated victim are configured for
802.11n operation.

In order to determine whether the network is vulnerable,
the first two conditions are trivial to determine. The last
condition can be evaluated based on the presence of the HT
Capabilities IE (see Section 2.2.1). In all of the following
experiments we assume that these conditions are true.

3.1 Experimental Setup
While testing the applications and success rate of our

frame injection attack, we used the setup depicted in Fig-
ure 3. Here, the attacker’s Linux machine is connected to
the internet via an Ethernet port. An AP is used to pro-
vide internet access for the wireless network to which the

Figure 3: Experimental setup

victim is connected. For our experiments we used four
different models: a MikroTik CRS109 (AR9344 chip), a
Linksys E1200 (BCM5357C0 chip), a Sitecom WLR-3100
(MediaTek MT7620N chip), and a Linux machine running
hostapd (AR9271 chip). Each AP uses Network Address
Translation (NAT) to translate between internal addresses
and its external address, and is protected by a firewall.

Our victim’s Linux machine is associated to the AP
with a TP-Link TL-WN722N USB dongle, which uses the
Atheros AR9271 wireless chip with the default open source
ath9k_htc firmware1. The setup was placed in an office en-
vironment without any actively interfering stations.

3.2 Injection Method
We now present our method for performing the frame in-

jection attack. As a first step, the attacker is required to
craft a valid A-MPDU delimiter, subframe, and padding as
shown in the bottom part of Figure 4. The Padding fields
are necessary to align the current and any subsequent A-
MPDU delimiters to a 4-byte boundary as specified by the
standard. Note that the length of the first Padding field is
dependent on the length of all previous bytes of the frame,
and hence on the link layer protocol used from the AP to the
victim’s machine as well. Based on the knowledge that the
used link layer protocol will be 802.11 on the target network,
the attacker can calculate the correct padding size. The sec-
ond Padding field can simply be calculated as 4− (mpdu_len
mod 4).

Our crafted A-MPDU subframe can now be transmitted
towards the victim. The attacker can embed this subframe
in any higher layer protocol payload, such as an HTTP re-
quest. Ideally, we would like to trigger frame aggregation
from the AP to our victim, and inject as many frames as pos-
sible. Therefore, a possible approach is to rapidly transmit
repeated sequences of the crafted subframe to the victim.

1This firmware is available for download at https://
github.com/qca/open-ath9k-htc-firmware.

https://github.com/qca/open-ath9k-htc-firmware
https://github.com/qca/open-ath9k-htc-firmware

Figure 4: A-MPDU subframe injection

When the payload is transmitted over the wireless link at
the last hop, there is a non-negligible probability that part
of the aggregated frame becomes corrupted, for example due
to frame collisions, transmission errors, or interference from
other radio protocols. If the corruption of any subframe is
limited to only the A-MPDU delimiter, its CRC field will be
invalid, and the algorithm from Listing 1 will be performed
by the hardware of the wireless NIC in order to recover any
following uncorrupted subframes of the aggregated frame.
Hence, if a valid A-MPDU subframe delimiter crafted by the
attacker is present in the payload at a 4-byte boundary, this
data will be interpreted as an A-MPDU delimiter instead of
payload data. Figure 4 (top frame) demonstrates an aggre-
gated frame where the A-MPDU delimiter of a subframe is
corrupted.

After parsing the attacker’s A-MPDU delimiter, the hard-
ware will pass the malicious subframe to the host or device
firmware. It should be mentioned that the Frame Check
Sequence (FCS) of the injected frame must be correctly cal-
culated by the attacker, or the frame will be dropped due
to an invalid FCS at the MAC layer. However, this is triv-
ial since the attacker has complete control over the injected
MPDU. A library can be used to calculate the correct CRC
over the injected MPDU.

In the work presented by Goodspeed et al.[11], frame in-
jection in 802.11b networks is achieved by embedding an
entire PHY frame in a higher layer protocol. Using our
methodology however, it is not required to include PHY
layer headers in the payload, because the injection happens
at the MAC layer. The data rate and scrambler state do
not have to be guessed, and the same symbol set is used
for the distinction between frame header and frame data in
our case. This increases the attack surface and chance of
success from a practical point of view. The attacker only
needs to make sure that A-MPDU aggregation is performed
when the AP transmits the frames to the victim. Exactly
when or why frames should be aggregated is not defined in
the standard, and therefore depends on the device driver or
firmware implementation [8, 27]. In our experience, an effi-
cient method to trigger A-MPDU aggregation is to rapidly
transmit packets of the same size to the AP. This was de-
termined by means of a number of experiments that we will
discuss in Section 3.4.

3.3 Applicability
In Section 3 we mentioned that only open wireless net-

works, such as hotspots and internet cafes, are vulnerable
to our injection attack. At the time of writing, this is about
10.61% of the total number of known wireless networks [30].
An attacker would therefore have a reasonable chance of
being able to inject packets into a random network if they
would probe a random IP address range. Note that this

Device name Chipset

Intel Dual Band Wireless-AC 7260 7260HMW
TP-Link TL-WN722N AR9271
Netgear WNA1100 AR9271
CastleNet RTL8188CTV RTL8188CTV
K11 Mini RT5370
TL-WDN3200 RT5572
Nexus 5 BCM4339

MikroTik CRS109 AR9344
Linksys E1200 BCM5357C0
Sitecom WLR-3100 MT7620N

Table 2: Tested devices vulnerable to A-MPDU subframe
injection.

may happen from any location or via a Wide Area Network
(WAN) such as the internet.

Besides targeting an open network, a second requirement
is that the victim implements A-MPDU frame aggregation
in a 802.11n standard compliant manner. Since accord-
ing to a research article by ABI Research 802.11n devices
hold the largest market share of the consumer Wi-Fi device
shipments in 2013 [1], and since A-MPDU reception sup-
port is a mandatory requirement in 802.11n [8], we believe
a significant number of devices will be vulnerable to our
demonstrated attacks. It should be noted that newer 802.11
standards, such as 802.11ac, implement A-MPDU frame ag-
gregation as well. Therefore, devices that implement these
standards will also be vulnerable. Table 2 shows the devices
we tested. All of them are indeed vulnerable to our attack.

3.4 Optimal aggregation triggering
The 802.11n standard specifies that the frame size or a

timer could be used for determining how many frames should
be aggregated [14]. However, in practice it is very difficult
to determine exactly which packets will be aggregated and
which packets will be sent in the regular fashion, as this
depends on the vendor’s implementation. Moreover, the at-
tacker has no means of measuring the properties of the wire-
less link at the remote location, such as the Packet Delivery
Ratio (PDR), which can affect aggregation behavior as well
[17].

From the attacker’s point of view it would be interesting
to see whether a generic, optimal transmission speed and
frame size can be selected in order to maximize the proba-
bility of aggregation at the remote AP, as this will increase
the probability of successful injection. We experimentally
compared the aggregation behavior of the four APs from
our setup with respect to these parameters. In each exper-
iment, we transmitted 250,000 frames from the attacker to

0 %

20 %

40 %

60 %

80 %

100 %

42 1534

Pe
rc

e
n
ta

g
e
 o

f
a
g

g
re

g
a
te

d
 s

u
b

fr
a
m

e
s

Frame size in bytes

CRS109

(a)

42 1534

TL-WN722N

(b)

42 1534

E1200

(c)

42 1534

WLR-3100

(d)

Figure 5: The percentage of aggregated subframes received
per 250,000 transmitted frames from attacker to victim in
our test setup shows that for the CRS109 and E1200, using
small frames results in a slightly higher aggregation rate,
whereas for the TL-WN722N and WLR-3100, using large
frames results in a slightly higher aggregation rate.

the victim, and checked how many of them were forwarded
by the AP as A-MPDU subframes.

The MikroTik AP and hostapd machine respectively use
the AR9344 and AR9271 Atheros Wi-Fi chipsets, which have
a number of hardware queues that receive frames from the
firmware (AR9271) or driver (AR9344). Both chips aggre-
gate frames depending on the total number of frames cur-
rently in these queues [4, 24]. Note that neither a timer is
used nor are frames aggregated based on their size. Figure 5a
shows the precentage of A-MPDU subframes transmitted by
the MikroTik AP, which appears to favor small frames for
aggregation.

Figure 5b shows the percentage of A-MPDU subframes re-
ceived by the hostapd AP using the same setup. Despite the
fact that this device implements the same aggregation strat-
egy, it is much slower at emptying the transmission queues,
which leads to increased aggregation – especially for larger
frames. Therefore, the performance of the device itself im-
pacts aggregation as well, and is an additional unknown to
the attacker.

Finally, the Linksys AP (Figure 5c) and Sitecom AP
(Figure 5d) respectively use the Broadcom and MediaTek
chipsets, which appear to use frame aggregation more fre-
quently. Since we observed that the aggregation rate de-
creases if the delay between successive transmissions in-
creases, we can conclude that transmitting frames rapidly
is a good strategy.

3.5 A-MSDU injection
In Section 2.2.2, A-MSDU aggregation was briefly dis-

cussed. A similar vulnerability in these kind of aggregated
frames would allow an attacker to craft their own MSDUs.
However, we determined that this aggregation method is not
vulnerable to our injection attack.

To see why this is the case, let us consider the A-MSDU
header from Figure 2a, which is different from the A-MPDU
delimiter. For the attack to succeed, a random bit error must
cause the Length field to become smaller, so that the at-
tacker’s payload is interpreted as the next A-MSDU header.
This random Length value cannot be predicted by the at-
tacker, which is a first issue that complicates exploitation.

Another consequence of not knowing the corrupted val-
ues from the previous fields is that the FCS of the MPDU
cannot be calculated beforehand. An incorrect FCS would

then automatically lead to the entire frame being dropped,
resulting in a failed injection attack.

It should be noted that although the injection of A-
MSDUs is unlikely to work in practice because of the above
reasons, there is a possible use case for them in context of
A-MPDU injection: the 802.11n standard specifies that an
A-MSDU can be embedded inside an A-MPDU subframe
[14] in order to increase the maximum size of the subframe.
An attacker can therefore use this in order to increase the
injection payload of a single subframe.

3.6 Attack scenarios
We have proposed a methodology for frame injection that

can be used to inject arbitrary frames into a remote network.
In this section, we will discuss two practical attacks that can
be performed using this methodology. Our implementation
is written in Python, uses the Scapy library for crafting the
payload, and is open source [21].

3.6.1 Host scan
In our first attack, we apply our frame injection method-

ology to perform a remote scan for all active hosts on an
internal network. We assume that the target network to
scan is behind a remote AP, and that at least one service is
accessible through this AP. This ensures that our payload
will be sent wirelessly over the air. In our case, we config-
ured a web server on the victim of our experimental setup.
In practice this can be any service or open port, as long as
the last hop between the attacker and the victim is a wire-
less link. For this experiment, the Sitecom AP was used,
having its firewall configured to explicitly only allow HTTP
packets and drop ingress ICMP requests.

In the above scenario, an attacker can craft HTTP POST
requests containing A-MPDU subframes with ICMP echo
requests as the payload, and transmit them to our victim
machine. Note that since we are injecting at the MAC layer,
the MAC address of the AP must be known2 and used as
the TA, or else the packet will be dropped by the victim.
For the RA, the broadcast MAC address can be used.

After several repeated transmissions, we observed that
frame corruption indeed caused the inner ICMP packet to
be successfully received and replied to by the victim instead
of the original payload, successfully bypassing the config-
ured firewall rule. By checking which clients reply, we can
then iterate over each destination IP address to perform a
full host scan on the target network. A packet trace of this
experiment is available at [23]. Here, we were able to scan
52% of a /24 network in 122 seconds using 665 MB of data.

When testing this attack on our Linksys and Mikrotik
APs, we noticed that the ICMP replies by the victim were
not forwarded to the attacker. The reason is that these APs
use stateful firewalls, and hence block outgoing ICMP replies
if there is no associated request. Nevertheless, even if state-
ful firewalls are used, the ICMP requests were successfully
injected and interpreted by the victim for all tested APs and
receivers.

Naturally, the injection of data frames is not limited to
ICMP requests. An attacker can choose any frame in order
to perform other attacks such as a Denial of Service (DoS)
attack, ARP poisoning, or the injection of 802.11 manage-

2This could be done by looking up the Service Set Identifier
(SSID) or location of the AP in a wardriving database such
as WiGLE.net [30]

ment frames such as Beacons and Deauthentication frames.
For each of the data frame related attacks to succeed, the
attacker would need to know the Basic Service Set Identi-
fication (BSSID) to which the targeted host is associated.
This is essentially the MAC address of the AP’s wireless in-
terface. If the BSSID is incorrect, the targeted host will drop
the frame, which makes random attacks against an IP range
infeasible. However, a determined attacker could look up the
BSSID in a wardriving database such as WiGLE.net[30], and
perform a targeted attack against a specific BSSID.

3.6.2 Beacon injection
Section 3.6.1 gave an example of how our frame injection

attack can be applied if the attacker has access to a service
on the internal wireless network. However, in practice this
scenario is not very prevalent. It would therefore be more
interesting for an attacker to set up their own service, and
lure the victim into accessing it. As an example, the attacker
can set up a web server and serve a binary file containing
malicious frames, which would be automatically downloaded
by anyone who visits the web page. As with our previous
attack, these frames will occasionally be interpreted by the
victim due to interference on the wireless link.

The above scenario was tested using the same experimen-
tal setup from Figure 3. We set up a web server on the at-
tacker’s machine and created a jpg image containing Beacon
frames with a specific SSID as the A-MPDU subframe pay-
load, though any other type of payload could have been used.
Despite the fact that sending management frames inside an
A-MPDU is not standard compliant [14], the frames were
accepted by the victim machine upon injection. A packet
trace of this experiment is available at [22]. The trace shows
a first injected beacon frame after 47 seconds and 16 MB of
transmitted data.

Contrary to our previous attack from Section 3.6.1,
the attacker would need no prior knowledge of the AP’s
MAC address, since for Beacon frames the DA is always
ff:ff:ff:ff:ff:ff and the TA can be spoofed. The im-
pact of such attack can range from rather harmless, such
as displaying a message in a remote victim’s SSID list, to
injecting a beacon frame with a malformed SSID. Such mal-
formed frames could trigger a buffer overflow vulnerability
on the receiving host3.

3.7 Success rate
To determine whether our attack would be feasible in

practice, we would like to calculate the probability of suc-
cessful injection. An injection is considered successful when
at least one subframe crafted by the attacker is received
without errors by our victim. Here we present both an ana-
lytical approximation and experimental measurement of this
probability.

3.7.1 Analytical approximation
Observe that the event of a successful injection occurs

when any previous A-MPDU subframe delimiter of the ag-
gregate becomes corrupted due to interference, as this will
trigger the A-MPDU parsing algorithm. We assume that
both the probability of aggregation pa and probability of a

3An example is the heap-based buffer-overflow vulnerability
found in NetGear WG311v1 wireless devices, which allows
attackers to execute arbitrary code in kernel mode on the
host [16].

single frame corruption pc are known constants. After all,
a significant amount of related work for analytically deter-
mining the probability pc already exists [3, 31, 17, 5], which
is outside the scope of this paper.

Both of the input variables pc and pa can be modeled using
Bernouilli trials. The probability that a received frame is
corrupted by interference can be written as pc = 1−qc, where
qc is the probability that a single frame is received correctly.
If the frame is part of an aggregate, and becomes corrupted
after transmission, we can distinguish between three cases:

1. The PLCP header of the A-MPDU was corrupted. In
this case the entire A-MPDU would be dropped and
the receiver would interpret neither legitimate nor in-
jected frames.

2. Any of the A-MPDU delimiter bytes were corrupted.
This means that the Length field of the current sub-
frame will be ignored, and that the A-MPDU parsing
algorithm from Listing 1 will be performed to search
for the next valid A-MPDU delimiter.

3. Part of the subframe MPDU was corrupted. Here, the
subframe in question will be passed to the MAC layer,
where it will be dropped because of an incorrect FCS.

Let us now assume for the sake of clarity that each byte
in the A-MPDU of length La has the same probability of
becoming corrupted. Given a corrupted frame and that the
PLCP header is 6 bytes in length, the probability that the
corruption occurred in the PLCP header is 6

La
. By applying

Bayes’ rule we get pc · 6
La

as the unconditional probability.
We would like to express this probability per subframe in-
stead of per aggregate, so the probability should be divided
by the number of subframes. This results in the following

final probability
pc· 6

La
La/Ls

.

In our second case, for any corrupt subframe of length
Ls where 4 ≤ Ls ≤ La, the probability that the A-MPDU
subframe delimiter is corrupted is 4

Ls
. Analogous to our

previous case, the unconditional probability becomes pc · 4
Ls

.
For an entire aggregate, the probability that at least one
delimiter becomes corrupted is pc · La

Ls
· 4
Ls

.
Finally, we do not need to consider the third case, since

it does not matter whether part of the MPDU is corrupted
or not: corruption of the A-MPDU delimiter is sufficient to
trigger the subframe delimiter signature scanning algorithm
and consequently, inject a subframe. For the victim to in-
terpret the payload provided by an attacker, the injected
subframe itself must not be corrupted, which has the prob-
ability 1− pc.

Putting everything together, the probability of injecting
a frame pi and the number of successful injections per A-
MPDU ni become:

pi ≈ pa · (pc ·
4

Ls
) · (1−

pc · 6
La

La/Ls
) · (1− pc) (1)

ni ≈ pa · (pc ·
4La

L2
s

) · (1−
pc · 6

La

La/Ls
) · (1− pc) (2)

A network administrator can use this model to approxi-
mate the success rate of our attack on their network. The

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

10000 20000 30000 40000 50000 60000 70000 80000

S
u
cc

e
ss

fu
l
in

je
ct

io
n
s

Acknowledged A-MPDUs

Predicted number of successful injections

Figure 6: Repeated measurements of the malicious download
attack with different file sizes in our experimental setup show
that the number of successful injections versus the number of
A-MPDUs acknowledged by the receiver is overestimated by
our analytical model when using the parameters pc = 0.08,
pa = 0.03, La = 65535, and Ls = 1538, as indicated by the
green line.

accuracy of the model depends on the choice of the param-
eters pa and pc. As an example, these input variables will
be approximated for our experimental setup in the following
section.

3.7.2 Experimental measurement
To experimentally determine the success rate for our

setup, we repeatedly performed our Beacon frame injec-
tion attack from Section 3.6.2 and compared the number
of successful injections with the number of acknowledged A-
MPDUs. Figure 6 shows the results of these measurements
for 285 malicious jpg file downloads of sizes between 30 MB
and 500 MB via the MikroTik AP.

In our analytical approach from Section 3.7.1, we defined
the frame aggregation and corruption probability as two in-
put variables for our model. If we would like to predict the
number of successful injections in a realistic environment,
these probabilities need to be measured, which is not trivial
as they can vary significantly between different trials of the
same experiment.

As an example, Figure 7 shows the variations of the aggre-
gation rate over different trials, for 300 MB of transmitted
data frames via the MikroTik AP. It is this variation in the
aggregation rate which “smears out” the x-axis of our mea-
surement of the number of successful injections from Fig-
ure 6. Thus, for a fixed number of transmitted data frames,
the number of received A-MPDUs can vary greatly between
different measurements.

The second input variable, the frame corruption probabil-
ity, naturally varies between different trials due to external
factors such as contending stations and other radio sources.
Instances of poor channel conditions can lead to spikes in the
number of successful injections, such as the outliers that can
be seen in the boxplot of Figure 6 for 30,000 acknowledged
A-MPDUs on the x-axis.

Despite the aforementioned random fluctuations, we can
see that the median number of successful injections increases
with the number of received A-MPDUs as expected. If we
would like to predict the number of successful injections per
A-MPDU, our analytical approximation can be used to fit
the experimental data.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

A
ck

n
o
w

le
d

g
e
d

 A
-M

P
D

U
s

Acknowledged non-aggregated frames

Figure 7: Experimental measurement of the number of ac-
knowledged A-MPDUs versus the number of acknowledged
regular frames during a malicious download attack. Each
point in the data set represents a download of a 300 MB
malicious jpg file.

Suppose we want to estimate the number of A-MPDUs to
transmit in order to have at least one successful injection in
our experimental setup, given La = 65535 and Ls = 1538.
The first step is then to determine the input variables for
our model, pc and pa.

For determining pc, it is easier to calculate 1− qc instead,
where qc is the probability of receiving a packet without er-
rors. This probability can be determined by measuring the
PDR at the receiver for a given time t. Previous work by
Vlavianos et al. has shown that this is a reliable metric
to measure the link quality of a wireless network [28]. De
Couto et al. define this metric as:

PDR(t) =
count(t− w,w)

w/τ
(3)

where count(t−w,w) is the number of correctly received
frames, excluding retransmissions, at the receiver and w/τ
the total number of transmitted packets [7].

The PDR depends on several variables such as the amount
of interference, transmit power of the sender, distance to
the receiver, the data rate, and the frame size. Since the
attacker only has control over the frame size, we would like
to measure the impact of this variable on the PDR.

Figure 8a shows the mean PDR for 50 repeated measure-
ments per given frame size, with 50,000 packets sent to the
receiver in each iteration and a distance of 1 meter between
the AP (MikroTik) and the receiver.

From previous work, we know that decreasing the packet
size increases the PDR [28]. In practice, the results can vary
between measurements. For example, observe in Figure 8a
that the measurements with a frame size of 1534 bytes have
about the same mean PDR as the measurements with a
frame size of 42. Such variations can be caused by the rate
controller of the AP, which lowers the data rate in case of
a suboptimal PDR. Figure 8b shows the impact of the rate
controller. Here, the mean PDR was calculated based on
50 repeated measurements with 10,000 frames of size 1534,
transmitted at a fixed data rate. Indeed, the PDR is higher
when the data rate is low.

Since the mean PDR was equal to 0.92 with the rate con-
troller enabled during our attack, we will use the value 0.08
as pc in our model. Next, we need to determine the aggre-

 0.9

 0.92

 0.94

 0.96

 0.98

 1

42 284
534

784
1034

1284
1534

P
D

R

Frame size (bytes)

(a)

 0.92

 0.94

 0.96

 0.98

 1

7.2
14.4

21.7
28.9

43.3
57.8

65.0
72.2

P
D

R

Data rate (Mbps)

(b)

Figure 8: The mean PDR for our test setup generally de-
creases as the frame size increases (a), but displays some
variations. Such variations can be introduced by the rate
controller, which can improve the PDR by lowering the data
rate (b).

gation probability pa. We measured that this probability is
0.03 for Ls = 1534.

We now have all required inputs for our model. For an
A-MPDU length of 65535 bytes, a subframe length of 1538
bytes including padding and A-MPDU delimiter, aggrega-
tion probability of 0.03 and PDR of 0.92, ni ≈ 0.00025.
This means that on average, one injection will be successful
per 4065 transmitted A-MPDUs. The prediction is plotted
as a green line in Figure 6, and appears to slightly overes-
timate the actual measured number of successful injections;
given our assumptions and selected parameters.

4. DEFENSIVE MEASURES
We have demonstrated in Section 3.6 how an attacker can

use our injection methodology to perform several attacks.
We will now suggest a number of defensive measures that
network administrators and vendors can put in place in or-
der to mitigate these kinds of injection attacks. Since not
all of these measures are equally feasible, we will provide a
comparison as well in Section 4.7.

4.1 Encryption
A simple solution for defending against our injection at-

tack is to make use of MAC layer encryption such as WPA2-
AES. This method does not require modifications to the
firmware, driver or 802.11n standard, and is easy to imple-
ment.

When both encryption and A-MPDU aggregation are
used, each MPDU of the aggregate frame will be encrypted
seperately. Therefore, if A-MPDU delimiter corruption oc-
curs, the delimiter signature scanning algorithm will only
see the encrypted payload, which is evidently not equal to
the payload created by the attacker. Note that even if the
attacker knows the master encryption key, it will not be pos-
sible to inject frames from a remote location, since a unique
key pair is derived from the master key for each individual
session. This session key is not known to the attacker.

4.2 Disable A-MPDU frame aggregation
Another effective defensive measure that can be imple-

mented by network administrators is disabling A-MPDU
frame aggregation. However, there are several disadvantages
that should be considered. Firstly, connected clients can no

longer benefit from the increased data rate provided by A-
MPDU frame aggregation. A-MSDU aggregation could be
used as a less efficient [26, 9] alternative.

A second disadvantage is that, depending on the de-
vice, this method may require modifications to the firmware
or driver of the NIC. For example, on Linux systems the
mac80211 protocol driver needs to be modified to clear the
IEEE80211_HW_AMPDU_AGGREGATION flag. Performing such
changes on all APs of a network is practically infeasible,
especially if the drivers or firmware are proprietary.

4.3 Drop corrupted A-MPDUs
Some chipsets, such as the AR9271, set a certain regis-

ter flag when a subframe delimiter error has occurred. The
firmware or device driver can be modified to drop the entire
A-MPDU in case this flag is set, similar to how an A-MSDU
would be dropped in case of an error. However, this would
cause an impact on performance that depends on the prob-
ability that an error will occur in any A-MPDU delimiter.

4.4 LangSec stacks
As mentioned by [10], LangSec stacks can provide a ro-

bust defence against PIP attacks. These network stacks es-
sentially use formal language theoretic methods for input
validation. Previous research by Sassaman et al. [25] shows
that by treating inputs to network protocol stacks as simple
to parse input languages, the security can be improved or
even guaranteed. An example that is frequently referred to
in this research is Structured Query Language (SQL) injec-
tion, where treating the user input as executable code can
completely mitigate injection attacks.

In context of LangSec, we use the notation M for a mes-
sage, D for a decoding function, and E for an encoding func-
tion. The 802.11n aggregation mechanism can now be de-
scribed as D(E(M)), where M is a list of MPDUs, E is the
aggregation process or the addition of the A-MPDU delim-
iters, and D is the deaggregation process or the removal of
the A-MPDU delimiters. Naturally, the intended behaviour
by the designers of the frame aggregation mechanism is that
D(E(M)) = M , or in other words that list of MPDUs is
not altered after the aggregation process. However, the in-
troduction of random noise on the wireless channel then
gives us the probability that E(M) is altered and hence,
that D(E(M)) 6= M which introduces a frame injection vul-
nerability as we saw earlier.

From a language theoretic point of view, an effective de-
fensive measure against our injection method would be to
design a recognizer that can parse a frame unambiguously
with minimal computational overhead. For MAC frames
sent over a wireless link, this is harder to accomplish com-
pared to SQL query input, because if regarded a language, a
frame has a much more complex grammar than a SQL query.
Furthermore, SQL query input is usually already protected
from transmission errors by underlying layers such as TCP.
Conversely, MAC frames are sent over unreliable channels.
In case of corruption, a frame header or delimiter can be-
come indistinguishable from the frame data, since the same
modulation and encoding is used for the entire aggregate,
and since boundaries are defined by Length fields which may
become corrupted as well. A valid MPDU M2 can then exist
so that M2 = E(M1), and consequently, D(M2) becomes a
valid operation.

One solution to this problem comes in the form of an
encoding technique that facilitates unambiguous encapsula-
tion, which was proposed by Ossmann et al. This technique,
named Isolated Complementary Binary Linear Block Codes
(ICBLBC), uses codes of a certain Hamming distance, for
example (5,2,2) codes, with an additional unique “isolation”
property. Such codes can be divided into two groups, where
each codeword in one group is isolated from any codeword
of the other group by a Hamming distance of 3. The first
group of codewords can then be used for the header, and
the second for the payload. In this example, the Hamming
distance between the two groups ensures that up to two
bit errors can exist without breaking the isolation between
header and payload [10, 19, 18]. Though we believe this
method is an effective defence, it is difficult to implement,
as the hardware of the wireless NICs needs to be modified to
implement the new coding scheme. Such modifications also
need to be uniformly implemented by all 802.11 devices, and
therefore a standard amendment is required as well. Finally,
the overhead of the extra isolation bit in the code would lead
to a slight impact on the performance.

4.5 Modulation switch
A different technique that can be used to achieve isola-

tion between header and payload is switching between mod-
ulation schemes. Similar to how the modulation scheme
switches from DBPSK in the PLCP preamble to Quadrature
Amplitude Modulation (QAM) in the MPDU, the A-MPDU
delimiter could be transmitted using a different modulation
scheme than the subframe itself. Given that no symbols
from the header modulation scheme can be created by us-
ing the payload modulation scheme, it will be impossible to
inject payload data that can be interpreted as a header.

This approach is the least practical, since it would require
changes in the standard and costly hardware modifications.
Additionally, backwards compatibility with existing devices
would be lost.

4.6 Deep packet inspection
Since a large number of packets typically need to be trans-

mitted by the attacker before injection can be successful, a
spike in network activity might be flagged by an Intrusion
Detection System (IDS) as unusual, and the attacker could
be blocked consequently. However, in our experience, trans-
mitting a large number of frames is not always necessary
for the attack to succeed. Moreover, in some networks, high
loads of traffic might be commonplace.

A more effective approach would be to peform deep packet
inspection. The IDS can look for payloads that resemble
802.11 headers and drop those packets. Disadvantages of
this method are that expensive hardware is often required,
and that the processing required to validate packets could
introduce latency.

4.7 Comparison
Table 3 summarizes and compares all of the proposed de-

fensive measures in terms of advantages. In this table, the
filled portion of a circle denotes the presence of the advan-
tage. A transparent circle means that the advantage is ab-
sent.

From the table we can derive that using encryption is the
simplest and most effective measure. The only disadvantage
is that users will have to provide some type of credential,

S
t
a
n
d
a
r
d

c
o
m

p
li
a
n
t

N
o

h
w
.
m

o
d
.
r
e
q
u
ir
e
d

N
o

d
r
iv

e
r
o
r
fw

.
m

o
d
.
r
e
q
u
ir
e
d

N
e
g
li
b
le

t
h
r
o
u
g
h
p
u
t
lo

s
s

L
o
w

c
o
s
t

S
u
p
p
o
r
t
s
o
p
e
n

n
e
tw

o
r
k
s

B
a
c
k
w
a
r
d
s
c
o
m

p
a
t
ib

le

Encryption l l l l l m l
Disable A-MPDU aggregation l l m m l l l
Drop corrupted A-MPDUs l l m m l l l
Langsec (ICBLBCs) m m l l w l m
Modulation switch m m l l m l m
Deep packet inspection l l l l m l l

Table 3: Comparison between the proposed defensive mea-
sures.

for example a username / password combination or secret
key, before the network can be joined. It should be men-
tioned however, that this disadvantage can be removed by
deploying a technology such as Wi-Fi Passpoint [29].

5. CONCLUSIONS AND FUTURE WORK
We have demonstrated a novel frame injection attack that

can be remotely performed against networks which support
the A-MPDU frame aggregation mechanism introduced in
the 802.11n standard. Additionally, we have shown two ex-
ample attack scenarios that use our injection method. We
then demonstrated that the success rate of this attack de-
pends on the frame corruption probability or link quality of
the target network, and on the probability that a frame is ag-
gregated between the last hop and the victim host. We have
experimentally determined that for maximizing the proba-
bility that a frame becomes corrupted, large frames should
be transmitted at a high data rate, whereas for maximizing
the aggregation probability, the ideal frame size depends on
the device model. Finally, several defensive measures that
can be applied to mitigate the attack were described and
compared.

This paper mainly focused on the general principles of in-
jection attacks on aggregation mechanisms. In future work,
the behavior of new devices besides the ones discussed can be
analysed and checked for similar or new vulnerabilities. For
example, notable differences between aggregation schemes
and sensitivity to our injection attack could be used for fin-
gerprinting devices from different vendors. Since the injec-
tion can be performed remotely, such tests can be done on a
very large scale, for example by probing networks connected
to the internet. Another useful application can be found in
the domain of WIDS evasion: because a frame can be inter-
preted differently by two identical receivers upon injection,
this technique can be used to bypass existing WIDS systems
or even trigger a false alarm.

6. ACKNOWLEDGEMENTS
We would like to thank Arno Barzan, Bram Bonné, Olek-

sij Rempel, Michael Ossmann, Sujith Manoharan, and the
anonymous reviewers for their insightful comments, sugges-
tions, and discussions regarding this work.

7. REFERENCES
[1] ABI Research. 161 Million Consumer Wi-Fi Access

Points Shipped in 2013; 802.11ac Sales Rapidly
Accelerating, 2015 (accessed).
https://www.abiresearch.com/press/

1391-million-consumer-wi-fi-access-\

points-shipped-.

[2] A. Barisani and D. Bianco. Fully arbitrary 802.3
packet injection: maximizing the Ethernet attack
surface. BlackHat USA, August, 2013. http://dev.
inversepath.com/download/802.3/whitepaper.txt.

[3] G. Bianchi. Performance analysis of the IEEE 802.11
distributed coordination function. Selected Areas in
Communications, IEEE Journal on, 18(3):535–547,
2000.

[4] A. Chadd. Atheros ath9k transmit path
documentation, 2015 (accessed).
https://github.com/erikarn/ath9k-docs/blob/

master/ath9k-xmit.txt.

[5] P. Chatzimisios, A. C. Boucouvalas, and V. Vitsas.
Performance analysis of IEEE 802.11 DCF in presence
of transmission errors. In Communications, 2004
IEEE International Conference on, volume 7, pages
3854–3858. IEEE, 2004.

[6] A. Dabrowski, K. Krombholz, J. Ullrich, and E. R.
Weippl. QR Inception: Barcode-in-Barcode Attacks.
In Proceedings of the 4th ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices, pages
3–10. ACM, 2014.

[7] D. S. De Couto, D. Aguayo, J. Bicket, and R. Morris.
A high-throughput path metric for multi-hop wireless
routing. Wireless Networks, 11(4):419–434, 2005.

[8] M. S. Gast. 802.11n: A Survival Guide. O’Reilly, 2012.

[9] B. Ginzburg and A. Kesselman. Performance analysis
of A-MPDU and A-MSDU aggregation in IEEE 802.11
n. In Sarnoff symposium, pages 1–5. IEEE, 2007.

[10] T. Goodspeed. Phantom Boundaries and Cross-layer
Illusions in 802.15. 4 Digital Radio. 2014.

[11] T. Goodspeed and S. Bratus. 802.11 Packets in
Packets, A Standard Compliant Exploit of Layer 1. In
28th Chaos Communications Congress, pages 1–60,
2011.

[12] T. Goodspeed, S. Bratus, R. Melgares, R. Shapiro,
and R. Speers. Packets in Packets: Orson Welles’
In-Band Signaling Attacks for Modern Radios. In
WOOT, pages 54–61, 2011.

[13] G. R. Hiertz, D. Denteneer, L. Stibor, Y. Zang, X. P.
Costa, and B. Walke. The IEEE 802.11 universe.
Communications Magazine, IEEE, 48(1):62–70, 2010.

[14] IEEE Computer Society. Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
Specifications. IEEE 802.11 Standard, IEEE,
September 2012.

[15] I. R. Jenkins, R. Shapiro, S. Bratus, T. Goodspeed,
R. Speers, and D. Dowd. Speaking the Local Dialect:
Exploiting differences between IEEE 802.15. 4
Receivers with Commodity Radios for fingerprinting,
targeted attacks, and WIDS evasion. In Proc. of the

ACM Conf. on Security and Privacy in Wireless and
Mobile Networks (WiSec 2014), pages 63–68, 2014.

[16] Laurent Butti. NetGear WG311v1 Wireless Driver
2.3.1 - 10 SSID Heap Buffer Overflow Vulnerability,
2015 (accessed).
http://www.exploit-db.com/exploits/29167/.

[17] Y. Lin and V. W. Wong. WSN01-1: frame aggregation
and optimal frame size adaptation for IEEE 802.11 n
WLANs. In Global telecommunications conference,
2006., pages 1–6. IEEE, 2006.

[18] M. Ossmann. Unambiguous Encapsulation, 2013.
https://www.mail-archive.com/langsec-discuss@

mail.langsec.org/msg00000.html.

[19] M. Ossmann and D. Spill. Unambiguous
Encapsulation - Separating Data and Signaling. Great
Scott Gadgets Technical Report 2014-03-1, 2014.

[20] E. Perahia. IEEE 802.11 n development: history,
process, and technology. Communications Magazine,
IEEE, 46(7):48–55, 2008.

[21] Pieter Robyns. MAC frame aggregation injection
implementation, April 2015.
https://github.com/rpp0/aggr-inject.

[22] Pieter Robyns. Packet trace of the Beacon injection
experiment, April 2015. http://research.edm.
uhasselt.be/~probyns/traces/beacon_inj.tar.gz.

[23] Pieter Robyns. Packet trace of the remote host scan
experiment, April 2015.
http://research.edm.uhasselt.be/~probyns/

traces/inj_host_scan.tar.gz.tar.gz.

[24] Qualcomm Atheros. Atheros ath9k htc transmit path
documentation, 2015 (accessed). https:
//github.com/qca/open-ath9k-htc-firmware/blob/

master/target_firmware/wlan/if_owl.c#L1343.

[25] L. Sassaman, M. L. Patterson, S. Bratus, and M. E.
Locasto. Security applications of formal language
theory. Systems Journal, IEEE, 7(3):489–500, 2013.

[26] D. Skordoulis, Q. Ni, H.-H. Chen, A. P. Stephens,
C. Liu, and A. Jamalipour. IEEE 802.11 n MAC
frame aggregation mechanisms for next-generation
high-throughput WLANs. Wireless Communications,
IEEE, 15(1):40–47, 2008.

[27] The Linux Foundation. TX A-MPDU aggregation,
2015 (accessed). https://www.kernel.org/doc/
htmldocs/80211/aggregation.html.

[28] A. Vlavianos, L. K. Law, I. Broustis, S. V.
Krishnamurthy, and M. Faloutsos. Assessing link
quality in IEEE 802.11 wireless networks: Which is
the right metric? In Personal, Indoor and Mobile
Radio Communications, pages 1–6, 2008.

[29] Wi-Fi Alliance. Wi-Fi Certified Passpoint, 2015
(accessed). http://www.wi-fi.org/discover-wi-fi/
wi-fi-certified-passpoint.

[30] Wireless Geographic Logging Database. Wi-Fi network
statistics, 2015 (accessed). https://wigle.net/stats.

[31] J. Yeo and A. Agrawala. Packet error model for the
IEEE 802.11 MAC protocol. In Personal, Indoor and
Mobile Radio Communications, 2003., volume 2, pages
1722–1726. IEEE, 2003.

https://www.abiresearch.com/press/1391-million-consumer-wi-fi-access-\points-shipped-
https://www.abiresearch.com/press/1391-million-consumer-wi-fi-access-\points-shipped-
https://www.abiresearch.com/press/1391-million-consumer-wi-fi-access-\points-shipped-
http://dev.inversepath.com/download/802.3/whitepaper.txt
http://dev.inversepath.com/download/802.3/whitepaper.txt
https://github.com/erikarn/ath9k-docs/blob/master/ath9k-xmit.txt
https://github.com/erikarn/ath9k-docs/blob/master/ath9k-xmit.txt
http://www.exploit-db.com/exploits/29167/
https://www.mail-archive.com/langsec-discuss@mail.langsec.org/msg00000.html
https://www.mail-archive.com/langsec-discuss@mail.langsec.org/msg00000.html
https://github.com/rpp0/aggr-inject
http://research.edm.uhasselt.be/~probyns/traces/beacon_inj.tar.gz
http://research.edm.uhasselt.be/~probyns/traces/beacon_inj.tar.gz
http://research.edm.uhasselt.be/~probyns/traces/inj_host_scan.tar.gz.tar.gz
http://research.edm.uhasselt.be/~probyns/traces/inj_host_scan.tar.gz.tar.gz
https://github.com/qca/open-ath9k-htc-firmware/blob/master/target_firmware/wlan/if_owl.c#L1343
https://github.com/qca/open-ath9k-htc-firmware/blob/master/target_firmware/wlan/if_owl.c#L1343
https://github.com/qca/open-ath9k-htc-firmware/blob/master/target_firmware/wlan/if_owl.c#L1343
https://www.kernel.org/doc/htmldocs/80211/aggregation.html
https://www.kernel.org/doc/htmldocs/80211/aggregation.html
http://www.wi-fi.org/discover-wi-fi/wi-fi-certified-passpoint
http://www.wi-fi.org/discover-wi-fi/wi-fi-certified-passpoint
https://wigle.net/stats

	1 Introduction
	1.1 Related work and contributions

	2 Background
	2.1 PHY features
	2.1.1 PLCP frame format
	2.1.2 MCS

	2.2 MAC features
	2.2.1 MAC frame format
	2.2.2 Aggregate MSDU
	2.2.3 Aggregate MPDU

	3 Frame Injection Attack
	3.1 Experimental Setup
	3.2 Injection Method
	3.3 Applicability
	3.4 Optimal aggregation triggering
	3.5 A-MSDU injection
	3.6 Attack scenarios
	3.6.1 Host scan
	3.6.2 Beacon injection

	3.7 Success rate
	3.7.1 Analytical approximation
	3.7.2 Experimental measurement

	4 Defensive measures
	4.1 Encryption
	4.2 Disable A-MPDU frame aggregation
	4.3 Drop corrupted A-MPDUs
	4.4 LangSec stacks
	4.5 Modulation switch
	4.6 Deep packet inspection
	4.7 Comparison

	5 Conclusions and future work
	6 Acknowledgements
	7 References

