RADICALS OF ORE POLYNOMIALS

MAXIMILIAN JAROSCHEK

ABSTRACT. We give a comprehensible algorithm to compute the radical of an Ore opera-
tor. Given an operator P, we find another operator L and a positive integer k such that
P = L* and k is maximal among all integers for which such an operator L exists.

1. INTRODUCTION

The problem of factoring commutative univariate polynomials with the help of a computer
is a classical and still active field of research. Frequently utilized algorithms are based on the
work of Cantor-Zassenhaus [4], Berlekamp [2|, Kaltofen 5] and van Hoeij [10]. An important
preprocessing step for many of these algorithms is to compute the squarefree decomposition
of the input polynomial, i.e. given a polynomial p € K|z|, find ¢1,...,9n € Klz] with
ged(gi, g5) = ged(gi, gi) = 1 such that

P=g1g3--- g
In the noncommutative setting, simplifying the process of factoring Ore polynomials by
identifying repeated factors is not yet available for the existing factoring algorithms like |3, §|.
As a first step towards such a preprocessing method we present an algorithmic solution to
the following problem:
Given an Ore operator P, i.e. an element of an Ore algebra K[y|[X;o, 0], find another
operator L € Kly][X;0,0] and a positive integer k such that

(1) P=1"LF

and k is maximal among all integers for which such an operator L exists. In the outline of the
algorithm presented here, we only consider the shift case for sake of simplicity, i.e. we take
Ore operators in the algebra K[y][X; o, 0] with trivial pseudo-derivation 6 = 0. Remarks on
the differential case with P € KJy][X; 1, d] and the case of general Ore algebras are given in
Section 4. For details on Ore algebras see [7].

Our algorithm is based on the solution of the corresponding problem in the commutative
case and on (linear) algebra methods for determining suitable values for symbolic coefficients.

2. PRELIMINARIES

Let K be a computable field. We fix an operator P in the Ore algebra K[y][X;o,0].
Operators are denoted by capital letters and the ith coefficient of an operator by the corre-
sponding lower case letter with the index i¢. The order of an operator L is its degree with
respect to X and is denoted by ord(L). By deg(L) we refer to the degree of L in y.
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3. THE ALGORITHM

3.1. Degenerate Cases. In this section we cover the cases where either ord(P) = 0 or
deg(P) = 0. In both cases, we can assume P € K[z], i.e. we work in a commutative domain.
We compute the squarefree decomposition g1, . .., g, of p (e.g. by Yun’s algorithm [11]) and
the greatest common divisor k of all the elements in the set {i € N* | deg(g;) > 0}. Then it
is easy to see that k is as required and L is given by

1/k 2/k m
L=1c(P) /ey g3/* . gmlk.

Now we establish how to solve this problem for shift operators by solving a linear and an
algebraic system of equations.

3.2. Main Idea. For the noncommutative case, we don’t have a squarefree decomposition
to simplify the task. We exploit noncommutativity to solve the problem:
Observe that for P and L as above we have that

PL=LFL=LF"'=LL" = LP.
Therefore, L is a solution to the equation
(2) PL—-LP=0.
This means that L is an element of the centralizer of P.
Definition 3.1. Let r,d € IN. We call the set
Cra(P) ={L € K[y][X;0,0] | PL = LP,ord(L) < r,deg(L) < d},
the centralizer of P (with order r and degree d).

The centralizer of P with order r and degree d is a IK-vector space. In order to find L as
in (1), we compute a basis of C, 4(P) for certain r,d € N and then construct L as a linear
combination of the basis elements.

The outline of our algorithm is as follows.

Algorithm 3.1: OreRadical
Input: An operator P € K[y|[X; o, 0] with
ord(P) - deg(P) # 0.

Output: An operator L and an integer k such that P = L*
and k is maximal among all integers for which such
an operator L exists.

If ord(P) = 0 or deg(P) = 0: solve as in the

commutative case.

Compute candidates for k.

For each candidate k’, do:
Compute a basis for Coq(p)/a,deg(P)/k' (P)-
If it exists, compute an element Ly in C, q(P) for which
P = (L)¥ holds.

Return (Lg, k) such that k is maximal.

-
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We already have seen in Section 3.1 how to carry out step 1. We now show in detail how
to carry out the steps 2 — 5.

3.3. Candidates for the Exponent. If P = L* holds, then also py = llg has to hold.
Therefore it suffices to look for a candidate for k£ in the commutative case. If g1,..., g are
the factors in the squarefree decomposition of py, we see that the exponent k£ has to divide
each index i for which g; in the squarefree decomposition gig3...g" is not equal to 1 and
it also has to divide ord(P) and deg(P) since we have that

ord(P) =k -ord(L) and deg(P) = k - deg(L).

Therefore the set of candidates is given by the set of all common divisors of ord(P), deg(P)
and of the indices ¢ for which g; # 1.

3.4. Looping Through the Candidates. It is clear that the real k£ has to be contained
in the set of candidates computed in Section 3.3. The choice on the order in which the
candidates are considered in the for loop of the algorithm will affect its running time. One
way is to begin with the smallest & # 1. This will guarantee that we find a nontrivial
solution on the first try (if one exists), but it might be of the form L¥ where k' < k, e.g.
P = L* and we choose k¥’ = 2. The algorithm then has to be applied recursively. On the
other hand, we can start with the largest candidate and be guaranteed to find L without
a recursive call, but it might be necessary to try several different candidates, e.g. when
P = L? and lyp = n® we would choose k¥’ = 4. Depending on the input, one strategy may be
better than the other, but in general it is not clear a priori which method is preferable.

3.5. Computing a Basis for the Centralizer. Having chosen a candidate k', we now
have to look for Ly in C := Corq(p) /i’ deg(P)/k (PP). We compute a basis for C by letting A
be an operator in K[y][X; o, 0] of order ord(P)/k’ and degree deg(P)/k’ with undetermined
coefficients. Setting AP — PA equal to zero then gives a linear system of equations by
coefficient comparison. A basis for the solution space of this system is a basis for C.

3.6. Finding the Radical in the Centralizer. A basis of the solution space of C corre-
sponds to an ordered set of operators

(Bl7 R B£7 1)7
with B; > Bjy1 > 1 for 1 <14 < £ with respect to the lexicographic term ordering for which
y < X. Let ¢1,...,cey1 be undetermined and consider the equation
(3) (e1By + 2By +++ + By + cop1) ™ — P =0,
=:L

Again, by coefficient comparison, this gives a system of algebraic equations. If there exists
a solution, the special form of the system allows us to find it without the help of Grébner
bases. By construction, the operator on the left hand side of (3) contains a coefficient
that only depends on c¢;, a coefficient that only depends on ¢; and co and so on. Thus
we can determine the ¢;’s one after another. If we find a solution for all the ¢;’s, we can
construct L. If we don’t find a solution, we have to consider the next candidate for k. If
P cannot be written as the power of another operator, the algorithm will eventually return

L=Pand k=1.
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4. GENERALIZATIONS AND FUTURE WORK

The algorithm can be easily adapted to work with other Ore algebras. The only time we
make use of the fact that we are working in the shift algebra is in Section 3.3. For differential
operators in K[y][X; 1, 6], the equation pg = I& does not necessarily hold, but in this case we
can replace it with lc(P) = le(L)*, the analogous relation for the leading coefficients of P
and L.

For an Ore algebra K[y|[X; o, §] with nontrivial o and § it is well known that there exists
a computable isomorphism ¢ from K(y)[X;o,d] to the algebra K(y)[X;o,0] with trivial
pseudo-derivation [1]. Starting with P € K[y][X;0,d], it might happen that ¢(P) has
rational function coefficients. The trailing coefficient of P then is of the form 7* where 7 is a
rational function in IK(y) and both, the numerator and the denominator of ¥ can be used to
find candidates for k as in Section 3.3. Once the candidates have been determined, the rest
of the algorithm can be carried out with P € K[y][X; 0, d] instead of ¢(P) € K(y)[X;0,0].

For the shift and the differential case, the algorithm was implemented in Sage [9] and will
be included in the next release of the Ore algebra package [6].

The result presented here is only a first step in simplifying the task of factoring Ore
polynomials. As a next goal, we would like to be able to detect if an operator is of the form
P = AL* and compute its “right squarefree part” rsqfp(P) := AL.
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