Semi-Definite Relaxations for Minimum Bandwidth and other Vertex-Ordering problems
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Abstract

We present simple semi-definite programming relaxations for the
NP-hard minimum bandwidth and minimum length linear orcering
problems. We then show how these relaxations can be rounded in
anatural way (via random projection) to obtain new approximation
guarantees for both of these vertex-ordering problems.

1 Introduction

Let the vertices of an undirected graph be ordered 1,2,...,n. We
define the dilation of an edge (, j) as the difference |§ — 7|, i.e., the
length of the edge when the vertices of the graph are placed on the
line in the order 1,2,...,n.

Given a graph G = (V, E), we consider the following two
problems:

1. Minimum Bandwidth : find an ordering that minimizes the
maximum dilation among all the edges, i.e., minimizes

maxdilation(e).
egk

2. Minimum-length Linear Ordering: find an ordering that min-
imizes the length of the ordering where length is defined as:

Z dilation(e)2.
eeE

That is, the squared length is the sum of the squares of dila-
tions of the edges.
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We present approximation algorithms for these problems, Our
main algorithmic tool is semi-definite programming, Usinga simple
semi-definite relaxation we derive an O(ﬁ log n) approximation
for the minimum bandwidth.

A refinement of this relaxation allows us to get an O((log n)*/%)
approximation for the minimum-length linear ordering problem,

Recently (and independently) Feige [4] introduced the notion of
a volume-respecting embedding of an undirected graph, and used
it to achieve a polylogarithmic approximation for the bandwidth
problem. Interestingly there are many similarities between the two
approaches. Specifically, the rounding procedure of our algorithm,
projection to a random line, is also a key step in his algorithm. Our
relaxation for the minimum-length ordering problem was developed
after Feige’s results were announced, and was inspired by his work.

Early interest in the problem in the 1950’s was fueled by re-
searchers in the area of solvers for sparse symmetric linear systems
of equations, using Gaussian elimination (such as in the analysis of
steel frameworks). As a heuristic to minimize the space, time and
total work in the elimination procedure, it was desirable to reorder
the rows (and columns) of the matrix so as to collect all the non-zero
entries within a band of small width centered at the diagonal, When
the (symmetric) non-zero elements of the matrix are viewed as ver-
tex adjacencies in an undirected graph, then the reordering problem
is the minimum bandwidth problem for the resulting graph. For a
survey on the bandwidth problem and early approaches, see [1].

The minimum bandwidth problem was first shown to be NP-
hard in 1976 [10], and later even for trees of degree at most three
and for caterpillars [5, 9]. Approximations algorithms have been
known only for some special families of graphs, such as caterpillars
or asteroidal triple-free graphs {7, 8].

2 The Semi-Definite Relaxation

Our approximation algorithm begins with an SDP (Semi-Definite
Programming) relaxation. First we motivate and describe the re-
laxation for the bandwidth problem and then the relaxation for the
minimum-length linear ordering problem.

2.1 Bandwidth

The idea of the relaxation is as follows, We will represent each
vertex of the graph G as a vector of length n. What we would like
the SDP to retarn is a sequence of vectors vy, v2, . . . , Uy in R? where
v; = cos(FL )z + sin(72)z2, and the maximum value of [v; — v ]
over all edges (i, j) € £ is minimized (that is, uniformly spaced
vectors on a quarter-circle of radius i such that the maximum edge
Iength is minimized), Then we could simply output these vectors in
order of their projection onto z; and we would have the order of the
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minimum bandwidth (since the optimal ordering on a semi-circle is
also the optimal ordering on a line),

We cannot force the SDP to give us exactly those vectors, be-
cauae we cannot restrict the dimensionality of the solution, but we
can achieve many of the properties we want by using the following
set of SDP constraints,

min b 0))
vievj 2 0 Vije{l,...,n} )
il = n Vie{l,...,n} €))
lvi—vi] € b ¥Y(i,j5)eE @
1
D=l 2 glslsl/2+ (8] +1)

j€9
vsc{l,...,n},¥ie{l,...,n} (5

The goal of the above constraints is to enforce a near-linear em-
bedding of the vertices while minimizing the value of b, which is
the maximum dilation of any edge in the relaxation. Formally,
constraint sct (4) states that for any edge in the graph, the distance
between the corresponding vectors should be at most the optimal
bandwidth, It is perhaps easier to see that (4) is a legal SDP con-
straint If we rewrite it as (v; ~ v;) « (vi ~v;) < b2 (We can think of
the solution space as all positive semidefinite matrices M = [mi;],
where mi; = v; + vj. Then (3, 4) and (5) are linear in m;;.)

Constraints (2) are primarily for ease of analysis. Constraints
(5) are “spreading” constraints, Given only (1), (2), (3), and (4),
the SDP may simply produce one single vector as its solution to
all the v;, We want instead that the vectors be spread out. For
instance, on a line, for any point p there are at most 2k other points
within distance k of p, Constraint set (5) enforces essentially this
condition (sce lemma 1 below), Although there are exponentially
many constraints in (5), it is not hard to constructa separation oracle
for them, and hence the SDP can be solved in polynomial time (see
Gritschel, Lovész, Schrijver [6]). To answer the separation problem
for (5) for a glven node 1, simply sort the vertices 7 # i inincreasing
order of (v; — v;)* and check for violation each of the n — 1 sets
that occur as prefixes in this order, It is easy to see that if any set S
violates (5) for vertex 4, then the prefix of vertices in this order of
size | 9] also violates (5) for 4.

Let us refer to the above formulation as the bandwidth SDP.
Suppose b* is the optimal bandwidth. Then by lifting the optimal
bandwidth ordering to the equi-spaced embedding in the quarter-
circle described above, it is easy to verify that all the constraints are
satisfied to give an objective function value of at most 2b*.

2,2 Minimum-length ordering

Fact1 For two vectors v, vj, the square of the area of the triangle
they form with the origin is given by

Hoviovi vi-v;
41 vi-v; vjev5
Hence, for any three vectors, v;, vj, ur, the area A(i, 5, k) of
the trlangle formed by them, which is the same as the area of the
trlangle formed by v5 ~ v;, v, ~ v; with the origin is given by

(Gt s e e

. 1
A’(t,a,k) =7

Further, the constraint, A%(3, 7, k) > c for a real number ¢ is a
convex constraint on the vectors v;, uj, v, Note that for a matrix
X, the constraint DET'(X) > cis not convex; however when X is
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restricted to being positive semi-definite (as in our case), it becomes
convex.

The following is our relaxation for the minimum-length linear
ordering. (The fact that it is indeed a relaxation will be established
inLemma 8.)

min Z (t,'.'—vj)2
(i.5)EE
0 Vvi,je{l,...,n}

2151018172+ (181 + 1)

vievj 2

> i)

jes

> A5k

k€S

v

vSc{l,...,n}, Vie{l,...,n}

elvi — v [Y|SP

v

VS C{l,...,n}, Vi,j € {l,...,n}6)

The first two sets of constraints are identical to (2), (5) above.
Instead of constraining the length of each individual edge as in (4),
we minimize the squared length of the ordering (sum of squares of
edge lengths). This is alinear function of the v; - v;. The constraint
set (6) will be motivated and explained in the analysis section; ¢ is
a constant greater than 0 that can be calculated from Lemma 11.

3 The Algorithm

Givenagraph G = (V, E) with weights on the edges, the algorithm
is as follows. The only difference for the different problems is in
the SDP.

1. Solve the SDP relaxation for G. Let the solution obtained
bev],...,vn.

2. Pick a random line through the origin, i.e., a random unit
vector £.

3. Project vi,...,vn onto the line £.

4. Output the vertex-ordering along this line, i.e., in increasing
values of v; - £.

‘We show that the algorithm with the bandwidth SDP finds an
ordering of bandwidth at most O(\/% log n) of the optimum with
high probability. For the minimum-length ordering problem we
will show that this algorithm gives an ordering of length at most

O((logn) %) of the optimum, with high probability.

3.1 Overview of Bandwidth analysis

The outline of the analysis for the Bandwidth performance guaran-
tee is as follows. Imagine slicing up the ball of radius n into strips
orthogonal to £ of width b/+/n. The first claim is that with high
probability, no edge in G crosses more than O(y/Iog n) strips. The
reason is simply that for any edge (%, 7) we have |v; — v,| < b (by
constraint 4) and since £ was chosen randomly, with high probabil-
ity we have |(vi ~ v5) - | < cjvi — v;|\/Togn/+/n (i.e., the vector
v; — vj is “nearly orthogonal” to the line £). So, to prove a O(y/n)
approximation for the minimum bandwidth it suffices to prove that
with “reasonable” probability, every strip has at most O(v/n) points
inside.

For a given strip s (say, the strip corresponding to the interval
[ib/+/n, (i + 1)b/+/n] online £), the probability over the choice of
£ that a given point v € G falls into s is at most O(b/n). (This
is because there are O{n+/n/b) strips total, and the middle n/b of




them roughly equally divide up most of the probability.) Thus, the
expected number of points in any given strip is only O(b).

What about the variance? To calculate this we need to upper-
bound the probability that a given pair of points v;, v, both fall into
a given strip s. This is roughly equal to Pr[v; falls into s] - PrfJvi —
vy| - £ < bf+/]. The first quantity, as described above, is O(b/n),
while the latter quantity is O(b/d) if |vi — v;] < d. At this point,
we use constraints (5) to show that there cannot be too many pairs
of points v,, v, that are too close together. This allows us to bound
the variance which then yields the final results.

We present the formal analysis in the next section.

4 Approximation Guarantees

We start with a useful lemma about any set of vectors satisfying the
constraints (5).

Lemmal Let vy,...,v, € R” satisfy the constraints (5). Then
Jor any ball B of radius r > 1 in R™ (not necessarily centered at
the origin)

|BO{vy,...,vn}| <O(r).

Proof.  From the constraints 5 it follows that the average
painvise distance between a set of r points is Q(r). To see this,
order the numbers (vi — v,)? nondecreasingly. Suppose that more
than half of these numbers are smaller than r2/c for a sufficiently
large c.

Now there is some point « whose distances from at least r /2
other points are among the first r/2 in this ordering. But this
contradicts the constraints (5) when applied to « and this set of r /2
points. Therefore, at least half of all distances are at least r [/,
and so their average is at least /(2+/¢) which is Q(r).

Since the maximum distance between two points inside a ball
of radius r is 2r, this implies that there are only O(r) points in such
aball, 8]

Next, we make a few observations regarding random projec-
tions.

Lemma 2 Let vy, v2, vz € R®. Let £ be a random unit vector. Let
iy = v, - £. Let 0 be the angle between the vectors (v2 — vi) and
(va — v1). Then the probability that y\ lies between y» and y3 is
exactly 0/« i.e., the angle formed at v1 by v2 and vs, over .

Proof.  The probability that v; when projected to £ falls in
between the projections of v and vs3 is

Prlv2- £ <01 £ < -]+ Prlvs-£<v - £<w2- £
which is the same as
Pr[((vl ~v)- f) ((U3 K f) > 0]

which is exactly the angle between the vectors (vi~v2) and (3— v;)
divided by =,

Fact2 The volume of the n-dimensional ball of radius r is equal
2rBah 2rn=l,n/2

Ly (n7zj TEH

Here I'(z) is the “gamma” function. For a positive integer z,
I(z)=(z—1)!

and its surface area is

Lemma3 Lerv € R™. Fora random unit vector ¢,

c 2
| < —= > 1—e"/,
Pr [|v {4< \/HM] >1l-—e
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Proof. ‘The desired probability is the surface of a central band
of thickness 2c/+/n on a unit sphere, divided by the surface arca
of the whole sphere. Denote the surface area of the n-dimensional
sphere of radius r by An(r). Then the area of the region outside
the central band is less than the area of an n-dimensional sphere
of radius /1 — ¢2/n (since the remaining portions of the unit ball
after slicing out the central band can be inscribed in a ball of the
smaller radius). Using An(r) = Knr™™!, for K, as in fact 2, we
can lower bound the area of the central band as the area of the unit
sphere minus the area of a sphere of radius /1 — c2/n.

An(1) = An (\/___%?) . (1— %2_)"/2

)
—52/4

> l—-e

Lemma4 Letv € B™. For a random unit vector,

Ivl] o(3).

Proof. 'The desired probability can be upper-bounded as the
area of a cylinder with an (11 — 1)-dimensional unit ball as the base
and whose height is at most 4/c+/n, divided by the area of the

n-dimensional unit sphere. The factor of 4 is due to approximating
the area by translating along the curvature of the n-dimensional ball
for a width of 1/c+/m in both directions above and below the origin,
This is at most

Pr[lv-ll <

441 _ 4 T(2) 11
i S 7 () S 0

0

We consider the following event: two points x, i on the surface

of the ball of radius r, at a distance d from each other are projected

on to a random line. What is the probability that » and ¢ fall in

any fixed interval of width W on the line? The following lemma,
crucial to our analysis, bounds this probability.

Lemma 5 Let z, y be arbitrary vectors of length ni in R™ such that
|t —y| =dandz -y > 0. Let £ be a random unit vector. Then,
Jor any fixed & and width W,

w

._2),

Pr[as:vol, y-£5a+W] =O< 4

Proof. For convenience, rotate the sphere so that
z = (—d/f2,/n*—d*/4,0,...)

y = (d/2,\/n% = d[4,0,...).

Let vectorv = y — o« = (d,0,...), and let £ = (£, £2,...) be our
randomly chosen unit vector. Note that in order for the event in
question to occur, it must be the case that |v - £] < W, Therefore,

and

Pr[ozSa:-Z, y-Z§a+W]
<Prflo- g W] -Prla<z-L<a+W||v g W]

Since |v-£] = }41]-d, wehavePr[lv.ﬂ < W] = Pr[|£|| < W/d],
which is O(W+/n/d) by Lemma 4.



Given the event that [£;] < W/d, the inequality ¢ < z-£ <
a+ W canberelaxedtoa — W/2 < ' - &' < a -+ 3W/2, where
o' and £’ are n ~ 1-dimensional vectors consisting of the last 13 — 1
componentsof z and £, Sincex; = Oforalli > 2, this is equivalent

to
a—W/2 < lhy/n? - d?f4 < a4 3W/2.

The probability of this last event can be upper-bounded by com-
puting the aren of the largest possible strip of this width (the one
centered around the equator), By assumption, x - y > 0, implying
that d < nv/2, 50 y/n? — d?/4 > n/+/2. We can now bound the

fraction of the sphere covered by this strip by O(W/+/n) as in the
proof of Lemma 4, Thus, we finally get

_ Wyn W
Prla gz, y-LSatW] = O(T‘ﬁ)
W2
o(—d—).
[m]

The following lemma will be useful in the analysis for the
minimum length ordering problem.

Lemma 6 Let vy, vz, v3 be vectors in R®, Then on projection to
a random line, the probability that all three fall in an interval of
widith W (not a particular interval) is

0( Wn >

A(1,2,3)

Proof,  Consider the triangle vjvaus, Assume without loss of
generality that its smallest angle is the oneat v3, and that vy —v3] <
[z = va|. Notice that the event in question is invariant under
translation of the space; thus we may also assume without loss of
generality that vs is the origin,

In order for all three points to fall into an interval of width
W, it must be the case that v; and vz both fall into the inter-
val [~W, W], We bound the probability of the latter event using
Lemma 5, Specifically, let vj = nv;/|vi|, let v = nuva/|vs|, and
letd’ = v} —v}]. The event that vy and v, both fall into the interval

~W, W] implies the event that v{ and v3 both fall into the interval

~Wn/vni|, Wn/|n]] since [u] < |va]. Since v] and v} are both
length n (and v} - v > 0 by the assumption that the smallest angle
is at v3), Lemma 5 bounds the probability of this event by

W2n?
0 (———MP d,) :

Since v is the smallest angle of the triangle vyv,v3, the area of
v1vav3 Is at most twice the area of v1v5 vz where vy = va|vi|/|va].
This area equals (Jvy}/n)? times the area of v{vjvs, and that area
15 at most nd' /2. Thus, A(1,2,3) < |wi|*d'/n, and the desired
probability is

Wn? Wn
0 (]'u','p‘dl) =0 (A‘_—(l,z, 3))'

4,1 Bandwidth
We begin with the following lemma,

Lemma 7 Suppose vy,...,n satisfy the constraints (2), (3), and
(5). For a random line £, let X be the random variable denoting
the number of points v; whose projection onto £ falls into a given
Interval I of width W, Then,

E{X] = O(W+/n) and E[X* = O(W3nlogn).

Proof. Define X; to be the random variable that is 1 if the
projection of v; onto £ fallsin I and 0 otherwise. Then from Lemma
4, E[X;] = O(W/+/n), which implies

E[X] = O(W+/n).
Now consider pairs v;,v;. By Lemma 5 we have E[X;X;] =
O(W?/d;;), where dij = |vi — v,]. Therefore,

E[x] = E[}_XxI+2) XiX)]
0 (W\/E + Z %%2-)

= O(W?nlogn),

where the last line follows from Lemma 1, since Lemma 1 implies
that for any fixed i, ) . 1/di; = O(log n). o

Theorem 1 The algorithm finds an ordering whose bandwidth is
at most O(/n[blogn) times the minimum bandwidth with high
probability.

Proof. Letwvy, ..., v, bethe set of vectors of length r» found by
solving the SDP.

First, using Lemma 3 we have that every edge of G, of length
at most b in the SDP, when projected down to a random line has
length no more than W = 8b/Iogn/+/n with high probability.

Let £ be a random line and partition £ into intervals of width
W. Using Lemma 3 one more time, with high probability, all
vertices on projection fall within the middle n/b intervals (since
these have total width 84/nTogn). Since each edge spans at most
two intervals (with high probability), it suffices now just to prove
that with reasonable probability, none of these n/b intervals has
more that O(v/nb log n) vertices that project into it

Atthis point we simply use Lemma 7. By Lemma 7, the random
variable X denoting the number of vertices that on projection fall
into a given interval of width W satisfies E[X?] = O(W?n logn).
Therefore, by Chebychev’s inequality

4—1;- > Pr[X>\/4n/b\/W2nlogn]
= Pr[X > lé\/ﬂlogn].

Thus, with reasonable probability (3/4), each of the n/b intervals
has only O(+/nblogn) vertices that project into it, proving the
theorem. w}

4.2 Minimum-length ordering

Lete = (i, 5) € E, and upon projection to a random line, let ¥;; be
the random variable whose value is the dilation of e in the ordering
on the line, i.e., the number of points that fall in the span of the
edge.

From Lemmas 2 and 1 it follows that the expectation of Y;;
is at most Ju; — v;|logn. However we need to bound the second
moment, E(Y%). For this we need to bound the probability that
a pair of vertices falls in the span of e. Lemma 6 bounds this
probability as at most 1 over the area of the triangle formed by the
two points and any one of the endpoints of the edge. So, on the
whole we would like to ensure that the sum of the inverse areas of
the triangles formed by every pair with one endpoint of e is small,
This is precisely what the triangle constraints (6) achieve. Just the
spreading constraints (5) do not suffice for this.

Below we describe this formally. First we show that the SDP
is indeed a near-relaxation (there exists a solution to the SDP with
value < OPT/Iogn). Then we give the approximation guarantee
for the rounding step.
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Lemma 8 Let OPT be the value of the minimum length ordering,
and OPTspp be the objective value found by the SDP. Then,

OPT%pp < OPT*logn

Proof.  Without loss of generality, let 0,...,n — 1 be the
minimum length ordering of G. Let the value of this ordering be

OPT, ..,
OPT= [ Y (i-j)
(‘;J)GE

We will now construct an embedding of the vertices as vectors
Up, . ey tnag € RUIERIH guch that

ui = u;] < i — jly/[logn] +1

and further uy,...,un—; satisfy the constraints of the minimum
length ordering SDP. The lemma follows from these facts.
First, an example. For n=17 points, the embedding is:

(0,0,0,0,0)

(1,1,1,1,1)

2,2,2,2,0)

(3:3,3,1,1)

(4,4,4,0,0)

5,5,3,1,1)

(6,6,2,2,0)

(1,7,1,1,1)

(8,8,0,0,0)

(9,7,1,1,1)

(10,6,2,2,0)

(11,5,3,1,1)

(12,4,4,0,0)

(13,3,3,1,1)

(14,2,2,2,0)

(15,1,1,1,1)

(16,0,0,0,0)
The first coordinate is just . The second coordinate is ¢ for
i < n/2 and n — i after that. The third coordinate goes up to 12/4,
down to zero, back up to n/4 and back down to zero again, And so
on

In general, let d be the smallest integer such that 2¢ > n. Then
i is mapped to

(i, s mod 247! — 2( mod 2¢79)],...,
i mod 29=H1! — 2(i mod 297%),...,i mod 2).

That s, the I** coordinate of u, is |§ mod 29—+ ~2(§ mod 2%~)],
forl =1,...,d.

Since the lth coordinate of u; differs from the Ith coordinate of
u, by at most |{ — |, we have (u; — u,)* < d(i — 5)*. So, we
have Ju, — u| < |i — j]\/|logn| + 1 as desired. Constraints (5)
are satisfied because the construction of the first coordinate ensures
that for any 3, 7, |u, — u,| > [§ — 4l

Finally, we just need to show that constraints (6) are satisfied.
This follows from the fact, given as Lemma 11 in the appendix, that
for any 1 < j < k the area of the triangle formed by u;, uj, vx is
Q(lj = dlk - 31).

These observations imply that up, ..., u,—1 satisfy the SDP,
and their objective value is O(OPT/Iogn). [n]

Let vy, ..., vn be the set of vectors found by solving the SDP.
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Lemma 9
E(Y2) = O(Jv; — v,[*log? n)

Proof. Fix some edge (4, 7). Define the random variable X,
foreachk = 1,...,n,k # 1, 7 to be 1 if on random projection vy
is projected in between v; and v; (falls in the span of the edge) and
0 otherwise. Then

Yij = Z X
ki,g
and

E(Y2) SEXH+ Y B(XiX)
ki g Kyl
E E(X:) + Z Pr[k, 1 fall betweeni, j]
ksfig ki
E(Y;)+ Y Prlk,l,ifallin aninterval
Edsti,g
of width |v; — vj|/+/n]

o v — v;]?
o= wllogn+ 3 Sty
EREIN

IA

IA

IA

S — ) [ 2 .__—.l
IU' UJI logn + IU. UJI Z A(k,l, ‘-)
b4,

O(Iv.- —u,Plog? n) .
The last step above follows from the constraint set (6) as follows:

1
2.2 AG, 1)

ket ik

> am s
by A(k,1,1)

For each pair 4, k the inner sum is O((logn)/jvr — v]). To see
this, order the remaining vertices according to their distance from ¢
(say) and then the constraints imply that the triangle induced by the

p** point in this order has area at least Q(plv.' - u;,-l). Hence

1 1 1
L2 TERD S Xl 2 p
ki 1k ki 1<psSn
1
clogn ;% _—-lui —or]

O(log? n).

Ll

Here ¢ is a constant. The last step is implied by the constraint
set (5). o

Theorem 2 The expected length of the ordering found by the algo-
rithm is O ((log n) 2) times the optimum,

Proof 'The expected value of the square of the length of the
ordering found by our algorithm is

B( Y Y: > E(Y3)

('.!J.)EE (“lJ)eE

E O(|vi — vj|*log’ n)

(f)EE
O(OPT%pplog’n)
0(0OPT*log’ 1),

IA

IA



where OPTsp p is the objective value of the SDP and hence (within
a factor of 4/fogr3) a lower bound on the minimum length of any
linear ordering (this implics that OPT?% p p is the minimum value of
the square of the length of any ordering, OPT?). The result on the
Jength of the ordering follows with high probability using Markov’s
inequality and taking square roots. o

b How good is the SDP?

What is the integrality gap of our first SDP? While our rounding
procedure for the first SDP gives us an upper bound on the gap, it
is possible that the gap is much smaller in reality. Note that our
analysis is tight only for the specific rounding procedure we used,
not the SDP itself,

Here we give some facts that indicate that the gap might be
much smaller, One of the known lower bounds for the bandwidth
of n graph is called the density lower bound{3]. It is defined as

_ |H|-1
Ba = max diam(H)"

where the maximum is taken over all connected subgraphs of G.

The exact strength of this lower bound is an open problem, but
the largest known gap is O(logn) for an n-vertex graph. One of
the known constructions of graphs which achieve this gap, so-called
Cantor combs, was described by Chung and Seymour [2].

The following lemma says that the integrality gap of our simple
relaxation is no larger than the gap between the density lower bound
and the optimum,

Lemma 10 Let (z,b) be the optimal solution of the bandwidth SDP.
Thenb = Q(Ba).

Proof. Let A be the subgraphof G that achieves the maximum
density, Since the average distance d;; between points in the solu-
tion corresponding to vertices of H is Q(|H]), there is a vertex v
of H such that the total sum of distances between z, and the other
points in H is Q(|H{?). But this sum is at the same time at most
b H|diam(H ), and so b| H|diam(H) = Q(|H|?). That s,

)

6 Conclusions and further work

Along the lines of the constraint set (6), and Feige's result {4], it is
possible to refine the semi-definite relaxation further (by using the
constraints on k-simplices instead of just edges and triangles), This
yields polylogarithmic approximations for any L. normin O(n?")
time and also a polylogarithmic approximation for minimum band-
width in quasipolynomial time (n®(%s ")) by considering subsets of
size logn, It is an open question as to whether we can solve this
latter relaxation in polynomial time,
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Appendix

Lemma 11 If u1,...,un are the points in the ([logn| + 1)
dimensional space defined in the proof of lemma 8, there is a con-
stant ¢ > 0.008 such that A(%,3,k) 2 c(3 — 1) « (k — ) for all
i<j<k.

Proof. The idea of the proof is as follows: for a triangle defined by
u;, u; and ug, we considerits projection on a two-dimensional plane
P, spanned by the coordinate vectors ey and e, for different values
of £. Clearly, the area of each such projection is a lowerbound onthe
area of the original triangle. The area of a triangle can be calculated
as %ab sin¢ where a and b are two sides of the triangle and ¢ is the
angle between them. If ufujuj, is the projection of u;u,ux onto
Py, then Juj — uj| > (5 — ) and [u} — u}] > (k — ). Thus,if we
can show that for each triple 1, 7, % there exists a coordinate £ such
that the angle at u_',- (the projection of u; onto P;) is bounded above
by some universal constant ¢, we will be done. In what follows we
use an inductive case analysis to show that we can always ensure
¢ < 179°,

We assume without loss of generality that § < nf2 and k >
n/2. Afk < n/2 ori > n/2 then we can work with n/2 instead
of n and the claim holds by induction. The two cases, j > n/2 and
J < nf2 are the same by symmetry so we only work with the first
one.) If k > 9n/16 then after projecting to P;, the angle at uj is at
most 173°, so we can assume n/2 < k < 9n/16.

If 5 < n/4, then projecting onto P> works since the slope of the
line through uj and u} is at most 1/16, so the angle at uf is almost
45°. £ > n /4 the claim holds by induction,

Now there are four cases left.

Ifi <n/8andn/f4 < j < 3n/8, we're done since clearly the
angle at u} (in P3) is at most 150°.

Assume now thatn/8 < i < n/4 andn/4 < j < 3n/8 and
denote @« = nf4 — i, 8 = n/4 - j. There are only two subcases:

(1): a > 2B. Project onto P5. Then the slope of the line
through u} and u} is —1/3 and ¢ < 168°.

(2): a < 33/2. We project onto Ps. The slope of the line
through u} and u} is 1/5and ¢ < 173°.

The next caseis wheni < n/8 and3n/8 < j < n/2. If the
slope through uj and u}, in P; is less than —1/2.3, the angle at u}
is at most 179°. If the slope is more than —1/2.3, then P; should
be used as the angle at u}; will be at most 159°.

Finally, suppose n/8 < ¢ < n/4 and 3n/8 < j < n/f2.
This case is analogous to the previous one, but we use either Py
(if the slope through u} and u}, in P; is less than —~1/2.3), or P;
(otherwise). o



