Elastic Textures for Additive Fabrication
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Figure 1: Six basic elastic textures are used to obtain a large range of homogenized isotropic material properties. A 3 X 3 x 1 tiling of each
pattern is shown, along with rendered (left) and fabricated (right) cell geometry below. The naming convention is explained in Section 4.

Abstract

We introduce elastic textures: a set of parametric, tileable, print-
able, cubic patterns achieving a broad range of elastic material
properties: the softest pattern is over a thousand times softer than
the stiffest, and the Poisson’s ratios range from below zero to nearly
0.5. Using a combinatorial search over topologies followed by
shape optimization, we explore a wide space of truss-like, sym-
metric 3D patterns to obtain a small family. This pattern family can
be printed without internal support structure on a single-material
3D printer and can be used to fabricate objects with prescribed
mechanical behavior. The family can be extended easily to create
anisotropic patterns with target orthotropic properties. We demon-
strate that our elastic textures are able to achieve a user-supplied
varying material property distribution. We also present a material
optimization algorithm to choose material properties at each point
within an object to best fit a target deformation under a prescribed
scenario. We show that, by fabricating these spatially varying ma-
terials with elastic textures, the desired behavior is achieved.
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1 Introduction

Rapid advances in the accessibility of additive fabrication has a sig-
nificant impact on how manufacturable geometric models are con-
structed. A key distinctive feature of common additive fabrication
technologies is that the cost and time of production is practically
uncorrelated with structural complexity: in fact, a complex struc-
ture using less material may be both cheaper and faster to produce.

Complex structures, aside from potentially reducing costs, open up
many new possibilities, in particular for manufacturing deformable
objects. By varying a small-scale structure, one can adjust a variety
of material properties, from elasticity to permeability. Importantly,
these properties can be varied nearly continuously over the object,
something that is not commonly done in traditional processes. As it
was observed in prior work, this opens up many new possibilities
for object behavior.

Small-scale structures present a set of new design challenges: in
all but the simplest cases, these are hard or impossible to design by
hand to meet specific goals. At the same time, computational opti-
mization of fine-scale variable structure over a whole object, even
of moderate size, can easily result in numerically difficult topology
and shape optimization problems with millions of variables.

In this paper, we describe elastic volumetric textures, a library of
tileable parameterized 3D small-scale structures that can be used
to control the elastic material properties of an object. Applying
such textures to a hex mesh with target material properties specified
per element is similar to using dithering to achieve a continuous
variation of brightness or color.

In a sense, almost al/l material properties owe themselves to small-
scale structures at the molecular or crystal level, and a large body of
work in nanoscience aims to control material properties precisely
by structure design. These works must accommodate constraints
imposed by the specific properties of the elements and molecules
used, the need for self-assembly, and other considerations.

Our focus is on larger-scale structures, which can be manufactured
using existing 3D printing technology. With feature sizes at the
scale of 10um-100um, these are well described by conventional
elasticity theory. While this type of structure was also extensively



studied, typically this was in the context of a specific problem, such
as optimizing strength for a given material volume fraction. Our
goal is to maximize the range of effective material properties that
can be obtained using a single material by varying the structure.

We consider variable-thickness truss-like structures—i.e. struc-
tures composed of connected bars—as these cover a considerable
range of properties on the one hand, and on the other hand, allow
us to work with a relatively small number of parameters. We present
a method for building a dictionary of structures that cover a large
space of material properties. These structures are tileable, which
makes it possible to vary material properties across an object, and
printable.

We demonstrate that elastic volumetric textures allow one to con-
trol the deformation behavior of objects, either by painting material
properties directly or by a two-stage shape optimization procedure,
involving solving for variable continuous properties then approxi-
mating them using our texture dictionary. We validate our results by
measuring samples for different choices of parameters and topolo-
gies and by demonstrating the deformation behavior of objects fab-
ricated with spatially varying structures.

2 Related Work

Microstructure design and optimization. There is a huge liter-
ature on theoretical studies of effective moduli of composites (our
periodic structures are an extreme example of a composite combin-
ing a material with void). Recent monographs include [Cioranescu
and Donato 1999; Milton 2002; Torquato 2002]. Much of the liter-
ature focuses on identifying microstructures with extremal effective
behavior, i.e., with effective elasticity properties at the boundary of
the achievable zone for a given class of composites [Allaire 2002;
Cherkaev 2000; Milton 2002]. Many classes of extremal structures
were described (see, e.g., [Cadman et al. 2013]), however most of
these classes—e.g. sequentially laminated microstructures [Avel-
laneda 1987] and microstructures based on inclusions [Grabovsky
and Kohn 1995; Liu et al. 2007]—are either difficult or impossible
to manufacture at this time. Interchangeable composites and other
structures were found that maximize simultaneously, e.g., the bulk
modulus and permeability [Guest and Prévost 2006] or electrical
conductance [Torquato et al. 2002; Torquato et al. 2003; Torquato
and Donev 2004], but these designs are of limited use for tailoring
elastic behavior.

The closest work to ours is [Sigmund 1995], which constructs truss
microstructures with prescribed elasticity tensors. It starts with a
full “ground structure” containing about 2000 candidate members,
then optimizes the members’ thicknesses but not offsets to obtain
a microstructure period cell whose homogenized properties (com-
puted using a truss model) match the desired properties. Neither
tileability of structures for different parameters nor printability can
be guaranteed. We discuss the differences in greater detail at the
end of Section 4. Further exploration of periodic structures of this
type was done more recently in [Chu et al. 2010], comparing dif-
ferent methods for optimizing these structures.

A number of microstructures were obtained using various types of
topology optimization, which was originally designed for global
structure optimization. In the case of microstructure design, these
methods look for a periodic structure minimizing, e.g., compliance
for a fixed total volume fraction. The result is normally a single-
scale structure, with scale controlled by the resolution of the simu-
lation grid or other types of regularization. Important methods pro-
posed for solving these problems include solid isotropic material
with penalization (SIMP) and rational approximation of material
properties (RAMP) [Bendsge 1989; Bendsge and Sigmund 2003;

Nakasone and Silva 2010]. [Radman et al. 2013] demonstrated de-
sign of isotropic materials maximizing bulk modulus.

Topology optimization offers more flexibility in the choice of struc-
ture, but it requires a relatively expensive optimization for each spe-
cific problem. The ability to undergo topological transitions under
continuous parameter changes is both a strength, as it allows explo-
ration of a broader space of structures, and a weakness, as it consid-
erably complicates design of parametric families satisfying print-
ability and tileability constraints, which motivates our approach.

Microstructure fabrication. Several groups focusing on additive
fabrication have recently obtained encouraging results. In particu-
lar, materials previously thought to be unmanufacturable were pro-
duced and behave as expected. Notably, the work of Hollister and
collaborators [Lin et al. 2004a; Lin et al. 2004b; Hollister 2005;
Kang 2010] in the context of bone scaffold design and fusion cage
design demonstrated the use of optimized microstructures. The pos-
sibility of manufacturing auxetic (negative Poisson’s ratio) materi-
als was demonstrated in [Greaves et al. 2011], and in [Schwerdt-
feger et al. 2011; Biickmann et al. 2012; Andreassen et al. 2014].

The idea of fabricating tileable structures with varying properties
also appears in [Hiller and Lipson 2009] in which the authors dis-
cuss “digital materials,” as composed of a set of discrete voxels
with predefined shapes that can be connected. Similarly, a building-
block based approach was also used in the context of bio-printing
[Mironov et al. 2009], where the authors use spheroids of living
materials with evolving and controllable composition, varying ma-
terial and biological properties in time.

Compliant mechanisms. The material optimization method that
we present solves a similar problem to that of compliant mecha-
nism design. [Bendsge and Sigmund 2003] reviews several exist-
ing approaches to designing mechanisms that maximize mechanical
advantage/output deflection or tune an output displacement to a par-
ticular path. These approaches have little control over the resulting
structure’s macroscopic shape, whereas tuning deformation behav-
ior using our microstructure approach creates a “mechanism” that
still looks like the input shape.

Fabrication and computer graphics. A broad variety of
fabrication-related work has been done in the computer graph-
ics community. Several techniques have been proposed to de-
sign paper craft objects [Mitani and Suzuki 2004], plush objects
[Mori and Igarashi 2007], and objects made of interlocking planar
slices [Cignoni et al. 2014; Schwartzburg and Pauly 2013; Hilde-
brand et al. 2012]. Other techniques use geometric techniques to
change surface appearance by synthesizing surface microgeometry
[Weyrich et al. 2009] or changing the shape to generate custom tar-
get caustics [Schwartzburg et al. 2014].

Another close work to ours, [Bickel et al. 2010], introduces an op-
timization process to find the best combination of stacked layers to
satisfy an input deformation, enabling fabrication of objects with
complex heterogeneous materials using multi-material 3D printers.
Our work can be viewed as complementary, focusing on the design
of structures that can be, e.g., used as a part of deformation behavior
design; our material optimization method provides an alternative to
the method in that paper. In [Skouras et al. 2013], multi-material
printing and discrete material optimization is used in a similar way
on complex characters to achieve desired deformations with actu-
ation. Our elastic textures can be viewed as a tool for solving this
type of problem. Our structures also can be employed in systems
like [Chen et al. 2013] and [Vidimce et al. 2013].

Homogenization. A central tool in our work, homogenization was
used in graphics for reducing complexity of physical models in
[Kharevych et al. 2009], finding the constitutive parameters of a



low resolution discretization that best approximates the behavior of
the original higher complexity material. The periodic homogeniza-
tion method that we use is based on the one described in [Allaire
2002].

3 Overview and Main Results

In this section, we describe our overall approach, visualized in Fig-
ure 2, and a specific set of patterns that we have obtained.
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Figure 2: Overview of elastic texture generation and use.

Problem. The general problem we solve can be formulated as fol-
lows: for each tensor C' from a given range of elasticity tensors,
and a base isotropic material with Young’s modulus E® and Pois-
son’s ratio v°, find a structure made out of the base material in a
unit cubic cell, such that if the cell is infinitely tiled in space, the
resulting homogeneous material has elasticity tensor C.

As discussed in the introduction, we aim to construct a family of
patterns that are printable and tileable to enable creation of variable
material properties.

Printability is heavily dependent on the choice of technology. We
focus on printability criteria related to stereolithography, the most
accurate 3D printing method available at this time, but our approach
can be easily modified to handle other technologies.

As the printing process proceeds layer-by-layer, we assume that the
structure is defined with respect to a fixed coordinate system X, Y
and Z aligned with the printer, with Z being vertical. The (ideal-
ized) printability criteria that we use are:

1. There are no enclosed voids.

2. For any point of the structure, the extent covered by the struc-
ture in the X, Y, and Z directions from the point are above a
printability threshold dmin.

3. Every point of the pattern is supported: for every XY slice,
all connected components of the slice have at least one point
connected to lower points in the structure by a segment con-
tained in the structure. While this condition does not prevent
long horizontal bars supported at single points, which can be
difficult to print, we have found it sufficient in practice for
pattern sizes up to 10mm and a dmin of 0.3mm.

We also make our primary goal to generate periodic structures with
isotropic homogenized properties. Such patterns have the elasticity
tensor C' defined by two parameters, Young’s modulus F and Pois-
son’s ratio v, and its inverse, compliance tensor .S, has the (Voigt
notation) form

1 —v —v 0 0 0

v 1 —v 0 0 0

1] —v —v 1 0 0 0
=%l o0 0o 020+w 0 oM

0 0 O 0 2(1+4v) 0

0 0 O 0 0 2(1+v)

Expressing in terms of the shear modulus, G = E/(2(1 + v)), the
last three diagonal terms of S are simply 1/G.

While for many tasks anisotropic materials are either sufficient or
preferable, periodic structures with isotropic homogenized proper-
ties are easiest to use, as cell orientation is decoupled from material
properties. In addition, once an isotropic starting point is obtained,
it is easy to obtain a controlled anisotropic behavior.

Searching the space of all possible structures in a cell, even at a
finite resolution, is an impossible task. Instead, we choose a space
of structures with a limited but sufficiently large set of parameters,
that can be optimized to achieve specific material properties.

Truss-like structures. We focus on truss-like structures (patterns)
as shown in Figure 1, consisting of bars of different thicknesses
connecting a set of nodes in the cell. Unlike real truss structures,
the connections between bars are not pin joints, and flexural rigidity
at the nodes plays a major role.

This particular space of structures is motivated by several consid-
erations. First, the space is known to contain both very stiff and
very weak patterns, providing a broad range of behaviors. Second,
tileability and printability requirements yield specific geometric
conditions, expressed mostly as constraints on the structure’s geom-
etry. For example, the requirement of no enclosed voids is automat-
ically satisfied if the frame structure has no self-intersections; the
bound on extents can be obtained by bounding the thickness from
below; and the support condition is easily formulated as a constraint
on node positions. These conditions are detailed in Section 4.

Symmetry considerations, as well as restrictions on the number and
placement of nodes, yield a space of patterns parametrized by their
set of edges connecting some subset of the 15 candidate nodes we
define on a tetrahedron (their fopology), thicknesses of these edges,
and offsets of the nodes from their default positions. This space is
still very large, and we explore it using both topology and geome-
try searches, described in Section 4. These rely fundamentally on
the homogenization and shape optimization procedures described
in Sections 5 and 6.

Resulting family. The search procedure’s final result is shown in
Figure 3; the six pattern topologies themselves are illustrated in Fig-
ure 1. The complex boundaries of the (F, v) regions arise from the



multiple types of geometric constraints enforcing printability. Fig-
ure 4 shows some patterns with topology “(E1,E2)(E1,E4)(E2,E4).”

The family of topologies covers a large range of Young’s moduli,
with a largest-to-smallest Young’s modulus ratio of 1800, and a
sizable range of Poisson’s ratios, —0.16 to 0.48.

‘We note that the range of negative Poisson’s ratios is somewhat lim-
ited, while on the high end, we are able to achieve ratios close to the
theoretical maximum. This observation is consistent with [Sigmund
1995]: while it is relatively easy to obtain more extreme negative
Poisson’s ratios for patterns with cubic symmetry but with shear
modulus too low for isotropy, the isotropy requirements restrict the
range. Printability constraints restrict it further.

Quite remarkably, four out of the six topologies can be transformed
into each other by simple operations (single vertex splits, addition
of cross-shaped supports connecting some nodes). The other two
are also related to each other by a simple transform, but are not
related to the first sequence.

We do not claim that the proposed family is in any sense optimal.
It is most likely possible to extend the coverage or to cover the
same domain with fewer topologies. However, the presented set
is already quite useful for controlling material properties, as the
examples of Section 7 show.
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Figure 3: Region of the (E, v) space covered by the selected set of
patterns. Each topology’s coverage is shown in a different color.

Accuracy. We fabricated eight patterns with different homogenized
Young’s moduli using the B9Creator SLA printer and tested their
stiffness using the BOSE ElectroForce 3200 measurement system.
The machine gradually compressed our samples in the Z direction
between two compression plates and measured the displacement
resulting from the applied force at each step. We used 6 X 6 x 2
tilings of Smm cells for this test.

We note that our measured force/displacement slopes are roughly
proportional to the homogenized Young’s moduli (Figure 5a), im-
plying that the measurements are consistent with some (unmea-
sured) base Young’s modulus. The curvature seen could be ex-
plained partly by friction in the compression testing setup (Fig-
ure 5b). Another significant source of error is the inaccuracy of
our B9Creator, which tends to thicken thin geometries.

We used a lower-accuracy setup to measure Poisson’s ratio but still
obtained reasonable agreement with homogenization (Figure 6).
We compressed the microstructures in the Z direction between
two lubricated metal blocks and manually measured the expan-
sion/contraction in the X and Y directions. From these displace-
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Figure 4: Samples of the (E,v) space reached by patterns with
topology “(E1,E2)(E1,E4)(E2,E4).”

ment measurements, we computed the X, Y, and Z strains and
their ratios.
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Figure 5: Compression test results for eight patterns with varying
homogenized Young’s moduli (6 X 6 X 2 tiling of Smm cells).

(a) Slopes extracted from the measured force vs. displacement
curves along with a best-fit line through the origin. (b) Moduli
extracted from simulated compression tests, with and without mod-
eling compression plate friction. Without friction, the simulated test
agrees with homogenization perfectly, but friction introduces error.

We also validated the patterns’ isotropy by printing a block filled
with a tiled pattern that was rotated by 45° around the Z axis and
clipped (Figure 7). The measured effective Young’s moduli in the
rotated orientations were in good agreement with the unrotated ori-
entation: a compression test in the X, Y, and Z directions ex-
tracted effective Young’s moduli of 0.635MPa, 0.6293MPa, and
0.628MPa for the example shown.

Base Material. We used estimated base material properties of
E® = 200MPa and v® = 0.35 for all results. We estimated E°
using a three point bending test on rectangular bar samples, but the
base Young’s modulus can also be estimated from the microstruc-
ture compression test.

Using a different base Young’s material would not qualitatively
change our results, apart from making the patterns uniformly softer
or stiffer. The homogenized Young’s moduli depend linearly on
E®, and the Poisson’s ratios are independent of E°, so scaling the
base modulus simply softens/stiffens every pattern by the same fac-
tor. In particular, for the displacement-based material optimization
of Section 7, fabricating the solution with a different base Young’s
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Figure 6: Poisson’s ratios measured from 3 X 3 X 1 printed tilings
of 10mm cells vs. homogenized properties. The v = —0.67 sample,
outside our family’s range, violates isotropy and printability con-
straints (we added support structure manually for this experiment).

Figure 7: We extracted a 45° rotated rectangular block from a reg-
ularly tiled 10mm cell microstructure to test Young’s modulus in
non-axis aligned directions.

modulus maintains the same target deformation behavior (although
the required force will change).

‘We note that our patterns are not very sensitive to moderate changes
in the base Poisson’s ratio. Changing from v* = 0.35 to v* =
0.35 £ 0.05 results in a median relative change in Young’s mod-
ulus of 0.683% (max: 1.88%) and a median absolute change in
Poisson’s ratio of 0.00229 (max: 0.0129) over all patterns. Since
most additive fabrication materials fall within this range, we expect
similar results for other printers and materials.

4 Search for Efficient Patterns

In this section, we describe the class of patterns that we consider
and the main steps of the search method.

Ground class of patterns. The topology of patterns is defined by
a set of edges connecting nodes in the cube cell. We generate the
geometric variations by adding offsets to the node positions and by
changing edge thicknesses.

Motivated by the isotropy requirement, we constrain our search to
patterns with cube symmetries, which are guaranteed to have the
same Young’s moduli and Poisson’s ratios in every axis-aligned di-
rection. That is, the compliance tensor has the form (1) except the
last three diagonal entries 1/G may not equal 2(1 + v)/E. This
yields an easy-to-check isotropy measure:

A=2(1+v)G/E, @)

which we use to identify isotropic patterns in our search. The sym-
metry will also dramatically reduce the space of pattern topologies
to a tractable size after a few additional constraints are introduced.
Note, however, that cube symmetry is not necessary for isotropy;
other isotropic structures exist with, e.g., tet symmetry.

Consider the group of symmetries of a cube O, which includes
reflections about three symmetry planes orthogonal to the X,Y, Z
axes and the six planes orthogonal to the bisector of each pair of
axes. By partitioning the cube according to these symmetry planes,
we obtain 48 equal tetrahedra as in Figure 8a. Op maps a single
one of these tetrahedra to any other, so it is sufficient to define the
nodes and edges of the pattern graph—as well as their offsets and
thicknesses—on a single tetrahedron.

Vo, ..., Va

(b)

Figure 8: (a) The tetrahedral cube decomposition used to generate
3D patterns; (b) The 15 nodes defined on a tetrahedron together
with their degrees of freedom.

We generate the different topological configurations by chang-
ing the connectivity between 15 nodes on a tetrahedron
(see Figure 8a): vertex nodes {Vo, Vi, Va,Vs}, edge nodes
{Eo, E1, E2, Es, E4, Es5}, faces nodes {Fo, F1, F», F5}, and a
single internal node, Ty. Configurations are named by their graphs’
edge sets (see labels in Figure 1). Each node is constrained to stay
on its respective simplex to preserve the topology, so vertex nodes
are fixed, edge nodes have a single offset, and so on (Figure 8b).

Figure 9: Symmetry orbits are colored with yellow, red and green.
Left: vertex symmetry orbits. Right: edge symmetry orbits.

Figure 9 shows an example topology colored by its node and edge
orbits with respect to symmetry group Op, and Figure 10 demon-
strates the effects of the node offset and edge thickness parameters.

The space of possible connectivities, even after accounting for sym-
metries, is far too large to explore completely (on the order of 1032
configurations). We enforce the following constraints to reduce the
space of patterns:

e Connected: the tiled pattern is a single connected component.

e No coinciding edges: no edge is contained within another.
E.g., if graph edge (Vp, V1) is chosen and Ej is the midpoint
node of the corresponding tet edge, graph edge (Vo, Eo) is
forbidden since it overlaps the first for any offset.
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Figure 10: The results of varying the thickness (top) and offset (bottom) parameters of a particular pattern topology.

e No dangling edges: every node has valence greater than 1.
e Number of edges: at most 3 graph edges per tetrahedron.
e Max node valence: node valences do not exceed 7.

Valences are computed on the graph after periodic tiling of the cube
cell. The first two criteria reduce the space to 16221 topologies, and
the remaining three to 1205 topologies.

Printability. For truss-like patterns, printability is affected by two
main factors: the pattern graph structure and the edge thicknesses.

The first printability criterion can be defined on the nodes by con-
sidering their offset positions. We say that a node n; has supporting
node no, if these are connected by an edge and n; is strictly above
n2. We say that n;, and no are at the same level if they have equal
Z coordinates. A pattern is printable only if every connected set of
nodes at one level has at least one supporting node.

Printability can be tested by a simple algorithm: we first mark as
supported all nodes with a supporting node (considering periodic-
ity). Then we propagate the front of supported nodes to neighbors
at the same level. When this breadth first search terminates, the
pattern is printable if and only if all nodes are marked as supported.
The procedure is illustrated in Figure 12. We also note that this
constraint can be expressed algebraically as a set of inequality con-
straints on the offset variables, which can be enforced by an opti-
mization solver.

D
e

Figure 12: 2D examples of the printability detection algorithm.
Vertices with supporting nodes are marked (green), then a breadth-
first search extends the supported vertex front to horizontal neigh-
bors. The remaining unmarked nodes are unsupported (red). Two
cases are shown: unprintable (top) and printable (bottom).

Tileability. The tileability requirement means that all pattern
topologies should belong to the same family, meaning topologies
with the same set of nodes and edges appearing on the faces of the
cube cell (Figure 11).

Searching the space of topologies. The goal of our search is to
identify a family of pattern topologies that covers as much as possi-
ble of the (E, v) space while satisfying the printability and tileabil-
ity requirements.

The initial space consists of all pattern topologies satisfying the
constraints on graph connectivity mentioned previously. We pro-
ceed in the following steps:

1. Coarse geometry sweep. Geometric variations are generated
for each pattern topology by trying thicknesses of 0.3mm and
0.7mm and node offsets corresponding to barycentric coordi-
nates of 0.2, 0.35, 0.5, 0.65, and 0.8 on the associated tetra-
hedron simplex. The resulting printable patterns are meshed,
self-intersecting meshes are discarded, and the remaining pat-
terns’ effective elasticity parameters are computed using peri-
odic homogenization (Section 5).

2. Isotropy filtering. We select a subset of the patterns closest
to isotropic (we use a heuristic bound of 0.8 < A < 1.2),
which we consider promising candidates as starting points for
optimizing pattern parameters to precisely match a range of
isotropic elasticity tensors.

3. Topological family selection. At this point, we have a rough
map of the area in (E, v) space covered by our set of patterns.
We obtain a rough estimate of each topology’s coverage by
taking the convex hull associated with its nearly isotropic ge-
ometric configurations. We manually pick the single family
whose pattern topologies cover the largest region of (E,v)
based on these estimates.

4. Selection of a minimal covering set of topologies. For the se-
lected family, we run a finer sweep of offsets and thicknesses,
again filtering for printability, to compute a more precise es-
timate of the boundary of the (E, v) domain that each pattern
topology can cover. Among all topologies in the family, we
selected 6 such that the union of their coverage areas contains
most of the domain covered by the family.

5. Lookup map construction. Finally, using the shape optimiza-
tion machinery of Section 6 and the initial nearly-isotropic
points for each of the 6 topologies chosen, we optimize each
patterns’ parameters to reach a grid of isotropic elasticity ten-
sors evenly spaced in (log(E), v).

Our procedure is similar to [Sigmund 1995], but with several key
differences. First, [Sigmund 1995] uses a simplified truss model,
whereas our method directly homogenizes and optimizes the print-
able geometry. Second, by using a full topology (including all pos-
sible edges between nodes in a ground structure) and permitting
zero edge thickness in optimization, the work avoids the topol-



Figure 11: Tivo pattern topologies from each of three different families, shown with the families’ interfaces (nodes on the cube cell faces).

ogy enumeration stage. As a side-effect, it cannot accommodate
the lower thickness bounds or support criteria needed for print-
ability. While a mixed-integer formulation like [Mela and Koski
2013] could allow enforcement of d,i» by introducing separate bi-
nary variables to disable members, this would involve a difficult
mixed-integer nonlinear programming problem in our tensor-fitting
setting. Finally, by introducing offset variables, our novel shape
optimization approach enables much finer control of the elasticity
tensors as the design is not limited to the discrete node positions of
a ground structure.

5 From Patterns to Material Properties

Our goal is to find the homogenized elasticity tensor C'7, describ-
ing the effective properties of the microstructure when it is fabri-
cated at a small enough scale and periodically repeated to fill the
space. This elasticity tensor is almost never the spatial average
of elasticity tensors (for example, if a cell is almost completely
filled with material but is disconnected from other cells, it has zero
Young’s modulus). We first define more precisely what a homoge-
nized elasticity tensor is and then explain how to compute it.

Defining the homogenized tensor. Consider heterogeneous object
Q€ filled with a periodic microstructure, as shown schematically in
Figure 13. Parameter e determines the size of cell Y relative to the
object €2€ and permits asymptotic analysis as € — 0.

Figure 13: (Schematic) Periodic tiling of a domain Q) with base cell
Y having geometry w and length scale .

The elastic response of an object under macroscopic external load
f is governed by the linear elastostatic equation

=V [C:e(u)] =finQF, 3)

complemented by appropriate boundary conditions. Here, C' is the
periodically varying elasticity tensor, and C' : € denotes its double
contraction with strain (Cj;ki€1) to compute stress. Considering a
sequence of problems indexed by € and letting u denote the limit of
u® as € — 0, the homogenized elasticity tensor C¥ is defined as
the tensor that satisfies

—V-[C" :e(u)] =finQ, 4)
with same boundary conditions. Vectors u and u® denote the dis-
placement, and £(u) = 1(Vu + (Vu)”) is the Cauchy strain
tensor.

Expressions for the homogenized tensor. The standard derivation
of the homogenized elasticity tensor based on a two-scale asymp-
totic expansion is provided in the additional material. Here we give
an intuitive motivation for the periodic homogenization equations.

u® has a high frequency periodic component that is averaged out
to obtain u as period € — 0. So u(x) can be thought of as the
average displacement over the infinitesimal base cell Y at point x.
Likewise, e(u) is the average strain in the cell. For the object to be
in equilibrium, (4) should represent an average force balance over
the cell, meaning cf €(u) should be the average stress tensor.
That gives the following intuitive interpretation of C*: it maps
the average strain applied at a point to the average stress resulting
within the microstructure geometry.

Thus, applying C* to e(u) is equivalent to simulating the mi-
crostructure’s deformation under that average strain and averaging
its stress. We formulate this simulation inside a single base cell Y
by assuming that the displacement consists of a linear term (with
constant strain £(u)) plus a Y -periodic “microscopic fluctuation”
term, w (with zero average strain by periodicity). This assumption
of periodicity is reasonable because, by the translational symmetry
of an infinite tiling, every cell deforms identically. Now we simply
solve for fluctuation w putting the microstructure in equilibrium:

=V (C(y) : [e(w(y)) + e(u)]) =0inY,
where y is the microscopic variable (the coordinate in Y'). Then the

average stress is C™' : e(u) = 7 [,,C e(u)] dy.

We can extract the components of C'¥ by applying it to the 6 canon-
ical symmetric rank 2 basis tensors, efl = % (er ® e+ € ®ey).
Each application amounts to solving the cell problem:

_v. (Cbase . [ ( kl) kl])) =0inw, (52)
[C™ s e(w™)h = —[C™ : "] on w\DY,  (5b)
w" (y) Y -periodic, (5¢)

/ y)dy =0, (5d)

where we rephrased the microscopic force balance as a PDE over
w, since for a structure printed with base material properties C***,

base f
Cly) = {C tyew, ©)

0 otherwise.

The last constraint in (5) eliminates the rigid translation degrees of
freedom that still remain after enforcing Y -periodicity.

The homogenized elasticity tensor components are finally just the
average over Y’ of the stress components corresponding to e*':

Ciiw = ig / Ciipale(W™) 4+ €] dy. @)

It is worth noting that C'F does not depend at all on the macroscopic
details (shape €2, force term f, or boundary conditions).



FEM implementation. The cell problems (5) are solved numeri-
cally by a quadratic tetrahedral FEM discretization of w. The piece-
wise linear integrand in (7) is integrated with exact quadrature.

Given the wire network of the microstructure, defining its topol-
ogy (Section 4), a volume mesh is generated following the STRUT
algorithm given in [Hart 2008]: (i) A polygon is created around
both ends of each segment. (ii) For each vertex, the convex hull
of the nearby polygons and the vertex is constructed and the poly-
gons themselves are removed from the hull. (iii) For each edge, the
convex hull of its two polygons is constructed, and again the two
polygons are removed from the hull. A tetrahedral volume mesh is
finally created from the resulting closed surface.

The linear elasticity solver must support periodic boundary con-
ditions, which requires the tetrahedral mesh to have an identical
tessellation on the opposite periodic cell faces.

Convergence rate. Remarkably, we have observed that the homog-
enized coefficients remain accurate when the microstructure varies
across cells (with few or no repetitions). In our experiments, the de-
formation behavior of even very coarse tilings closely matches the
homogenized behavior (Figure 14), and we expect similar agree-
ment in general for smoothly varying loads.
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Figure 14: Deformation of an object with varying material proper-
ties per voxel, and the same object with the material in each voxel
replaced with the corresponding pattern. The deformed objects are
colored by max stress.

6 Optimizing Pattern Parameters

An essential step for creating a map of elastic textures is optimizing
a pattern with fixed topology to match particular elasticity parame-
ters. This is achieved using shape optimization with respect to the
pattern parameters.

The optimization problem. Our goal is to minimize a functional,
J(w), measuring the difference between the homogenized elas-
tic properties of the pattern and a target elasticity tensor C*. We
choose an objective that is suitable for designing material distribu-
tions with large deformations under moderate forces. The distance
of compliance tensors, S™ — S*, as opposed to elasticity tensors, is
the better choice, since the strain for a constant stress is directly pro-
portional to S, not CH. In fact, minimizing the Frobenius norm
of ¥ — §* can be interpreted as a multi-objective least squares
optimization to fit the displacements of two cubes—one filled with
C* and the other with C*—under a set of axis-aligned stretching
and shearing loads.

‘We choose this Frobenius norm as our functional:

Jw) = 518" (@) - S°I1E, ®

which we optimize by varying the microstructure shape, w.

In our case, the microstructure boundary Jw is determined by a
small number of parameters p, consisting of wire mesh node off-
sets and thicknesses. While the number of parameters is small, we
still expect multiple solutions for minimizing J(w) with respect to
these parameters. A simple regularization term (staying close to
the initial point of optimization) picks a unique solution. We note
that instead some quantity of importance (e.g., weight) can be opti-
mized as it is typically done (cf., [Sigmund 1995]), adding another
nonlinear term to the functional.

The derivative of the boundary dw with respect to a parameter pq, is
a vector field v, (y) defined at points y of dw, with v, (y) being
the velocity of y if parameter p, changes at unit speed.

Using parameters p as variables, the minimization problem can be
written as

. 1 *
argmin J(p) where J(p) = §||SH(p) - S*||%. )

admissible p

The admissibility of parameters is determined by geometric inter-
section constraints and printability constraints.

The derivative of the objective function with respect to p, can be
obtained from v, using the chain rule:

2 _
Opa

.aSH_

(8% =57 50— = (8" = 57): dS"vad, - (10)

where dS¥[v,, ] is the shape derivative of S¥ applied to v, .

Shape derivative of elasticity tensor The derivative of the mi-
crostructure’s homogenized elasticity tensor in the direction of
shape perturbation v is defined as the Gateaux derivative,

CH(w(t, v)) = O™ (w)
t )
where w(t,v) := {x + tv : X € w}. As shown in the additional

material, the homogenized elasticity tensor, (7), can be rewritten in
an energy-like form,

dC™[v] := lim
t—0

(11)

C’gkl = %/(e“ +€(Wij)) L Cbee (ekl +5(wkl)) dy, (12)

which is shown to have shape derivative:

1 tj ij ase
dCiulv] = v /a (e +e(w™)): C" (13)

(e Fe(wh)I(v - n) dA().

Shape derivative of compliance tensor. The compliance tensor is
the symmetric rank 4 inverse of elasticity tensor, i.e. SijkiCrimn =
%(57;7—”6]'77, + 0ind;m ). Differentiating and solving for dsH.

ds?v] = =8 . dct[v] : s7. (14)

Combining the results from (10), (13), and (14), one can compute
687‘]; the shape derivative and an example velocity field v, are

shown in Figure 15.

Numerical computation. The integrand in (13) is cubic over each
boundary element (¢(w"’) and v - 1 are both linear), and we use



Figure 15: Left: a shape derivative, visualized as a steepest ascent
normal velocity field for objective (8). Right: the shape velocity
induced by one of the pattern’s thickness parameters.

quadrature that evaluates the surface integral exactly. To evaluate
the gradient for a given shape we need (a) to mesh the shape (we
use the TetGen package [Si 2010]); (b) solve 6 periodic elasticity
problems to obtain w*’, as for homogenization. The cost of a single
gradient evaluation (roughly 4.75s on a single core of an Intel Xeon
E-2690 v2) is dominated by the cost of periodic meshing and the
elasticity solves, which take roughly equal time. We use the Ceres
solver [Agarwal et al. ]’s Levenberg-Marquardt implementation to
minimize the objective; the convergence of the solver is quite fast
(Figure 16). Typical effects of optimization are shown in Figure 17.

Pattern Optimization Convergence

[ IL S, - A
2 4 \ \ ~ 8 J i
8 f. e \ [ & .
\
g 0.01 - ,} \ g \ N
w . /, [} .
§ \ 1~ R‘v \ :%‘;.‘[ e
© p
£ o0.001 \\q( - \—‘j N Ed
g
I
0.0001 e NN
1e-05 : : : ‘
0 5 10 15 20 25

Iteration

Figure 16: Convergence of a shape optimization on pattern
“(E1,E2)(E1,E4)(E2,E4).” Left: optimization starting point. Right:
optimized shape.

7 Applications

While our primary focus is on the design of our pattern family
and the exploration of its coverage, we demonstrate the application
of our elastic textures in two settings: painted material properties
and specified deformation behavior. All printing was done using a
BO9Creator printer at 50 micron resolution with Cherry resin.

Overall workflow. The result of the preceding sections is a lookup
map that, for a given (F,v), produces an isotropic microstructure
with nearby parameters. We assume that we are given a coarse
volume mesh filled with identical cube cells.

First, we assign a pair (E;, v;) to each cell 4, either directly or via
material optimization as described below. For each cell, we retrieve

Young'’s Modulus (MPa)

0.1F

0.01

02 oy 0 0 02 03 04 05
Poisson’s Ratio

Figure 17: The path in (E, v) space traversed by the optimiza-
tion of pattern “(E1,E2)(E1,E4)(E2,E4)” shown in Figure 16. The
brown points are intermediate anisotropic microstructures.

a corresponding pattern (topology id, thicknesses, and offsets) from
the lookup table. The microstructures in adjacent cells are stitched
together by averaging the offsets of each pair of shared face nodes
so that they coincide. This might raise the lower node of the pair
above some node it supports, ns, violating printability, but print-
ability can be restored by lowering the pair to n’s height.

After this step, the resulting connected wire mesh is inflated with
retrieved bar thicknesses, using the process described at the end of
Section 5. This results in a fine mesh that can be printed.

Material painting. The simplest approach to specifying the mate-
rial properties (E, v) is to paint them on a voxel grid. We have cre-
ated an editor enabling us to paint these layer by layer. The results
of fabricating several structures of this type are shown in Figure 18.

Material optimization. Manually defining material properties to
achieve desired behavior may be difficult, and a more systematic
approach is to solve for them. For example, consider the follow-
ing problem: for given applied displacement conditions on some
part of the object’s boundary, we would like to get some target
deformation—e.g., if a bar is compressed along the Z axis, it twists
in the X-Y plane—by varying material properties. In other words,
we want to find a spatially varying tensor Cp(x), parametrized by
a vector of per-cell isotropic parameters p, such that the following
system has a solution:

-V (Cp:e(u)) =0 inQ

u= u;, only,
(15)

u = U¢rg ON Ft»ﬂg

o(wph =0 on Ty

where u;,, are the applied displacements on compressed area [';,
and uy,4 are the target displacements of the surface I'¢,4 on which
no forces are applied, as indicated by the last equation. In our im-
plementation, these target/applied conditions can be specified on a
per-component basis to set up, e.g., the twisting bar example.

In general, such problems are solved using PDE constrained op-
timization, requiring solving an adjoint problem at each iteration.
However, we found that the following local-global iteration, in-
spired by related “as-rigid-as-possible” (ARAP) optimization tech-
niques in geometry, works remarkably well. For a fixed Cp(x), we
call up the solution of the “Dirichlet problem,” with the condition
of zero tractions on I';,.4 removed. uy is the solution of the “Neu-
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Figure 18: Examples of objects with painted material properties. All are fabricated with Smm cells.

mann problem,” in which the traction condition on I'¢,4 is retained,
but the Dirichlet condition u = 4 is removed.

We initialize the elastic tensor Cp,(x) to a constant. The iteration
consists of two steps:

1. Solve the Dirichlet and Neumann problems with the current
elasticity tensor, to obtain up and un.

2. Update Cp, minimizing the following energy:

min/ le(up) — C,*
PoJa

This energy can be minimized per-cell for a truly local-global
method; however, in practice we find it desirable to regularize p
with a Laplacian term, which requires that the “local” step be re-
placed by a global, but still quadratic optimization. The conver-
gence of this method is shown in Figure 19.

o(uy)|FdV (16)
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Figure 19: Convergence of material optimization.

We have used a number of simple voxelized shapes and created a
variety of deformation behaviors shown in Figure 20. Finally, we
have also generated a set of anisotropic samples, with controlled
anisotropy ratio, one of which is shown in Figure 21.

8 Conclusions

We have presented a family of tileable and printable patterns that
can be used to approximate varying isotropic material properties.
The family has proved useful on a number of simple shape opti-
mization examples: remarkably, all examples in Section 7 worked
as predicted by simulation without requiring much tuning.

Limitations. There are several limitations of our pattern family.
First, some parts of the (E, v) space are poorly covered. While it

Figure 21: Compression of an anisotropic sample along the X, Y,
and Z directions.

is difficult to predict which part of space is theoretically reachable,
we conjecture that the space may be significantly broadened. All
our simulations and constructions work in the linear regime, not
taking into account, e.g., the potential for pattern buckling or other
damage. Fortunately, isotropy is correlated with sufficiently high
shear modulus, which makes the patterns less prone to buckling.
Nevertheless, including this and other nonlinear effects in pattern
design is important.

For practical use, it is difficult to restrict the tessellations of objects
to equal sized cubes (though one can construct cut cells covered
with relatively soft skin). A desirable solution would be to allow
patterns to distort to fill arbitrary reasonably well-shaped hex cells.
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