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Randomized Complexity Lower BoundsD. Grigoriev1Departments of Mathematics and Computer ScienceThe Pennsylvania State UniversityUniversity Park, PA 16802dima@cse.psu.eduThe complexity lower bound 
(logN) is proved for ran-domized computation trees (over reals with branching signsf�;>g) for recognizing an arrangement or a polyhedronwith N faces. A similar lower bound is proved for ran-domized computation trees over any zero-characteristic �eldwith branching signs f=; 6=g for recognizing an arrangement.As consequences, this provides in particular, the randomizedlower bound 
(n2) for the KNAPSACK problem (which wasproved in case of the randomized computation trees over re-als in [11]) and also the randomized lower bound 
(n log n)for the DISTINCTNESS problem (which is thereby the sharpbound). The technical core of the paper is a lower boundon the multiplicative complexity of a polynomial in terms ofits singularities.Introduction.The complexity lower bounds for deterministic algebraic com-putation trees were obtained in [26], [2], [4], [29], [30], [22]where the topological methods were developed. In partic-ular, these methods provide the lower bound 
(logN) forrecognizing a union of planes (of di�erent dimensions) withN faces, under a face we mean any nonempty intersectionof several among these planes. As consequences we obtainthe lower bound 
(n log n) for the DISTINCTNESS prob-lem [1�i<j�nfXi = Xjg � IRn, EQUALITY SET problemf(x1; : : : ; xn, y1; : : : ; yn) : (x1; : : : ; xn) is a permutation of(y1; : : : ; yn)g � IR2n and the lower bound 
(n2) for theKNAPSACK problem [I�f1;:::;ng(Xi2I xi = 1) � IRn. In[14], [15] a di�erential-geometric approach for recognizingpolyhedra (to which the mentioned topological methods arenot applicable) was proposed which gives the lower bound
(logN= log logN) where N is the number of faces of thepolyhedron.The �rst results on the randomized computation trees(RCT) appeared in [24], [19], [9], [10] but for decade an open1Supported by NSF Grant CCR-9424358.

problem remained to obtain non-linear complexity lowerbounds for recognizing natural problems by RCT. In [13]for the �rst time the nonlinear lower bound was obtainedfor somewhat weaker computational model of the random-ized algebraic decision trees in which the testing polynomi-als in the branching nodes are of a �xed degree, rather thanthe computation trees in which the testing polynomials arecomputed along the path of the computation, so they couldhave in principle an exponential degree. The approach of[13] provides the lower bound 
(logN) for recognizing anarrangement, i.e. a union of hyperplanes, and for recogniz-ing a polyhedron, where N is again the number of faces. Inparticular, this leads to the lower bound 
(n log n) for theDISTINCTNESS problem and 
(n2) for the KNAPSACKproblem. For the EQUALITY SET problem a complexitylower bound on a randomized algebraic decision tree seemsto be an open question.But the method of [13] does not provide a lower bound formore interesting model of RCT. Only in [11] a method wasdeveloped which gives in particular, a lower bound 
(n2) forthe KNAPSACK problem on RCT. This method relies onthe obtained in [11] lower bound on the multiplicative bor-der complexity of polynomials. The lower bound 
(logN)of [11] holds for arrangements or polyhedra which satisfysome special conditions which fail, for example, for the DIS-TINCTNESS problem.In this paper we consider RCT over an arbitrary zero-characteristic �eld F with branching signs f=; 6=g and alsomore customary RCT over reals with branching signs f�;>g. We remind (see e.g. [24], [19], [13]) that RCT T =fT�g� is a collection of computation trees T� which arechosen with the probabilities p� � 0;P� p� = 1 such thatT gives for any input a correct output with a probabilitygreater than 1� 
 for a certain 
 < 1=2 which is called theerror probability of RCT.Let H1; : : : ; Hm � Fn be a family of hyperplanes, denoteby S = H1 [ � � � [Hm the arrangement. Under k-face of Swe mean any nonempty intersection Hi1 \� � �\Hin�k of thedimension dim(Hi1 \ � � � \Hin�k ) = k.Theorem 1. Assume that for a certain constant c0 < 1any subarrangement S1 = Hi1 [ � � � [ Hiq of S where q >c0m, has at least N (0) faces of all the dimensions. Thenthe depth of any RCT over F recognizing S, is greater than
(log2N (0) � 2n � log2 n).Corollary 1.1. Any RCT over F solving the DISTINCT-NESS problem, has the complexity greater than 
(n log n).The idea of the proof of the necessary in theorem 1 lowerbound on N (0) one can �nd in [13]. Observe that the lower



bound in the corollary is nearly sharp since it is possible tocompute (deterministically) the discriminant Y1�i<j�n(Xi �Xj) with the complexity O(n log2 n) ([20], [27]). If to countonly nonscalarmultiplications/divisions (i.e. to consider themultiplicative complexity) then the lower bound from thecorollary becomes sharp also due to [20], [27].Corollary 1.2. Any RCT over F solving the KNAP-SACK problem, has the complexity greater than 
(n2).The proof of the necessary lower bound on N (0) one can�nd in [11].Corollary 1.2 can be generalized to the complexity lowerbound 
(n2 log j) for RCT solving the RESTRICTED IN-TEGER PROGRAMMING ([19]) [a2f0;:::;j�1gn � Fn (ob-viously, it converts into the KNAPSACK problem whenj = 2).In case of more customary RCT over reals IR with thebranching signs f�;>g we consider recognizing either anarrangement S = [1�i�mHi � IRn or a polyhedron S+ =\1�i�mH+i � IRn, whereH+i is a half-space bounded by thehyperplane Hi; 1 � i � m. We say that � = Hi1\� � �\Hin�kis k-face of S+ if dim(� \ S+) = k.Theorem 2. Let for some positive constants c; c1 andk � (1�c1)n an arrangement S = S = [1�i�mHi or a poly-hedron S = S+ = \1�i�mH+i have at least 
(mc(n�k)) k-faces. Then for any RCT recognizing S, its depth is greaterthan 
(n logm).Corollary 2.1. Any RCT over reals solving the DIS-TINCTNESS problem, has the complexity greater than
(n log n).Similar to the case of RCT over a zero-characteristic �eld(cf. corollary 1.1) the complexity bound is sharp since onecan (deterministically) sort the input real numbers x1; : : : ; xnwith the complexity O(n log n).Corollary 2.2. (see also [11]). Any RCT over realssolving the KNAPSACK problem, has the complexity greaterthan 
(n2).For the similar to the DISTINCTNESS problem SETDISJOINTNESS f(x1; : : : ; xn; y1; : : : ; yn) : xi 6= yjg � IR2n(being a complement to an arrangement) one obtains (al-most literally as in the corolla ries 1.1, 2.1) the lower bound
(n log n) and the upper bound O(n log2 n) (relying on thecomputin g of the resultant [20], [27]) on the randomizedcomplexity.In the next two sections we give sketches of the proofs oftheorems 1,2.The construction from [5] of RCT with the linear com-plexity O(n) for the EQUALITY SET problem (which is theunion of n-dimensional planes in 2n-dimensional space, seeabove) shows that the consideration just of hyperplanes intheorems 1,2 is crucial, and the non-linear randomized com-plexity lower bounds cannot be directly extended to unionsof planes of arbitrary dimensions.In [3] deterministic computation trees with thebranching signs f=; 6=g over algebraically closed �elds ofpositive characteristicswere considered, and the complexitylower bound 
(logC) for recognizing an algebraic varietywas established, where C is the degree of the Zeta-functionof the variety. It is an open question to obtain non-linearcomplexity lower bounds for randomized computation treesover the �elds of positive characteristics.Let us also mention the paper [12] where a complexitylower bound was established for the randomized analytic de-

cision trees (rather than for more customary algebraic ones)and also the paper [6] where a lower bound was ascertainedfor a randomized parallel computational model (rather thana sequential model considered in the quoted papers includ-ing the present one).1 RCT over zero characteristic �elds.In this section we give a sketch of the proof of theorem 1(the complete proof one can �nd in [7]).Assume for the time being that the �eld F = �F is al-gebraically closed. Denote by N0 the number of 0-faces (inother words, vertices) of the arrangement S = H1[� � �[Hm.Similar to [27], [17] consider the graph of the gradientmap of a polynomial 0 6� g 2 F [X1; : : : ;Xn]G = f(x = (x1; : : : ; xn); @g@X1 (x); : : : ; @g@Xn (x))g � F 2nThe main technical tool in the proof of theorem 1 is thefollowing lower bound on the degree degG (de�ned as thedegree of the projective closure of G [23], [25]).Lemma 1.1. degG � N022nDenote by C(g) the multiplicative complexity of g. Theresults from [27], [1] imply the inequality degG � 23C(g)which together with lemma 1.1 entail the following lowerbound on the multiplicative complexity of g.Proposition 1. If a polynomial 0 6� g 2 F [X1; : : : ;Xn]vanishes on the arrangement S with N0 vertices then C(g) �13 (log2N0 � 2n).We remark that if Nl denotes the number of l-faces of Sthen one obtains the similar lower bound 13 (log2Nl�2(n�l))by means of intersecting S with a (n� l)-dimensional plane.Now let F be an arbitrary zero characteristic �eld. Tocomplete the proof of theorem 1 observe that if RCT T =fT�g� recognizes S with an error probability 
 < 1=2, thenfor every � CT T� possesses the unique "thick" path (fromthe root to a leaf), along which all the testing polynomialsf1; : : : ; fk 2 F [X1; : : : ;Xn] have the branching sign 6=. Onecan prove that with a probability greater than 1 � 2
 > 0the product f1 � � � fk vanishes on at least q > 1�2
1+2
m ofhyperplanes among H1; : : : ;Hm. Taking into account that
 could be made as close to zero as desired at the expense ofincreasing the depth of RCT by a suitable constant factor[19], we apply proposition 1 and the remark just after itto the polynomial f1 � � � fk (notice that the multiplicativecomplexity of the latter product does not exceed 2k � 1),and get a lower bound on k. Since the complexity of RCTunder consideration is greater or equal to k, one completesthe proof of theorem 1.2 RCT over realsIn this section we give a sketch of the proof of theorem 2(the complete proof one can �nd in [8]).Again let F be a zero characteristic �eld and � = Hi1 \� � �\Hin�k be k-face of the arrangement S = H1\� � �\Hm.Fix arbitrary coordinates Z1; : : : ; Zk in �. Then treatingHi1 ; : : : ; Hin�k as the coordinate hyperplanes of the coor-dinates Y1; : : : ; Yn�k, one gets the coordinates Z1; : : : ; Zk ,Y1; : : : ; Yn�k in Fn. The next construction of the leadingterms of a polynomial is similar to [13], [11].For any polynomial f(Z1; : : : ; Zk; Y1; : : : ; Yn�k) 2F [Z1; : : : ; Zk; Y1; : : : ; Yn�k ] following [13], [11] de�ne its lead-ing term �Zm011 � � �Zm0kk Y m11 � � �Y mn�kn�k



0 6= � 2 F (with respect to the coordinate system Z1; : : : ; Zk;Y1; : : : ; Yn�k) as follows. First take the minimal integermn�k such that Ymn�kn�k occurs in the terms of f = f (0).Consider the polynomial0 6� f (1) = � fY mn�kn�k � (Z1; : : : ; Zk; Y1; : : : ; Yn�k�1; 0)2 F [Z1; : : : ; Zk; Y1; : : : ; Yn�k�1]which could be viewed as a polynomial on the hyperplaneHin�k . Observe that mn�k depends only on Hin�k and noton Z1; : : : ; Zk; Y1; : : : ; Yn�k�1, since a linear transformationof the coordinates Z1; : : : ; Zk, Y1; : : : ;Yn�k�1 changes the coe�cients (being the polynomials fromF [Z1; : : : ; Zk ; Y1; : : : ; Yn�k�1]) of the expansion of f in thevariable Yn�k , and a coe�cient vanishes identically if andonly if it vanishes identically after the transformation. Thenf (1) is the coe�cient of the expansion of f at the powerY mn�kn�k .Second, take the minimal integer mn�k�1 such thatY mn�k�1n�k�1 occurs in the terms of f (1). In other words,Y mn�k�1n�k�1 is the minimal power of Yn�k�1 occurring in theterms of f in which occurs the power Y mn�kn�k . Therefore,mn�k, mn�k�1 depend only on the hyperplanes Hn�k,Hn�k�1 and not on Z1; : : : ; Zk, Y1; : : : ; Yn�k�2, since (asabove) a linear transformation of the coordinates Z1; : : : ; Zk,Y1; : : : ; Yn�k�2 changes the coe�cients (being the polyno-mials from F [Z1; : : : ; Zk, Y1; : : : ; Yn�k�2]) of the expansionof f in the variables Yn�k, Yn�k�1 and a coe�cient van-ishes identically if and only if it vanishes identically afterthe transformation. Denote by 0 6� f (2) 2 F [Z1; : : : ; Zk,Y1; : : : ; Yn�k�2] the coe�cient of the expansion of f at themonomial Y mn�k�1n�k�1 Ymn�kn�k . Obviouslyf (2) = � f (1)Y mn�k�1n�k�1 � (Z1; : : : ; Zk; Y1; : : : ; Yn�k�2; 0)One could view f (2) as a polynomial on the (n�2)-dimensionalplane Hin�k \Hin�k�1 .Continuing in the similar way, we obtain consecutivelythe (non-negative) integers mn�k, mn�k�1; : : : ; m1 and thepolynomials0 6� f (l) 2 F [Z1; : : : ; Zk ; Y1; : : : ; Yn�k�l]1 � l � n � k, by induction on l. Herewith, Y mn�k�l+1n�k�l+1is the minimal power of Yn�k�l+1 occurring in the termsof f , in which occurs the monomial Ymn�k�1+2n�k�l+2 � � �Y mn�kn�kfor each 1 � l � n � k. Notice that mn�k; : : : ;mn�k�ldepend only on the hyperplanes Hin�k ; : : : ;Hin�k�l and noton Z1; : : : ; Zk, Y1; : : : ; Yn�k�l�1. Then f (l) is the coe�cientof the expansion of f at the monomial Y mn�k�l+1n�k�l+1 � � �Y mn�kn�kandf (l+1) = � f (l)Y mn�k�ln�k�l � (Z1; : : : ; Zk; Y1; : : : ; Yn�k�l�1; 0)Thus, f (l) depends only on Hin�k ; : : : ;Hin�k�l and not onZ1; : : : ; Zk, Y1; : : : ; Yn�k�l�1. One could view f (l) as a poly-nomial on the (n�l) dimensional plane Hin�k\� � �\Hin�k�l+1 .Continuing, we de�ne also m0k; : : : ;m01.Finally, the leading term lm(f) = �Zm011 � � �Zm0kk Y m11 � � �Y mn�kn�k is the minimal term of f in the lexicographical or-dering with respect to the ordering Z1 > � � � > Zk > Y1 >

� � � > Yn�k. The leading term lm(f (l)) = �Zm011 � � �Zm0kkY m11 � � �Y mn�k�ln�k�l , we refer to this equality as the mainte-nance property (see also [13], [11]).From now on the construction and the de�nitions di�erfrom the ones in [13], [11].For any polynomial g 2 F [X1; : : : ;Xn] one can rewriteit in the coordinates g(Z1; : : : ; Zk; Y1; : : : ; Yn�k) and expandg = gs + gs+1 + � � �+ gs1 , where gj 2 F [Z1; : : : ; Zk;Y1; : : : ; Yn�k], s � j � s1 is homogeneous with respect to thevariables Y1; : : : ; Yn�k of degree j and gs = g(0)s 6� 0. Con-sider the leading term lm(gs) = �Zm011 � � �Zm0kk Y m11 � � �Y mn�kn�kand denote by Var (�)(g) = Var (Hi1 ;:::;Hin�k )(g) the num-ber of positive (in other words, nonzero) integers amongmn�k; : : : ;m1, note that s = m1 + � � �+mn�k . As we haveshown above Var (Hi1 ;:::;Hin�k )(g) is independent from thecoordinates Z1; : : : ; Zk of �. Obviously, Var (Hi1 ;:::;Hin�k )(g)coincides with the number of 1 � l � n � k such thatYn�k�ljg(l)s , the latter condition is equivalent to that the va-riety fg(l)s = 0g\Hin�k \� � �\Hin�k�l+1 contains the planeHin�k \ � � � \Hin�k�l+1 \ Hin�k�l (being a hyperplane inHin�k \ � � � \Hin�k�l+1 ).It is convenient (see also [13], [11]) to reformulate theintroduced concepts by means of in�nitesimals in case of areal closed �eld F (see e.g. [18]). We say that an element" transcendental over F is an in�nitesimal (relative to F ) if0 < " < a for any element 0 < a 2 F . This uniquely inducesthe order on the �eld F (") of rational functions and furtheron the real closure gF (") (see [18]).One could make the order in gF (") clearer by embeddingit in the larger real closed �eld F (("1=1)) of Puiseux series(cf. e.g. [16]). A nonzero Puiseux series has the form b =Pi�i0 �i"i=�, where �1 < i0 <1 is an integer, �i 2 F forevery integer i; �i0 6= 0 and the denominator of the rationalexponents � � 1 is an integer. The order on F (("1=1)) isde�ned as follows: sgn(b) = sgn(�i0 ). When i0 � 1, thenb is called an in�nitesimal, when i0 � �1, then b is calledin�nitely large. For any not in�nitely large b we de�ne itsstandard part st(b) = st"(b) 2 F as follows: when i0 = 0,then st(b) = �i0 , when i0 � 1, then st(b) = 0. In thenatural way we extend the standard part to the vectors from(F (("1=1)))n and further to subsets in this space.Now let "1 > "2 � � � > "n+1 > 0 be in�nitesimals, where"1 is an in�nitesimal relative to IR; then "i+1 is an in-�nitesimal relative to IR("1; : : : ; "i) for all 0 � i � n. De-note the real closed �eld IRi = IR g("1; : : : ; "i), in particular,IR0 = IR. For an element b 2 IRn+1 for brevity denote thestandard part sti(b) = st"i+1(st"i+2 � � � (st"n+1(b) � � �)) 2 IRi(provided that it is de�nable).Also we will use the Tarski's transfer principle [28].Namely, for two real closed �elds F1 � F2 a closed (so,without free variables) formula in the language of the �rst-order theory of F1 is true over F1 if and only if this formulais true over F2.An application of Tarski's transfer principle is the con-cept of the completion. Let F1 � F2 be real closed �elds and	 be a formula (with quanti�ers and, perhaps, with n freevariables) of the language of the �rst-order theory of the �eldF1. Then 	 determines a semialgebraic set V � Fn1 . Thecompletion V (F2) � Fn2 is a semialgebraic set determined bythe same formula 	 (obviously, V � V (F2)).One could easily see that for any point (z1; : : : ; zk) 2 IRkkand a polynomial g 2 IR[X1; : : : ;Xn] such that



g(n�k)s (z1; : : : ; zk) 6= 0 (we utilize the introduced above no-tations) the following equality for the signs�m11 : : : �mn�kn�k sgn(g(n�k)s (z1; : : : ; zk)) =sgn(g(z1; : : : ; zk; �1"k+1"n+1; : : : ; �n�k"n"n+1)) (1)holds for any �1; : : : ; �n�k 2 f�1; 1g. For any 1 � i � n�ksuch that mi = 0 (1) holds also for �i = 0, agreeing that00 = 1. Moreover, the following polynomial identity holds:g(n�k)s (Z1; : : : ; Zk) =stk�g(Z1; : : : ; Zk; "k+1"n+1; : : : ; "n"n+1)"m1k+1 � � � "mn�kn "sn+1 �Now let F be an algebraically closed �eld of zero char-acteristic. Take a certain 0 < � � 1 (it will be speci�edlater). We call k-face � = Hi1 \ � � � \ Hin�k of the ar-rangement S strongly singular (with respect to a polynomialg 2 F [X1; : : : ;Xn]) if Var (Hi1 ;:::;Hin�k )(g) � �(n � k). De-note by N the number of strongly singular k-faces of S withrespect to g (since g will be �xed for the time being, in thesequel we omit mentioning of g in this context).The following lower bound on the degree of the graph Gof the gradient map of g (see section 1) strengthens lemma1.1, being the main technical tool in the proof of theorem 2.Lemma 2.1 degG � 
(N=(m(1��)(n�k)24n))Similar to proposition 1 from section 1 this lemma im-plies the following proposition.Proposition 2. Let a polynomial g 2 F [X1; : : : ;Xn]have N strongly singular k-faces in an arrangement H1 [� � � [Hm � Fn. Then the multiplicative complexity C(g) �1=3(logN � (n � k)(1� �) logm� 4n� const).For a family of polynomials f1; : : : ; ft 2 IR[X1; : : : ;Xn]we de�ne Var (�)(f1; : : : ; ft) to be the number of the vari-ables among Y1; : : : ; Yn�k which occur in at least one of theleading terms lm(f1;s1); : : : ; lm(ft;st), where Hi1 ; : : : ;Hin�kare the coordinate hyperplanes of the coordinates Y1; : : : ;Yn�k , respectively; f j(Z1; : : : ; Zk; Y1; : : : ; Yn�k) =fj(X1; : : : ;Xn) and f j = fj;sj +fj;sj+1+ � � �, herewith fj;l ishomogeneous with respect to the variables Y1; : : : ; Yn�k ofdegree l and fj;sj 6� 0, 1 � j � t. Because the expansion intothe homogeneous components f1 � � � f t = (f1;s1 � � � ft;st) +� � � starts with f1;s1 � � � ft;st , we have lm(f1;s1 � � � ft;st) =lm(f1;s1) � � � lm(ft;st) and hence Var (Hi1 ;:::;Hin�k )(f1 � � � ft)= Var (�)(f1 � � � ft) = Var (�)(f1; � � � ; ft).For any CT T1 we denote by Var (�)(T1) =Var (Hi1 ;:::;Hin�k )(T1) the maximum of the Var (�)(f1 � � � ft)taken over all the paths of T1, whose f1; : : : ; ft are testingpolynomials along the path.The proof of the following "local" (i.e. concerning a sin-gle face) lemma relies on the relation (1) and is similar tolemma 1 [13], [11], but di�ers from it due to the di�erentde�nition of the leading term lm.Lemma 2.2. Let T = fT�g be an RCT recognizinga) an arrangement S = [1�i�mHi such that � = Hi1 \� � � \Hin�k is k-face of S, orb) a polyhedron S+ = \1�i�mH+i such that � =\1�j�n�kHij is k-face of S+with error probability 
 < 12 . Then Var (Hi1 ;:::;Hin�k )(T�) �(1� 2
)2(n� k) forx a fraction of 1�2
2�2
 of all T�'s.The following "global" (i.e, concerning the set of all faces)lemma is similar to lemma 2 from [13], [11], but its proof isconsiderably simpler.

Lemma 2.3. Let S = S or S = S+ satisfy the conditionsof the theorem 2. Assume that CT T 0 for some constant� > 1� c, satis�es the inequality Var (�)(T 0) � �(n� k) forat least M � 
(mc(n�k)) of k-faces � of S. Then the deptht of T 0 is greater than 
(n logm).Proof of lemma 2.3: To each k-face � of S satisfy-ing the inequality Var (�)(T 0) � �(n � k), we corresponda path in T 0 with the testing polynomials f1; : : : ; ft0 2 IR[X1; : : : ;Xn]; t0 � t such that Var (�)(f1 � � � ft0) � Var (�)(T 0)(in other words, � is strongly singular k-face for f1 � � � ft0 ,see section 1). Denote f = f1 � � � ft0 .Assume that 3t � O(m(��1+c)(n�k)=2), otherwise we aredone. Then there exists a path of T 0 (let us keep the nota-tion f1; : : : ; ft0 for the testing polynomials along this path)which corresponds to at least N = 
(m(c��+1)(n�k)=2) ofstrongly singular k-faces � for f (because there are most 3tpaths in T 0). Proposition 2 implies that the multiplicativecomplexity C(f) � 13 ((�� 1+ c)(n�k) logm� 4n� const).Obviously C(f) � t + t0 � 1 � 2t � 1 (cf. the proof oftheorem 1 in section 1). Hence t � 
(n logm) that proveslemma 2.3.Finally we show how to deduce the theorem 2 from lem-mas 2.2 and 2.3. Consider RCT fT�g recognizing S witherror probability 
 < 12 . Lemma 2.2 and counting implythe existence of T�0 such that the inequality Var (�)(T�0 ) �(1�2
)2(n�k) is true forM = 1�2
2(1�
)
(mc(n�k)) of k-faces� of S. Apply lemma 2.3 to CT T 0 = T�0 with � = (1�2
)2.Since the error probability 
 could be made a positive con-stant as close to zero as desired at the expense of increasingby a constant factor the depth of RCT [19], take 
 suchthat � > 1� c. Then lemma 2.3 entails that t � 
(n logm),which proves theorem 2.3 Deterministic computation treesTreating a deterministic computation tree (CT) as a partic-ular case of RCT one can release the restriction on s ubar-rangements in theorem 1 and obtain the following result.Corollary 1.3 If a CT (over a zero characteristic �eld)recognizes an arrangement with N faces (of all the dimen-sions ) then its depth exceeds 
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