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Abstract 

We present simple semidefinite programming relaxations for the 
m-hard minimum bandwidth and minimum length linear ordering 
problems. We then show how these relaxations can be rounded in 
a natural way (via random projection) to obtain new approximation 
guarantees for both of these vertex-ordering problems. 

1 Introduction 

Let the vertices of an undirected graph be ordered 1,2,. . . , ra. We 
define the dilation of an edge (it j) as the difference Ii - jl, i.e., the 
length of the edge when the vertices of the graph are placed on the 
line in the order 1,2,. . . , n. 

Given a graph G = (I’, E), we consider the following two 
problems: 

1. ilfinimum Bandwidth : find an ordering that minimizes the 
maximum dilation among all the edges, i.e., minimizes 

2. Minimum-length&earOrdering: findanordetigthatmin- 
imizes the length of the ordering where length is defined as: 

\i c dilation(e)*. 
eEE 

That is, the squared length is the sum of the squares of dila- 
tions of the edges. 
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We present approximation algorithms for these problems. Our 
main algorithmic tool is semi-definite programming. Using a simple 
semidefinite relaxation we derive an 0( filog n) approximation 
for the minimum bandwidth. 

A refinement of this relaxation allows us to get an 0( (log n)3/a) 
approximation for the minimum-length linear ordering problem. 

Recently (and independently)Feige [4] introduced the notion of 
a volume-respecting embedding of an undirected gmph, and used 
it to achieve a polylogarithmic approximation for the bandwidth 
problem. Interestingly there are many similarities between the two 
approaches. Specifically, the rounding procedure of our nlgorithm, 
projection to a random line, is also a key step in his algorithm. Our 
relaxation for the minimum-length ordering problem was developed 
after Feige’s results were announced, and was inspired by his work. 

Early interest in the problem in the 1950’s was fueled by re- 
searchers in the area of solvers for sparse symmetric linear systems 
of equations, using Gaussian elimination (such as in the analysis of 
steel frameworks). As a heuristic to minimize the space, time nnd 
total work in the elimination procedure, it was desimble to reorder 
the rows (and cohnnns) of the matrix so as to collect all the non-zero 
entries within a band of small width centered at the diagonal. When 
the (symmetric) non-zero elements of the matrix are viewed as ver- 
tex adjacencies in an undirected graph, then the reordering problem 
is the minimum bandwidth problem for the resulting gmph. For n 
survey on the bandwidth problem and early approaches, see [l]. 

The minimum bandwidth problem was first shown to be NP- 
hard in 1976 [IO], and later even for trees of degree at most three 
and for caterpillars [S, 91. Approximations algorithms have been 
known only for some special families of gmphs, such as caterpillars 
or asteroidal triple-free graphs [7,8]. 

2 The Semi-Definite Relaxation 

Our approximation algorithm begins with an SDP (Semi-Definite 
Programming) relaxation. First we motivate and describe the re- 
laxation for the bandwidth problem and then the relaxation for the 
minimum-length linear ordering problem. 

2.1 Bandwidth 

The idea of the relaxation is as follows. We will represent each 
vertex of the graph G as a vector of length n. What we would like 
theSDPtor$umis asequcnceofvectors ~1, ~2,. . , , wn in IZ2 where 
u, = cos( $$)21+ sin( $$)22, and the maximum value of Iui - Vj 1 
over all edges (i, j) E E is minimized (that is, uniformly spaced 
vectors on a quarter-circle of radius n such that the maximum edge 
length is minimized). Then we could simply output these vectors in 
order of their projection onto 21 and we would have the order of the 
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minimum bandwidth (since the optimal ordering on a semi-circle is 
also the optimal ordering on a line). 

We cannot force the SDP to give us exactly those vectors, be 
cnuge we cannot restrict the dimensionality of the solution, but we 
can achieve many of the properties we want by using the following 
net of SDP constraints. 

min b (1) 
Vi ’ Vj > 0 Vi,jE(l,...,n} (2) 

I”4 = n ViE{l,...,n} (3) 
h -Vjj ,< b V(i,j) EE (4) 

C(W - Vj)' 2 $xlw~+ WI + 1) 
w 

VS~{l)...) n},ViE{l,..., n} (5) 

The goal of the above constraints is to enforce a near-linear em- 
bedding of the vertices while minimizing the value of b, which is 
the maximum dilation of any edge in the relaxation. Formally, 
constraint set (4) states that for any edge in the graph, the distance 
bctwecn the corresponding vectors should be at most the optimal 
bandwidth, It is perhaps easier to see that (4) is a legal SDP con- 
straint ifwerewrite it as (vi -vj) 0 (vi - Vj) ,< b*. (We canthinkof 
the solution opacc as all positive semidefinite matrices M = [mij], 
vfhcre rmij = vi * vj. Then (3,4) and (5) are linear in m;j.) 

Constraints (2) are primarily for ease of analysis. Constraints 
(5) are “spreading” constraints. Given only (l), (2), (3), and (4). 
the SDP may simply produce one single vector as its solution to 
all the vi, We want instead that the vectors be spread out. For 
instance, on n line, for any pointp there are at most 21; other points 
within distance b of p, Constraint set (5) enforces essentially this 
condition (see lemma 1 below). Although there are exponentially 
mnny constraints in (5), it is not hard to construct a separation oracle 
for them, and hence the SDP can be solved in polynomial time (see 
Gr(lbchel,Lovdsz,Schrijver[6]). To answerthescparationproblem 
for (5) for n given node i, simply sort the vertices j # i in increasing 
order of (VI - vj)* and check for violation each of the n - 1 sets 
thnt occur as prefixes in this order. It is easy to see that if any set S 
violates (5) for vertex i, then the prefix of vertices in this order of 
oizc ISI also violates (5) for i. 

Let us refer to the above formulation as the bandwidth SDP. 
Suppose b’ is the optimal bandwidth. Then by lifting the optimal 
bandwidth ordering to the equi-spaced embedding in the quarter- 
circle described above, it is easy to verify that all the constraints are 
satisfied to give an objective function value of at most 2b’. 

2.2 Minimum-length ordering 

hct 1 For IWO sectors vi, vj, the square of the area of the triangle 
rhey form with rite origin is given by 

1 

I 
Vi * Vi Vi * Vj 

z Vi’ Vj Vj ‘Vj ’ 

Hence, for any three vectors, vi, vj, vk, the area A(i, j, k) of 
the triangle formed by them, which is the same as the area of the 
triangle formed by vj - vi, VJ: - vi with the origin is given by 

Further, the constraint, A*(;, j, k) 2 c for a real number c is a 
convex constmlnt on the vectors vi, vj, vk. Note that for a matrix 
X, the constraint DET(X) 2 c is not convex: howeverwhen X is 

restricted to being positive semi-definite (as in our case), it becomes 
convex. 

The following is our relaxation for the minimum-length linear 
ordering. Crhe fact that it is indeed a relaxation will be established 
in Lemma 8.) 

min C (Vi - Vj)* 

(idEE 
Vi.Vj 2 0 Vi,j E(l,...,fZ) 

C(Vi - Uj)2 >_ ~l~lwl/~ + 1Wl+ 1) 
$3 

VSG{l,..., n}, ViE(l,..., n} 

xA2(i,j,k) 2 r/vi- v,I*jSj’ 
k&S 

vs c {l,..., n}, V&j E {l,..., n}(6) 

The first two sets of constraints are identical to (2), (5) above. 
Instead of constraining the length of each individual edge as in (4). 
we minimize the squared length of the ordering (sum of squares of 
edge lengths). This is a linear function of the Vi - vj. Tbe constraint 
set (6) will be motivated and explained in the analysis section; e is 
a constant greater than 0 that can be calculated from Lemma 11. 

3 The Algorithm 

Given a graph G = (V, E) with weights on the edges, the algorithm 
is as follows. The only difference for the different problems is in 
the SDP. 

1. Solve the SDP relaxation for G. Let the solution obtained 
be VI ,...,Vn. 

2. Pick a random line through the origin, i.e., a random unit 
vector L 

3. Project “1,. . . , on on to the line L 

4. Output the vertex-ordering along this line, i.e., in increasing 
VdUeSOfVi *L 

We show that the algorithm with the bandwidth SDP finds an 
ordering of bandwidth at most O(&log n) of the optimum with 
high probability. For the minimum-length ordering problem we 
will show that this algorithm gives an ordering of length at most 
O((logn) f ) of the optimum, with high probability. 

3.1 Overvierv of Bandvridth analysis 

The outline of the analysis for the Bandwidth performance guaran- 
tee is as follows. Imagine slicing up the ball of radius n into strips 
orthogonal to 1 of width b/J;;. The first claim is that with high 
probability, no edge in G crosses more than O(m strips. The 
reason is simply that for any edge (i, j) we have Ivi - v, 1 5 b (by 
constraint 4) and since e was chosen randomly, with high probabil- 
ity we have I(Vi - vi) -LI 5 cl”; - vjlfi/fi(i.e., the vector 
Vi - Vj is “nearly orthogonfl to the line 9. So, to prove a S($i) 
approximation for the minimum bandwidth it suffices-to prove that 
with 9casonable”probability. every strip has at most O(fi points 
inside. 

For a given strip s (say, the strip corresponding to the interval 
[ib/fi, (i + l)b/J;rl on line 9, the probability over the choice of 
L that a given point v E G falls into s is at most O(b/n). (This 
is because there are O(nfi/b) strips total, and the middle n/b of 
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them roughly equally divide up most of the probability.) Thus, the 
tlrpectednumber of points in any given strip is only O(b). 

What about the variance? To calculate this we need to upper- 
bound the probability that a given pair of points vi, w, both fall into 
a given strip s. This is roughly equal to Pr[w; falls into s] . Pr[lui - 
wJ 1. L 5 b/a. The first quantity, as described above, is 0( b/n), 
while the latter quantity is O(b/d) if Iwi - uJl 2 d. At this point, 
we use constraints (5) to show that there cannot be too many pairs 
of points w,, wJ that are too close together. This allows us to bound 
the variance which then yields the final results. 

We present the formal analysis in the nest section. 

4 Approximation Guarantees 

We start with a useful lemma about any set of vectors satisfjring the 
constraints (5). 

Lemma 1 Let WI,. . . , w,, E R” satisjj the constraints (5). Then 
for any ball B of radius r 2 1 in R” (not necessaril~~ centered at 
the ori&) 

IBn{v~,...,w,}l <O(r). 

ProojI From the constraints 5 it follows that the average 
pairwise distance between a set of r points is C!(r). To see this, 
order the numbers (wi - wJ)* nondecreasingly. Suppose that more 
than half of these numbers are smaller than r*/c for a sufficiently 
large c. 

Now there is some point x whose distances from at least r/2 
other points are among the first r/2 in this ordering. But this 
contradicts the constraints (5) when applied to x and this set of r/2 
points. Therefore, at least half of all distances are at least r/fi, 
and so their average is at least r/( 2&) which is Q(r). 

Since the maStmum distance behveen hvo points inside a ball 
of mdius r is 2r, this implies that there are only O(r) points in such 
a ball. q 

Next, we make a few observations regarding random projec- 
tions. 

Lemma 2 Let WI, ~2, wj E R”. Let e be a random unit vector. Let 
yr = ut . f. Let 0 be the angle behveen the vectors (WZ - WI) and 
(w - WI). Then the probabili@ that yl lies between y2 and y3 is 
csactl~ 0/n i.e., the angle formedat WI by v2 and ~3, over x 

Proo$ The probability that wt when projected to L falls in 
between the projections of wa and wg is 

P~v*.e~v, - E < (‘3 . L] + Pr[wa - E < vt - e 5 wa - 4 

which is the same as 

Pr[ (b - v2) * E) ((fJ3 - 01) * l) 2 o] 

which is esactly the angle behveenthevectors (WI-Q) and (z~s-wr) 
divided by n. 0 

Fact 2 The volume of the n-dimensional ball of radius r is equal 
to G and its sugace area is Tw,. 

Here r(x) is the “gamma” function. For a positive integer x, 
F(x) = (x - l)! 

Lemma 3 Let e, E R”. Fora random unit vectorfJ, 

Pr 
[ 
Iw. El 5 $wI] 2 1 -e-e 

Proof The desired probability is the surface of a central band 
of thickness 2c/fi on a unit sphere, divided by the surface area 
of the whole sphere. Denote the surface area of the n-dimensional 
sphere of radius r by A,,(r). Then the area of the region outside 
the central band is less than the area of an n-dimensional sphere 
of radius dm (since the remaining portions of the unit ball 
after slicing out the central band can be inscribed in a ball of the 
smaller radius). Using A,(r) = I(,r”-‘, for ZCn as in fact 2, WC 
can lower bound the area of the central band as the area of the unit 
sphere minus the area of a sphere of radius dm. 

q 

Lemma 4 Let v E R”. For a random unit vector -$ 

Pr[lw -El < &II = Q. 

Proof: The desired probability can be upper-bounded as the 
area of a cylinder with an (n - I)-dimensional unit ball as the base 
and whose height is at most 4/cfi, divided by the area of the 
n-dimensional unit sphere. The factor of 4 is due to approsimating 
the area by translating along the curvature of the n-dimensional ball 
for a width of I/cfiin both directions above and below the origin. 
This is at most 

4&-t < 
&A,, - 

We considerthe following event: two points x, y on the surface 
of the ball of radius n, at a distanced from each other are projected 
on to a random line. What is the probability that s and y fall in 
any fixed interval of width liv on the line? The following IemmJ, 
crucial to our analysis, bounds this probability. 

Lemma 5 Let x, y be arbitrav vectors of length n in R” such that 
Ix - yl = cl and z . y 2 0. Let i? be a random unit vecto): Thcrt, 
for any&fixed (Y and width IV, 

Pr[ac<x.k?, y.t?~o+W] =O $ . 
( > 

ProoJ: For convenience, rotate the sphere so that 

x = (-d/2, @sg, 0, . . .) 

and 
y = (d/2, dm, 0,. . .). 

Let vector e, = y-x=(d,O,...),andlet~=(Lr,&,...)beour 
randomly chosen unit vector. Note that in order for the event in 
question to occur, it must be the case that Iw * kJ $ W. Therefore, 

Pr[cr<x-e, y-L<cu+W] 

5 Pr[lw . fJl < W] . Pr[a! 5 x4?~cY+W 1 Iw*ky $ T’v]. 

Sincelw-El = lfJrl.d,wehavePr[lw+El < IY] = Pr[l&l I: ~/d], 
which is O(Wfi/d) by Lemma 4. 

102 



Glvcn the event that ILlI 5 W/d, the inequality a < c . L 5 
a + W can be relaxed to (Y - W/2 5 c’ . e’ < cy + 3W/2, where 
m’ and 4’ arc n - l-dimensional vectors cons&g of the last n - 1 
componentsofm and& Sincez:i = 0 for all i > 2, this is equivalent 
t0 

a - W/2 5 &q/v < a -I- 3W/2. 
The probability of this last event can be upper-boundedby com- 

puting the nrca of the largest possible strip of this width (the one 
centered around the equator). By assumption, z . y 2 0, implying 
that d 5 n&, so dv 2 n/h. We can now bound the 
fraction of the sphere covered by this strip by O(W/fi as in the 
proof of Lemma 4. Thus, we finally get 

The following lemma will be useful in the analysis for thue 
minimum length ordering problem. 

Lemma G Let VI, ~2, VJ be vectors in R”. Then on projection to 
a random lirre, rhe probability that all three fall in an interval of 
widIh W (1101 a particular interval) is 

PrOO& Consider the triangle Vru)zV3. Assume without loss of 
gcneralhy that its smallest angleis the oneat us, andthat Iv1 -usi 5 
Iv2 - us\, Notice that the event in question is invariant under 
translation of the space; thus we may also assume without loss of 
generality that us is the origin. 

In order for all three points to fall into an interval of width 
W, it must bc the case that VI and v2 both fall into the inter- 
val [-W, W], We bound the probability of the latter event using 
Lemma 5, Specifically, let vi = nvr/lv~l, let u: = nv2/lv2~, and 
let d’ = Iv; - VII, The event that VI and v2 both fall into the interval 

t 
-W, W] implies the event that vi and vi both fall into the interval 
-w~llvIl,w /I II n VI 

length n (and vi 
since Iv11 5 Iv& Since vi and vi are both 

e vi 2 0 by the assumption that the smallest angle 
is at v3), Lemma 5 bounds the probability of this event by 

SIncc v3 Is Ihe smallest angle of the triangle UlV2U3, the area of 
U)IV~V~ Is at most twice the area of vrv~vs where vi = v2jur~/~v2]. 
This arcn equals (lull/n) * t imes the area of v~v~vs, and that area 
la at most nd’/2. Thus, A(l, 2,3) 5 Ivl12d’/n, and the desired 
probability Is 

4.1 Bondwidth 

WC begin with the following lemma. 

Lcmmn 7 SUppose VI, , . . , v,, sati@ the constraints (2), (3), and 
(5), For a rarrdom line e, let X be the random variable denoring 
/he number of poitlts vi whose projection onto 1 falls into a given 
brterval Z of width W. Then, 

E[X] = O(Wfi) and E[X’] = O(IV*tr logn). 

Proof Define Xi to be the random variable that is 1 if the 
projection Of vi onto e falls in Z and 0 otherwise. Then from Lemma 
4, E[Xi] = O(W/fi, which implies 

E[X] = O(W,/+ 

Now consider pairs vi, Vj. By Lemma 5 we have E[XiXj] = 
O(W’/dij), where dij = [vi - W, I. Therefore, 

EP21 = E[CXf+2CXiXj] 

= 0 W&+-g) 
( id it 

= O(W2n log n), 

where the last line follows from Lemma 1, since Lemma 1 implies 
that for any fixed i, cj l/dij = O(log n). 0 

Theorem 1 The algorithm finds an ordering whose bandwidth is 
at most 0( fllog n) times the minimum bandwidth with high 
probability. 

Proof L&VI,..., v,, be the set of vectors of length n found by 
solving the SDP 

First, using Lemma 3 we have that every edge of G, of length 
at most b in the SDP, when projected down to a random line has 
length no more than W = S-/G with high probability. 

Let L be a random line and partition e into intervals of width 
W. Using Lemma 3 one more time, v&h high probability, all 
vertices on projection faII within the middle n/b intervals (since 
these have total width 8d-). Since each edge spans at most 
two intervals (with high probability), it suffices now just to prove 
that with reasonable probability, none of these n/b intervals has 
more that O(&Iog n) vertices that project into it. 

At this point we simply use Lemma 7. By Lemma 7, the random 
variable X denoting the number of vertices that on projection fall 
into a given intervaI of width W satisfies E[X2J = O(W2n Iog n). 
Therefore, by Chebychev’s inequality 

= Pr[X > 16&Iogn]. 

Thus, with reasonable probability (3/4), each of the n/a intervals 
has only O(&Iogn) vertices that project into it, proving the 
theorem. cl 

4.2 Minimum-length ordering 

Let e = (i, j) E E, and upon projection to a random line, let Y;j be 
the random variabIe whose vahre is the dilation of e in the ordering 
on the line, i.e., the number of points that fall in the span of the 
edge. 

From Lemmas 2 and 1 it follows that the expectation of Kj 
is at most IVi - oil log n. However we need to bound the second 
moment, E($). For this we need to bound the probability that 
a pair of vertrces falls in the span of e. Lemma 6 bounds this 
probability as at most 1 over the area of the triangIe formed by the 
two points and any one of the endpoints of the edge. So. on the 
whole we would like to ensure that the sum of the inverse areas of 
the triangles formed by every pair with one endpoint of e is small. 
This is precisely what the triangle constraints (6) achieve. Just the 
spreading constraints (5) do not suffice for this. 

Below we describe this formally. First we show that the SDP 
is indeed a near-relaxation (there exists a solution to the SDP with 
value 5 OPTm. Then we give the approximation guarantee 
for the rounding step. 
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Lemma 8 Let OPT be the value of the minimum length ordering, 
aud 0PTs~p be the objective valuefound by the SLIP. Then, 

0Pl$~p 5 OPFlogn 

ProoJ Without loss of generality, let 0,. . . , n - 1 be the 
minimum length ordering of G. Let the value of this ordering be 
OFT i.e., 

OPT= 

\i 

x (i-j)2 
(idEE 

We will now construct an embedding of the vertices as vectors 
t40,. . . , un-l E fPg nJ+’ such that 

IfJi- UII _< li-jldm 

and further ~0,. . . , tan-l satis& the constraints of the minimum 
length ordering SDP. The lemma follows from these facts. 

First, an esample. For n=17 points, the embedding is: 

(QO,O,O,O) 
(LA 1, 191) 
c&2,2,2,0) 
(3,3,3,4 1) 
(4,4,4,0,0) 
(5,5,3,1,1) 
(6,6,2,2,0) 
(7,7,1,1,1) 
(S,S,O,O,O) 
(%7,4 191) 

W-46,2,2,0) 
(11,5,3,1,1) 
(1%4,4,0,0) 
(13,3,3,1,1> 
(14,2,2,2,0) 
(15,1,1,1,1) 
(16,0,0,0,0) 

The first coordinate is just i. The second coordinate is i for 
i 5 n/2 and n - i after that. The third coordinate goes up to n/4, 
down to zero, back up to n/4 and back down to zero again. And so 
on. 

In general, let d be the smallest integer such that 2d > n. Then 
i is mapped to 

(i, Ii mod 2d-’ - 2(i mod 2d-‘)I,. . . , 

Ii mod 2 - d ‘+I-2(imod2”‘-‘)l,...,s’mod2). 

That is, the I’h coordinate of u, is 1; mod 2d-rt’ - 2(i mod 2d-r)I, 
forl= l,...,d. 

Since the Ith coordinate Of Ui differs from the Zth coordinate of 
ug by at most Ii - j], we have (ui - u,)’ 5 d(i - j)‘. SO, we 
have ju, - ug I <: Ii - jl l/m as desired. Constraints (5) 
are satisfied becausethe construction of the first coordinate ensures 
that forany i,j, Iu, - ujj 1 Ii - jj. 

Finally, we just need to show that constraints (6) are satisfied. 
This follows from the fact, given as Lemma 11 in the appendix, that 
for any i < j < k the area of the triangle formed by Ui, ug, t?k is 
sz(lj - illk - jl). 

These observations imply that ~0,. . . , ~“-1 satisfy the SDP, 
and their objective value is O(OPT&$i). q 

Letur,..., w,, be the set of vectors found by solving the SDR 

Lemma 9 
E(K;) = O(lui - u,1210gz n) 

Proof: Fix some edge (i, j). Define the random variable SI: 
for each K = 1 , . . . , n, k # i, j to be 1 if on mndom projection try: 
is projected in behveen vi and uj (falls in the span of the edge) nnd 
0 otherwise. Then 

and 

E(x;) = c E(X;) + c E(.%+%) 
k#i,j kJ+i,~ 

c E(&) + c Pr[k, I fall between i, j] 
k#i,j k,I#i,j 

E(Yij) + c Pr[h, I, i fall in an interval 
k,liti,j 

of width ]ui - vjl/fi] 

1% - vjllOgn+ C $$f$ 

k,lfi,j 

IUi - Ujl lOgYI + ItJi - 
%I2 c A&i) 

C,l;ti,J 

The last step above follows from the constraint set (6) as follows: 

For each pair 8’, k the inner sum is G((logn)/lvk - Vi]). TO See 
this, order the remaining vertices according to their distance from s’ 
(say) and then the constraints imply that the triangle induced by the 
#“ point in this order has area at least R(Plbi - ~1). Hence 

5 clognC&j 
k#i 

= O(log’n). 

Here c is a constant. The last step is implied by the constraint 
set (5). 0 

Theorem 2 The expectedlength of the orderingfouud by the also- 
rithm is 0 ((log n) 3) times the optimum. 

Proof: The expected value of the square of the length of the 
ordering found by our algorithm is 

E( c Yg) = 
(idEE 

5 

c E(K;) (WEE 

5 
= 

C O(lUi - Uj I* log* n) 

(idEE 

O(OPZ$p log* n) 

O(OPT210g3n), 
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wllcrcOPTs~~ is theobjectivevalucoftheSDPandhence(witbin 
a factor of m) a lower bound on the minimum length of any 
linear ordering (this implies that OPTiDp is the minimum valueof 
the square of the length of any ordering, OPF). The result on the 
length of the ordering follows with high probability using Markov’s 
inequality and taking square roots. 0 

G How good is the SDP? 

What is the integrality gap of our first SDP? While our rounding 
procedure for the llrst SDP gives us an upper bound on the gap, it 
lo posalblc that the gap is much smaller in reality. Note that our 
analysis is tight only for the specijic rounding procedure we used, 
not the SDP itself. 

Here we give some facts that indicate that the gap might be 
much smaller, One of the known lower bounds for the bandwidth 
of a graph is called the density lower bound[3]. It is definedas 

Bd = mix%, 

where the maximum 1s taken over all connected subgraphs of G. 
The exact strength of this lower bound is an open problem, but 

the largest known gap is O(logn) for an n-vertex graph. One of 
lbc known constructions of graphs which achieve this gap, so-called 
Cantor combs, was described by Chung and Seymour [2]. 

The following lemma says that the integrality gap of our simple 
relaxation is no larger than the gap between the density lowerbound 
and the optimum. 

Lcmmn 10 LCI (ST, b) be ~heoptimalsolution ofthe bandwidrhSDP. 
Then b = Cl(&). 

Proof. Let H be the subgraphof G that achieves the maximum 
density, Since the average distance dij between points in the solu- 
tion corresponding to vertices of H is Q(lHI), there is a vertex II 
of I-Z such that the total sum of distances between sv and the other 
points In H is Q((Hj*). But this sum is at the same time at most 
blH Idlam( and so blHldiam(H) = Q(lHl’). That is, 

b=s2 
0 

G Concluoiono and further work 

Along the lines of the constraint set (6), and Feige’s result [4], it is 
possible to reline the semi-definite relaxation further (by using the 
constraints on k-simplices instead of just edges and triangles). This 
yields polylogarithmic approximations for any Gzl: norm in O(n2”) 
time and also a polylogarithmic approximation for minimum band- 
width in quaslpolynomial time (n ‘uo6 “I) by considering subsets of 
size log n, It 1s an open question as to whether we can solve this 
latter rclnxatlon in polynomial time, 
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Appendix 

Lemma 11 If UI , . . . , u,, are the poinrs in rhe (ilog nJ 9 1). 
dimensional space defined in the proof of lemma 8, there is a con- 
stunt c 1 0.008 such that A(i, j, k) 2 c(j - i) . (k - j) for UN 
i<j<k. 

ProoJ The idea of the pm’of is as follows: for a triangle defined by 
ui, uj and ~6, we consider its projection on a two-dimensional plane 
Pf spanned by the coordinate vectors et and er, for different values 
oft. Clearly,theareaofeachsuchprojectionisalowerboundonthe 
area of the original triangle. The area of a triangle can be calculated 
as $3 sin4 where a and b are two sides of the triangle and r$ is the 
angle behveen them. If u:u;uL is the projection of UiU~U~ onto 
Pt. then ju: - u:I >, (j - i) and Ius - uil> (!z - j). Thus, if we 
can show that for each triple i, i, k there exists a coordinate e such 
that the angle at u: (the projection of oj onto PC) is bounded above 
by some universal constant 4, we will be done. In what follows we 
use an inductive case analysis to show that we can always ensure 
$6 < 179O. 

We assume without loss of generality that j < n/2 and k > 
n/2. (If k ,< n/2 or i 2 n/2 then we can work 12th n/2 instead 
of n and the claim holds by induction. The two cases, j > n/2 and 
j 5 n/2 are the same by symmetry so we only work with the first 
one.) If k 2 9n/16 then alter projecting to P2, the angle at u: is at 
most 173’, so we can assume n/2 < k < 9n/16. 

Ifj < n/4, then projecting onto A i*forks since the slope of the 
line through u? and u: is at most l/16, so the angle at uj is almost 
45’. If i > n/4 the claim holds by induction. 

Now there are four cases left. 
If i 5 n/8 and n/4 5 j 5 3n/8, we’re done since clearly the 

angle at u: (in P3) is at most 150’. 
Assume now that n/8 5 i 5 n/4 and n/4 $ j < 3n/S and 

denotea=n/4-i,/3= n/4 + j. There are only two subcases: 
(1): a 1 20. Project onto 4. Then the slope of the line 

through u: and u$ is -l/3 and 4 < 168’. 
(2): a < 3p/2. We project onto fi. The slope of the line 

through u: and u$ is l/5 and 4 5 173’. 
The next case is when i 5 n/8 and 3n/8 5 j 5 n/2. If the 

slope through ui and u: in A is less than -l/2.3, the angle at u$ 
is at most 179’. If the slope is more than -l/2.3. then PZ should 
be used as the angle at u$ will be at most 159O. 

Finally, suppose n/8 2 i s n/4 and 3n/8 < j C n/2. 
This case is analogous to the previous one, but we use e%er P4 
(if the slope through ui and u6 in P4 is less than -l/2.3), or P2 
(otherwise). 0 
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