Robust and Private Distributed Shared Atomic Memory in M essage Passing
Networks

This document has been downloaded from Chalmers Publication Library (CPL). It is the author’s
version of a work that was accepted for publication in:
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing

Citation for the published paper:

Dolev, S.; Petig, T.; Schiller, E. (2015) "Robust and Private Distributed Shared Atomic
Memory in Message Passing Networks". Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing pp. 311-313.

Downloaded from: http://publications.lib.chalmers.se/publication/230781

Notice: Changes introduced as a result of publishing processes such as copy-editing and
formatting may not be reflected in this document. For a definitive version of this work, please refer
to the published source. Please note that access to the published version might require a
subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.

The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/230781

Brief Announcement: Robust and Private Distributed
Shared Atomic Memory in Message Passing Networks

*

Shlomi Dolev
Department of Computer Science
Ben-Gurion University of the Negev
84105 Beer-Sheva, Israel

dolev@cs.bgu.ac.il

ABSTRACT

We study the problem of privately emulating shared mem-
ory in message passing networks. The system includes N
servers, and at most e semi-Byzantine servers that can de-
viate from the algorithm by sending corrupted data. More-
over, at most f servers can fail and stop.

The focus is on coded atomic storage (CAS) algorithms.
We present a variant that ensures no information leakage by
letting the servers store their data as secret shares. Our en-
hancement to CAS uses [(N + k + 2¢)/2]-size quorums and
Reed-Solomon codes. This enhancement preserves the algo-
rithm ability to function in asynchronous system settings.

To the best of our knowledge, we are the first to ad-
dress the privacy issue when emulating shared memory in
message-passing systems.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management—Dis-
tributed memories; C.4 [Performance Of Systems]|: Fault

tolerance; C.2.4 [Computer-Communication Networks]:

Distributed Systems— Distributed applications

Keywords

shared memory emulation; message passing; network cod-
ing; secret sharing; privacy; semi-Byzantine; MRMW; fault
tolerance

*Supported by the Rita Altura Trust Chair in Computer
Sciences, Israel Science Foundation (grant 428/11), the Is-
raeli Internet Association, and the Israeli Ministry of Science
and Technology, Infrastructure Research in the Field of Ad-
vanced Computing and Cyber Security.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

PODC’15, July 21-23, 2015, Donostia-San Sebastidn, Spain.

ACM 978-1-4503-3617-8 /15/07.

http://dx.doi.org/10.1145/2767386.2767450.

Thomas Petig
Department of Computer
Science and Engineering

Chalmers University of
Technology
41296 Gothenburg, Sweden

petig@chalmers.se

311

Elad M. Schiller
Department of Computer
Science and Engineering

Chalmers University of
Technology
41296 Gothenburg, Sweden

elad@chalmers.se

1. INTRODUCTION

Security and privacy are often imperative for distributed
systems. This motivates us to study the problem of em-
ulating shared memory in message passing networks that
include N servers, at most f crash-stop failures and e semi-
Byzantine servers that can deviate from the algorithm by
sending corrupted data. We look at coded atomic storage
algorithms that ensure no information leakage by letting the
servers store their data as secret shares. We consider an en-
hancement of the coded atomic storage (CAS) algorithm by
Cadambe et al. [3] in which we use [(N +k+2e)/2]-size quo-
rums and (N, k)-Reed-Solomon codes, where k represents
the message length.

The first algorithm for emulating a single-writer multi-
reader shared memory by Attiya et al. [1], as well as the
multi-writer multi-reader version by Fan and Lynch [4], han-
dle link and node failures. Cadambe et al. [3] present the
coded atomic storage (CAS) algorithm and improve com-
munication and storage costs by using quorums and (N, k)-
maximum distance separable (MDS) codes [7]. The CAS
algorithm enables the reader to restore the data under the
presence of % stop-failed servers. We address privacy by
storing on each node merely parts of the data, as in Shamir’s
secret sharing scheme [8], which we can implement using
Reed-Solomon codes [5] and a matching error correction al-
gorithm (Berlekamp-Welch [9]). This variation of the CAS
algorithm also provides resilience against other errors, for
example, data corruption of a bounded number of secret
shares. We show how to combine shared-memory emulation
with robustness and privacy.

Background

The (N, k)-threshold scheme for integers k and N, such that
0 < k < N, is defined by Shamir [8] and splits a secret s
into N secret shares {s;i};c(1,...,nv3- This scheme requires
that there exists a mapping from any S C {si}icf1,... N}
with |S| > k to the secret s, but it is impossible to deter-
mine s from a set of less than k secret shares. Let K
be a finite field such that it size |K| is prime. The (N, k)-
Reed-Solomon code, ¢ : S — W, transforms the input data,
i.e., one element of a k dimensional vector space, S, over
K, into N dimensional vector space, W, over the same field,
K. k and N are as above. We call N the block length
and k the message length. The Berlekamp-Welch algorithm,
&~ can correct (N, k)-Reed-Solomon codes within O(N?)

Algorithm 1: The robust and private coded atomic storage algorithm, code for p;.

1 Writer: // Writes secret s.

2 Query for the highest finalized tag from a quorum, select the message ((z, k), w, ‘fin’) such that z is max.;
3 pre-write: Send ((z + 1,1), @y, (s), ‘pre’) to all p; € P and wait until quorum acknowledges;

4 finalize: Send ((z + 1,14), L, ‘fin’) to all p; € P and wait until quorum acknowledges;

5 Reader: // Returns secret s, or | in case of failure.

6 Query for the highest finalized tag from a quorum, select the tag ((z,7), wp,, ‘fin’) such that z is maximal;
7 Finalize: Send (¢, L, fin’) to all s € P and let @ be the response of a quorum ;

8 if [{(t,w, fin)) € Q : w # L}| > k + 2e then

o | return @ '({(t,w,s) € Q:w # L});
10 else return L ;

11
12
13

upon (receive query) do
L Reply with highest finalized tag;

14 upon (receive pre-write (¢, w, ‘pre’)) do

15 if 3(t,8) € S then S < S U (t,w, ‘pre’);
16 | Reply with acknowledgement;

17 upon (receive finalize (¢, L, ‘fin’) from writer) do
18 if (¢, w, ‘pre’) € S then

19 ‘ S+ (S\ {(t,w, ‘pre’)}) U (t, w, ‘fin’);
20 else Add (¢, L, ‘fin’) to S;

21 | Reply with acknowledgement;

22 upon (finalize (¢, L, ‘fin’) from reader) do
23 if 3(t,w,e) € S:w # L then

24 S (S\A{(t, w,0)}) U{(t,w, fin") };
25 reply (¢, w, ‘fin’);

26 else

S+ SU{(t,L,fin")};
reply (¢, L, ‘fin’);

27
28

Server: Storage variable: S C T x WU {L}) x {‘pre’, fin’};

time in the presence of e errors and f erasures, as long as
2¢+ f < N—k+1[9. Note that (N, k)-Reed-Solomon
codes are a (N, k)-threshold scheme [5]. For this the input
vector (o1,...,0%) € S consists of the secret o1 and ran-
domly chosen values o, ..., o0 from a uniform distribution
over S. We use ® to map (o1,...,0%) to the secret shares
(wi,...,wN) € W.

Our contribution

We show how to emulate atomic shared memory in the pres-
ence of semi-Byzantine servers. This approach ensures pri-
vacy. Namely, no group of up to k — 1 servers is able to
reconstruct the stored data, i.e., the secret. Furthermore,
a reader can reconstruct the correct secret even if up to
e servers deliver corrupted secret shares. We do that using
Reed-Solomon codes [6] and the Berlekamp-Welch error cor-
rection algorithm [9]. This works because Cadambe et al. [3]
use the class of maximum-distance separable codes for their
CAS algorithm, which includes the Reed-Solomon codes.

2. SYSTEM SETTINGS

We consider message passing networks in which nodes ex-
change messages via communication links. Messages are of
the form (¢, w,d) € TxWU{L}xD, where T is the set of tag
tuples (z,%) that contain an integer z and a node identifier 3.
With W we denote, as mentioned, the set of secret shares,
where L is the invalid share and D := {‘pre’,‘fin’} is the

312

label set. We distinguish among three node types: server,
reader and writer. Each writer and each reader is reliably
connected to all servers, and with bounded communication
delays. Let P be the server set, where N := |P|.

Our settings are motivated by (reliable) servers that stores
large secret shares on (unreliable) mass storage systems. We
allow at most e semi-Byzantine servers and at most f fail-
ures, such as communication delay violation. We assume
that semi-Byzantine servers can send corrupted secret shares
to readers, but not corrupted tags or labels, i.e., when a
semi-Byzantine server replies with a tuple (¢,w,d), only w
might be corrupted. Writers split secrets using the (N, k)-
Reed-Solomon code and submit the resulting secret shares
to the servers. Servers store their secret shares and deliver
them to the readers upon request. The proposed solution
withstands a fault model that includes both server stop-
failure and server semi-Byzantine behavior.

We say that a secret sharing protocol is t-private when a
set of at most t servers cannot compute the secret, as in [2].
Note that a O-private protocol preserves no privacy. When
the presence of at most t semi-Byzantine servers and at most
s stop-failed servers does not influence the correctness of
secret restored by a reader, we say that the protocol is (s, t)-
robust, similar to ¢-resilience in [2].

Quorums of (k + 2¢)-overlap

We define a quorum as a server subset @ C P with at least
[AtE+2¢] elements, and we write Q as the all quorum set.

Lemma 1 shows that any two different quorums share at
least k+2e servers, rather than just k of them as in Cadambe
et al. [3]. These quorums guarantees that once a writer
finishes its write operation, any reader can retrieve at least
k + 2e secret shares and reconstruct the secret.

LEMMA 1. (Variation of [3], Lemma 5.1) Suppose that
1<k<N-=2f—2e. (1) If Q1,Q2 € Q, then |Q1 NQ2| >
k +2e. (2) The existence of such a k implies the existence
of Q € Q such that Q has no crashed servers.

Proof. (1) Let Q1,Q2 € Q, then |Q1 N Q2| = |Q1]| + Q2| —
|Q1 U Q2| > 2 [FEEE2¢] _ N > [+ 2e. (2) Since there are
at most f crashed servers, we can show that without such f
servers, there are still enough alive servers for a quorum. It

follows that N — f > N — LN_];_%J = [NJ"’;"'%W N

By Lemma 1, the atomicity and liveness analysis in [3, The-
orem 5.2 to Lemma 5.9] also holds when the CAS algorithm
that uses (k + 2e)-overlap quorums.

3. THE ALGORITHM

In order to tolerate at most e (secret share corruptions
made by) semi-Byzantine servers, we propose Algorithm 1
as a variation of Cadambe et al. [3] CAS algorithm that uses
(k+2e)-overlap quorums and (N, k)-Reed-Solomon codes [6],
which is an (IV,k)-MDS [7] code that Cadambe et al. [3]
uses. By the atomicity and liveness analysis for the case of
(k + 2e)-overlap quorums (the remark after Lemma 1), the
reader retrieves k + 2e unique secret shares that include at
most e manipulated shares.

COROLLARY 1. For 1 < k < N — 2f — 2e, Algorithm 1
emulates a shared atomic read/write memory.

Robustness

Robustness is added by the ability of the Berlekamp-Welch
algorithm to correct error in the Reed-Solomon codes. Note
that semi-Byzantine servers only introduce corrupted se-
cret shares. Lemma 2 shows the robustness of Algorithm 1
against up to e semi-Byzantine servers and up to f stop-
failed servers.

LEMMA 2. For k € {1...,N — 2f — 2e}, Algorithm 1
(f,e)-robust.

Proof. If a writer issues a query, pre-write and finalize oper-
ations it does not read back the secret from the server. Thus,
writers are immune to semi-Byzantine servers. Servers do
not exchange secrets with other servers and thus are not di-
rectly affected by semi-Byzantine servers. A reader collects
secret shares from qourum of servers, but never writes them
to servers, since a query and a finalize only contains a L in
place of a secret share. By Lemma 1 and Corollary 1 follows
that a reader p; receives at least k+2e secret shares from the
finalize operation. From these k + 2e secret shares at most
e are corrupted and, thus, p; computes the correct secret by
applying Berlekamp-Welch. []

Privacy

Our approach ensures privacy of the secret among servers.
In Lemma 3 we see that a group of less than k servers are
not able to reconstruct the secret by combining the secret
shares they have stored locally.

313

LEMMA 3. For 1 < k < N — 2f — 2e, Algorithm 1 is
(k — 1)-private.
Proof. Reed-Solomon codes implement the Shamir secret
sharing [5] and, thus, k—1 servers cannot compute the secret
using their k£ — 1 local secret shares. []

Note that in the case k = 1, even if privacy is not protected,
it is still possible to correct corrupted memory copies. This
holds because the reader reads 1+ 2e secret shares and, thus,
the additional 2e secret shares contain redundant informa-
tion for the Berlekamp-Welch error correction.

4. CONCLUSIONS

Interestingly, fundamental building blocks for distributed
systems can provide privacy and robustness. We show how
to implement a robust and private coded atomic storage
protocol, which is resilient to semi-Byzantine servers using
shared memory emulation in message passing networks. In
addition, our algorithm tolerates server crashes, and at the
same time, it ensures the privacy of the stored data. We
believe that our approach and techniques are useful for pro-
viding robustness and privacy for many more building blocks
for distributed systems.

References

[1] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing mem-
ory robustly in message-passing systems. Journal of the
ACM (JACM), 42(1):124-142, 1995.

M. Ben-Or, S. Goldwasser, and A. Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In J. Si-
mon, editor, Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 1-10. ACM, 1988.

V. R. Cadambe, N. A. Lynch, M. Médard, and P. M. Mu-
sial. A coded shared atomic memory algorithm for mes-
sage passing architectures. In 2014 IEEE 13th Interna-
tional Symposium on Network Computing and Applica-
tions, NCA 2014, Cambridge, MA, USA, 21-28 August,
2014, pages 2563—260. IEEE Computer Society, 2014.

2]

R. Fan and N. A. Lynch. Efficient replication of large
data objects. In F. E. Fich, editor, Distributed Com-
puting, 17th International Conference, DISC 2003, Sor-
rento, Italy, October 1-3, 2003, Proceedings, volume
2848 of Lecture Notes in Computer Science, pages 75—
91. Springer, 2003.

R. J. McEliece and D. V. Sarwate. On sharing secrets
and reed-solomon codes. Commun. ACM, 24(9):583-584,
Sept. 1981.

I. S. Reed and G. Solomon. Polynomial codes over cer-
tain finite fields. Journal of the Society for Industrial €
Applied Mathematics, 8(2):300-304, 1960.

R. M. Roth. Introduction to coding theory. Cambridge
University Press, 2006.

A. Shamir. How to share a secret.
22(11):612-613, 1979.

Commun. ACM,

L. Welch and E. Berlekamp. Error correction for alge-
braic block codes, Dec. 30 1986. US Patent 4,633,470.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150520080317
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150520080317
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 3
 2
 3

 1

 HistoryList_V1
 qi2base

