
Towards Optimal Synchronous Counting

Christoph Lenzen

Department of Algorithms and Complexity,
Max Planck Institute for Informatics

Joel Rybicki

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, Aalto University

Department of Algorithms and Complexity,
Max Planck Institute for Informatics

Jukka Suomela

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, Aalto University

Abstract. Consider a complete communication network of n nodes, where the nodes receive a
common clock pulse. We study the synchronous c-counting problem: given any starting state and
up to f faulty nodes with arbitrary behaviour, the task is to eventually have all correct nodes
counting modulo c in agreement. Thus, we are considering algorithms that are self-stabilizing
despite Byzantine failures. In this work, we give new algorithms for the synchronous counting
problem that (1) are deterministic, (2) have linear stabilisation time in f , (3) use a small
number of states, and (4) achieve almost-optimal resilience. Prior algorithms either resort to
randomisation, use a large number of states, or have poor resilience. In particular, we achieve
an exponential improvement in the space complexity of deterministic algorithms, while still
achieving linear stabilisation time and almost-linear resilience.

ar
X

iv
:1

50
3.

06
70

2v
1

 [
cs

.D
C

]
 2

3
M

ar
 2

01
5

1 Introduction

In this work, we design space-efficient, self-stabilising, Byzantine fault-tolerant algorithms for
the synchronous counting problem. We are given a complete communication network on n nodes,
with arbitrary initial states. There are up to f faulty nodes. The task is to synchronise the
nodes so that all non-faulty nodes will count rounds modulo c in agreement. For example, here
is a possible execution for n = 4 nodes, f = 1 faulty node, and counting modulo c = 3; the
execution stabilises after t = 5 rounds:

Stabilisation Counting

Node 1: 2 2 0 2 0 0 1 2 0 1 2 . . .
Node 2: 0 2 0 1 0 0 1 2 0 1 2 . . .
Node 3: faulty node, arbitrary behaviour . . .
Node 4: 0 0 2 0 2 0 1 2 0 1 2 . . .

Synchronous counting is a coordination primitive that can be used e.g. in large integrated
circuits to synchronise subsystems so that we can easily implement mutual exclusion and time
division multiple access in a fault-tolerant manner. Note that in this context it is natural to
assume that a synchronous clock signal is available, but the clocking system usually will not
provide explicit round numbers. Solving synchronous counting thus enables us to construct
highly dependable round numbers for subcircuits.

Counting modulo c = 2 is closely related to binary consensus: given a synchronous counting
algorithm one can design a binary consensus algorithm and vice versa [2, 4, 5]—in particular,
many lower bounds on binary consensus apply here as well [3, 8, 9]. However, the existing
implementations of counting from consensus incur a factor-f overhead in space and message
size, rendering them very costly even in small systems.

Prior Work. It is fairly easy to design space-efficient randomised algorithms for synchronous
counting [5–7]: as a simple example, the nodes can just pick random states until a clear majority
of them has the same state, after which they start to follow the majority. However, it is much
more challenging to come up with space-efficient deterministic algorithms for synchronous
counting [2, 4, 5], and it remains open to what extent randomisation helps in designing space-
efficient algorithms that stabilise quickly. Fast-stabilising algorithms build on a connection
between Byzantine consensus and synchronous counting, but require a large number of states
per node [2, 5].

For small values of the parameters (e.g., n = 4 and f = 1) the synchronous counting problem
is amenable to algorithm synthesis : it is possible to use computers to automatically design both
space-efficient and time-efficient deterministic algorithms for synchronous counting. For example,

resilience stabilisation time state bits deterministic references

f < n/3 O(f) O(f log f) yes [2]

f < n/3 22(n−f) 2 no [6, 7]

f < n/3 min{22f+2 + 1, 2O(f2/n)} 1 no [5]
f = 1, n ≥ 4 7 2 yes [5]
f = 1, n ≥ 6 6 1 yes [5]
f = 1, n ≥ 6 3 2 yes [5]

f = n1−o(1) O(f) O(log2 f) yes this work

Table 1: Summary of synchronous 2-counting algorithms. For randomised algorithms, we list
the expected stabilisation time. In [5], further trade-offs between n, the stabilization time, and
the number of state bits are given (for f = 1).

1

there is a computer-designed algorithm that solves the case of n ≥ 4 and f = 1 with only 3
states per node, and another algorithm that solves the case of n ≥ 6 and f = 1 with only 2
states per node; both of these are optimal [4, 5]. Unfortunately, this approach does not scale, as
the space of possible algorithms for given parameters n and f grows rapidly with n.

In summary, currently no algorithms for synchronous counting are known that simultaneously
scale well in terms of resilience f , stabilisation time t, and memory requirements. Here, it is
worth noting that existing solutions with large memory requirements in essence run up to Ω(f)
concurrent instances of consensus, which implies that the respective overhead extends to message
size and the amount of local computations as well.

Contributions. Our main contribution is a recursive construction that shows how to “amplify”
the resilience of a synchronous counting algorithm. Given a synchronous counter for some values
of n and f , we will show how to design synchronous counters for larger values of n and f , with
a very small increase in time and space complexity. This has two direct applications:

1. From a practical perspective, we can use existing computer-designed algorithms (e.g. n = 4
and f = 1) as a building block in order to design efficient deterministic algorithms for a
moderate number of nodes (e.g., n = 36 and f = 7).

2. From a theoretical perspective, we can now design deterministic algorithms for synchronous
counting for any n and for f ≤ n1−o(1) faulty nodes, with a stabilisation time of O(f), and
with only O(log2 f/ log log f) bits of state per node.

The space complexity is an exponential improvement over prior work, and the stabilization time
is asymptotically optimal for deterministic algorithms [8]. A summary of the related work and
our contributions is given in Table 1.

In our deterministic algorithms, each node broadcasts its state to all other nodes in each
round. However, the small number of state bits bears the promise that the communication
load can be reduced further. To substantiate the conjecture that finding algorithms with small
state complexity may lead to highly communication-efficient solutions, we proceed to consider a
slightly stronger synchronous pulling model. In this model, a node may send a request to another
node and receive a response in a single round, based on the state of the responding node at
the beginning of the round. The cost for the exchange is then attributed to the pulling node;
in a circuit, this translates to each node being assigned an energy budget that it uses to “pay”
for the communication it triggers. In this model, it is straightforward to combine our recursive
construction with random sampling to obtain the following results:

1. We can achieve the properties of the deterministic algorithm with each node pulling
polylog n messages in each round. The price is that the resulting algorithm retains a
probability of n− polylogn to fail in each round even after stabilisation.

2. If the failing nodes are chosen independently of the algorithm, we can fix the random
choices. This results in a pseudo-random algorithm which stabilises with a probability of
1− n− polylogn and in this case keeps counting correctly.

Structure. This paper is organised as follows. In Section 2 we formally define the model
of computing and the synchronous counting problem. Section 3 gives the main technical
result—a construction for creating a synchronous counting algorithm of larger resilience from
several copies of an algorithm with smaller resilience. Section 4 uses this construction to derive
deterministic synchronous counting algorithms with linear stabilisation time and polylogarithmic
space complexity. Finally, in Section 5, we discuss the pulling model and how randomised
sampling can be used to reduce the total number of communicated bits.

2

2 Preliminaries

Model of Computation. We consider a fully-connected distributed message-passing sys-
tem consisting of n processors, also called nodes, with unique identifiers from the set [n] =
{0, 1, . . . , n− 1}. The computation proceeds in synchronous communication rounds, where in
each round each processor:

1. broadcasts its local state to all processors,
2. receives a vector of messages (that is, states) from all other processors, and
3. updates its local state according to the received messages.

However, the initial state of every node is arbitrary. Moreover, up to f nodes may be Byzantine,
i.e., exhibit arbitrary behaviour, including to send different messages to every node. Thus,
different nodes may receive different vectors depending on what the Byzantine nodes do.

Algorithms. A deterministic algorithm in this model is a tuple A = (X, g, h), where X is
the set of all possible states for a node, g : [n]×Xn → X is the state transition function, and
h : [n] × X → [c] maps the internal state of a node to an output value. That is, when node
i ∈ [n] receives a vector x ∈ Xn of messages, it will update its internal state to g(i,x) = s and
output h(i, s) ∈ [c].

The space complexity S(A) of an algorithm A is the total number of bits required to store
the state of a node. That is, S(A) = dlog |X|e.

Executions. For any given set F ⊆ [n] of faulty nodes, we define a projection πF as follows:
for any received message vector x ∈ Xn, let πF (x) be a vector e such that ei = ∗ if i ∈ F and
ei = xi otherwise. We call πF(Xn) = {πF(x) : x ∈ Xn} the set of configurations. That is, a
configuration consists only of the state of all non-faulty nodes.

We say that a configuration d is reachable from configuration e if for every non-faulty node
i /∈ F there exists some x ∈ Xn satisfying πF(x) = d and g(i,x) = di. Intuitively, this means
that the Byzantine nodes can send node i such messages that i chooses to switch to state di
when the system is in configuration e.

An execution of a given algorithm A for a given set of faulty nodes, is an infinite sequence of
configurations ξ = 〈e0, e1, e2, . . . 〉 such that et+1 is reachable from et.

Synchronous Counters. We say that an execution ξ of algorithm A = (X, g, h) stabilises in
time t if there is some r0 ≥ 0 so that for every non-faulty node i ∈ [n] the output satisfies

h(i, xt+r,i) = r − r0 mod c for all r ≥ 0.

That is, within t steps all non-faulty nodes agree on a common output and start incrementing
their counters modulo c each round. Moreover, we say that A is a synchronous c-counter with
resilience f if there exists a t such that for every F ⊆ [n], |F| ≤ f all executions of A stabilise
in t rounds. We say that the stabilisation time of algorithm A is T (A) ≤ t. In the following, we
use A(n, f, c) to denote the family of synchronous c-counters that run on n nodes.

3 Boosting Resilience

In this section, we show that given a family of synchronous c-counters for a small number of
nodes n and resilience f , we can construct a new family of C-counters of a larger resilience
without increasing the number of nodes in the network or the stabilisation time by too much.
More precisely, we prove the following main result.

3

Theorem 1. Given n, f ∈ N, pick new parameters N,F,C ∈ N, where

• the number of nodes is N = kn for some number of blocks 3 ≤ k ∈ N,
• the resilience is F < (f + 1)m, where we abbreviate m = dk/2e, and
• the counter size is C > 1.

Choose any c ∈ N that is a multiple of 3(F + 2)(2m)k. Then for any A ∈ A(n, f, c) there exists
a B ∈ A(N,F,C) with

T (B) ≤ T (A) + 3(F + 2)(2m)k,

S(B) = S(A) + dlog(C + 1)e+ 1.

3.1 High-level Idea of the Construction

Given a suitable counter A ∈ A(n, f, c), we construct a larger network with N = kn nodes
and divide the nodes in k blocks of n nodes. Each block runs a copy of A that is used to
(1) determine a “leader block” and (2) output a consistent round counter within a block.

Due to the bound on F , only a minority of the blocks (fewer than m) contains more than f
faulty nodes. Thus, the counters of a majority of the blocks stabilise within T (A) rounds. By
dividing the counters within each block, we let them “point” to one of m possible leader blocks
for a fairly large number of consecutive rounds. Block i switches through leaders by a factor of
2m faster than block i+ 1. This ensures that, eventually, all stabilised counters point to the
same leading block for 3(F + 2) rounds.

Using a majority vote on the pointers to leader blocks, we can make sure that all correct
nodes—also those in blocks with more than f faulty nodes—will recognise the same block as the
leader for sufficiently long. In fact, eventually this will happen for each of the m blocks that may
become leaders, one of which must have fewer than f faulty nodes. In particular, its counter
will be stabilised and can be “read” by all other nodes based on taking the majority value
within that block. Hence, we can guarantee that at some point all nodes agree on a common
counter value for at least 3(F + 2) rounds. This value is used to control an execution of the
well-known phase king protocol [1], which solves consensus in Θ(F) rounds in systems of N > 3F
nodes. As the constraint F < (f + 1)m also ensures that F < N/3, we can use the phase king
protocol to let all nodes agree on the current value of the C-counter that is to be computed. It
is straightforward to guarantee that, once this agreement is achieved, it will not be lost again
and the counter is incremented by one modulo C in each round.

3.2 Setup

Our goal is to construct a synchronous C-counter that runs in a network of N = kn nodes and
tolerates F < (f + 1)m faults. We divide the nodes into k blocks, each of size n. We identify
each node v ∈ [kn] with a tuple (i, j) ∈ [k] × [n]. Thus, node v = (i, j) is the jth node of
block i. Blocks that contain more than f faulty nodes are said to be faulty. Otherwise, a block
is non-faulty.

We will have each block i run a synchronous counter Ai constructed as follows. Define
τ = 3(F + 2) and ci = τ(2m)i+1 for i ∈ [k]. Let A = (X, g, h) ∈ A(n, f, c) be the given
synchronous c-counter, where c = ατ(2m)k for some integer α. Now for any i ∈ [k], we obtain a
synchronous ci-counter Ai = (X, g, hi) by defining the output function as hi(x) = h(x) mod ci.
That is, Ai outputs the output of A modulo ci. It follows that T (Ai) = T (A) and S(Ai) = S(A).
Thus, if block i is non-faulty, then Ai will stabilise in T (A) rounds.

We interpret the value of the counter of (non-faulty, stabilised) block i as a tuple (r, y) ∈
[τ]× [(2m)i+1], where r is incremented by one modulo τ each round, and y is incremented by
one whenever r “overflows” to 0. We refer to the counter value that node (i, j) currently has
according to Ai as (r[i, j], y[i, j]). Note that this value can be directly inferred from its state,

4

so by broadcasting its state (i, j) implicitly announces its current counter value to all other
nodes. We stress that there is no guarantee whatsoever on how these variables behave in faulty
blocks, even for non-faulty nodes in faulty blocks—the only guarantee is that non-faulty nodes
in non-faulty blocks will count correctly after round T (A).

We define the short-hand

b[i, j] =

⌊
y[i, j]

(2m)i

⌋
mod m.

The value b[i, j] indicates the block that the nodes in block i currently consider to be the “leader
block” by interpreting the counter given by Ai appropriately.

Let bq[i, j] and rq[i, j] denote the values of b[i, j] and r[i, j] in round q. We will now show
that after stabilisation, a non-faulty block i will within ci rounds point to every block β ∈ [m]
for at least τ consecutive rounds. For notational convenience, we let c−1 = τ .

Lemma 1. Let i ∈ [k] be a non-faulty block and t ≥ T (A). For any β ∈ [m], there exists some
t ≤ w ≤ t+ ci − ci−1 such that if (i, j) is non-faulty, then bq[i, j] = β for w ≤ q < w + ci−1.

Proof. By round t, the counter Ai has stabilised and all non-faulty nodes (i, j) agree. First
observe that since Ai is a ci-counter, b[i, j] cycles through the set [m] twice in ci rounds. Moreover,
once b[i, j] changes its value, it will keep the new value for ci−1 = τ(2m)i consecutive rounds.

More formally, let (i, j) be a non-faulty node and u ≥ t be the minimal u such that
ru[i, j] = 0 and yu[i, j] ∈ {0, ci/(2τ)}. In particular, at round u we have bu[i, j] = 0. Moreover,
u ≤ t + ci/2. Since b[i, j] retains the same value for ci−1 consecutive rounds, we get that at
round w = u + (β − 1)ci−1 the value b[i, j] changes to β. Now we have that bw′ [i, j] = β for
w ≤ w′ < w + ci−1. A simple check confirms that w + ci−1 ≤ t+ ci.

Using this lemma, we can show that after stabilisation, all non-faulty nodes in non-faulty
blocks will within ck rounds point to each β ∈ [m] simultaneously for at least τ rounds.

Lemma 2. Let t ≥ T (A) and β ∈ [m]. There exists some t ≤ u ≤ t+ ck − τ such that if (i, j)
is a non-faulty node in a non-faulty block, then bq[i, j] = β for u ≤ q < u+ τ .

Proof. We prove the statement for the special case that all blocks are non-faulty. As there is no
interaction between the algorithm Ai of different blocks, the the lemma then follows by simply
excluding all nodes in faulty blocks. We prove the following claim using induction; see Figure 1
for illustration.

Claim: For any round t ≥ T (A), block β ∈ [m] and h ∈ [k], there exists a round t ≤
u(h) ≤ t+ ch − τ such that for all non-faulty nodes (i, j) where i ≤ h we have bq[i, j] = β for
u(h) ≤ q < u(h) + τ .

In particular, the lemma follows from the case h = k of the above claim. For the base case
of the induction, observe that case h = 0 follows from Lemma 1 as c−1 = τ . For the inductive
step, suppose the claim holds for some h ∈ [k − 1] and consider the non-faulty block h+ 1. By
Lemma 1 there exists t ≤ w ≤ t+ ch+1 − ch such that bq[h+ 1, j] = β for all w ≤ q < w + ch
where (h + 1, j) is a non-faulty node. Applying the induction hypothesis to w we get u(h).
Setting u(h+ 1) = u(h) yields that u(h+ 1) ≤ w + ch − τ ≤ t+ ch+1 − τ . This proves the claim
and the lemma follows.

3.3 Voting Blocks

Next, we define the voting scheme for all the blocks. Define the majority operation for every
message vector x ∈ Xkn as follows:

majorityx =

{
a if a is contained in x more than kn/2 times,

∗ otherwise,

5

�

� � �

Block h + 1

Block h

t t + chu u + ch�1

Block h + 2
�

time

Figure 1: Counters in non-faulty blocks will eventually coincide. The picture illustrates the
output of b[·] for three blocks i ∈ {h, h+ 1, h+ 2} running τ(2m)i+1-counters with base (2m) = 6.
For every β ∈ [m], we can find a interval (blue segments) where all non-faulty blocks point to
the same value β for sufficiently long, even though the clocks may cycle at different time points.

where the symbol ∗ indicates that the function may evaluate to an arbitrary value, including
different values at different non-faulty nodes. We use the following short-hands as local variables:

bi = majority{b[i, j] | j ∈ [n]},
B = majority{bi | i ∈ [k]},
R = majority{r[B, j] | j ∈ [n]}.

Note that these functions can be locally computed from the received state vectors by checking
for a majority and defaulting to, e.g., 0, when no such majority is found: by definition, the
majority function may return an arbitrary value if kn/2 or fewer correct nodes “vote” for the
same value; as non-faulty nodes broadcast the same state to all nodes, there can only be one
such majority value.

In words, bi denotes the block which the nodes in block i support as a leader; different correct
nodes may “observe” different values of bi only if i is a faulty block or Ai has not yet stabilised.
As F < (f + 1)m = (f + 1)dk/2e, a majority of the blocks is non-faulty. Hence, if all non-faulty
blocks support the same leader block β ∈ [m], then B evaluates to β at all correct nodes. By
Lemma 2, this is bound to happen eventually. Finally, R denotes the round counter of block B,
which is “read” correctly by all non-faulty nodes if B is non-faulty.

Analogously to before, let i′ ∈ [k] and denote by Bq[i, j] and Rq[i, j], respectively, the values
to which the above functions evaluate in round q at node (i, j). Then we can conclude from
Lemma 2 that eventually all non-faulty nodes agree on R for τ rounds.

Lemma 3. There is a round t ≤ T (A) + ck − τ such that:

(a) Rq[i, j] = Rq[i
′, j′] for any t ≤ q < t+ τ and non-faulty nodes (i, j) and (i′, j′).

(b) Rq+1[i, j] = Rq[i, j] + 1 mod τ for any t ≤ q < t+ τ − 1 and non-faulty node (i, j).

Proof. As F < (f + 1)m, there is a non-faulty block β ∈ [m]. By applying Lemma 2 to round
T (A), there is a round t ≤ T (A) + ck − τ such that bq[i, j] = β for each t ≤ q < t + τ and
non-faulty node (i, j) in a non-faulty block i. Therefore, biq = β for all non-faulty blocks i. As
F < (f + 1)m, the number of faulty blocks is at most m− 1 = dk/2e − 1 < k/2, and thus, the
majority vote yields B = β.

Since T (A) ≤ t ≤ q < t+ τ , we have that block β has stabilised by round t and therefore,
rq[β, j] = rq[β, j

′] for all non-faulty nodes (β, j), (β, j′) in the non-faulty block β. Moreover,
as block β is non-faulty, it contains at most f faulty nodes. In particular, it must be that
f < n/3 < n/2 as otherwise counting cannot be solved and A ∈ A(n, f, c). Hence, a majority
vote yields R = rq[β, j], where (β, j) is any non-faulty node in block β proving claim (a).

6

Set Instructions

I3`: 1. If fewer than N − F nodes sent a[v], set a[v]←∞.
2. increment a[v].

I3`+1: 1. Let zj = |{u ∈ [N] : a[u] = j}| be the number of j values received.
2. If za[v] ≥ N − F , set d[v]← 1. Otherwise, set d[v]← 0.

3. Set a[v]← min{j : zj > F}.
4. increment a[v].

I3`+2: 1. If a[v] =∞ or d[v] = 0, then set a[v]← min{C, a[`]}.
2. Set d[v]← 1 and increment a[v].

Table 2: The instruction sets for node v ∈ [N] in the phase king.

To show (b), observe that since block β is non-faulty and has stabilised by round t we have
that Rq[i, j] = rq[β, j

′]. Moreover, non-faulty nodes in block β increment r[β, j] by one modulo
τ in the considered interval.

3.4 Executing the Phase King

We have now built a voting scheme that allows the nodes to eventually agree on common counter
for τ rounds. Roughly speaking, what remains is to use this common counter to control a
non-self-stabilizing F -resilient C-counting algorithm.

We require that this algorithm guarantees two properties. First, all non-faulty nodes reach
agreement and start counting correctly within τ rounds provided that the underlying round
counter is consistent. Second, if all non-faulty nodes agree on the output, then the agreement
persists regardless of the round counter’s value. It turns out that a straightforward adaptation
of the classic phase king protocol [1] does the job.

From now on, we refer to nodes by their indices v ∈ [N]. The phase king protocol (like
any consensus protocol) requires that F < N/3. It is easy to verify that this follows from the
preconditions of Theorem 1.

Denote by a[v] ∈ [C]∪ {∞} the output register of the algorithm, where ∞ is used as a “reset
state”. There is also an auxiliary register d[v] ∈ {0, 1}. Define the following short-hand for the
increment operation modulo C:

increment a[v] =

{
a[v]← a[v] + 1 mod C if a[v] 6=∞,
no action if a[v] =∞.

For ` ∈ [F + 2], we define the instruction sets listed in Table 2. First, we show that if
these instructions are executed in the right order by all non-faulty nodes for a non-faulty leader
` ∈ [F + 2], then agreement on a counter value is established.

Lemma 4. Suppose that for some non-faulty node ` ∈ [F + 2] and a round q, all non-faulty
nodes execute instruction sets I3`, I3`+1, and I3`+2 in rounds q − 2, q − 1, and q, respectively.
Then aq+1[v] = aq+1[u] 6=∞ for any two non-faulty nodes u, v ∈ [N]. Moreover, dq+1[v] = 1 at
each non-faulty node.

Proof. This is essentially the correctness proof for the phase king algorithm. Without loss of
generality, we can assume that the number of faulty nodes is exactly F . By assumption, we have
F < N/3 and hence 2(N − 2F) > N − F . It follows that it is not possible that two non-faulty
nodes v, u ∈ [N] satisfy both aq−1[v], aq−1[u] ∈ [C] and aq−1[v] 6= aq−1[u]: this would imply that
there are at least N − 2F non-faulty nodes w that had aq−2[w] + 1 mod C = aq−1[v] and the
same number of non-faulty nodes w′ with aq−2[w′] + 1 mod C = aq−1[u]; however, there are only

7

N −F < 2(N − 2F) non-faulty nodes. Therefore, there is some x ∈ [C] so that aq−1[v] ∈ {x,∞}
for all non-faulty nodes v. Checking I3`+2 and exploiting that 2(N − F) > N − F once more,
we see that this implies that also aq[v] ∈ {x+ 1 mod C,∞} for some any non-faulty node v.

We need to consider two cases. In the first case, all non-faulty nodes execute the first
instruction of I3`+2 in round q. Then aq+1[v] = min{C, aq[`]} + 1 mod C for any non-faulty
node v. In the second case, there is some node v not executing the first instruction of I3`+2.
Hence, dq[v] = 1, implying that v computed zaq−1[v] ≥ N − F in round q − 1. Consequently, at
least N − 2F > F non-faulty nodes u satisfy aq−1[u] = aq−1[v]. We infer that aq[v] = x′ for all
non-faulty nodes v: the third instruction of I3`+1 must evaluate to x′ ∈ [C] at all non-faulty
nodes. Clearly, this implies that aq+1[v] = aq+1[u] 6= ∞ for non-faulty nodes v, u, regardless
of whether they execute the first instruction of I3`+2 or not. Trivially, dq+1[v] = 1 at each
non-faulty node v due to the second instruction of I3`+2.

Next, we argue that once agreement is established, it persists—it does not matter any more
which instruction sets are executed.

Lemma 5. Assume that aq[v] = x ∈ [C] and dq[v] = 1 for all non-faulty nodes v in some
round q. Then aq+1[v] = x+ 1 mod c and dq+1[v] = 1 for all non-faulty nodes v.

Proof. Each node will observe at least N − F nodes with counter value x, and hence at most F
nodes with some value y 6= x. For non-faulty node v, consider all possible instruction sets it
may execute.

First, consider the case where instruction set I3` is executed. In this case, v increments x,
resulting in aq+1[v] = x+ 1 mod C and dq+1[v] = 1. Second, executing I3`+1, node v evaluates
zx ≥ N − F and zy ≤ F for all y 6= x. Hence it sets dq+1[v] = 1 and aq+1[v] = x + 1 mod C.
Finally, when executing I3`+2, node v skips the first instruction and sets dq+1[v] = 1 and
aq+1[v] = x+ 1 mod C.

3.5 Proof of Theorem 1

We can now prove the main result. As shown in Lemma 3 we have constructed a τ -counter that
will remain consistent at least τ rounds. This is a sufficiently long time for the nodes to execute
the phase king protocol in synchrony. This protocol will stabilise the C-counter for the network
of N nodes. More precisely, each node (i, j) runs the following algorithm:

1. Update the state of algorithm Ai.
2. Compute the counter value R.
3. Update state according to instruction set IR of the phase king protocol.

By Lemma 3, there is a round t ≤ T (A) + ck − τ so that the variables Rq[i, j] meet the
requirements of τ -counting for rounds t ≤ q < t + τ . For each round q, all non-faulty nodes
execute the same set of instructions. In particular, as τ = 3(F + 2), no matter from which value
the τ -counting starts, for at least F + 1 values ` ∈ [F + 2] the instruction sets I3`, I3`+1, and
I3`+2, in this order, will be jointly executed by all non-faulty nodes at some point during rounds
t, . . . , t+ τ − 1.

As there are only F faulty nodes, there are at least two non-faulty nodes ` ∈ [F + 2]. Thus,
the prerequisites of Lemma 4 are satisfied in some round q ≤ t+ τ ≤ T (A) + ck. By an inductive
application of Lemma 5, we conclude that the variables aq[v] are valid outputs for C-counting,
and therefore, we have indeed constructed an algorithm B ∈ A(N,F,C).

The bound on q yields that T (B) ≤ T (A) + ck = T (A) + 3(F + 2)(2m)k. Concerning the
state complexity, observe that each non-faulty node (i, j) needs the memory for executing (1) the
algorithm Ai, which needs S(Ai) = S(A) bits of memory, and (2) the phase king protocol, which
needs dlog(C + 1)e bits to store aq[v] ∈ [C] ∪ {∞} and one additional bit to store dq[v].

8

A(12, 3)

A(36, 7)

A(12, 3) A(12, 3)

Figure 2: Recursive application of our construction using k = 3 blocks. The filled circles represent
the nodes. The groups of four nodes run 1-resilient counters. On top of this, the dashed groups
run 3-resilient counters. At the top-most layer, the nodes run a 7-resilient counter. Faulty blocks
are drawn with a red border, whereas faulty nodes are marked with a red cross.

4 The Recursive Construction

In this section, we show how to use Theorem 1 recursively to construct synchronous c-counters
with a near-optimal resilience, linear stabilisation time, and a small number of states (see Figure 2
for an illustration). First, we show how to satisfy the preconditions of Theorem 1 in order to
start the recursion. Then we demonstrate the principle by choosing a fixed value of k throughout
the construction; this achieves a resilience of Ω(n1−ε) for any constant ε > 0. However, as the
number of nodes in the initial applications of Theorem 1 is small, better results are possible by
starting out with large values of k and decreasing them later. This yields an algorithm with a
resilience of n1−o(1) and O(f) stabilisation time using O(log2 f/ log log f + log c) state bits.

4.1 The Base Case

To apply Theorem 1, we need counters of resilience f > 0. For example, one can use the
space-efficient 1-resilient counters from [5] as base of the construction. Alternatively, we can
use as a starting point trivial counters for n = 1 and f = 0. Then we can apply the same
construction as in Theorem 1 with the parameters n = 1, f = 0, k = N , and F < N/3. The
same proof goes through in this case and yields the following corollary. Note that here the
resilience is optimal but the algorithm is inefficient with respect to the stabilisation time and
space complexity.

Corollary 1. For any c > 1, there exists a synchronous c-counter with optimal resilience
f < n/3 that stabilises in fO(f) rounds and uses O(f log f + log c) bits of state.

Proof. For any f > 0, we can construct a f -resilient counter for 3f + 1 nodes. We use the trivial
0-resilient counter for one node as the base case for Theorem 1 and set k = 3f + 1, that is,
each block consists of a single node. Theorem 1 yields an f -resilient algorithm that stabilises in
(3f + 2)(2m)k = fO(f) rounds, where the O(f) term is (3 + o(1))f .

4.2 Using a Fixed Number of Blocks

For the sake of simplicity, we will first discuss the recursive construction for a fixed value of k
here. Improved resilience can be achieved by varying k depending on the level of recursion which
we show afterwards.

Theorem 2. Let 1 > ε > 0 and 2 ≤ c ∈ N. There exists a synchronous c-counting algorithm with
a resilience of f = Ω(n1−ε) that stabilises in O(22

1/ε
f) rounds and uses O(21/ε log f+log2 f+log c)

bits of state per node.

Proof. Fix 0 < ε < 1 and let k = 2h ≥ 4 be minimal such that ε ≥ 1/ log h. Assume f = 2j

for some j ≥ h and let L = log f/ log h; w.l.o.g., assume that L ∈ N. We will analyse how
many nodes are required to get to a resilience of Ω(n1−ε) by applying Theorem 1 for L ≤ ε log f
iterations.

9

For all i ≥ 0, let fi = hi and ni = 4ki. At iteration i + 1 we use Theorem 1 to construct
algorithms in A(ni+1, fi+1, c) (for any c) using ni and fi as the input parameters. Since
fi+1 = fih < (fi + 1)dk/2e and ni+1 = kni, the conditions of Theorem 1 are satisfied. To start
the recursion, we will use an algorithm with parameters f0 = 1 and n0 = 4. By Corollary 1, such
an algorithm with a stabilisation time of T0 = O(1) and a space complexity of S0 = O(log c)
exists.

Every iteration increases the resilience by a factor of at least h = k/2. After L iterations, we
tolerate at least f = fL = hL failures using n = nL = 4kL nodes. This gives

n

f
= 4

(
k

k/2

)L
= 4 · 2L ≤ 8f ε < 8nε.

and it follows that the resilience is Ω(n1−ε).
It remains to analyse the stabilisation time and space complexity of the resulting algorithm;

both follow from Theorem 1. The stabilisation time of layer i+ 1 is

Ti+1 ≤ Ti + 3(fi+1 + 2)hk,

where h = dk/2e. From the definition of fi, we get the bound
∑L

i=0 fi = O(fL) = O(f).
Therefore, the overall stabilisation time is

T = TL ≤ O
(
hk

L∑
i=0

fi

)
= O(hkf).

From Theorem 1, we get that the space complexity of layer i+ 1 is

Si+1 ≤ Si + dlog(3(fi+2 + 2)hk + 1)e+ 1 = Si +O(k log h+ log f).

As L ≤ ε log f , the total number of memory bits is then bounded by

L∑
i=0

O(k log h+ log f) +O(log c) ≤ O(εk log h log f + log2 f + log c).

Recall that h = k/2 is minimal such that ε ≥ 1/ log h. Thus k = O(21/ε) and log h = O(1/ε),
yielding the claimed bounds on time and space complexity.

Choosing a constant ε, we arrive at the following corollary.

Corollary 2. For any constant 1 > ε > 0 and any 2 ≤ c ∈ N, there exists a synchronous
c-counter with resilience f = Ω(n1−ε) that stabilises in O(f) rounds and uses O(log2 n+ log c)
bits of state.

4.3 Varying the Number of Blocks

Obviously, the factor 22
1/ε

makes the previous construction impractical unless 1/ε is small.
However, it turns out that we can still achieve good resilience without a doubly-exponential
blow-up in the stabilisation time by carefully varying the number of blocks at each level.

Theorem 3. For any c > 1, there exist synchronous c-counters with a resilience of f = n1−o(1)

that stabilises in O(f) rounds and uses O(log2 f/ log log f + log c) bits of space per node.

Proving this theorem boils down to choosing k in each iteration as large as possible without
violating the bound on the stabilization time. We again rely on Theorem 1, but instead of using
a fixed number of blocks at each iteration, we divide the construction into P phases. During

10

each phase, we use a different number of blocks and iterations of Theorem 1. The goal is to
have the running time of the last phase dominate the running time of earlier phases.

We set each phase 1 ≤ p ≤ P to use kp = 4 · 2P−p > 3 blocks per layer and then iterate
Theorem 1 exactly Rp = 2kp times. During phase p, we use iteration 1 ≤ i+ 1 ≤ Rp to get an
algorithm from Theorem 1 that tolerates

fi+1,p =
fi,pkp

2
< (fi,p + 1)

⌈
kp
2

⌉
failures, where f0,p = fRp−1,p−1 and fR0,0 = f0,0 = 1. Thus, for any p and i, the values kp and
fi,p satisfy the conditions of Theorem 1. Again, to start the recursion we may use any algorithm
tolerating a single fault among 4 nodes giving f0,0 = 1.

Now, every phase p increases the resilience by a factor of

dp =

(
fi+1,p

fi,p

)Rp

=

(
kp
2

)Rp

.

As there are total of P phases, this means that the total resilience and number of nodes n are
given by

f = fP =
P∏
p=1

dp =
P∏
p=1

(
kp
2

)Rp

and n = nP = 4
P∏
p=1

k
Rp
p .

In order to get resilience of f ≥ n1−ε, where ε = o(1), we want to ensure that

n

f
= 4

P∏
p=1

2rp = 4
P−1∏
j=0

22·2
j

= 22(2
P−1) ≤ f ε,

which is equivalent to

2(2P − 1) = 4 · 2P−1 − 2 = k1 − 2 ≤ ε log f.

Hence, it is feasible to choose ε = k1/ log f . Observe that
∑P

p=1 kp = 4(2P − 1) < 2k1. It follows
that

log f = log
P∏
p=1

(kp/2)Rp = 2
P∑
p=1

kp log(kp/2) = Θ(k1 log k1),

implying that k1 = Θ(log f/ log log f). We conclude that ε = Θ(1/ log log f).
Let us now analyse the stabilisation time and space complexity of the construction.

Lemma 6. The algorithm stabilises in O(f) rounds.

Proof. To analyse the stabilisation time, we first bound the stabilisation time of each phase p
separately. By Theorem 1, iteration i+ 1 of phase p has stabilisation time

Ti+1,p = Ti,p +O
(
fi+1,p · kkpp

)
.

Analogously to the proof of Theorem 2, we again get a geometric series and the total stabilisation
time of phase p is bounded by

Rp∑
i=1

Ti+1,p = O(TRp,p) = O
(
fp · kkpp

)
.

Therefore, the total stabilisation time is

T =
P∑
p=1

Tp = O

 P∑
p=1

fp · kkpp

 .

11

For 1 ≤ p ≤ P − 4, using the shorthand κ = kp+1, we can bound

fp+1

fp
· κ

κ

k
kp
p

= dp+1
κκ

(2κ)2κ
=
κ2κ

22κ
· κκ

(2κ)2κ
=
(κ

16

)κ
≥ 2.

Thus, we get a geometric series

P−3∑
p=1

Tp ≤ 2TP−2 = O(f),

and since also TP−2 + TP−1 + TP = O(f), the stabilisation time of all phases is bounded by
O(f).

Lemma 7. Every node uses at most O(log2 f/ log log f + log c) bits of memory.

Proof. By Theorem 1, the number of state bits increases each iteration by Θ(logCi) bits, where

Ci is the counter size needed for iteration i. During phase p, the counter size is O(f · kkpp) in
each iteration. There are exactly Rp = 2kp iterations phase p, and thus the number of bits we
need is bounded by

Sp = O(kp (log f + kp log kp)) = O
(
kp log f + k2p log kp

)
.

From earlier computations, we know that
∑P

i=1 kp = O(k1) and k1 = O(ε log f). Thus, we use

S =
P∑
p=1

Sp = O

 P∑
p=1

(kp log f + k2p log kp)


= O

log f

P∑
p=1

kp +
P∑
p=1

k2p log kp


= O

(
k1 log f + k21 log k1

)
= O(ε log2 f + ε2 log2 f(log ε+ log log f))

= O

(
log2 f

log log f

)
bits in total, as ε = Θ(1/ log log f). Storing the output of the resulting c-counter introduces
additional O(log c) bits.

5 Saving on Communication Using Randomization

So far we have considered the model where each node broadcasts its entire state every round. In
the case of the algorithm given in Theorem 3, every node will send S = O(log2 f/ log log f+log c)
bits in each round. As there are Θ(n2) communication links, the total number of communicated
bits in each round is Θ(n2S). In this section, we consider a randomised variant of the algorithm
that achieves better message and bit complexities in a slightly different communication model.

5.1 The Pulling Model

Throughout this section we consider the following model, where in every synchronous round:

1. each processor contacts a subset of other nodes by pulling their state,
2. each contacted node responds by sending their state to the pulling nodes,
3. all processors update their local state according to the received messages.

12

As before, faulty nodes may respond with arbitrary states that can be different for different
pulling nodes. We define the (per-node) message and bit complexities of the algorithm as the
maximum number of messages and bits, respectively, pulled by a non-faulty node in any round.

The motivation for this model is that it permits to attribute the energy cost for a message
to the pulling node. In a circuit, this means that the pulling node provides the energy for the
signal transitions of the communication link: logically, the link is part of the pulling node’s
circuitry, whereas the “sender” merely spends the energy for writing its state into the register
from which all its outgoing links read.

Our goal will be to keep the number of pulls by non-faulty nodes small at all times. This way
a small energy budget per round per node suffices in correct operation. By limiting the energy
supply of each node, we can also effectively limit the energy consumption of the Byzantine nodes.

5.2 The High-Level Idea of the Probabilistic Construction

To keep the number of pulls, and thus number of messages sent, small, we modify the construction
of Theorem 1 to use random sampling where useful. Essentially, the idea is to show that with
high probability a small set of sampled messages accurately represents the current state of the
system and the randomised algorithm will behave as the deterministic one. There are two steps
where the nodes rely on information broadcast by the all the nodes: the majority voting scheme
over the blocks and our variant of the phase king algorithm. Both can be shown to work with
high probability by using concentration bound arguments.

More specifically, for any constant κ ≥ 1 we can bound the probability of failure by η−κ by
sampling M = Θ(log η) messages; here η denotes the total number of nodes in the system. The
idea is to use a union bound over all levels of recursion, nodes, and considered rounds, to show
that the sampling succeeds with high probability in all cases. For the randomised variant of
Theorem 1, we will require the following additional constraint: when constructing a counter
on N = kn nodes, the total number of failures is bounded by F < N

3+γ , where γ > 0 is some
constant. Since the resilience of the recursive construction is suboptimal anyway, this constraint
is always going to be satisfied. This allows us to construct probabilistic synchronous c-counters
in the sense that the counter stabilises in time T if for all rounds t ≥ T all non-faulty nodes
count correctly with probability 1− η−κ.

5.3 Sampling Communication Channels

There are two steps in the construction of Theorem 1 where we rely on deterministic broadcasting:
the majority sampling for electing a leader block and the execution of the phase king protocol.
We start with the latter.

Randomised Phase King. Instead of checking whether at least N − F of all messages have
the same value, we check whether at least a fraction of 2/3 of the sampled messages have the
same value. Similarly, when checking for at least F + 1 values, we check whether a fraction 1/3
of the sampled messages have this value.

Lemma 8. Let x ∈ [C]∪{∞} and suppose a node samples M values from the other nodes. Then
there exists M0(η, κ, γ) = Θ(log η) so that M ≥M0 implies the following with high probability.

(a) If all non-faulty nodes agree on value x, then x is seen at least 2/3 ·M times.

(b) If the majority of non-faulty nodes have value x, then more than 1/3 ·M sampled values
will be x.

(c) If at least 2/3 ·M sampled values have value x, then x is a majority value.

13

Proof. Define δ = 1 − 2
3 ·

3+γ
2+γ and let the random variable X denote the number of x values

sampled from non-faulty nodes.
(a) If all non-faulty nodes agree on value x, then

E[X] =

(
1− F

N

)
M >

2 + γ

3 + γ
M.

As δ satisfies (1− δ)E[X] > 2/3 ·M , it follows from Chernoff’s bound that

Pr

[
X <

2

3
M

]
≤ Pr[X < (1− δ)E[X]]

≤ exp

(
−δ

2

2
E[X]

)
≤ exp

(
−δ2 2 + γ

2(3 + γ)
M0

)
.

For sufficiently large M0(N,κ, γ) = Θ(logN) this probability is bounded by N−κ.
(b) If a majority of non-faulty nodes have value x, then E[X] ≥ 1

2 ·
2+γ
3+γM . As above, by

picking the right constants and using concentration bounds, we get that

Pr

[
X ≤ 1

3
M

]
≤ Pr[X < (1− δ)E[X]]

≤ exp

(
−δ

2

2
E[X]

)
≤ exp

(
−δ2 2 + γ

4(3 + γ)
M0

)
≤ N−κ.

(c) Suppose the majority of non-faulty nodes have values different from x. Defining X̄ as
the random variable counting the number of samples with values different from x and arguing as
for (b), we see that

Pr

[
X ≥ 2

3
M

]
= Pr

[
X̄ <

1

3
M

]
≤ N−κ,

where again we assume that M0(N,κ, γ) = Θ(logN) is sufficiently large. Thus, X ≥ 2/3 ·M
implies with high probability that the majority of non-faulty nodes have value x.

As a corollary, we get that when using the sampling scheme, the execution of the phase king
essentially behaves as in the deterministic broadcast case.

Corollary 3. When executing the randomised variant of the phase king protocol from Section 3
for ηO(1) rounds, the statements of Lemma 4 and Lemma 5 hold with high probability.

Proof. The algorithm uses two thresholds, N −F and F + 1. As discussed, these are replaced by
2/3 ·M and 1/3 ·M when taking M samples. Using the statements of Lemma 8, we can argue
analogously to the proofs of Lemma 4 and Lemma 5; we apply the union bound over all rounds
and samples taken by non-faulty nodes (N − F < η per round), i.e., over ηO(1) events.

Randomised Majority Voting. It remains to handle the case of majority voting in the
construction of Theorem 1. Consider some level of the recursive construction, in which we want
to construct a counter of N = kn nodes out of k n-node counters. If N � log η/ log log η, we can
perform the step in the recursive construction using the deterministic algorithm, that is, pulling
from all kn nodes. Otherwise, similar to the above sampling scheme for randomised phase king,
each node will from each block uniformly sample M ≥M0(η, κ, γ) = Θ(log η) states. Again by

14

applying concentration bounds, we can show that with high probability, the non-faulty nodes
sample a majority of non-faulty nodes from non-faulty blocks. Thus, we can get a probabilistic
version of Lemma 3.

Recall from Section 3 that

bi = majority{b[i, j] | j ∈ [n]},
B = majority{bi | i ∈ [k]},
R = majority{r[B, j] | j ∈ [n]},

where the majority function may output an arbitrary value if there is no majority of non-faulty
nodes supporting the same value. Analogously to Section 3, we define the following local variables
at node (i, j) in round q:

bi
′
q [i, j] = majority{bq[i′, j′] | (i′, j′) sampled by (i, j) in round q},
Bq[i, j] = majority{bi′q [i, j] | i′ ∈ [k]},
Rq[i, j] = majority{r[Bq[i, j], j′] | (i′, j′) sampled by (i, j) in round q}.

Here we sample with repetition and the above sets are multisets; this means all samples from a
block are independent and we can readily apply Chernoff’s bound.

Lemma 9. Suppose x ∈ [k] is a non-faulty block, M0 = Θ(log η) is sufficiently large, and all
non-faulty blocks count correctly in round q. If for all non-faulty blocks i and non-faulty nodes
(i, j) it holds that b[i, j] = x, then with high probability

1. bi
′
q [i, j] = x for all non-faulty blocks i′,

2. Bq[i, j] = x, and

3. Rq[i, j] = rq[x, j
′] for an arbitrary non-faulty node (B, j′) in block x.

Proof. Consider a non-faulty block (recall that a block is non-faulty if it has at most f faulty
nodes). Let X denote the number of states of non-faulty nodes sampled from this block by (i, j)
in round q. As f < n/3, we have that E[X] ≥ M(n − f)/n > 2/3 ·M . Applying Chernoff’s
bound for δ = 1/4 and choosing sufficiently large M0(η, κ) = Θ(log η), we obtain that

Pr[X ≤M/2] ≤ Pr[X ≤ (1− δ)E[X]] ≤ exp

(
−δ

2

2
E[X]

)
≤ η−κ.

Applying the union bound to all nodes and all blocks, it follows that, with high probability,
non-faulty nodes always sample a majority of non-faulty nodes from non-faulty blocks. The first
statement follows, immediately yielding the second as a majority of the blocks is non-faulty. The
third statement now holds because we assume that non-faulty blocks count correctly and x is
non-faulty.

5.4 Randomised Resilience Boosting

Define P(n, f, c, η, κ) as the family of probabilistic synchronous c-counters on n nodes and
resilience f , where probabilistic means that an algorithm P ∈ P(n, f, c, η, κ) of stabilisation time
T (P) merely guarantees that it counts correctly with probability 1− η−κ in rounds t ≥ T (P).
This means that with high probability, eventually all non-faulty nodes agree on a common clock
for sufficiently many rounds. Together with Corollary 3, we obtain a randomized variant of
Theorem 1.

15

Theorem 4. Given n, f, η ∈ N, pick new parameters N,F,C ∈ N and κ > 0, where

• the number of nodes N = kn ≤ η for some number of blocks 3 ≤ k ∈ N,
• the resilience F < (f + 1)m, where we abbreviate m = dk/2e,
• C > 1 is the new counter size, and
• κ is a constant.

Choose any c ∈ N that is an integer multiple of 3(F + 2)(2m)k. Then for any A ∈ A(n, f, c),
there exists P ∈ P(N,F,C, η, κ) with the following properties.

1. T (P) = T (A) + 3(F + 2)(2m)k, and
2. S(P) = S(A) + dlog(C + 1)e+ 1.
3. Each node pulls O(k log η) messages in each round.

Note that we can choose to replace A ∈ A(n, f, c) by Q ∈ P(n, f, c, η, κ) when applying
this theorem, arguing that with high probability it behaves like a corresponding algorithm
A ∈ A(n, f, c) for polynomially many rounds. Applying the recursive construction from Section 4
and the union bound, this yields Corollary 4. By always choosing k = O(log η), each node pulls
O(log2 η) messages from other nodes for each layer.

Corollary 4. For any c > 1, there exist probabilistic synchronous c-counters with a resilience of
f = n1−o(1) that stabilise in O(f) rounds, use O(log2 f/ log log f + log c) bits of space per node,
and in which each node pulls O(log η(log f/ log log f)2) messages per round.

We note that it is also possibility to boost the probability of success, and thus the period of
stability, by simply increasing the sample size. For instance, sampling polylog η messages yields
an error probability of η−polylog η in each round, whereas in the extreme case, by “sampling” all
nodes the algorithm reduces to the deterministic case.

5.5 Oblivious Adversary

Finally, we remark that under an oblivious adversary, that is, an adversary that picks the
set of faulty nodes independently of the randomness used by the non-faulty nodes, we get
pseudo-random synchronous counters satisfying the following: (1) the execution stabilises with
high probability and (2) if the execution stabilises, then all non-faulty nodes will deterministically
count correctly. Put otherwise, we can fix the random bits used by the nodes to sample the
communication links once, and with high probability we sample sufficiently many communication
links to non-faulty nodes for the algorithm to (deterministically) stabilise. This gives us the
following result.

Corollary 5. For any c > 1, there exist pseudo-random synchronous c-counters with a re-
silience of f = n1−o(1) against an oblivious fault pattern that stabilise in O(f) rounds with high
probability, use O(log2 f/ log log f + log c) bits of space per node, and in which each node pulls
O(log η(log f/ log log f)2) messages per round.

6 Conclusions

In this work, we showed that there exist (1) deterministic algorithms for synchronous counting
that have (2) linear stabilisation time, (3) use a very small number of state bits while still
achieving (4) almost-optimal resilience–something no prior algorithms have been able to do. In
addition, we discussed how to reduce the total number of communicated bits in the network, while
still achieving (2)–(4) by considering probabilistic and pseudo-random synchronous counters.

We conclude by highlighting a few open problems:

16

1. Are there randomised or deterministic algorithms with the optimal resilience of f < n/3
that use polylog f state bits and stabilise in O(f) rounds?

2. Are there deterministic algorithms that use substantially fewer than log2 f state bits?

3. Are there communication-efficient and space-efficient algorithms with high resilience that
stabilise quickly in the usual synchronous model?

References

[1] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards optimal distributed consensus.
In Proc. 30th Annual Symposium on Foundations of Computer Science (FOCS 1989), pages
410–415. IEEE, 1989. doi:10.1109/SFCS.1989.63511.

[2] Danny Dolev and Ezra N. Hoch. On self-stabilizing synchronous actions despite Byzantine
attacks. In Proc. 21st International Symposium on Distributed Computing (DISC 2007),
volume 4731 of Lecture Notes in Computer Science, pages 193–207. Springer, 2007. doi:

10.1007/978-3-540-75142-7_17.

[3] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for Byzantine agree-
ment. Journal of the ACM, 32(1):191–204, 1985. doi:10.1145/2455.214112.

[4] Danny Dolev, Janne H. Korhonen, Christoph Lenzen, Joel Rybicki, and Jukka Suomela.
Synchronous counting and computational algorithm design. In Proc. 15th International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2013), volume
8255 of Lecture Notes in Computer Science, pages 237–250. Springer, 2013. doi:10.1007/
978-3-319-03089-0_17. arXiv:1304.5719v1.

[5] Danny Dolev, Keijo Heljanko, Matti Järvisalo, Janne H. Korhonen, Christoph Lenzen, Joel
Rybicki, Jukka Suomela, and Siert Wieringa. Synchronous counting and computational
algorithm design, 2015. arXiv:1304.5719v2.

[6] Shlomi Dolev. Self-Stabilization. The MIT Press, Cambridge, MA, 2000.

[7] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the presence of
Byzantine faults. Journal of the ACM, 51(5):780–799, 2004. doi:10.1145/1017460.1017463.

[8] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive con-
sistency. Information Processing Letters, 14(4):183–186, 1982. doi:10.1016/0020-0190(82)
90033-3.

[9] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, 1980. doi:10.1145/322186.322188.

17

http://dx.doi.org/10.1109/SFCS.1989.63511
http://dx.doi.org/10.1007/978-3-540-75142-7_17
http://dx.doi.org/10.1007/978-3-540-75142-7_17
http://dx.doi.org/10.1145/2455.214112
http://dx.doi.org/10.1007/978-3-319-03089-0_17
http://dx.doi.org/10.1007/978-3-319-03089-0_17
http://arxiv.org/abs/1304.5719v1
http://arxiv.org/abs/1304.5719v2
http://dx.doi.org/10.1145/1017460.1017463
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1145/322186.322188

	1 Introduction
	2 Preliminaries
	3 Boosting Resilience
	3.1 High-level Idea of the Construction
	3.2 Setup
	3.3 Voting Blocks
	3.4 Executing the Phase King
	3.5 Proof of Theorem ??

	4 The Recursive Construction
	4.1 The Base Case
	4.2 Using a Fixed Number of Blocks
	4.3 Varying the Number of Blocks

	5 Saving on Communication Using Randomization
	5.1 The Pulling Model
	5.2 The High-Level Idea of the Probabilistic Construction
	5.3 Sampling Communication Channels
	5.4 Randomised Resilience Boosting
	5.5 Oblivious Adversary

	6 Conclusions

