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The complexity lower bound Q(log N) is proved for ran-
domized computation trees (over reals with branching signs
{<,>}) for recognizing an arrangement or a polyhedron
with N faces. A similar lower bound is proved for ran-
domized computation trees over any zero-characteristic field
with branching signs {=, #} for recognizing an arrangement.
As consequences, this provides in particular, the randomized
lower bound Q(n?) for the KNAPSACK problem (which was
proved in case of the randomized computation trees over re-
als in [11]) and also the randomized lower bound 2(nlog n)
for the DISTINCTNESS problem (which is thereby the sharp
bound). The technical core of the paper is a lower bound
on the multiplicative complexity of a polynomial in terms of
its singularities.

Introduction.

The complexity lower bounds for deterministic algebraic com-

putation trees were obtained in [26], [2], [4], [29], [30], [22]
where the topological methods were developed. In partic-
ular, these methods provide the lower bound Q(log N) for
recognizing a union of planes (of different dimensions) with
N faces, under a face we mean any nonempty intersection
of several among these planes. As consequences we obtain

the lower bound Q(nlogn) for the DISTINCTNESS prob-

lem U {X: = X;} ¢ IR", EQUALITY SET problem
1<i<yj<n

{

(

(1,3 &n, Y1,..,Yyn) : (21,...,25) is a permutation of
Y, yn)} C IR®™ and the lower bound Q(n?) for the

KNAPSACK problem U {Zx = 1}

Icq{1,...,n} \:€erl

[14], [15] a differential-geometric approach for recognizing
polyhedra (to which the mentioned topological methods are
not applicable) was proposed which gives the lower bound
Q(log N/loglog N) where N is the number of faces of the
polyhedron.

The first results on the randomized computation trees
(RCT) appeared in [24], [19], [9], [10] but for decade an open

CcIR". In
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problem remained to obtain non-linear complexity lower

bounds for recognizing natural problems by RCT. In [13]
for the first time the nonlinear lower bound was obtained
for somewhat weaker computational model of the random-
ized algebraic decision trees in which the testing polynomi-
als in the branching nodes are of a fixed degree, rather than
the computation trees in which the testing polynomials are
computed along the path of the computation, so they could
have in principle an exponential degree. The approach of
[13] provides the lower bound Q(log N) for recognizing an
arrangement, i.e. a union of hyperplanes, and for recogniz-
ing a polyhedron, where N is again the number of faces. In
particular, this leads to the lower bound Q(nlogn) for the
DISTINCTNESS problem and Q(n2) for the KNAPSACK
problem. For the EQUALITY SET problem a complexity
lower bound on a randomized algebraic decision tree seems
to be an open question.

But the method of [13] does not provide a lower bound for
more interesting model of RCT. Only in [11] a method was
developed which gives in particular, a lower bound Q(n2) for
the KNAPSACK problem on RCT. This method relies on
the obtained in [11] lower bound on the multiplicative bor-
der complexity of polynomials. The lower bound Q(log N)
of [11] holds for arrangements or polyhedra which satisfy
some special conditions which fail, for example, for the DIS-
TINCTNESS problem.

In this paper we consider RCT over an arbitrary zero-
characteristic field F' with branching signs {=,#} and also
more customary RCT over reals with branching signs {<,
>}. We remind (see e.g. [24], [19], [13]) that RCT T =
{T.}a is a collection of computation trees T, which are
chosen with the probabilities py > 0, Za pa = 1 such that
T gives for any input a correct output with a probability
greater than 1 — v for a certain v < 1/2 which is called the
error probability of RCT.

Let Hi,...,Hpy C F" be a family of hyperplanes, denote
by S = Hi U---U H,, the arrangement. Under k-face of S
we mean any nonempty intersection H;, N---NH; _, of the
dimension dim(H;, Nn---NH; _,)=k.

Theorem 1. Assume that for a certain constant co < 1
any subarrangement Sy = H;, U---U H; of S where ¢ >
com, has at least N'© faces of all the dimensions. Then
the depth of any RCT over F recognizing S, is greater than
Q(logy, N© —2n —log, n).

Corollary 1.1. Any RCT over F' solving the DISTINCT-
NESS problem, has the complezity greater than Q(nlogn).

The idea of the proof of the necessary in theorem 1 lower
bound on N(® one can find in [13]. Observe that the lower



bound in the corollary is nearly sharp since it is possible to

II -
1<i<j<n
X;) with the complexity O(nlog® n) ([20], [27]). If to count
only nonscalar multiplications/divisions (i.e. to consider the
multiplicative complexity) then the lower bound from the
corollary becomes sharp also due to [20], [27].

Corollary 1.2. Any RCT over F solving the KNAP-
SACK problem, has the complexity greater than Q(n?).

The proof of the necessary lower bound on N© one can
find in [11].

Corollary 1.2 can be generalized to the complexity lower
bound Q(r?log ) for RCT solving the RESTRICTED IN-
TEGER PROGRAMMING ([19]) U C F" (ob-

a€{0,...,j—1}7
viously, it converts into the KNAPSACK problem when
Jj=2).

In case of more customary RCT over reals IR with the
branching signs {<, >} we consider recognizing either an
arrangement S = Ui<;<m i C IR" or a polyhedron St =
ﬁ1<i<mH,'+ C IR", where H;" is a half-space bounded by the
hyperplane H;,1 < ¢ < m. Wesay that ' = H;,n---NH
is k-face of ST if dim(T'N St) = k.

Theorem 2. Let for some positive constants c,c1 and
k < (l1—ci)n an arrangement § = S = Ui<i<mH; or a poly-
hedron S = ST = ﬁ1<i<mH,'+ have at least Q(mc("_k)) k-
faces. Then for any RCT recognizing S, its depth is greater
than Q(nlog m).

Corollary 2.1. Any RCT over reals solving the DIS-
TINCTNESS problem, has the complexity greater than
Q(nlogn).

Similar to the case of RCT over a zero-characteristic field
(cf. corollary 1.1) the complexity bound is sharp since one
can (deterministically) sort the input real numbers z1, ..., 2,
with the complexity O(nlogn).

Corollary 2.2. (see also [11]). Any RCT over reals
solving the KNAPSACK problem, has the complexity greater
than Q(n?).

For the similar to the DISTINCTNESS problem SET
DISJOINTNESS {(#1, .., &n,Y1,---,Yn) : 2; # y;+ C IR*"
(being a complement to an arrangement) one obtains (al-
most literally as in the corolla ries 1.1, 2.1) the lower bound
Q(nlogn) and the upper bound O(nlog® n) (relying on the
computin g of the resultant [20], [27]) on the randomized
complexity.

In the next two sections we give sketches of the proofs of
theorems 1,2.

The construction from [5] of RCT with the linear com-
plexity O(n) for the EQUALITY SET problem (which is the
union of n-dimensional planes in 2n-dimensional space, see
above) shows that the consideration just of hyperplanes in
theorems 1,2 is crucial, and the non-linear randomized com-
plexity lower bounds cannot be directly extended to unions
of planes of arbitrary dimensions.

In [3] deterministic computation trees with the
branching signs {=,#} over algebraically closed fields of
positive characteristics were considered, and the complexity
lower bound Q(log C') for recognizing an algebraic variety
was established, where C' is the degree of the Zeta-function
of the variety. It is an open question to obtain non-linear
complexity lower bounds for randomized computation trees
over the fields of positive characteristics.

Let us also mention the paper [12] where a complexity
lower bound was established for the randomized analytic de-

compute (deterministically) the discriminant

tnk

cision trees (rather than for more customary algebraic ones)
and also the paper [6] where a lower bound was ascertained
for a randomized parallel computational model (rather than
a sequential model considered in the quoted papers includ-
ing the present one).

1 RCT over zero characteristic fields.

In this section we give a sketch of the proof of theorem 1
(the complete proof one can find in [7]).

Assume for the time being that the field F' = F' is al-
gebraically closed. Denote by Ng the number of O-faces (in
other words, Vertices) of the arrangement S = H1U---UH,,.

Similar to [27], [17] consider the graph of the gradient
map of a polynomial 0 Z g € F[X1,..., Xx]

dg dg

G:{(l‘:(.’,I,‘h...,.’,l)n),ﬁ(.f),...,m

(x))} C F"
The main technical tool in the proof of theorem 1 is the
following lower bound on the degree deg G (defined as the
degree of the projective closure of G [23], [25]).

Lemma 1.1. degG > ;Z—EL

Denote by C(g) the multiplicative complexity of g. The
results from [27], [1] imply the inequality degG < 23¢(9)
which together with lemma 1.1 entail the following lower
bound on the multiplicative complexity of g.

Proposition 1. If a polynomial 0 Z g € F[X1,..., X»]
vanishes on the arrangement S with Ny vertices then C(g) >
%(log2 Ny — 2n).

We remark that if N; denotes the number of {-faces of S
then one obtains the similar lower bound %(log2 Ni—2(n-1))
by means of intersecting S with a (n —I)-dimensional plane.

Now let F' be an arbitrary zero characteristic field. To
complete the proof of theorem 1 observe that if RCT T =
{7}« recognizes S with an error probability v < 1/2, then
for every a CT T, possesses the unique ”thick” path (from
the root to a leaf), along which all the testing polynomials
fiv.ooy fx € F[X4,..., X,] have the branching sign #. One
can prove that with a probability greater than 1 — 2y > 0

the product fi--- frx vanishes on at least ¢ > 14_-53"1 of
hyperplanes among Hi, ..., H,. Taking into account that

~ could be made as close to zero as desired at the expense of
increasing the depth of RCT by a suitable constant factor
[19], we apply proposition 1 and the remark just after it
to the polynomial fi--- fi (notice that the multiplicative
complexity of the latter product does not exceed 2k — 1),
and get a lower bound on k. Since the complexity of RCT
under consideration is greater or equal to k, one completes
the proof of theorem 1.

2 RCT over reals

In this section we give a sketch of the proof of theorem 2
(the complete proof one can find in [8]).

Again let F' be a zero characteristic field and I' = H;, N
---MH; _, be k-face of the arrangement S = HiN---N Hp,.
Fix arbitrary coordinates Z1,...,Z; in I'. Then treating
H;. ..., H;, _, as the coordinate hyperplanes of the coor-
dinates Yi,...,Y,_g, one gets the coordinates Zi,..., 2y,
Yi,...,Yax in F™. The next construction of the leading
terms of a polynomial is similar to [13], [11].

For any polynomial f(Z1,...,Zk, Y1,...,Yn_r) €
FlZi,...,Zx, Y1,..., Yn_i] following [13], [11] define its lead-
ing term

m’ m’ m
1 k my E’ n—k
aZ, "'Zk Yyt n—k



0 # a € F (with respect to the coordinate system 71, ..
Yi,...,Y,_x) as follows.

mn—k such that Y:i’;_k

Consider the polynomial

m _ f
Oif - (Ymn_k

n—k

EF[Zl,..

L} Zk7
First take the minimal integer
occurs in the terms of f = f(o).

)(Zl,...,Zk,Yl,...,Yn_k_l,o)

'7Zk7Y17~~~7Yn—k—1]

which could be viewed as a polynomial on the hyperplane
H;, _,. Observe that m,_z depends only on H; _, and not
on Z1,...,%k,Y1,..., Yn—k—1, since a linear transformation
of the coordinates 71,..., 2%, Y1,...,

Y,—k—1 changes the coefficients (being the polynomials from
FlZy,...,Zx,Y1,...,Yn_g_1]) of the expansion of f in the
variable Y,_x, and a coefficient vanishes identically if and
only if it vanishes identically after the transformation. Then
f(:n) is the coefficient of the expansion of f at the power
Yy tnok,

" Skecond7 take the minimal integer m,_z_1 such that

ani’;__kl_l occurs in the terms of f(l).

ani’;__kl_l is the minimal power of Y,_x_1 occurring in the
terms of f in which occurs the power ani’;_k. Therefore,
Mp—k, Mn—k—1 depend only on the hyperplanes H,_p,

Hp_r—1 and not on Z1,..., %%, Yi,...,Yn_k_2, since (as
above) a linear transformation of the coordinates Z1, ..., Z,
Yi,...,Yn_k—2 changes the coefficients (being the polyno-
mials from F[Z1,..., 2k, Y1,...,Ya_r_2]) of the expansion
of f in the variables Y,_x, Yn—x—1 and a coefficient van-
ishes identically if and only if it vanishes identically after
the transformation. Denote by 0 Z f(2) € FlZy,...,Zx,
Yi,...,Y_k_2] the coefficient of the expansion of f at the

: Mp—k—1 Mp—k :
monomial Y, 77" Y, 7", Obviously

In other words,

@) _ Fo
f = W (Zl,...,Zk,Yi,...,Yn_k_270)

n—k—1

One could view f(2) as a polynomial on the (n—2)-dimensional
plane H; , N"H; _,_,.

Continuing in the similar way, we obtain consecutively
the (non-negative) integers my_x, mp_g—1,...,m; and the
polynomials

0z fYerF[Z,..

'7Zk7 Y17~~~7Yn—k—l]

1 <1 < n —k, by induction on {. Herewith, ani’;__kl:l"'l

is the minimal power of Y,_x_;y1 occurring in the terms

of f, in which occurs the monomial Yﬁ’;__kl;;“ ~~~ani’;_k
for each 1 <1 < n — k. Notice that mp—g,..., Mp_r—;
depend only on the hyperplanes H; _,,...,H; _,_, and not

on Zi,..., %k, Yi,..., Yn—k—i—1. Then f(l) is the coefficient

of (tihe expansion of f at the monomial ani’;__kl:l"'l e ani’;_k
an

O]

FUHD = (%) (Zy,.. Zr, Y1, ..., Ya_g—i-1,0)
n—k—1

Thus, f 0 depends only on H. ,H,

Ziyee  Zry, Y1,..., Yo—k—1—1. One could view f(l) as a poly-
nomial on the (n—{) dimensional plane H; _, N---NH,

g1 Hi,_,_, and not on
tp—k—l41°
Continuing, we define also m}, ..., m}.
7 7
Finally, the leading term Im(f) = aZ;"* - -- Z;nleml
ani’;_k is the minimal term of f in the lexicographical or-
dering with respect to the ordering Z1 > -+ > Zx > Y1 >

- > Y,_k. The leading term lm(f(l)) = ozZlml1 ~~~Z;nk
Y™ ~~~ani’;__kl_l, we refer to this equality as the mainte-
nance property (see also [13], [11]).

From now on the construction and the definitions differ
from the ones in [13], [11].

For any polynomial g € F[Xi,...,X,] one can rewrite

it in the coordinates g(Z1, ..., Zx, Y1,..., Yo_x) and expand
G=9s+Ggst1+ -+ gs,, where g; € F[Z1,..., Zk,
Yi,...,Yn_k], s < 7 < 51 is homogeneous with respect to the

variables Y7, ...
sider the leading term im(g.) = ozZlm1 .. Z;nk Y. ani’;_k
and denote by Var 1 (9) = Var(H’l"”’H’n—k)(g) the num-

ber of positive (in other words, nonzero) integers among
Mp—k,..., M1, note that s = m1 4+ -+ + mp_r. As we have

, Yn—i of degree 3 and g. = g£°) # 0. Con-

shown above Var(H’l"”’H’n—k)(g) is independent from the

coordinates Z1, ..., Zx of I'. Obviously, Var (Hiy "”’H’n—k)(g)
coincides with the number of 1 < I < n — k such that
Yo—k—1 ggl), the latter condition is equivalent to that the va-
riety {ggl) =0}nH; _,N---NH
H,‘n_k n---N 1"’[,‘71_k_l+1 N H
H,‘n_k n---N Hin—k—z+ .

It is convenient (see also [13], [11]) to reformulate the
introduced concepts by means of infinitesimals in case of a
real closed field F' (see e.g. [18]). We say that an element
e transcendental over F is an infinitesimal (relative to F) if
0 < & < a for any element 0 < @ € F'. This uniquely induces
the order on the field F'(¢) of rational functions and further

on the real closure F(e) (see [18]).

in_k_141 Contains the plane
(being a hyperplane in

tpn—k—1

One could make the order in F(¢) clearer by embedding
it in the larger real closed field F/(('/°°)) of Puiseux series
(cf. e.g. [16]). A nonzero Puiseux series has the form b =
Zi>i0 Bie'!?, where —oo < 1y < oo is an integer, 3; € F for
every integer i; 3, # 0 and the denominator of the rational
exponents § > 1 is an integer. The order on F((el/oo)) is
defined as follows: sgn(b) = sgn(Bi,). When 1o > 1, then
b is called an infinitesimal, when 1¢ < —1, then b is called
infinitely large. For any not infinitely large b we define its
standard part st(b) = st.(b) € F as follows: when i; = 0,
then st(b) = Bi,, when 4o > 1, then st(b) = 0. In the
natural way we extend the standard part to the vectors from
(F((el/oo)))" and further to subsets in this space.

Now let 1 > &2+ > epy1 > 0 be infinitesimals, where
€1 1s an infinitesimal relative to IR; then e;41 is an in-
finitesimal relative to IR(e1,...,&;) for all 0 < 1 < n. De-

note the real closed field IR; = IR(e1, ..., &), in particular,
IRy, = IR. For an element b € IR, for brevity denote the
standard part st;(b) = ste, ., (Ste, , - (ste, (b)) € IRy
(provided that it is definable).

Also we will use the Tarski’s transfer principle [28].
Namely, for two real closed fields Fi C F2 a closed (so,
without free variables) formula in the language of the first-
order theory of F} is true over F} if and only if this formula
is true over Fs.

An application of Tarski’s transfer principle is the con-
cept of the completion. Let F1 C F3 be real closed fields and
¥ be a formula (with quantifiers and, perhaps, with n free
variables) of the language of the first-order theory of the field
Fi. Then ¥ determines a semialgebraic set V' C F{'. The
completion yiF) FJ' is a semialgebraic set determined by
the same formula ¥ (obviously, V' C V(FQ)).

One could easily see that for any point (z1,...,2x) € IR}
and a polynomial g € IR[Xi,...,Xs] such that



g&""“) (#1,...,2k) # 0 (we utilize the introduced above no-
tations) the following equality for the signs
ot cr::l_"k_k sgn(ggn_k) (z1,..-,2K)) =
sgn(g(z1, -« 2k, C1ERF1En41; - - - On—kEnEntl)) (1)

holds for any o1,...,0n—x € {—1,1}. Forany 1 <i<n—k
such that m; = 0 (1) holds also for o; = 0, agreeing that
0% = 1. Moreover, the following polynomial identity holds:

g2y, ) =
(g(Zl, ey Zk,6k+16n+1, .. .,6n6n+1))
st

my Mp—k ¢
ki1 En €nti1

Now let F' be an algebraically closed field of zero char-
acteristic. Take a certain 0 < n < 1 (it will be specified
later). We call k-face I' = H;;, n--- N H; _, of the ar-
rangement S strongly singular (with respect to a polynomial
g € F[X1,..., X,]) if Var P ") (g) > n(n — k). De-
note by N the number of strongly singular k-faces of S with
respect to g (since g will be fixed for the time being, in the
sequel we omit mentioning of g in this context).

The following lower bound on the degree of the graph G
of the gradient map of g (see section 1) strengthens lemma
1.1, being the main technical tool in the proof of theorem 2.

Lemma 2.1 deg G > Q(N/(m—m =k giny)

Similar to proposition 1 from section 1 this lemma im-
plies the following proposition.

Proposition 2. Let a polynomial g € F[X1,..., Xx]
have N strongly singular k-faces in an arrangement H; U
-++UH,; C F". Then the multiplicative complezity C(g) >
1/3(log N — (n — k)(1 — n)log m — 4n— const).

For a family of polynomials fi,...,f: € IR[X1, ..., Xx]
we define Var (F)(fl, ..., ft) to be the number of the vari-
ables among Y1, ..., Yo_x which occur in at least one of the
leading terms Im(f1¢,),. .., im(ft s, ), where Hy,, ..., Hi _,
are the coordinate hyperplanes of the coordinates Yi,...,
Yn—x, respectively; [ 2 2 Ve, Yok) =
fi(X1,...,Xn) and Iy =tie;+fiej414- -+, herewith f;, is
homogeneous with respect to the variables Y1, ..., Y,_x of
degree l and f;; Z 0,1 < j < t. Because the expansion into
the homogeneous components 71 7t = (fi,e1 froe) +

- starts with f1., -+ ft,s,, we have Im(f1,¢; -+ fe,s,) =
Im(f1,6,)--Im(fe,s,) and hence Var(H’l"”’H'"—k)(ﬁ < fe)
= Var(F)(fl e f) = Var(r)(f1,~~~,ft).

For any CT T: we denote by Var () (Tl) =
Var(H’l"”’H’n—k)(Tl) the maximum of the Var (F)(fl < fe)
taken over all the paths of 71, whose fi,..., fi are testing
polynomials along the path.

The proof of the following "local” (i.e. concerning a sin-
gle face) lemma relies on the relation (1) and is similar to
lemma 1 [13], [11], but differs from it due to the different
definition of the leading term lm.

Lemma 2.2. Let T = {Ta} be an RCT recognizing

a) an arrangement S = Ui<i<mti such that ' = H; N
-~ H; _, tsk-face of S, or

b) a polyhedron st = mlSiSmH,‘-l- such that ' =
mlS]Sn—kHij 18 k-face of st
with error probability v < % Then Var(H’l"”’H’n—k)(Ta) >
(1 —27)*(n — k) fora a fraction of ;:31 of all T, ’s.

The following ”global” (i.e, concerning the set of all faces)
lemma is similar to lemma 2 from [13], [11], but its proof is
considerably simpler.

Lemma 2.3. Let S = S or S = ST satisfy the conditions
of the theorem 2. Assume that OT T’ for some constant
n>1—c, satisfies the inequality Var™® (T") > n(n — k) for
at least M > Q(mc("_k)) of k-facesT" of S. Then the depth
t of T' is greater than Q(nlogm).

Proof of lemma 2.3: To each k-face I' of S satisfy-
ing the inequality Var (™ (T") > n(n — k), we correspond
a path in T’ with the testing polynomials fi,..., fi, € IR
[X1,...,Xn],to < t such that Var M) (f, - fi,) > Var O (T")
(in other words, I' is strongly singular k-face for fi--- fi,,
see section 1). Denote f = f1- fi,.

Assume that 3" < O(m("_l"'c)("_k)/2)7 otherwise we are
done. Then there exists a path of 7" (let us keep the nota-
tion f1,..., fi, for the testing polynomials along this path)
which corresponds to at least N = Q(m(c_"+1)("_k)/2) of
strongly singular k-faces I" for f (because there are most 3
paths in 7”). Proposition 2 implies that the multiplicative
complexity C(f) > %((n —14¢)(n—k)logm — 4n — const).
Obviously C(f) < t+to —1 < 2t — 1 (cf. the proof of
theorem 1 in section 1). Hence t > Q(nlogm) that proves
lemma 2.3.

Finally we show how to deduce the theorem 2 from lem-
mas 2.2 and 2.3. Consider RCT {7,} recognizing & with

error probability ~ < % Lemma 2.2 and counting imply

the existence of T, such that the inequality Var (") (Tag) >

1—27)3(n—k) is true for M = 222X Q(m "~} of k-faces
2(1—7)

I'of §. Apply lemma 2.3 to CT T = Ty, with n = (1—27)2.
Since the error probability v could be made a positive con-
stant as close to zero as desired at the expense of increasing
by a constant factor the depth of RCT [19], take v such
that n > 1 —c. Then lemma 2.3 entails that ¢t > Q(nlog m),
which proves theorem 2.

3 Deterministic computation trees

Treating a deterministic computation tree (CT) as a partic-
ular case of RCT one can release the restriction on s ubar-
rangements in theorem 1 and obtain the following result.

Corollary 1.3 If a CT (over a zero characteristic field)
recognizes an arrangement with N faces (of all the dimen-
sions ) then its depth exceeds Q(log N).

For CT over reals in a similar way one can release the
restriction on the number of faces in theorem 2.

Corollary 2.3 If a OT (over reals) recognizes either an
arrangement or a polyhedron 8 with N faces (of all the d
imensions) then its depth exceeds Q(log N).

In case of an arrangement one could deduce corollary 2.3
from [2], in case of a polyhedron the corolla ry strengthens
the result from [15].

Acknowledgement. I would like to thank Marek Karpin-
ski for useful discussions.
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