arXiv:1411.1001v2 [cs.DC] 15 Feb 2015

How to Elect a Leader Faster than a Tournament

Dan Alistarh Rati Gelashvili Adrian Viadu
Microsoft Research MIT MIT
Abstract

The problem of electing a leader from among:ontenders is one of the fundamental questions
in distributed computing. In its simplest formulation, ttesk is as follows: givem processors, all
participants must eventually returmén or loseindication, such that a single contender naay. Despite
a considerable amount of work on leader election, the fatigwguestion is still open: can we elect
a leader in an asynchronous fault-prone system faster tigmjnning a©(logn)-time tournament,
against a strong adaptive adversary?

In this paper, we answer this question in the affirmative roumg on a decades-old upper bound.
We introduce two new algorithmic ideas to reduce the timeglerity of electing a leader t®(log™ n),
usingO(n?) point-to-point messages. A non-trivial application of algorithm is a new upper bound
for thetight renamingproblem, assigning items to then participants in expecte@(log? n) time and
O(n?) messages. We complement our results with lower bourfd(ef) messages for solving these
two problems, closing the question of their message cortglex

http://arxiv.org/abs/1411.1001v2

1 Introduction

The problem of picking a leader from among a setno€ontenders in a fault-prone system is among
the most well-studied questions in distributed computihgits simplest formJeader election (test-and-
set) [AGTV9Z] is stated as follows. Given participating processors, each of the contenders must even
tually return either avin or lose indication, with the property that a single participant nvaiy. Leader
election is one of a set of canonical problemstasks whose solvability and complexity are the focus of
distributed computing theory, along witlonsensus (agreemeipt)lSP82 PSL8(, mutual exclusiofiDij65],
renaming[ABND 790, or task allocation (do-all{KS927. These problems are usually considerecsyn-
chronousmodels, such as message-passing or shared-meay 7.

We focus on leader election in tlasynchronous message-passingdel, in which each of processors
is connected to every other processor via a point-to-pdianhnel. Communication is asynchronous, i.e.,
messages can be arbitrarily delayed. Moreover, local ctatipn of processors is also performed in asyn-
chronous steps. The scheduling of computation steps anshigesleliveries in the system is controlled by a
strong (adaptive) adversaryvhich can examine local state, including random coin flgpel crash < n/2
of the participants at any point during the computation. mairal complexity metrics ammessage com-
plexity, i.e., total number of messages sent by the protocol tiamel complexityi.e. the number of times a
processor relies on the adversary to schedule a computgpror to deliver messages.

Many fundamental results in distributed computing aretegldo the complexity of canonical tasks in
asynchronous models. For example, Fisher, Lynch, andrBattd-LP85 showed that it is impossible
to solve consensus deterministically in an asynchronostesyif one of then participants may fail by
crashing. This deterministic impossibility extends todeaelection [Her91]. Since the publication of the
FLP result, a tremendous amount of research effort has begested into overcoming this impossibility for
canonical tasks. Seminal work by Ben-®&(83 showed that relaxing the problem specification to allow
probabilistic termination can circumvent FLP, and obtdficient distributed algorithms.

Consequently, the past three decades have seen a contiqueststo improve the randomized upper
and lower bounds for canonical tasks, and in fact tight (oroei tight) complexity bounds are now known,
against a strong adversary, for consendS(8, AAKS14], mutual exclusion HW09, HW10, GW124,
renaming PACH ™13, and task allocationfKRS96 ABGG17.

For leader election against a strong adversary, the situadidifferent. The fastest known solution is
more than two decades oldGTV92], and is atournament treepair up the participants into two-processor
“matches,” decided by two-processor randomized consengummers continue to compete, while losers
drop out, until a single winner prevails. Time complexitydgarithmic, as the winner has to communicate
at each tree level. No time lower bounds are known. Desmt@fgiant recent interest and progress on this
problem in weaker adversarial modefsjG "10, AA11, GW124, the question of whether a tournament is
optimal when elect a leader against a strong adversarygsisimgly still open.

Contribution. In this paper, we show that it is possible to break the loganit barrier in the classic asyn-
chronous message-passing model, against an adaptivesagveWe present a new randomized algorithm
which elects a leader in expectédlog* n) time, sending)(n?) messages.

The algorithm is based on two new ideas, which we briefly desdselow. The general structure is
rather simple: computation occurs inases where each phase is designed to drop as many participants
as possible, while ensuring that at least one processoivearvConsider a simple implementation: each
processor flips a biased coin at the beginning of the phaskecide whether to give up (val@g or continue
(valuel), and communicates its choice to others. If at least onegggmr out of thex,. participants in phase
r flips 1, all processors which flippetican safely drop from contention. We could aim &é6log) iterations
by setting the probabilities to obtain less than a constaatibn of survivors in each phase. Unfortunately,
a strong adversary easily breaks such a strategy: since gamthe flips, it can schedule all the processors
that flipped0 to complete the phadeeforeany processor that flippeld forcing everyondo continue.

Techniques. Our first algorithmic idea is a way tieide the processor coin flips during the phase, handi-
capping the adaptive adversary. In each phase, each poodiesstakes a “poison pill” (moves toommit
state), and broadcasts this to all other processors. Theessor then flips a biased local coin to decide
whether to drop out of contentiotov priority) or to take an “antidote’High priority), broadcasts its new
state, and checks the states of other processors. Crudidlizas flipped low priority, and seeany other
processoreither incommitstate or inhigh priority state, the processor returlose Otherwise, it survives
to the next phase.

The above mechanics guarantee at least one survivor (imthkely event where all processors fligw
priority, they all survive), but can lead to few survivorsaach phase. The insight is that, to ensure many
survivors, the adversary must examine the processorsflijoén But to do so, the adversary must first allow
it to take the poison pill (stateommi). Crucially, any low-priority processor observing tliemmitstate
automatically drops out. We prove that, because of thishe2®; the adversarial scheduler can do no more
than to let processors execute each phase sequentialipyemiee, hoping that the first processor flipping
high priority, which eliminates all later low-priority pécipants, comes as late as possible in the sequence.
Now we can bias the flips such that a group of at nddSy/n,.) processors survive because they flipped high
priority, andO(,/n,.) processors survive because they did not observe any higityriThis choice of bias
seems hard to improve, as it yields the perfect balance leetite sizes of the two groups of survivors.

Our second algorithmic idea breaks this roadblock. Congisle extreme scenarios for a phase: first
when all participants communicate with each other, leattingimilar views and second, when processors
see fragmented views, observing just a subset of other ggsoc® In the first case, each processor can safely
set a low probability of surviving. This does not work in trezend case since processor views have a lot of
variance. We exploit this variance to break symmetry. Ochiiécal argument combines these two strategies
such that we obtain at mo8t(log® n,.) expected survivors in a phase, undey scheduling.

The final algorithm has additional useful properties. ladaptive meaning that, it < n processors
participate, its complexity becomé¥log™ k). Moreover, since most participants drop in the first round of
broadcast, the message complexitpig:n), which we shall prove is asymptotically optimal.

Renaming. We build on these properties to design a message-optimatitalign for strong renaming
which assigns distinct items (or names) labeled frono n to the n processors, using expectéyn?)
messages an@(log?n) time. We employ a simple strategy: each processor repgapetks a random
name that it sees as available, announces it, and competgvi® an instance of leader election. If the
processor wins, it returns the name; otherwise, it triesnadée algorithm can be seen as a balls-into-bins
game, in whichn balls are the processors and bins are the names. We needaotehiae two parameters:
the maximum number of trials by a single processor, and thémmam contention on a single bin, as they are
linked with message and time complexity. The critical difftg is that, since rounds are not synchronised,
the bin occupancy views perceived by the processors aigéfly under adversarial control and out-of-date
or incoherent views can lead to wasted trials and increasettiotion on the bins.

Our task is to prove that, in fact, this balls-into-bins @sg is robust to the correlations and skews in
the trial probability distributions caused by asynchro@wr approach is to carefully bound the evolution of
processors’ views and their trial distributions as more aede trials are performed. Roughly, for> 1,
we split the execution into time intervals, where at mo&2’—! names are available at the beginning of the
interval j, and focus on bounding the number of wasted trials in eaeiviak The main technical difficulty
that we overcome is that the views corresponding to thesis ttould be highly correlated, as the adversary
may delay messages to increase the probability of a callisio
Lower bound. We match the message complexity of our algorithms witt2én?) lower bound on the
expected message complexity of any leader election or neigaatgorithm. The intuition behind the bound
is that no processor should be able to decide without regg@imessage, as the others might have already
elected a winner; since the adversary can fail up processors, it should be able to force each processor

to either send or receive/2 messages. However, this intuition is not entirely corr@sgroups of processors
could employ complex gossip-like message distributioatsgiies to guarantee that at les@tneprocessors
receivesomemessages while keeping the total message caurt). We thwart such strategies with a non-
trivial indistinguishability argument, showing that ircfahere must exist a group 6f(n) processors, each
of which either sends or receives a total®fn) messages. A similar argument yields tén?) lower
bound for renaming, and in fact for any object with strongbnscommutative operations\zH"11].

Related Work. We focus on previous work on the complexity of randomizedégalection and renam-
ing, most of which considered the asynchronous shared-myefdowever, one option is to emulate efficient
shared-memory solutions via simulations between shammary and message-passifgBND95]. This
preserves time complexity, but communication may be irsgddy at most a linear factor.

We classify previous solutions according to their advéasanodel. Against a strong adversary, the
fastest known leader election algorithm is the tournanrest of Afek et al. AGTV92], whose contention-
adaptive variant was given il\AG *10]. For n participants, these algorithms requig€log n) time, and
O(n?logn) messages using a careful simulatidPoisonPillis contention-adaptive, improves time com-
plexity (more than) exponentially, and gives tight messamaplexity bounds.

For renaming, the fastest known shared-memory algorithAtC]H * 13] can be simulated witt) (log n)
time, and©(n?logn) messages. (The latter bounds are obtained by simulating K@ gorting net-
work [AKS83]; constructible solutions pay an extra logarithmic fadtdnoth measures.) Our balls-into-bins
approach is simpler and message-optimal, at the cost oftea legarithmic factor in the time complexity.
Reference AAG ™ 10] uses a simpler balls-into-bins approach for renaming,re/leach processor tries all
the names, in random order, until acquiring some one. Dedpd similarity, this algorithm has expected
time complexity$2(n), as a late processor may try out a linear number of spotséetarceeding.

References4All, GW124 considered the complexity of leader election against awehlivious) ad-
versary, which fixes the schedule in advance. The strucfusplitting the computation into sifting rounds,
eliminating more than a constant factor of the participass round, was introduced ipA11], where
the authors give an algorithm with(log log n) time complexity. Giakkoupis and WoelfeG\V12g im-
proved this taO (log™ k), wherek is the number of participants. These algorithms yield tieeshounds in
asynchronous message-passing, but their complexity lsoamigt hold against weakadversary.

The consensuproblem can be stated as leader election if we ask processoeturn theidentifier of
the winner, as opposed to a win/lose indication. As suchseasus solves leader election, but not vice-
versa Her91]. In fact, randomized consensus Ha&:) time complexity RC08]. Recent work PAKS14]
considered the message complexity of randomized consémsiie same model, achieving(n?log? n)
message complexity, ar@d(n log® n) time complexity, using completely different techniques.

2 Definitions and Notation

System Model. We consider the classic asynchronous message-passind [A@#¢D95]. Here,n pro-
cessors communicate with each other by sendimegsagethroughchannels There is one channel from
each processor to every other processor; the channeliftomis independent from the channel frgio

i. Messages can be arbitrarily delayed by a channel, but dgataorrupted.

Computations are modeled as sequences of steps of the gsox,eshich can be eithelelivery steps
representing the delivery of a new messagesamputation stepsAt each computation step, the processor
receives all messages delivered to it since the last cortipuitstep, and, unless it faulty, it can perform
local computation and send new messages. A processwnigaulty if it is allowed to perform local
computations and send messages infinitely often and if albages it sends are eventually delivered. Notice
that messages are also deliveredatalty processors, although their outgoing messages may be droppe

1Some older references, e.gGTV92], employ the naméest-and-seexclusively for this task, and use leader election for the
consensus (agreement) problem, while more recent @é&LPd equate test-and-set and leader election.

We consider algorithms that tolerate upttec [n/2]| — 1 processor failures. That is, when more than
half of the processors are non-faulty, they all return awandrom the protocol with probability one. A
standard assumption in this setting is that all non-fautbcpssors always take part in the computation by
replying to the messages, irrespective of whether theycjzate in a certain algorithm or even after they
return a value—otherwise, the< [n/2] — 1 condition may be violated.

The Communicate Primitive. Our algorithms use a procedure cal®@nmunicate, defined in ABND95]

as a building block for asynchronous communication. The@ahmunicate(m) sends the message to

all n processors and waits for at ledst/2| + 1 acknowledgments before proceeding with the protocol. The
communicate procedure can be viewed as a best-effort broadcast meanfaitéskey property is that any
two communicate calls intersect in at least one recipient. In the followiagarocessof will communicate
messages of the fornpiopagatev;) or (collectv). For the first message type, each recipigapdates its
view of the variablev and acknowledges by sending backA&BK message. In the second case, the ac-
knowledgement is a pailACK,v;) containing;j's view of the variable for the receiving process. In both
cases, processeomwaits for> n/2 ACK replies before proceeding with its protocol. In the caseailect

the communicate call returns an array of at least /2| + 1 views that were received.

Adversary. We consider strong adversarial setting where the schepofiprocessor steps, message deliv-
eries and processor failures are controlled by an adapdiversary. At any point, the adversary can examine
the system state, including the outcomes of random coin #ipd adjusts the scheduling accordingly.
Complexity Measures. We consider two worst-case complexity measures againstdhgetive adversary.
Message complexiig the maximum expected number of messages sent by all gayseduring an execu-
tion. When definingime complexitywe need to take into account the fact that, in asynchronassage-
passing, the adversary schedules both message delivetgcahd@omputation.

Definition (Time Complexity) Assume that the adversary fixes two arbitrarily large nuraligrand ¢,
before an execution, and these numbers are unknown to tleeithlm. Then, during the execution, the
adversary delivers every message of a non-faulty procesibin timet; and schedules a subsequent step
of any non-faulty processor in time at magt” An algorithm has time complexit(7) if the maximum
expected time before all non-faulty processors return thatadversary can achieve (7' (¢, + t2)).°

For instance, in our algorithms, all messages are triggbyethe communicate primitive. A processor
depends on the adversary to schedule a step in order to cerapdtcallcommunicate, and then depends
on the adversary to deliver these messages and acknowlatgnire the above definition, if all processors
call communicate at mostT' times, then all non-faulty processors return in time at n23&t, + t2) =
O(T(t1 +t2)): each communicated message reaches destination intimets processed within tinte, at
which point the acknowledgment is sent back and deliversst &ftime. So, afteRt; + ¢, time responses
from more than half processors are received, and in at tptiste the next step of the processor is scheduled
when it again computes and communicates. This implies thanimg.

Claim 2.1. For any algorithm, if the maximum expected numbetoaimunicate calls by any processor that
the adversary can achieve@¥(T"), then time complexity is also(7").

Problem Statements. In leader electiontest-and-sgt each processor may return eith&iN or LOSE
Every (correct) processor should retuter(ninatior), and only one processor may retWiN (unique
winner). No processor may lose before the eventual winner staresxgcution. The goal is to ensure that
operations ardinearizable i.e., can be ordered such that (1) the first operatioWiBV and every other

2Note that the adversary can getor ¢, arbitrarily large, unknown to the algorithm, so the guagastfrom the algorithm’s
prospective are still only that messagesearentuallydelivered and steps ae¥entuallyscheduled.

3Applied to asynchronous shared-memory, this yields amradtive definition ofstep (time) complexitytakingt. as an upper
bound on the time for a thread to take a shared-memory stepdaaringt;). Counting all the delivery and non-trivial computation
stepsin message-passing gives an alternative definition of ngessamplexity, corresponding to shared-memweork complexity

return value isLOSE, and (2) the order of non-overlapping operations is regge&trong (tight) renaming
requires every (correct) processor to eventually returniguename betweem andn.

3 The Leader Election Algorithm

Our leader election algorithm guarantees thatfrocessors participate, the maximum expected number of
communicate calls by any processor that tls&rong adaptiveadversary can achieve 3(log* k), and the
maximum expected total number of messages(isk). We start by illustrating the main algorithmic idea.

3.1 The PoisonPill Technique

Consider the protocol specifiedfingure 1from the point of view of a participating processor. The @ehare
receives the id of the processor as an input, and retusti&&/1VE / DIE indication. Alln processors react
to received messages by replying with acknowledgmentsrdicgpto thecommunicate procedure. In the

Input: Unique identifier; of the participating processor
Output: SURVIVE or DIE
Local variables:

Status[n] = {L};

Views[n][n];

int coin;
1 procedure PoisonPill(i)
2 Status[i] + Commit /* commit to coin flip x/
3 communicate(propagate, Status[i]) /* propagate status */
4 coin < random(1 with probability1/+/n, 0 otherwise /* flip coin */
5 if coin = 0then Status[i] + Low-Pri
6 else Status[i| < High-Pri
7 communicate(propagate, Statusi]) /* propagate updated status =/
8 Views <— communicate(collect, Status) /* collect status from >n/2 */
9 if Status[i] = Low-Pri then
10 if Iproc. j: (3k : Views[k][j] € { Commit, High-Pri} andVk' : Views[k'][j] # Low-Pri) then
11 return DIE /* ¢ has low priority, sees processor j with either high

priority or committed and not low priority, and dies =/
12 return SURVIVE

Figure 1:PoisonPill Technique

following, we call aquorumany set of more than /2 processors.

Each participating processor announces that it is aboupta fandom coin by moving to sta@mmit
(lines 2-3), then obtain either low or high priority based on the outearha biased coin flip. The processor
then propagates its priority information to a quorum (lif)eNext, it collects the status of other processors
from a quorum using theommunicate(collect, Status) call on line8 that requests views of the arrdyatus
from each processgr, returning the set of replies received, of size at leagt

The crux of the round procedure is tBéE condition on linell. A processop returnsDIE at this line
if bothof the following occur: (1) the processprhas low priority,and (2) it observes another processgor
that does not have low priority in any of the views, hutas either high priority or is committed to flipping
a coin (stateCommi) in some view. Otherwise, procesgosurvives. The first key observation is that

Claim 3.1.If all processors participating ifPoisonPill return, at least one processor survives.
Proof. Assume the contrary. Since processors with high priorityags survive, all participating processors

must have a low priority. All participants propagate thewIpriority information to a quorum by calling
the communicate procedure on lin€. Let: be the last processor that completes toiemunicate call. At

this point, the status information of all participants isealdy propagated to a quorum. More precisely, for
every paritipating processgr more than half of the processors have a vigwtus|j] = Low-Pri.

Therefore, when processbproceeds to lin@€ and collects th&tatus arrays from more than half of the
processors, then, since any two quorums intersect, foy @aaticipating processar, there will be a view
of some processot’ showing;’s low priority. All non-participating processors will hapriority L in all
views. But given the structure of the protocol, procegsaill notreturn on linell and will survive. This
contradiction completes the proof. O

On the other hand, we can bound the maximum expected numpeoa#ssors that survive:
Claim 3.2. The maximum expected number of processors that rétURVIVE is O(y/n).

Proof. Consider the random coin flips on lireand let us highlight the first time when some procesgsor
flips valuel. We will argue that no other processpthat subsequently (or simultaneously) flips valugan
survive. Consider such a state. When procegdtips 0, processot has already propagated i€&mmit
status to a quorum of processors. Furthermore, processms a high priority, thus no processor can ever
view it as having a low priority. Hence, when procesgaollects views from a quorum, because every two
qguorums have an intersection, some processwill definitely report the status of processoas Commit
or High-Pri and no processor will repoftow-Pri. Thus, processagj will have to returnDIFE on line 11

The above argument implies that processors survive eithibey flip 1 and get a high priority, or if
they flip O strictly before any other processor flips Each of the at most processors independently flips
a biased coin on lind and hence, the number of processors thatiflip at most the number dfs in n
Bernoulli trials with success probabilitly//n, in expectation,/n. Processors that flip at the same time
as the firstl do not survive, and it also takegn trials in expectation before the firstis flipped, giving an
upper bound/n on the maximum expected number of processors that cad éil survive. O

It is possible to apply this technique recursively with soex&ra care and construct an algorithm with an
expected)(log log n) time complexity. But we do not want to stop here.

3.2 Heterogeneous PoisonPill

Building a more efficient algorithm based on tReisonPill technique requires reducing the number of
survivors beyond2(y/n) without violating the invariant that not all participantsayndie. We control the
coin flip bias, but setting the probability of flippingto 1/,/n is provably optimal. Let the adversary
schedule processors to exectta@sonPill sequentially. With a larger probability of flippiny more than
\/n processors are expected to get a high priority and survivih &smaller probability, at least the first
\/n processors are expected to all have low priority and surviere are alway€(,/n) survivors.

To overcome the above lower bound, after committing, we nealah processor record the lisof all
processors including itself, that have a narstatus in some view collected from the quorum. Then we use
the size of list/ of a processor to determine its probability bias. Each peoealso augments priority with
its £ and propagates that as a status. This way, every time a higtv @riority of a processop is observed,
¢ of processop is also known. Finally, the survival criterion is modifiedack processor first computes
set L as the union of all processors whose nbrstatuses it ever observed itself, and of thiists it has
observed in priority informations in these statuses. Iféhis a processor ih for which no reported view
has low priority, the current processor drops.

The algorithm is described iRigure 2 The particular choice of coin flip bias is influenced by fasto
that should become clear from the analysis. Despite motlditg the same argument asGfaim 3. 1still
guarantees at least one survivor. Let us now prove that #nesvof the processors have the following
interestingclosure propertywhich will be critical to bounding the number of survivorgRviow priority.

13 procedure HeterogeneousPoisonPill(7)

14 Status[i] + {.stat = Commit, .list = {}} /* commit to coin flip x/
15 communicate(propagate, Statusi]) /* propagate status x/
16 Views < communicate(collect, Status) /* collect status from >n/2 */
17 L {j| 3k : Views[k][j] # L} /* record participants x/
18 if || = 1then prob « 1 /* set bias */
19 elseprob + 1oa‘|e| /x set bias x/
20 coin <+ random(1 with probability prob, 0 otherwise /+ flip coin =*/
21 if coin = 0then Status[i] < {.stat = Low-Pri, list = ¢} /+ record priority and list */
22 else Status[i] « {.stat = High-Pri, .list = ¢} /* record priority and list x/
23 communicate(propagate, Statusi]) /* propagate priority and list =/
24 Views <— communicate(collect, Status) /* collect status from >n/2 */
25 if Status[i].stat = Low-Pri then

26 L < Uy j: Views[k][j]# L Views[k][j].list /% union all observed lists x/
27 L+ LU{j|3k: Views[k][j] # L} /* record new participants x/
28 if Iproc.j € L :Vk : Views[k][j].stat # Low-Pri then

29 return DIE /* 1 has low priority, learns about processor j

participating whose low priority is not reported, and dies x/
30 return SURVIVE

Figure 2: HeterogeneoWisonPill

Claim 3.3. Consider any se$ of processors that each flipand survive. Let be the union of all lists of
processors irb. Then, forp € U and every processayin the/ list of p, ¢ is also inU.

Proof. In order for processors i§ to survive, they should have observed a low priority for eatlthe
processors in theif. lists. Thus, every processpre U must flip0, as otherwise it would not have a low
priority. However, the low priority op observed by a survivor was augmented by#list of p. According
to the algorithm, the survivor includes in its ovirall processorg from this/ list of p, implyingg € U. O

Next, let us prove a few other useful claims:

Claim 3.4. If processorg completed executing links no later than processgs completed executing lirnks,
thengq will be included in the list of p.

Proof. Whenp collects statuses on links from a quorumy is already done propagating iGommit on
line 15. As every two quorum has an intersectipnwill observe a nont status ofy on line 17. O

Claim 3.5. The probability of at least processors flipping and surviving isO(1/z).

Proof. Let S be the set of the processors that flip and survive and let us defirié as inClaim 3.3 For
any processop € U and any processay that completes executing lirnks no later tharp, by Claim 3.4
processoy has to be contained in thist of p, which by the closure propertyC{aim 3.3 impliesq € U.
Thus, if we consider the ordering of processors accordirthedime they complete executing lid&, all
processors not ity must be ordered strictly after all processord/in

Therefore, during the execution, fitgf| processors that complete liné must all flip0. The adversary
may influence the composition 6f, but by the closure property, eatlist of processors iV contains only

processors i/, meaning|¢| < |U|. So the probability for each processor to fliis at most(1 — 1°‘gU‘|U|)
and for all processors if¥ to flip 0's is at most(1 — bﬁTl\U‘)‘Ul = O(1/|U]). This isO(1/z) since allz
survivors fromsS are included in their own lists and hence als@/in O

We have never relied on knowing If £ < n processors participate in the heterogendeeisonPill, we get

Lemma 3.6.The maximum expected number of processors thal #ipd survive i€ (log k) + O(1).
Lemma 3.7.The maximum expected number of processors that @ (log? k) + O(1).

Proof. Consider the ordering of processors according to the tire ¢bmplete executing ling5, breaking
ties arbitrarily. Due taClaim 3.4 the processor that is ordered first always [igs 1, the second processor
always computeg| > 2, and so on. The probability of flippinty decreases d$| increases, and the best
expectation achievable by adversary is Zf:2 lol—gl = O(log? k) + O(1) as desired. O
3.3 Final construction

The idea of implementing leader election is to have roundet#rogeneouRoisonPill, where all processors
participate in the first round and only the survivors of rourmhrticipate in round + 1. Each processay,
before participating in round,, first propagates,, as its current round number to a quorum, then collects
information about the rounds of other processors from awquot_et R be the maximum round number of a
processor in all views that collected. To determine the winner, we use the idea fré8\W/91. if R > r,,
thenp loses and ifR < r, — 1 thenp wins. We also use a standard doorway mechani&@®T[V92] to
ensure linearizability. The pseudocode of the final corsiin is given inAppendix A.], along with the
complete proof of the following statement:

Theorem A.5. Our leader election algorithm is linearizable. If there aemost[n /2] — 1 processor faults,
all non-faulty processors terminate with probability For & participants, it has time complexity(log™ k)
and message complexity(kn).

The performance guarantees follow fraramma 3.6andLemma 3. Awith some careful analysis. In partic-
ular, later rounds in which maximum expected number of pgkints is constant require special treatment.

4 The Renaming Algorithm

Input: Unique identifieri from a large namespace
Output: int name € [n]
Local variables:
bool Contended[n] = {false};
bool Views[n][n];
int coin, spot, outcome;
31 procedure getName(:)
32 while true do

33 Views < communicate(collect, Contended) /+ collect contention information */
34 for j «+ 1ton do

35 if 3k : Views[k][j] = true then

36 Contended|j] + true /* mark names that became contended */
37 communicate(propagate, { Contended[j] | Contended[j] = true}) /* propagate x/
38 spot < random(j | Contended[j] = false) /* pick random uncontended name x/
39 Contended[spot] + true

40 outcome < LeaderElect,p,(7) /* contend for a new name x*/
41 communicate(propagate, Contended|spot]) /* propagate contention x/
42 if outcome = WIN then

43 return spot /* win iff you are leader x/

Figure 3: Pseudocode of the renaming algorithmrf@rocessors.

The algorithm is described irigure 3 There is a separate leader election protocol for each nahieh a
processor must win in order to claim the name. Each procespeatedly chooses a new name and contends
for it by participating in the corresponding leader electiontil it eventually wins. Processors keep track of

8

contended names and use this information to choose the amé to compete for: in particular, the next
name is selected uniformly at random from the uncontendetksaThe algorithm is correct.

Lemma A.6. No two processors return the same name fromgdéidName call and if there are at most
[n/2] — 1 processor faults, all non-faulty processors terminatehwitobability 1.

Omitted proofs can be found ippendix A.2 Let us now introduce some notation. For an arbitrary execu-
tion, and for every name, consider the first time when more than half of processore bawtended [u] =

true in their view (or timeco, if this never happens). Let denote the name ordering based on these times,
and let{u;} be the sequence of names sorted according to increasimgmong the names with timeo,

sort later the ones that are never contended by the prosedResolve all the remaining ties according to
the order of the names. This ordering has the following ugefaporal property.

LemmaA.7. In any execution, if a processor view®ntended[i] = true in some while loop iteration, and
in some subsequent iteration on liB@the same processor view®ntended[j] = false, i < j has to hold.

Let X; be a random variable, denoting the number of processorgweatcontend in a leader election for
the namey;. The following holds.

Lemma A.8. The message complexity of our renaming algorithi®(s - E[>"" | X;]).

We partition namegu; } into log n groups where the first grougr; contains the first:/2 names, second
groupG, contains the next /4 names, etc. We use notatiof).> ;, G~ ; andG . ; to denote the union of
all groupsG; wherej’ > j, all groupsG;~» where;j” > j, and all groups7;» where;"” < j, respectively.
We can now split any execution into at masg n phases. The first phase starts when the execution starts
and ends as soon as for eaghe G; more than half of the processors viéWwntended [u;] = true (the way
{u} is sorted, this is the same as when the contention informamutu,, /, is propagated to a quorum).
At this time, the second phase starts and ends when forigaelz, more than half of the processors view
Contended|u;] = true. When the second phase ends, the third phase starts, and so on

Consider any loop iteration of some procesgdn some execution. We say that an iteratgiartsat a
time instant whemp executes lin€82 and reaches lin83. Let V), bep’s view of the Contended array right
before picking a spot on lind8 in the given iteration. We say that an iteratiorcigan(j), if the iteration
starts during phasg and no name from later grouids; ; is contended ir¥/,. We say that an iteration is
dirty(j), if the iteration starts during phageand some name from a later groGlp.~ ; is contended irV,.

Observe that any iteration that starts in phasan be uniquely classified agan(j) or dirty(j) and in
these iterations, processors view all namgs G ; from previous groups as contended.

Lemma A.9. In any execution, at most™; processors ever contend for names from grotps. ;.

Lemma 4.1.For any fixedj, the total number otlean(j) iterations is larger than or equal tan + 5%+
with probability at most™ s for all o > 2%

Proof. Fix somej. Consider a time when the firstdirty(j) iteration is completed. At time, there
exists ani such thatu; € G;»~; and a quorum of processors vielontended[i] = true, so all iterations
that start later will seContended[i] < true on line 36. Therefore, any iteration that starts aftemust
observeContended[i] = true on line 38 and by definition cannot belean(j). By Lemma A.9 at most
571 processors can have activigan (j) iterations at time. The total number oélean(j) iterations is thus
upper bounded by plus the number otlean(j) iterations completed before tinte which we denote

assafeiterations? Safe iterations all finish before any iteration where a pssoe contends for a name in
G~ is completed. By emma A.9 at most; different processors can ever contend for names;in. ;,
therefore an safe iterations can occur only if in at magtof them processors choose to contendrin . ;.
Otherwise, some processor would have to complete an @arathere it contended for a namedty. - ;.

41f no dirty(j) iteration ever completes, then we call altan(5) iterations safe.

In every clean(yj) iteration, on line38, any processop contends for a name ifv;/>; uniformly at
random among non-contended spots in its vigwWith probability at Ieas%, p contends for a name from
G, because by definition aflean(j), all spots inG - ; are non-contended ivi,.

Let us describe the process by considering a random variableB(an, %) for a > J% where each
success event corresponds to an iteration contendidg.ig;. By the Chernoff Bound, the probability of
an iterations with at mosg; processors contending @ ; is:

n an 20 la — 1 an(2"la — 1)? _an

Pr|z< g =P {ZS E (1‘ W)] = o (‘ 20 Ta) > =
So far, we have assumed that the set of names belonging tatdregroups;~.; was fixed, but the the
adversary controls the execution. Luckily, what happensfdre phasg (i.e. the actual names that were
acquired fromG» ;) is irrelevant, because all the names from the earlier ghaseviewed as contended
by all iterations that start in phasgs > j. Unfortunately, however, the adversary also influencestwha
names belong to groupand to groupsZ;-~ ;. There are(zzljjg) different possible choices for names in
G, and by a union bound, the probability that iterations can occur even for one of them is at most:

an 21_jn an —j -3 1—j3 an . .

e s - <2 ; > <e F (202" < e em2) < =55 | proving the claim.
—Jn

O

Plugginga = 8 — 2].1,1 > L in the above lemma, we obtain that the total numberlafn ;) iterations

275
is larger than or equal t6n with probability at most— 5 for all 6> 2%6 Let X;(clean) be the number
of processors that ever contend fore G; in someclean(j) iteration and defineX;(dirty) analogously:
as the number of processors that ever contendfar G; in somedirty(j) iteration. Relying on the above
bound on the number afean(j) iterations, we get the following result:

LemmaA.10. E[} " | X;(clean)] = O(n).

Each iteration where a processor contends for a ngnee G is by definition either aslean(j), dirty(j)

or starts in a phas¢” < j. Let us call theserross(j) and denote byX;(cross) the number of such
iterations. We show that in any execution, for egchny processor participates in at most @y (;) and

at most onecross(j) iteration. This allows us to prove with some work tfigfd """ | X;(dirty)] = O(n)
andE[>"" | X;(cross)] = O(n) (LemmaA.12). The message complexity upper bound then follows by
piecing together the previous claims.

Theorem 4.2.The expected message complexity of our renaming algoriiingi?).

Proof. We know X; = X;(clean) + X;(dirty) + X;(cross) and byLemma A.1Q Lemma A.12we get
E[>", X;] = O(n). Combining withLemma A.8gives the desired result. O

The time complexity upper bound exploits a trade-off betwée probability that a processor collides in an
iteration (and must continue) and the ratio of availabléssithich must be assigned during that iteration.

Theorem A.13. The time complexity of the the renaming algorithn®igog?).

5 Message Complexity Lower Bounds

We can prove that the algorithms we presented for leadeli@ieand renaming in the previous two sections
are asymptotically message-optimal. Due to space contrahe proof of this result is deferred to the
Appendix. (In fact, we show a stronger claim, proving the samessage complexity lower bound for
arbitrary objects with strongly non-commutative openasgias defined inJGH"11].)

Corollary B.3. Any implementation of leader election or renaming by< n processors guaranteeing
termination with probability at leastt > 0 in an asynchronous message-passing system where: /2
processors may fail by crashing must have worst-case eegp@sessage complexi®y(akn).

10

6 Discussion and Future Work

We have given the first sub-logarithmic leader election @tlgm against a strong adversary, and asymp-
totically tight bounds for the message complexity of renagrand leader election. Our results also limit
the power of topological lower bound techniques, et599, when applied to randomized leader election,
since these techniques allow processors to communicatg ugit-cost broadcasts or snapshots. Our algo-
rithm shows that no bound stronger th@flog™ n) time is possible using such techniques, unless the cost
of information dissemination is explicitly taken into aceo.

Determining the tight time complexity bounds for leadercatan remains an intriguing open question.
Another interesting research direction would be to appiyttiols we developed to obtain time- and message-
efficientimplementations of other fundamental distribluizsks, such as task allocation or mutual exclusion,
and to explore solutions optimizing bit complexity.

References

[AA11] Dan Alistarh and James Aspnes. Sub-logarithmic-test-set against a weak adversaryDistributed Computing:
25th International Symposium, DISC 20Mblume 6950 ofLecture Notes in Computer Sciengeages 97-109.
Springer-Verlag, September 2011,.3

[AACH'13] Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seithe®, and Rachid Guerraoui. Tight bounds for asyn-
chronous renaming. Accepted to JACM, September 2Q13.

[AAGT10] Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiand Rachid Guerraoui. Fast Randomized Test-and-Set and
Renaming. IrProceedings of DISC 201Qecture Notes in Computer Science. Springer-Verlag Newk Yds Ingrid
Cunningham, 175 Fifth Ave, New York, Ny 10010 Usa, 20103

[AAKS14] Dan Alistarh, James Aspnes, Valerie King, and daBaia. Communication-efficient randomized consensus. In
Distributed Computingpages 61-75. Springer, 2014.3

[ABGG12] Dan Alistarh, Michael A. Bender, Seth Gilbert, aRdchid Guerraoui. How to allocate tasks asynchronously. In
53rd Annual IEEE Symposium on Foundations of Computer 8egjéfOCS 2012, New Brunswick, NJ, USA, October
20-23, 2012pages 331-340, 2012.

[ABND T90] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David PelegydaRiidiger Reischuk. Renaming in an asynchronous
environmentJ. ACM 37(3):524-548, July 1990

[ABND95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Slag memory robustly in message-passing systefoarnal of
the ACM (JACM)42(1):124-142, 19953, 4

[ACO08] Hagit Attiya and Keren Censor. Tight bounds for agymomous randomized consensuds ACM 55(5):20:1-20:26,
November 20081, 3

[AGHT11] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Ketsov, Maged M Michael, and Martin Vechev. Laws
of order: expensive synchronization in concurrent alpong cannot be eliminated. WCM SIGPLAN Notices
volume 46, pages 487-498. ACM, 2013.10, 19

[AGTV92] Yehuda Afek, Eli Gafni, John Tromp, and Paul M. B.t&nyi. Wait-free test-and-set (extended abstract)Prio
ceedings of the 6th International Workshop on Distributégbfithms WDAG '92, pages 85-94, London, UK, UK,
1992. Springer-Verlagl, 3, 8

[AKS83] M. Ajtai, J. Komlos, and E. Szemerédi. AB(nLogn) sorting network. InProceedings of the Fifteenth Annual
ACM Symposium on Theory of ComputiBJ OC '83, pages 1-9, New York, NY, USA, 1983. ACHI.

[BKRS96] Jonathan F. Buss, Paris C. Kanellakis, Prabhak&dgde, and Alex Allister Shvartsman. Parallel algorithwith
processor failures and delaysk.Algorithms 20:45-86, January 1996.

[BO83] Michael Ben-Or. Another advantage of free choicetdpded abstract): Completely asynchronous agreement pro-
tocols. InProceedings of the Second Annual ACM Symposium on PrisaiblBistributed Computing?ODC '83,
pages 27-30, New York, NY, USA, 1983. ACM.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrentggramming control.Commun. ACM8(9):569—, September
1965.1

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael StdPson. Impossibility of distributed consensus with ongtfa
process.J. ACM 32(2):374-382, April 19851

[GW12a] George Giakkoupis and Philipp Woelfel. On the timd apace complexity of randomized test-and-seProceed-
ings of the 2012 ACM Symposium on Principles of Distributech@uting PODC '12, pages 19-28, New York, NY,
USA, 2012. ACM.1, 3

11

[GW12b]
[Her91]
[HS99]

[HWO9]

[HW10]

[KS92]
[LSP82]

[Lyn97]
[PSL80]

[SSWO1]

George Giakkoupis and Philipp Woelfel. A tight rromler bound for randomized mutual exclusion.Aroceedings
of the Forty-fourth Annual ACM Symposium on Theory of ComguSTOC '12, pages 983—-1002, New York, NY,
USA, 2012. ACM.1

Maurice Herlihy. Wait-free synchronizatioACM Trans. Program. Lang. Sys13(1):124-149, January 1991,.3

Maurice Herlihy and Nir Shavit. The topological stture of asynchronous computabilityjournal of The ACM
46:858-923, 199911

Danny Hendler and Philipp Woelfel. Randomized mutclusion in o(log n / log log n) rmrs. IRroceedings of
the 28th ACM Symposium on Principles of Distributed Conmgu#ODC '09, pages 26—35, New York, NY, USA,
2009. ACM. 1

Danny Hendler and Philipp Woelfel. Adaptive randaetdl mutual exclusion in sub-logarithmic expected time. In
Proceedings of the 29th ACM SIGACT-SIGOPS Symposium ogiftas of Distributed Computing?ODC '10,
pages 141-150, New York, NY, USA, 2010. ACM.

Paris C. Kanellakis and Alex A. Shvartsman. Efficipatallel algorithms can be made robu8istrib. Comput,
5(4):201-217, April 19921

Leslie Lamport, Robert Shostak, and Marshall Pe@ke byzantine generals proble®CM Trans. Program. Lang.
Syst, 4(3):382-401, July 19821

Nancy Lynch.Distributed Algorithms Morgan Kaufmann, 19971

M. Pease, R. Shostak, and L. Lamport. Reaching agreein the presence of fault3. ACM 27(2):228-234, April
1980.1

Michael Saks, Nir Shavit, and Heather Woll. Optiriale randomized consensusmaking resilient algorithmis fas
in practice. InProceedings of the second annual ACM-SIAM symposium ondbésalgorithms pages 351-362.
Society for Industrial and Applied Mathematics, 198112

A Deferred Proofs

A.1 Leader Election Construction and Analysis

Figure 4contains the pseudocode BfeRound procedure that processors execute before participating in
roundr. Every processor starts in the same initial non-negativado ThePreRound procedure takes round
numberr and the id of the processor as an input and outputs eftWCEED, WIN or LOSE. Each
processop first propagates to a quorum, then collects information about the rounds lé&oprocessors
also from a quorum. Lek be the maximum round number of a processor in all viewsitleatlected. Using
idea from ESW9], if R > r, thenp loses, ifR < r — 1 thenp wins and otherwise returnsPROCEED.

Input : Unique identifieri of the participating processor, round number
Output: PROCEED, WIN, or LOSE
Local variables:

int Round[n] = {0};

int Views[n|[n];

int R;
44 procedure PreRound(i,)
45 Round[i] < r /* record own round */
46 communicate(propagate, Round]i]) /* propagate own round x/
47 Views < communicate(collect, Round) /* collect round from >n/2 */
48 R < max;y, j;z;(Views[k][j]) /+ maximum round of other processors observed =/

49 if r < Rthen

50

return LOSE

51 if R<r—1then

52

return WIN

53 return PROCFEED

Figure 4:PreRound procedure

12

To ensure linearizability we use a standard doorway tectmigescribed ifrigure 5 This doorway
mechanism is implemented by the varialler stored by the processors. A valwdse corresponds to
the door being open and a valtiae corresponds to the door being closed. Each participatioggssorp
starts by collecting the views afoor from more than half of the processors on Is@ If a closed door is
reported,p is too late and automatically returdgDSFE. The door is closed by processors on I6& and
this information is then propagated to a quorum. The godi@ioorway is to ensure that no processor can
losebeforethe winner has started its execution.

Output: PROCEED or LOSE
Local variables:

bool door = false /+* door is initially open x/
54 bool Doors[n];
55 procedure Doorway ()
56 Doors + communicate(collect, door) /* collect door from >n/2 x/
57 if 35 : Doorsl[j] = true then
58 return LOSE /* lose if the door is closed */
59 door < true /* close the door x/
60 communicate(propagate, door) /+ propagates door =true to >n/2 */

61 return PROCEED

Figure 5:Doorway procedure

Finally we put the pieces together. Our complete leadettiefe@lgorithm is described ifrigure 6
It involves going through the doorway procedure in the beigig, and then rounds dPreRound pro-
cedure possibly followed by participation inHeterogeneousPoisonPill protocol for roundr. Note that
HeterogeneousPoisonPill protocols for different rounds are completely disjointfr@ach other.

Input: Unique identifier; of the participating processor
Output: WIN or LOSE
Local variables:
intr=1;
outcome;
62 procedure LeaderElect(s)
63 if Doorway() = LOSE then

64 return LOSE /* lose if door was closed =/
65 repeat

66 outcome < PreRound(i, r) /+ preround routine x/
67 if outcome € { WIN, LOSE} then

68 return outcome /* return if rounds permit =*/
69 if HeterogeneousPoisonPill,(i) = DIE then

70 return LOSE /* lose if did not survive the round =/
71 r—r+1

72 until never

Figure 6: Leader election algorithm

We now prove the properties of the algorithm.
Lemma A.1.If all processors that calLeaderElect return, at least one processor returigIN.

Proof. Assume for contradiction that all processors that paigpn PoisonPill return LOSE. Let us first

13

prove that at least one processor always reaches the loapeostl| or alternatively that not all processors
can lose on lin&4. This would mean that all processors retdr@SFE on line58 of the Doorway procedure,
but in that case the door would never be closed on3ielhus, all processor views would eor = false,
and no processor would actually be able to return on3itie

Since we showed that at least one processor reaches thédbopconsider the largest rounah which
some processors return, either in the pre-round routinewidr on line 68 or because of the poison pill
on line 70. By our assumption all these processors retUémSE in roundr. But then, none of them may
return on line68, because this is only possible after returnib@SE on line 50, which only happens if a
larger round tham is reported, contradicting our assumption tha the largest round.

So, at least one processor participates inHe&rogeneousPoisonPill,. protocol. However, by exactly
the same argument as @iaim 3.1, HeterogeneousPoisonPill,. is guaranteed to have at least one survivor
which would then participate in round+ 1, again contradicting thatis the largest round. O

Lemma A.2. At most one processor that executesderElect can return WIN.

Proof. A processop can only returnWIN from LeaderElect on line 68, which only happens afterreturns
WIN from PreRound call with some rouna. This mean® first propagated roundto a quorum on lin€6,
then collected views oRound array on line47, and observed maximum rouitl< r — 1 of any processor

in any of the views. This implies that wherfinished propagating to a quorum, no processor had finished
propagatingr — 1, i.e. executing line46 in roundr — 1. Otherwise, since every two quorums have an
intersection,p would have observed round— 1 and R < r — 1 would not hold. But for every other
processor;, wheng executes lingl7in roundr — 1 and invokes th&reRound procedure R will be at least

r sincep has already propagated to a quorumgsaill observer — 1 < r and returnL. OSE on line50 and
subsequently returb OSE from LeaderElect. O

Lemma A.3. Our leader election algorithm is linearizable.

Proof. All processors that executesaderElect cannot returnL OSE by Lemma A.1 Therefore, in every
execution we can finteaderElect invocation where processor either does not return, ormstf/N. On
the other hand, bzemma A.2 no more than one processor can retlifiiN. If no processor returng’IN,
let us linearize the processor that invokethderElect the earliest as the leader. This way, we always have
an unique processor to be linearized as the winner. We lizeeiat the beginning of its invocation interval,
say pointP, and claim that every remainirig:aderElect call can be linearized as returnidg)SE after P.
Assume contrary, then the problemaltticaderElect invocation must return befor®, and we know it
has to returnL OSE. By definition, this earlier call either closes the door os@tves a closed door while
executing theDoorway procedure. Therefore, the later call that we are lineagias the winner has to
observe a closed door on lifi$ and cannot avoid returningOSE on line 58. Hence, this invocation can
never returnWWIN, and since we are linearizing it as winner, it should be trsedhat it does not return
and no other processor returfigIN. We picked this invocation to have the earliest startingipaio every
other LeaderElect invocation that does not return must start affer Let us now consider an extension of
the current execution where the processors executing theseations are continuosly scheduled to take
steps and all messages are delivered. According to the avguenent, since all invocations start affer
these processors must observe a closed door obdinad returnL OSE after only finitely many steps. We
have hence constructed a valid execution where all procetisat executéeaderElect return LOSE. This
contradiction withLemma A.1lcompletes the proof. O

We need one final claim before proving the main theorem.

Claim A.4. The maximum expected number of participants decreaseasatlg some fixed constant fraction
in every two rounds.

14

Proof. This obviously holds for a single participant, because it sgturn WIN in the next round and the
number of participants after that will be zero.

We know that fork participants in some round, lhyemma 3.6andLemma 3.7 the maximum expected
number of participants in the next round@log? k + 1). This implies that for a large enough constant
D, there is constant; < 1 such that fork > D the maximum expected number of participants in the
next round, and thus in all rounds thereatter, is at okt If £ < D, then the first processor that finishes
executing linel5flips 1 with at least a constant probability. In this case, all pssces that flig will die,
and the expected number of the remaining processors that it leastz < % for k > 2. This is
because the expected number of remaining processors thatigliat most%, as each of them observes
at least the first processor and itself, hence has no morelfzaprobability of flipping1l. Thus, ifk < D,
with a constant probability, a constant fraction of papieits dies, meaning that there is a constant 1
such that the maximum expected number of participants isoat k. Settingc = max(cq,c2) < 1 we
obtain that the maximum expected number of participantsémyetwo rounds always decreases by at least
a constant fraction tek. O

Theorem A.5.0ur leader election algorithm is linearizable. If there aemost[n/2] — 1 processor faults,
all non-faulty processors terminate with probability For & participants, it has time complexity(log™ k)
and message complexity(kn).

Proof. We have shown linearizability ihemma A.3

All k£ > 1 processors participate in the first round. The maximum eegescumber of processors that
participate in rouna is clearly no more than the maximum expected number of sonwief the first round,
which by Lemma 3.6and Lemma 3.7for k£ > 1 can be written a€’(log? k + 2log k) for some constant
C. If £ = 1, then this lone processor will observe all other processoreund0, leading toR = 0 and
as current round is = 2 it will return WIN in the second round. Hence, fbr= 1, there will be zero
participants in the third round. Thus, for ahythe maximum expected number of participants in rosiisl
at mostf (k) = C(log? k + 2log k).

Let us say the adversary can achieve a probability distabudbr round3 such that there ar&; partic-
ipants with probabilityp;. We have shown above that

> piK; < f(k) (A.1)

Now, using the same argument as above, we can bound the nraxaxpected number of participants in
round5 to be at mosd _ p; f(K;). Functionf is concave for non-negative arguments, and for arguments
larger than a constant it is also monotonically increasiiigis implies that eithed _ p; K;, the expected
number of participants in rourg] is constant, or

Y opif(Ki) < FOQ_pika) < f(f(k)) (A.2)

where the first part is Jensen’s inequality and the secotmlifslfrom (A.1) and the monotonicity property.
Similarly, we get that unless the maximum expected numbpaxdicipants in round is less than a constant,
the maximum number of participants in rouids at mostf(f(f(k))), and so on. Sincé¢(f(k)) > logk
for all £ larger than some constant, if we denote $iythe number of participants in rourid+ 2log™* £,
maximumE[Sy| that the adversary can achieve must also be constant. Tigsarticipants execute the
same algorithm, witt$; of them participating in the next round, etc.

Let R be the number of remaining rounds. ExpectatioRafan be written as

E[R] = iPT[R > 1] = ipf[si > 1] < iE[Si] (A.3)
i=1 i=1 i=1

15

where the equality is by the definition of rounds and then wayaplarkov’'s inequality to get to expecta-
tions. Finally, byClaim A.4we get thafE[R] = O(E[Sy]) = O(1) and thus the maximum total number
of rounds any processor participates irslog* k), and processors perform only fixed, constantly many
communicate calls per round. Time complexity follows frolaim 2.1

To bound the maximum expected number of messagesg), ldéte the number of participants in round
r, counting from the very first round. Since each processads@iin) messages per round, the maximum
expected number of message$ 5. | E[O(nQ,)] = n - E[O(Q1)] = O(nk) usingClaim A.4.

If there are at mositn/2] — 1 processor faults, alommunicate calls return, and processors must enter
larger rounds. However, the probability that all processerminate before reaching rouné 1 — Pr[Q, >
1] > 1 — E[Q,] which tends td asr increases bylaim A.4. O

A.2 Renaming Analysis

Lemma A.6.No two processors return the same name fromgéidName call and if there are at most
[n/2] — 1 processor faults, all non-faulty processors terminatehwitobability 1.

Proof. Assume that less than half of the processors are faulty.eBsots executing thgetName call the
communicate procedure which always terminates under at most at mo&t| — 1 processor faults. All
local computations steps are also always performed sufatlgdsy non-faulty processors.

Finally, processors invoke our leader election algoritlomf Section 3for at mostn names, at most
once for each name (the first time they s&intended < true, which prohibits contending in the future).
By Theorem A.3all invocations of the leader election for a particular ndasgenon-faulty processors termi-
nate with probabilityl, and using union bound for at mastnames, the probability that all leader election
calls by all non-faulty processors terminate tends$.tdherefore, with probability, non-faulty processors
keep making progress, i.e. they keep contending for new saamel as there arenames andh processors
that do not contend for the same name twice, each non-fardtyepsor eventually wins a name and returns.

A processor that returns some nam&om agetName call has to be the winner of our leader election
protocol. However, according tbheorem A.5LeaderElect,, cannot have more than one winner. O

Lemma A.7.In any execution, if a processor view®ntended[i| = true in some while loop iteration, and
in some subsequent iteration on liB8the same processor view®ntended[j] = false, i < j has to hold.

Proof. Clearly, ; # i because contention information never disappears from eepsor’s view. In the
earlier iteration, the processor propagat@sitended[i] = true to a quorum on line37 or 41. During
the later iteration, on lin@3, the processor collects information and does not(ettended]j] to true
before reaching lin@8. Thus, more than half of the processors viéiwntended[j] = false at some in-
termediate time point. Therefore, a quorum of process@ws/Contended[i] = true strictly earlier than
Contended[j] = true, and by definitioni < j. O

Lemma A.8. The message complexity of our renaming algorith@(s - E[>_"" ; X;]).

Proof. Let L; be the number of loop iterations executed by procegsdrhen) . X; = Zj L;, because
every iteration involves one processor contending at desimgme spot, and no processor contends for the
same name twice. Each iteration involves teeanmunicate calls with O(n) total messages. The total
number of messages sent in the leader election protocAl§)s,; n - X;). The message complexity is thus

the expectation of:
0] (Zan> —I—ZO(n)-Lj =0 (Zan>
7 7 7

as desired. O

Lemma A.9.In any execution, at most™; processors ever contend for names from groGps. ;.

16

Proof. If no name fromG /> ; is ever contended, then the statement is trivially true.othe name from
Gj>; was contended, then by our ordering so were all names fronfiotinger groups. Otherwise, an
uncontended name from an earlier group must be sorted laderamnot belong to an earlier group.

There aren — %1 i — 57=1 processors
that can be linearized to win the corresponding leaderieleeind the name. Consider one such processor
p and the name: from some earlier grou;;, thatp is bound to win. Processordoes not contend
for names after;, and it also never contends for a name frai..; before contending fox, because that
contradictsLemma A.7 Thus, none of the — ZJL,I processors ever contend for a name fr@ ;, out of
n processors in total, completing the argument. O

Lemma A.10.E[} " | X;(clean)] = O(n).

Proof. Let us equivalently prove thd[X;(clean)] = O(1) for any nameu; in some groupG,;, where
Xi(clean) is defined as the number efean ;) iterations, in which processors contend for a name G;.

By definition, in all clean(j) iterations a processor observes all nameé/jn. ; as uncontended on
line 38. Therefore, each time, independent of other iterations,ptiobability of picking spot and con-
tending for the name; is at most%]. Thus, if there are exactlgn of clean(j) iterations, X;(clean) <

B(Bn, £), thus
E[X;(clean) | u; € Gy, Bn iterationg < 273 (A.4)

for pn clean iterations that started in phase The probability that there are exactBn of clean(yj) it-
erations is trivially upper—bounded by the probability ttkizere are at leastn clean(j) iterations, which

by Corollary??is at moste™ 5 for g > 2J =—5. Iherefore:
E[X;(clean) | u; € G;] 23 Py Z (A.5)
=[5
which, after some calculation, {3(1), completing the proof. O

Claim A.11. In any execution, for eacly, any processor participates in at most odety(j) and at most
onecross(j) iteration.

Proof. The first time processqr participates in alirty(j) iteration, by definition, it viewsContended[i| =
true for somew; € Gj»~;. Therefore,p also propagate€iontended[i] = true on line 37 in the same
iteration. Whenp starts a subsequent iteration, a quorum of processors khowta; € G~ ; being
contended. By the way namesinare sorted, at that point more than half of the processors atgady
know that each name ii; is contended, meaning that phgdeas ended. Therefore, no subsequent iteration
of the processor can be ofdarty(j) type.

On the other hand, when a processor completes () iteration, it has propagated contention infor-
mation foru; € G; to a quorum, meaning that because of the way namesaie sorted, phasemust have
been started already, and no operation that starts latdyecamss (). O

LemmaA.12.E[Y"" | X;(dirty)] = O(n) andE[>_""_; X;(cross)] = O(n).

Proof. Recall thatX;(dirty) is the number of processors that ever contendufore G; in a dirty(j)
iteration. Let us equivalently fiy and prove tha[}, cq, Xi (dirty)] = O(g=r), which implies the
desired statement by linearity of expectation and teleegop

We sum up quantitieX;(dirty) for the names in-th group, but the adversary controls precisely which
names belong to grou@’;. We will therefore consider all names € G;>; and sum up quantitieX’; ;:
the number of processors that contend for a namin a dirty(j) iteration. All dirty(j) iterations by

17

definition start in phasg, and byLemma A.Sthere can be at mogt= different processors executing them.
Moreover, byClaim A.11each of these processors can participate in at most@hgj) iteration, implying
Y, Xij < 5. ThusE[Y1, Xi(dirty)] = Y025, e, Xij = O(n) as desired.

(2 - 7 J J

27—1- Jj=1 >
The proof for X;(cross) is analogous because at maggt; different processors contend for names
u; € Gj>; by Lemma A.9 each participating in at most onreoss(j) iteration byClaim A.11 O

Theorem A.13.The time complexity of the the renaming algorithn®igog?).

Proof. We will prove that the maximum expected numbekofmunicate calls by any processor that the
adaptive adversary can achiev&iglog? n), which implies the result bglaim 2.1

In the following, we fix an arbitrary processpt and upper bound the number of loop iterations it
performs during the execution. L&f; be the set of free slots thatsees when performing its random choice
in the ith iteration of the loop, and let:; = |M;|. By construction, notice that there can be at mast
processors that compete with for slotshify for the rest of the execution.

Assuming thap does not complete in iteratioh let Y; C M; be the set ohewslots thatp finds out
have become contended at the beginning of iteratieri, and lety; = |Y;|. We define an iteration as being
low-informationif y;/m; < 1/logm,;. Notice that, in an iteration that is high-information, thecessor
might collide, but at least reduces its random range forag®by al / log m, factor.

Let us now focus on low-information iterations, and in paurtar let; be such an iteration. Notice that
we can model the interaction between the algorithm and theradry in iteration as follows. Processor
p first makes a random choieefrom m; slots it sees as available. By the principle of deferredsies,
we can assume that, at this point, the adversary schedutgbelm; — 1 processors to make their choices
in this round, from slots imV/;, with the goal of causing a collision withis choice. (The adversary has no
interest in showing slots outside; to processors.) Notice that, in fact, the adversary mayshtmschedule
certain processors multiple times in order to obtain dolfis. However, by construction, each re-scheduled
processor announces its choice in the iteration to a quoanchthis choice will become known foin the
next iteration. Therefore, re-scheduled processors dhmtlannounce more than;/ log m; distinct slots.
Intuitively, the number of re-schedulings for the adveyseain be upper bounded by the number of balls
falling into them;/ log m; most loaded bins in am; — 1 balls intom; bins scenario. A simple balls-and-
bins argument yields that, in any case, the adversary cgreréirm more thann,; re-schedules without
having to announce;/ log m; new slots, with high probability imz;.

Recall that the goal of the adversary is to cause a collisiith wis random choice-. We can reduce
this to a balls-into-bins game in which the adversary throws- 1 initial balls and an extran; balls (from
the re-scheduling) into a setof; (1 — 1/ log m;) bins, with the goal of hitting a specific bin, corresponding
to r. (The extra(l — 1/log m;) factor comes from the fact that certain processors (or)oaibsy already
observe the slots removed in this iteration.) The probgtiiat a fixed bin gets hit is at most

(1 Comi(1 - 11/ log mi)>2mi < (1/e)’.

Therefore, processgr terminates in each low-information iteration with constprobability. Putting
it all together, we obtain that, far > 4 constant, after:log? n/loglogn iterations, any processerwill
terminate with high probability, either becausg = 1 or because one of its probes was successful in a
low-information phase.

In each loop iteration, a processor performs a fixed conatdditional number ofommunicate calls on
top of thecommunicate calls performed while executing the leader election atgorifor the name picked
in that iteration. ByTheorem A.5 the maximum expected number afmmunicate calls in each leader
election isO(log* n), and by linearity of expectation, total maximum numbetahmunicate calls by any

processor is at mo@(“’%{fg"l%gg;") = O(log?n). O

18

B Message Complexity Lower Bounds

In this section, we prove that our algorithms are messagjeiapby showing a lower bound of expected
Q(n?) messages on any algorithm implementing leader electioar@ming in an asynchronous message-
passing system whete< n/2 processors may fail by crashing. In fact, we prove such aideeand for
any object withstrongly non-commutativeethods AGH ™ 11].

Definition B.1. Given an objecD, a methodM of this object isstrongly non-commutative there exists
some state' of O for which an instancen; of M executed sequentially by procesgothanges the result
of an instancens of M executed by processgr# p, and vice-versa, i.en, changes the result ofi; from
statesS.

We now give a message complexity lower bound for objects mat-commutative operations.

Theorem B.2.Any implementation of an obje€t with a strongly non-commutative operatidn by & < n
processors guaranteeing termination with at least cortspambability o > 0 in an asynchronous message-
passing system wherte< n/2 processors may fail by crashing must have worst-case esghenessage
complexityQ(akn).

Proof. Let A be an algorithm implementing a shared obj@atith a strongly non-commutative methdd,

in asynchronous message-passing withn /2, guaranteeing termination with probability We define an
adversarial strategy for which we will argue that all theutesg terminating executions (regardless of their
probability) must caus€(kn) messages to be sent. This clearly implies our claim. Theeglygroceeds
as follows.

Assume that each processor is executing an instandé.ofhe adversary picks a subsebf k/4 par-
ticipants, and places them in a “bubble:” for each such mewe), the adversary suspends all its incoming
and outgoing messages in a buffer, until there are at leassuch messages in the buffer. At this point,
the processor is freed from the bubble, and is allowed to $td@s synchronously, together with other pro-
cessors. Processors outsigl@xecute in lock-step, and their messages outside the batbielivered in a
timely fashion.

Note that this strategy induces a family of executiéhgach of which is defined by the set of coin flips
made by the processors. We can assume that there exists a &ftex which in all executions i& with
non-zero probability no processors send any more mess@gesrwise, the adversary can always wait for
another message that must be sent, then for the next measagsg on, untif2(kn) messages.

Let us prove that in each executidhe £ every processor in the bubble must eventually leave thelbubb
before returning, which implieQ(kn) messages in executions in which all processors return. risthis
goal, we first show that a processor cannot return whileistihie bubble. Then we prove that all processors
in the bubble are forced to either return while still in théoble (which cannot happen) or leave the bubble,
completing the proof.

For the first part, assume for the sake of contradiction thetet exists an executiof € £ and a
processop € S that decides irFZ while still being in the bubble. Practically, this implidsatp has returned
from its method invocation without receiving any messagas,without any of its messages being received.
To obtain a contradiction, we build two alternate execigidhandE”, both of which are indistinguishable
to p, but in whichp must return different outputs.

In executionE’, we run all processors outside the bubble until one of theorme—this must eventually
occur with constant probability, since this execution @istinguishable to these processors from an execu-
tion in which all (at most /4 < n/2) processors in the bubble are initially crashed. We suspeesbages
sent to the processors inside the bubble. We then run parceswhich flips the same coins as i (the
execution exists as this happens with probabitity)), observes the same emptiness and therefore eventu-
ally returns with constant probability, without having eded any messages. We deliyés messages and
suspended messages as soop @eacides.

19

In executionE”, we first runp in isolation, suspending its messages. With probabitity), p flips
the same coins as ift, and must eventually decide with constant probability withhaving received any
messages. We then run all processors outside the bubblekirsiep. One of these processors must even-
tually return with constant probability, since to thesegassors, the execution is indistinguishable from an
execution in whichp (and other processors in the bubble) has crashed initisilg. deliverp’s messages
after this decision. Since bothi’ and E” are indistinguishable tp, it has to return the same value in both
executions with constant probability. However, this carimethe case because instances of methodre
strongly non-commutative, the two returning instancesnateconcurrent, and occur in opposite orders in
the two executions. This correctness requirement is eaflleterministically Therefore,p must return
distinct values in executions’ and E”, which is a contradiction. Hencg,cannot return in&.

To complete the argument, we prove thdtas to eventually return or leave the bubble, with probgbili
> «. We cannot directly require this of the execution préfixsince not all messages by correct processors
have been delivered in this prefix. For this, we consider tirat which we crash all recipients of messages
by p, and all processors that sent messagesitaF. By the definition of the bubble, the number of crashes
we need to expend is n/4. Therefore, by definition of, there exists a valid execution, in which no more
messages will be sent apdnust eventually decide with probability «. Fromp’s prospective, the current
execution in the bubble can be this execution, and if the radwge keep® in the bubble for long enough, it
has to decide with probability «. However, from the previous argument, we know thaiannot decide
while in the bubble, thereforg has to eventually leave the bubble in order to be able to ded return.

This shows that a specific procesganust eventually leave the bubble. The final difficulty is imsing
that we can apply the same argumenaligprocessors in the bubble at the same time without exceelding t
failure budget. Notice however that we could apply the il strategy: for each processgrin the
bubble, we could fail all senders and recipients;dqk n/4), and also all other processors in the bubble
(< n/4) attimer. This can be applied without exceeding the failure budgeicesany processar could
be the sole survivor from the bubble to which we have appledduffering strategy, and singedoes not
see a difference from an execution in which it has to retunalagously to the previous case, we obtain that
eachg in the bubble has to eventually leave the bubble with prdivabt o.

Therefore, we obtain that at leaskn /16 messages have to be exchanged during the execution, which
implies the claim. O

It is easy to check that thelectprocedure of a leader election algorithm and ds@ameprocedure of
a strong renaming algorithm are both hon-commutative. Hgndase of renaming, consider+ 1 distinct
processors executing the rename procedure. By the pigksophiociple, there exists some non-zero prob-
ability that two processors choose the same name in solagars. Therefore, these two operations do
not commute, and therefore tihenameprocedure is strongly non-commutative.) We therefore inktze
following corollary.

Corollary B.3. Any implementation of leader election or renamingiy n processors which ensures
termination with probability at leastv > 0 in an asynchronous message-passing system where: /2
processors may fail by crashing must have worst-case eegh@sessage complexi®(akn).

20

	1 Introduction
	2 Definitions and Notation
	3 The Leader Election Algorithm
	3.1 The PoisonPill Technique
	3.2 Heterogeneous PoisonPill
	3.3 Final construction

	4 The Renaming Algorithm
	5 Message Complexity Lower Bounds
	6 Discussion and Future Work
	A Deferred Proofs
	A.1 Leader Election Construction and Analysis
	A.2 Renaming Analysis

	B Message Complexity Lower Bounds

