
A New Composition Theorem for Learning Algorithms 

Nader H. Bshouty* 

Abotract 

we present a new approach to the composition of learning algo- 
rithmo (in various models) for classes of constant VC-dimension 
into learning algorithms for more complicated classes. We prove 
thnt if a class C is learnable in time t from a hypothesis class 7f 
of constant VC-dimension then the class C* of all functions F 
of the form F = f(gr,,,.,gm), where f is any function and 
gr , , , , , gm E C, is learnable in time polynomial in t and m . We 
alao use n simple argument to prove that the composition theorem 
cannot be extended to classes with a nonconstant VC-dimension. 

A composition theorem for the exact learning model (withequiv- 
nlcnce queries only) is proven in [BBK97] on1y for classes C of con- 
stant VC-dimension that have conrlant space learning algorithms. 
Constant space algorithms are hard to find and have large complex- 
ity, Our algorithm is simple and has a complexity lower than the 
algorithm in [BBK97]. 

WC then show how to change a PAC.-learning algorithm of C 
from ‘#I! to an SQ-learning algorithm and to a PAC-learning algo- 
rllhm for C” with malicious noise that achieves the optimal error 
rate v/(1 - pl) + /3 for any p. This, in particular, shows that if a 
class of constant VC-dimension is PAC-learnable from a class of 
conotnnt VC-dimension then it is SQ-learnable and PAC-learnable 
with mnlicious noise. We apply this result for SQ-learning and 
PAC-lenming with malicious noise a general class of geometric ob- 
jects, Thls class includes the set of all geometric objects in the con- 
stant dimensional space that are bounded by m algebraic surfaces 
of constant degree (for example, hyperplanes, spheres, etc.). This 
result generalizes nil the results known from the literature about 
lcnming geometric objects in the SQ-learning and PAC-learning 
models with malicious noise. 

1 Introduction 

The Composition Theorem for learning algorithms pBK97] shows 
that if n class of concepts C is exactly learnable (from equivalence 
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queries only) in time t using constant space from a class of con- 
cepts 31, (and therefore 31 must have a constant VC-dimension) 
then the class C* of alI functions of the form f(g1,. . . , gm) is ex- 
actly learnable in time polynomial in t and m where f is any func- 
tion and gr, . . . ,g,,, E C. This result is applied in [BBK97] to 
prove the exact learnability of geometric classes from equivalence 
queries only. It is shown that algebraic surfaces of constant de- 
gree (for example, hyperplanes, spheres, or any p(~t , . . . , zd) = 0 
for a constant degree polynomial p) over a constant dimensional 
space H are constant space learnable. Therefore, by applying the 
composition theorem, any geometric object bounded by constant 
degree surfaces in the constant dimensional space is exactly leam- 
able. Space bounded exact learning algorithms are hard to find and 
have large complexity. 

In this paper we prove the Composition Theorem for a broader 
set of classes C and for other learning models. We first show that if 
a class of concepts C is exactly learnable in time t by a hypothesis 
class 31 of constant VC-dimension then the class C’ is learnable in 
time polynomial in t and nz. We then show that a much weaker 
condition can be placed on C and 31 to ensure learnability of C*. 
For example, if C is PAC-learnable (this is weaker than exact leam- 
ing) from a ccnstant VC-dimension hypothesis class X then the 
randomized Halving algorithm for C (here the hypothesis class is 
not of constant VC-dimension) can be changed to an algorithm for 
C*. We also show that the composition theorem cannot be extended 
to classes with nonconstant VC-dimension. 

We then investigate SQ-learning model and the PAC-learning 
witimalicious noise model. We show that if C is PAC-learnable in 
time t by a hypothesis class ‘?t of constant VC-dimension then the 
class C* is SQ-learnable and PAC-learnable with malicious noise 
rl = c/(1 + E) + A in time polynomial in t and l/A. In par- 
ticular, if a class C of constant VC-dimension is learnable from 
a constant VC-dimension hypothesis class then it is SQ-learnable 
and PAC-learnable with malicious noise. Here the malicious noise 
model is the one defined in [CFSS97] which is weaker than the 
one defined in [KL93]. In this model the learner makes one re- 
quest for rn examples. The teacher (adversary) chooses m exam- 
ples {(pi, F(cci))) according to the distribution D and then marks 
each example (sir F(zi)) with probability p. The teacher then re- 
places each marked example by an arbitrary pair (a, b). 

One type of concept classes which has attracted considerable 
attention (in the exact model as well as in other models) is that of 
geometric concept classes. In the case of exact learning we con- 
sider a discretized domain of e (i.e., the set of points of the form 
al,..., 9~)~. for some n) and the concepts considered are of ge- 
ometric nature such as axis-parallel boxes (e.g., mS9. CM92. 
Aue93]) and geometric objects bounded by constant degree alge- 
braic surphaccs (e.g. [BGMSI’96]). We apply our composition 
theorem to the class of constant degree algebraic surfaces to get the 
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first polynomial time SQ-learning algorithm and PAC-learning al- 
gorithm with malicious noise for the class of all geometric objects 
in the constant dimensional space bounded by constant degree al- 
gebraic surfaces. 

Organization: In section 2 we will give some preliminary back- 
ground information. In section 3 we present our composition the- 
orem for the exact learning model and in section 4 we present the 
theorem for the SQ-learning model and for the PAWearning model 
with malicious noise. 

2 Preliminaries 

2.1 Dual Class and VC Dimension 

LetX = {21,..., xm} be a set and 31 C (0, l}” be a class of 
boolcan functions over X. Define the dual class 3c’ C (0, 1}3L 
to be the class of boolean functions xcf where for every h E ;*1 we 
have g:(h) = h(zi). 

It is convenient to think of a class 7-l as a matrix df where each 
row of A1 corresponds to a function h E 31 and each of its columns 
corresponds to a function & E 3t’. The class 311 is the class 
represented by the transposed matris @. The VC-dimension of 
di. denoted VC-dim(x), is the masimal number of columns din 
which all of the 2d combinations of O’s and l’s appear. The follow- 
ing claim relates the VC-dim of 31 and ‘?fl is well known (see, for 
example, [BBK97]). 

Claim 1 For ea~v class 31, VC-dim(%) 2 Llog VC-dim(%“) J . 

2.2 The Learning Models 

In the exact learning [ASS, LSS] there is a boolean function F, 
called the turgetficnction, which is a member of a class of tint- 
tions C defined over the domain X. An exact learning algorithm is 
given access to an equivalence query and the goal of the learning 
algorithm is to find and output a formula H that is logically equiv- 
alent to F. To ask an equivualence quev, the learning algorithm 
supplies any function H E 3c as input to an equivalence oracle and 
the reply of the oracle is either “YES”, signifying that H is logi- 
cally equivalent to F, or a counter~unnpfe, which is an assignment 
b such that H(b) # F(b). For our algorithms we will represent 
a query to this oracle as a procedure EQ(H). We say that a class 
of boolean functions C is ~zractly leamable from 31 in polynomial 
time if for any F E C over X there is an algorithm that is given 
access to an equivalence oracle and outputs a hypothesis H E ‘If 
that is logically equivalent to F using time polynomial in log 1x1 
and the size of F (in some representation). 

In the PAC-leaming [ValS4] there is an unknown distribution 
D defined over the domain set X. The learning algorithms in this 
model are given access to an ewnples oracle which, upon request, 
supplies the algorithm with a labeled example (a, F(a)) where a 
is drawn according to D and F is the unknown target formula. We 
say that a class of boolean functions C is PAC-learnable from ‘?i in 
polynomial time if there is an algorithm given access to an exam- 
ples oracle such that for any F E C over X, any 0 < E, S < 1 and 
any distribution D on X, the algorithm runs in time polynomial in 
log 1x1, the size of F, l/6 and l/e and wivith probability at least 
1 - 6 outputs a hypothesis H E 3c that is c-close to F with respect 
to the distribution D, i.e., 

In the PAC-learning model with a malicious noise rate 1, when 
the learning algorithm asks for an example from the example or- 
acle, the oracle will, with probability 1 - 7, provide the leaming 

algorithm an example (a, F(a)) where a is chosen from S accord- 
ing to the distribution D and with probability 77 it will provide the 
learning algorithm any labeled example, i.e., (b, c) where c may not 
be F(b). It is known [KL93] that in this model the desired accuracy 
cannot be less than E = a/(1 - 17). 

In the SQ-learning model [K93] the learner can ask a statistical 
query or ask for unlabeled examples. To ask a statistical query 
the learning algorithm supplies any polynomial time computable 
function G : X x (0, 1) + (0, 1) and a constant r 3 l/poZv to 
the statistical oracle and the reply of the oracle is a real number e 
such that 

PDKG, F(z))1 - El I 7. 
When the algorithm asks for an unlabeled example the oracle re- 
turns an example x E X choosen according to the distribution D. 
An SQ-learning algorithm is defined the same as a PAC-learning 
algorithm except the algorithm has access to a different oracle. 

In all of the above models we assume that the classes C and 7-6 
are classes of formulas. We also assume that C and 3t are decid- 
able in polynomial time, that is, there is an algorithm that decides 
whether a formula h is or isn’t in 31. Notice that it is possible to 
have a formula h that is not in 31 but is logically equivalent to a 
formula in 31. The answer to decidability in this case would be 
“NO”. 

It is known from [ASS] that if a class is exactly learnable in 
polynomial time from equivalence queries then it is PAC-learnable 
in polynomial time. It is also known from [K93] that if a class is 
SQ-learnable then it is PAC-learnable. 

2.3 Halfspaces and Algebraic Surfaces 

For an integer d we call the domain X,, = (0, 1, . . . , njJ the d- 
dimensional discretized space. We will consider boolean functions 
in (0, l}x’n , in particular, the class of Hulj$uces over S, which 
is the set of functions of the form 

h(x) = 
I 

1 c1x1+ - - e -I- cdxd 2 b 
0 Cl21 + * * * f CdXd < b 

where cl , . . . , Cd, b are integers. 
Let C be the class of all halfspaces over (0, 1, . . . , n)“, We 

define C’ to be the class of all functions f(91, . . . , gF) where f 
is any boolean function and 91 , . . . , gr E C. Notice that any gc- 
ometric object that is bounded by P hyperplanes is in Cr. Denote 
c* = U,C’. The size of a geometric object G in C* will be the 
minimal r such that G E C’, i.e., the minimal number of hyper- 
planes that bound G. 

An algebraic surface of degree k is defined by a degree-l; mul- 
tivariate polynomial in ~~1 , . . . , Xd. If P(Z) is such a polynomial 
then the corresponding function f gives the value 1 to every z such 
that P(Z) 1 0 and the value 0 otherwise. (Obviously a halfspace 
is a special case of such a surface with degree k = 1.) Let C be the 
class of all degree-k algebraic surfaces over (0, 1, . . . , njd. The 
class C* is called the class of degree-b semi-algebmic functions 
(over Rd). 

For the PAC-model and SQ-model all the results of the paper 
are also true when the domain is X = {Z I 0 < z s 7~)~. 

3 The Composition Theorem for the Exact Learning Model 

In this section we present our main tool which is a reduction that 
constructs an algorithm that learns any combination of concepts 
in the above classes using any learning algorithm for any concept 
class of constant VC-dimension. 

L.et C be a class of boolean functions g : X + (0, 1)“. De- 
fine the class C* to be the set of all boolean functions that can 
be represented as f(gl, . . . , gm) where f is any boolean function, 
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m ;I OandDf E Cfori = l,...,m. Wedefinethesizesof 
f(otreqe,om) tobem. 

Let P nnd N be set of points in X. WC say that a boolean func- 
tion 18 : X + (0, 1)” is consistent with (P, N) if h takes value 1 
on all the points of P and value 0 on all the points of N. For two 
clasna (C, 3c) we say that (C, 31) has a consistency algorithm if 
there is an algorithm that takes (P, N) as input, runs in time poly- 
nomial in IP U NI and with probability at least l/2 satisfies the 
following, If there is a function in C that is consistent with (P, N) 
the algorithm outputs “YES” and some h E ?I! that is consistent 
with (P, N), If there is no h E ‘?r! that is consistent with (P, N) 
then the algorithm outputs “NO”. Notice that the algorithm can out- 
put anything if there is an h E ‘?I! that is consistent with (P, N) but 
no member of C is consistent with (P, N). 

First we notice a relationship between exact learning algorithms 
nnd consistency nlgorithms. 

Claim 2 UC Is PAC-leantable (or exact learnable) fim Yl with 
cqtrlvalcnce queries then (C, VI!) has a consistency algorithm. 

Proof: Let ALG be the algorithm that learns C from 31. We can 
chnnge ALG to an algorithm CON that is a consistency algorithm 
for (C, 31) as follows. Algorithm CON runs algorithm ALG and 
nimulntc the distribution D(z) = l/IF U NI for z E PUN and 
D(a) = 0 for all other z:, The value of e is l/(IP U NI + 1) 
nnd 6 = l/2, If there is a consistent hypothesis in C then with 
probability at least l/2 we will get a consistent h E 31. If there 
In no consistent in %! the algorithm will get stuck, run more than it 
should, output an inconsistent h or it will output an h $ 31. All 
those can be veritled in polynomial time. El 

Let Q be a set of points and CON be a consistency algorithm 
for (C,$!), WC would like to find the set 

SCON(Q) = {P I CON(P, Q\P) = “YES”}. 

Tbio is the set of all possible splittings of Q into two sets (P, Q\P} 
where CON answer “YES” for (P, Q\P). One way to generate 

will answer “YES” for at least 
one of the pairs for n given P. This recursive execution has a tree 
structure of depth IQ1 and width at most ISCON(Q)j. So the time 
complexity of this algorithm is bounded by 

IQI 0 PcoN(Q)I * t 
where t io the running time of CON. We now give a bound on the 
value of koala 
Lemma 1 For any set ofpoints Q, 

ISCON(Q>I 5 lQIVc~dim~~‘~ 
Proof: L&Q = {zr,~a,.~‘,q~l). Noticethatthenumberof 
PHI jn SCON@) is a t most the number of the combinations 

F = {(h(m), . . . , ww?I)) I h E w. 

By Snuer’s Lemma the number of distinct elements in F is at most 
IQIVC-dim(%), cl 

The algorithm in Figure 1 takes an algorithm CON and creates 
a act of nil ((P, Q\P), It) such that P E &ON(Q) and h is con- 
sistent with (P, Q\P). We are now ready to state and prove our 
main result, 

Algorithm &--ON(Q). 

TC0. 
ForalI((P,N),h) ES 

Run CON(P U {z;}, N) and if the 
ansvieris(“YES’,h’)doTcTu{((Pu{z~},N),h’)} 
Run CON(P, N U {q}) and if the 
answer is (“YES”, h’) do 7 t ‘7-U {((P, N U {Zi}), h’)} 

s c 7. 
Output(S) 

Figure 1: h algorithm forgenetating+oN(Q). 

Theorem 2 Let C and ‘?I be classes of booleanjimctions over do- 
main X where C C ?L If the concept class C is learnable from 31 
using q equivalence queries in time T then the concept class C* is 
learnable using 

p _ (2mP)VC-dim(?l)VC-dim(?rl) 

equivalence queries andpoly(p, T) time where na is the size of the 
target, i.e., number offinctions in C on which the targetfunction is 
based 

Let ALG be the algorithm that learns C from ‘H and CON be 
a consistency algorithm for (C,‘H) that is generated from ALG 
using Claim 2. Let F = f(gr , . . . , gm) be the target function 
91,. . . ,gm E C. Consider the algorithm ALG* in Figure 2. To 
understand the algorithm and prove its correctness and complex- 
ity we prove the following claims. Some of these claims are from 
[BBK97]. 

Claim 3 [BBK97]. For every t (i.e., t is the number of hypotheses 
hi), the number of entries y E (0, 1)’ such that M(y) # * is at 
most 

tVC-dim(+). 

Proof: Noticethat M(y) #*implies that y = (hi(z), . . . , lat(z)) 
for some x in A. Therefore, the number of non-star entries of M is 
at most the number of different values of (hi(z), . . . , h&)) over 
all z. These are simply vectors in the space X1. Using Sauer’s 
Lemma the result follows. . cl 

The next claim shows that if in the collection of our hypotheses 
we have the correct functions gr, . . . , gm then the protocol will 
halt. 

Claim 4 [BBK97]. Ifgl, . . . ,gm E {hl,. . . , ht} then the afgo- 
rithm will only execute steps 5-7 several times (at most tV where 
w = VC-dim(%?)) and then it will get the answer “yes” to one of 
its equivalence queries (in which case the algorithm halts). 

Proofi We will show that if 91,. . . ,gm E {hr, . . . , he} then 
for every counterexample a we have M(hl(a), . . . , k(a)) = * 
(hence, in this case, the condition in step 7 holds and the condition 
in step 8 does not). This implies that the algorithm will execute only 
steps 5-7 (seethe conditionin7). Suppose M(hr(o), . . . , ht(ca)) $ 
*. Then (by the description of the algorithm) there is an assignment 
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Algorithm ALG*. 
1. Q t 0. 

2. L~+oN(Q) = {((pl,Nl),hl),...,((Pt,Nt),ht)}. 
3. Define a table nf(yl,.. .,gt) = * for (~1,. . . ,yt) E 

10, lY 
4. At 0. 

5. Define a hypothesis 

WY1 
{ 

WY1 
r...,Yt) = 0 

, . . . , yt) if M&l,. . . , yt) : 
otherwise 

6. Ask EQ(H(hl(z),.--,ht(z))) + a. If the answer is 
“yes” then return H(hl (z), . - -, ht(z)) and Halt. 

7. If ~f(hl(Q),...,W)) 
then set Af(hl(a), . . . , h&z)) to 1, set A=+ A u {ai 
and gooto 5. 

8. If M&l@), . . . , ht(u)) # *then there esists a’ E A such 
that 

(hW,.-., h(a)) = (h(a’),...,ht(a’)). 

9. Q c QU{a,a’}. 

10. goto2. 

Figure 2: Algorithm ALG* for learning C*. 

a’ E A such that @I(U), . . . ,ht(a)) = (hl(a’), . . . ,ht(a’)). On 
the other hand since a is a counteresample then (by the way H 
is defined) f(gl(a), . . . ,g&>) # f(gl(a’), . . . ,gm(u’)). How- . . . ..- ..~ 
ever, since we have h;(u) = hi(o’) for all i and because 91,. . . , gm 
{h,..., ht} then in particular gi(a) = gi(a’) for every i. There- 
fore f(g1 (a), . . . , g,(u)) = f(gl(u’), . . . ,gm(u’)). A contradic- 
tion. Cl 

The nest claim shows that the number of times that the main 
loop (steps 2-10) is performed is at most qm. 

ProOf: We will show that after esecuting steps 2-9 T times we 
will have the following. For every gi there is a hypothesis h,(i) 
that is equivalent to the hypothesis that we would get from running 
algorithm ALG for at least pi phases for the target gi and r = 
PI +. * .+rm. By “sstep” we mean the running of the algorithm until 
a new equivalence query is aslred. We show the above by showing 
that executing steps 2-9 is equivalent to running the algorithm .4LG 
at least one more step for some gi. This will imply that steps 2-9 
are executed at most qm times and therefore IQ1 6 2qm. 

To show the above, suppose we get to step 8 and we have 
ill@1 (a) , . . . , ht (a)) = 5 # *. There is u’ such that 

(h (4,. . . > h&z)) = @l(d), . . . , h(d)) 

and 
f (91 (Q), - + - a %&4) # f(a(d,. - - &&‘N. 

From the latter we must have gi(a) # gi(a’) for some i. Now 
because h”(i)(Q) = h”(i) (a’) we have that either a or a’ is a coun- 
teresample for h,(i)* Therefore using this counteresample one of 
the algorithms CON (Pu(i) U {w}, NV(i)) or CON(Pu(i), N%(i) U 

{w}) for some ‘w E {a, a’} will generate the hypothesis generated 
by ALG in one more steps, Cl 

Now by Lemma 1 and Claim 5 we have 

Claim 6 We have 

t < (2mq)VC-dimw . 

Now since t 6 (2mq)VC-dim(x), the size of the table is at 
most 

tVC-dimwl) I (2mq) VC-dim(x)VC-dim(&) 

as stated in Theorem 2.0 
To learn a geometric object bounded by m hyperplanes in the d 

dimensional space of the [0, nld lattice the algorithm complesity is 

The algorithm in [BBK97] has complexity (at least) 

(2m logd 7~)‘~~~). 

We now can prove a more general theorem. 

Theorem 3 Let C and 31 and 9 be classes of boolean fimctions 
over the domain X where C 2 3t E 8. Sr4ppose we have the 
following 

1. There is an algorithm A that with an input (P, N) runs in 
polynomial time in 1 P U NI and decides whether there is a 
consistent hypothesis h E C witlt (P, N) or if there is no 
hypothesis h E 31 that is consistent with (P, N). 

2. For every polynomial number ofjknctions 01, . . . , gm E B 
the number of distinct vectors (91(z), . . . , gm(z)) over all 

E 
2 E X is l?(m). 

If the concept class C is learnable from B using q equivalence 
queries in time T then the concept class C* is learnable using 

p = r 
( 

(2mq)VC-dimw) 
> 

equivalence queries andpoly(p, T) time where m is the size of tltc 
target, i.e., number offunctions in C on which the tar~etjimction is 
based 

Proof: We follow the steps of the algorithm ALG* in figure 
2. Step 2 in the algorithm cannot be simulated. Instead we use 
algorithm A to generate the set {(A, I&), . . . , (Pt, Nt)} and then 
run the algorithm that learns C from 9 to find hypotheses 91,. . . ,gt 
consistent with (PI, Nl), . . . , (Pt, Nt), respectively. 

As in the proof of Theorem 1 we have IQ1 < 2qm and t < 
(2mq)VC-dimw)s N ow fi e number of possible entries in the tnble 
will be at most l?(t). cl 

Notice that B may have a nonconstant VC-dimension. If these 
conditions are true and I’ is polynomial then C* is learnable in poly- 
nomial time. 

We now show the following. 

Theorem 4 Let C be a class that is PAC-learnable from a class of 
constant VC-dimension 31. If C is exactly learnable from ‘?i* in 
polynomial time then C* is learnable in polynomial time. 

586 



Proofi By Claim 2 we have the first condition of Theorem 3. 
To prove that condition (2) is also true with polynomial I?, let 
OI,,, , , gm be in ?I!* and m be polynomial (in the size of the target 
and log 1X1), Sincegr E 71!* and is of polynomial size (because the 
algorithm runs in polynomial time) we havegi = fi(gi,r, . . . ! g+) 
where 11 is polynomial and gi,f E 3t. Now the number of drstmct 
vectors (g1(x), , . , , gm(x)) for a E X is at most the number of 
dl~tinct vectors (gi,j(z))r,j for x E X. Since gi,j E ?f and 31 is 
of constant VC-dimension then we know that this number is poly- 
nomial In Xi ltm and therefore is polynomial. Cl 

Notice here that 7-l” may not be of constant VC-dimension. One 
of the algorithms that learns C using hypotheses from C* is the 
randomized Halving algorithm. At each step of the randomized 
Halving algorithm the algorithm randomly chooses a polynomial 
number of consistent hypotheses and asks equivalence queries with 
their majority, So the hypothesis class is C*. 

3,l Lower Bound k 
In this short subsection we show that the Composition Theorem 
cannot be extended to a class with a nonconstant VC-dimension. 
To prove the lower bound we use a simple argument. 

Thcorcm 5 For every d there is C of VC-dimension d such that 
lcar~ting F E C* will require at least (m/d)d equivalence queries 
where m = &e(F). 

step we can find the expectation of the sign in each domain iv, 

Proof! It is known that there is a class of VC-dimension d and 
m functions gr , , , . , gm such that the number of distinct vectors 
(01 (X), . I , , gm (2)) is at least 

where h?’ is hi if a; = 1 and -hi otherwise. NOW if EIhT’ - * * hi’] 
is “too imall” we can disregard this domain. If E[F I 2 E JV,,] 2 
l/2 then we define H(e) = 1. Otherwise, we define H(o) = 0. 

Now this means that the class {f(gr, , , . , gm) 1 f} c C* has VC- 
dlmenslon (m/d)d and therefore we need at least (m/d)d equiva- 
lence queries to learn it. 0 

4 Tho Composition Theorem for Other Learning Models 

Let ALC3 be a PAC-learning algorithm that learns C from ‘If. As 
wns shown In Claim 2 using this algorithm we can also build a 
consistency algorithm CON for (C, 31). 

Let hr , , , , , hr E ‘?I!, We define the set of domains W(hl, . . . , ht) 
to be the set of all W, = {Z 1 (hi(a), . . . , h&r)) = u} for 
a E (0, ljt, Notice that W(hl,. , . , ht) is a partition of the do- 
main X and 

IW(hl,...,ht)l <t 
VC-dim(+) . 

Now the algorithm for learning F E C* is in Figure 3. 
In the lhst step the algorithm takes P examples and then in step 

2, finds all possible splittings of the examples using the algorithm 
in Figure 1. Each splitting (Pi, Q\Pr) defines a hypothesis hi E 
31 that is consistent with (Pt,Q\pi), The set of all hypothesis 
(lb1 , , , , ,1;1) defines at most tVC-dimt@) domains. The domains 
RIG all 

IV, = {x I (h(x), . . . , h:(z)) = a} 
that are not empty, We then take another round of examples and 
define the vnlue of each domain to be the majority of the labels of 
the examples that fnll in this domain. Domains that contains no 
examples are given a value 0. 

Notice that these steps can be done in the SQ-learning model. 
The first step does not use the labels of the examples. In the second 

Leamhlg c*. 

1. Get r examples E. Let Q c {z 1 (I, y) E E}. 
2. Let &miv(Q) 

{((pl,Q\pl),hl),...,((4,Q\Pt),ht)). = 
3. Get s examples R 
4. Define H(yl 

W(hl 
, . . . , yt) as follows: For every y if WV E 

, . . . , ht) is not empty then find all examples R, C 
R n WY and define 

WY) = M~~(,,F(~))ER~(F(~)). 

If Rr, or WV is empty then define H(y) = 0 

5. Rehm H(hl,. . . , ht). 

Figure 3: Algorithm for learning C* 

4.1 Analysis 

We now give the analysis for the PAC model with malicious noise 
r]. The analysis for the SQ-model is very similar and we leave it to 
the reader. We first give Chemoff bounds 

Lemma 6 (Chernoff) Let Xi be independent random variables all 
with mean p such thatfor all i, Xi E (0, 1). Then for any [ 

Pr [:2X4 1 (l+[)ff] I eeeZnpi3 
id 

and 

pr 

[ 
k 2Xi 5 (1 -[)/I 5 e-e2nlr’2. 

id 1 
The VC-dimension result is 

Lemma 7 (BEHSVS9) Let C be class of functions and 31 3 C. 
Then the Occam algorithm (that take M e.aumples and&i a con- 
sistent hypothesisfrom 31) with 

M(E, 15) = 4 (2 * VCdim(;H) log : -t- log i) 

examples is a PAGleaming algorithm for C. 

Let F = fh..., gm) be the target function where 9; E 
C. We will show that the algorithm in Figure 3 achieves an er- 
;“;(:/(fi,r q) + p in time polynomial in l//3, l/6, l/e, m and 

- . 
Let 

X = PrllW 
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and 

2 - VC-dim(X) log F + log y) 

By Chemoff bound since IQ1 = r 1 & log $ and the probability 
thrrt r E Q is chosen according to a distribution D is 1 - s7 we 
have: With probability at least 1 -S/3, (1 -q)r/2 ofthe examples 
in Q are chosen according to the distribution D. 

Let ((Pj,, Q\Pji), hi;) be the triple for which gi is consistent 
on (P’, , G\&). Since hji is also consistent on (I”, , (r2\Pji) and 
since, with probability at least 1 - 6/3, 

(1 -q)r 4m - = x 
2 

of the esamples in Q came from the distribution D, by Lemma 7 
we have with probability at least 1 - S/(3772) 

So assuming we know hji and we know f, with probability at 
least 1 - S/3 we have 

yf(gl, - * - ,57m> f f(hj,,--*,b,)l 2 A 

Let T be the set of all points in which f(gr , . . . , gm) and f(hi, , . . . 
, hjm) disagree. We have 

D(T) 5 A. 

Notice that W(hr , . . . , ht) is a subpartition of the partition W(hj, , 
. . . , l+ ). Since the algorithm do not !CIIOW hji and f it will learn a 

Wa and t$ is the number of examples in Es f~ II”‘,. The integer 
trr is the number of examples in EZ tl T rl IV,, Let t’” = c, t$’ 
and t=‘* = c, tr.“. 

Now since each important domain has distribution greater than 
X/d, by Chemoff bound we have 

Pr 5 (1 -X)(1 - q)D(W.)] < 

c 
,-X%(l-~)~(wci)/~ < 

IV.3 EZ 
~e~3~(‘-~‘)/w) < fi - ii* 

Using again Chemoff bound we can show that with probability at 
least 1 - 26/9 we have tan 5 (1 + X)gs, and tC” 5 2x8. 

Therefore with probability at least 1 - S/3 we have 
(1) Par every important Iv,, (1 - X)D(Wa)(l - 17)s < to, 
(2) tan 5 (1 + X)qs, and, 
(3) terr < 2x.s. 
Now by&oring the nonimportant domains we already have 

an error X. Notice that because W(hl, . . . , ht) is a subpartition 
OfW(hj, , . . . , hj,) the function f has the same value on all the 
points in Wa\T. So if we define H(WJ to be f(WO\T) then the 
only error W,, will contribute is at most D(T n WO). The total 
error in this case is at most D(T) 2 X. The third kind of error 1s 
when H(W,) is defined to be -f(IId\T). This can happen only 
if t% + i!rT’ > to - try. So the total error is at most 

new f such that f(hr , . . . , ht) is good approximation of f(gr , . . . , gm). 
Now the algorithm learns f for different values of (hr, . . . , ht). 
Let IV be the set of all nonempty domains rV,. By Lemma I the 
number of nonempty domains in W is at most 

d 5 tVC-dimt’H) I ,.VC-dim(wVC-dim(+). 

Now we define the itnportant du~nains Z C W to be the set of all 
domains WO such that 

We will show that those domains that are not important have small 
weight. We have 

Therefore we may ignore the nonimportant domains. 
In the second round we choose 

2d 
( 

9 
a= x3(1-q) log-j+logd > 

esamples. For the sake of analysis, we assume that we have three 
phases. In the first phase the teacher chooses s examples El of 
the target function. In the second phase the teacher chooses each 
example in El with probability 1 - 17 and puts it in a set E2. In 
the third phase the teacher chooses IEI\Ez] arbitrary new labeled 
esamples E3 and then sends E2 U E3 to the learner. 

Now we will define for each important domain II’,, four integers 
(63, tpf , tF, trT’). The integer t, is the number of examples in 
E2flWa. The integer ,rt is the number of examples in (E1\E2)n 

5 (l-A;(l-s) ((1 f x>7l+ 4(1 +x)x) 

q- 1+x 1+4x = l-1)*1-/j ( > 5; 

5 A+-. P 
1-77 3 

Therefore, with probability at least 1 - S the error is 

It is also easy to verify that the time complexity is polynomial if 
VC-dim(%) is constant. 
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