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Introduction

Newton’s fundamental discovery, the one which he considered
necessary to keep secret and published only in the form of an
anagram, consists of the following: Data aequatione quotcunque
fluentes quantitae involvente fluxions invenire et vice versa. In
contemporary mathematical language, this means: “It is useful
to solve differential equations”.

Vladimir Arnold
in [Arn88]

Abstract. The aim of this thesis is a quantitative analysis of the set of solutions of a
system of differential equations. For this aim, this thesis generalizes the differential di-
mension polynomial, and thereby makes it more accessible for algorithms. Furthermore,
this thesis introduces the counting sequence and the differential counting polynomial to
give a more detailed description of the size of the solution set of a system of differential
equations. The Thomas decomposition algorithm, which is implemented as part of this
thesis, is the algorithmic foundation for these descriptions of the size of solution sets.
This algorithm partitions the solution set into solution sets of simple differential sys-
tems, and it allows to compute certain consequences of differential systems, independent
of counting.

Motivation. Differential equations are ubiquitous when modeling continuously vary-
ing quantities, for example in physics, chemistry, biology, engineering, and economics.
Solving systems of differential equations is important for simulations and other appli-
cations.

Systems of differential equations are notoriously hard to solve. Many systems of
differential equations do not admit closed form solutions in “elementary” functions and
hence cannot be solved symbolically. Despite this, increasingly good heuristics are
implemented in computer algebra systems to find solutions [CTvB95, CTR08]. Given
such a set of closed form solutions returned by a computer algebra system, the question
remains whether this set is the complete solution set (cf. Examples 1.78, 2.67, 2.91,
2.92, and 2.94). With the notions of the size of solution sets given in this thesis, one
can decide whether the solutions found by a heuristical solver form a proper subset of
the set of all solutions.

Solutions of Differential Equations. This thesis concentrates on formal power se-
ries to avoid the following complications. For a formally consistent system of differential
equations, formal power series solutions exist for any given suitable initial data (cf. The-
orem 1.52); this is in contrast to smooth solutions, which do not exist in general for
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6 INTRODUCTION

smooth initial data (cf. Lewy’s counterexample [Lew57]). Formal power series can sat-
isfactorily be described symbolically on a computer, which seems impossible for smooth
or weak functions, as numerical methods only approximate them.

The Differential Dimension Polynomial. There exist several well-known mea-
sures in the literature that describe the size of the solution set of a system of differential
equations. Subsection 1.6.4 recapitulates the Cartan characters and the index of gen-
erality [CE79, Cartan, 3.12.1929, Appendix III] [Car31], Einstein’s strength [Ein53a],
the differential type, the differential dimension, the typical dimension, and the number
of free functions. All these measures have a drawback: one can easily find two systems
S1 and S2 of differential equations such that the solution set of S1 is a proper subset
of the solution set of S2, but these two solution sets have identical measures (cf. Exam-
ple 1.87). Thus, these measures cannot detect whether a set returned by a heuristical
solver of differential equations contains the difference of the solution sets of S2 and S1.

Kolchin realized this problem and introduced the differential dimension polynomial
as finer measure of the solution set of a system of differential equations given by a prime
differential ideal [Kol64]. The differential dimension polynomial describes for any order
the number of free power series coefficients up to that order, in the sense that generically
these coefficients can be chosen arbitrarily. In particular, this polynomial carries enough
information to reliably answer the question whether two full solution sets of differential
prime ideals included in each other are equal. Additionally, in the case of prime ideals it
determines all other mentioned measures of the size of solution sets. Even though it is
in principle possible to decompose a set of differential equations into differential prime
ideals, it is expensive in practice (cf. [Hub00], [BLOP09, §6.2]). Thus, there is a lack
of practical methods which decide whether a subset of the solution set of differential
equations is proper.

The first chapter of this thesis solves this problem for greater generality than full
solution sets of prime differential ideals. It generalizes the differential dimension poly-
nomial and its properties from prime ideals to ideals associated to simple differential
systems (cf. Theorem 1.74). Decomposing a differential ideal into those is easier in
practice than a decomposition into prime differential ideals. Most common differential
systems can sufficiently be described by this generalization of the differential dimension
polynomial (cf. Example 1.78).

Simple Systems and the Thomas Decomposition. Simple differential systems
are finite sets of differential equations and inequations with certain additional properties,
which make them well-behaved (cf. Definition 1.14). The purpose of the differential in-
equations is to ensure these properties by guaranteeing that certain terms are non-zero.
One of the properties of simple differential systems is passivity. The passivity condi-
tion builds on a calculus developed by Janet, which organizes the set of power series
coefficients, and ensures that all differential consequences are obvious from the system
(cf. Subsection 1.2.3). For a simple differential system this approach allows to read off
the differential dimension polynomial as a closed formula (cf. Remark 1.77). Simplic-
ity generically ensures that the requirements of Riquier’s Existence Theorem 1.60 are
met and, thus, simplicity generically implies local convergence of formal power series
solutions.

The Thomas Decomposition is the algorithmic keystone in this thesis. It trans-
forms a system of differential equations and inequations into a set of simple differential
systems by symbolic manipulation. The most important idea of the Thomas decompo-
sition is to use case distinctions to ensure the desirable properties of simple systems; this
means that a system S is replaced by two disjoint systems S ∪{p 6= 0} and S ∪{p = 0}
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for some differential expression p. This disjointness distinguishes the Thomas decom-
position from other algorithms. The Thomas decomposition has been implemented
by the author (cf. Subsection 1.3.7, [BGLHR12, BLH12]). Experiments and examples
computed with the software were a major inspiration for the results of this thesis.

The ideas of the Thomas decomposition go back to Riquier [Riq93] and Tresse1

[Tre94], who were motivated to find and describe all analytic solutions of a set of diffe-
rential equations. Janet made their ideas algorithmic for the case of linear differential
equations and in doing so introduced his calculus [Jan21, Jan29]. Thomas, the eponym
of the decomposition, generalized the theory to the nonlinear case [Tho37, Tho40,
Tho62]. His ideas were largely ignored and only recently resurfaced [Wan98, Ger08].
In the meantime, Ritt developed the theory of characteristic sets [Rit50], which was
extended by Seidenberg [Sei56] and Rosenfeld [Ros59]. Building on this work,
the Rosenfeld-Gröbner algorithm by Boulier and coauthors [BLOP95, BLOP09]
allowed decompositions of differential ideals; it is implemented by Boulier and Hu-
bert. These algorithms are well-suited for certain problems, but the lack of disjointness
complicates their application for detailed descriptions of solution sets.

Other Applications of the Thomas Decomposition. A Thomas decomposi-
tion of a system S of differential equations and inequations is of interest independent
of the differential dimension polynomial. For example, it decides inconsistency of S,
and it decides whether a given differential equation is implied by S using reduction (cf.
Proposition 1.66). Furthermore, as all differential consequences are obvious in simple
differential systems, these systems seem better suited as input for symbolic solvers (cf.
Example 1.1). Another important application of the Thomas decomposition is differen-
tial elimination. This is a computational tool which produces differential consequences
of a desired form, for example all differential equations only involving certain functions.

The Thomas decomposition sets itself apart from these other algorithms because
it is both disjoint and does not compute the closure of the solution sets. These two
properties of the Thomas decomposition are fundamental to the examples treated in
Appendix A, which covers elimination. This appendix compares the laws of plane-
tary motion of Kepler with those of Newton in detail and studies system theoretic
properties of dynamical systems. In particular, for parametric dynamical systems the
disjointness of the Thomas decomposition partitions the parameters, reflecting the
behavior of the systems.

Genericity Conditions. The differential dimension polynomial does not describe the
solution sets of systems of differential equations in adequate detail, as it assumes three
different genericity conditions.

First, formal power series solutions show different behavior at different centers of
expansion (cf. Example 1.50); simple differential systems only describe the generic be-
havior. The differential dimension polynomial only measures the number of free power
series coefficients at a generic center of expansion. To make a virtue of necessity, this
thesis introduces the set of non-centered power series as admissible solutions. These non-
centered solutions have the advantage that the algorithms work without choosing the
center of expansion and the choice of this center can be postponed (cf. Subsection 1.4.2).
Furthermore, the non-centered solutions admit a Nullstellensatz (cf. Theorem 1.65) and,
in contrast to universal differential fields, are suitable for algorithms.

The second genericity condition concerns differential inequations. These inequations
are inserted into systems during a Thomas decomposition. A differential inequation

1According to [BC99], his results are wrong. Nevertheless, many of his ideas are quite helpful.
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implies for a power series ansatz that one of the power series coefficients is non-zero,
but it is unclear which coefficient (cf. Remark 1.49). To add insult to injury, the exis-
tence (and local convergence) is only clear for solutions that satisfy a certain genericity
condition (cf. Lemma 1.47, Theorem 1.52, and Theorem 1.60).

Third, the dimension polynomial can not describe the size of the solution set of an
arbitrary system, but it is restricted to describing the solution set of a differential ideal
associated to a simple differential system. Additionally, the description of components
with different differential dimension polynomials appears not to be combinable, as the
associated primes of these ideals show the same generic behavior (cf. Proposition D.1,
for example they all have the same differential dimension polynomial). This prevents a
comparison of non-simple systems of differential equations using this ansatz.

These assumptions on genericity are a major obstacle to understand differential
equations. The main goal of the second chapter of this thesis is to give a more detailed,
non-generic description of a solution set of a system of differential equations. Therefore,
it introduces the counting sequence and the differential counting polynomial, which
avoid these three problems with genericity and generalize the differential dimension
polynomial.

The Algebraic Counting Polynomial. The idea of the counting sequence and
the differential counting polynomial is based on the algebraic counting polynomial (cf.
[Ple09a, Ple09b] and Section 2.2).

The algebraic counting polynomial is an element c(V ) ∈ Z[∞] that describes the
“size” of a constructible set V (i.e., given by polynomial equations and inequations) in
affine n-space. Here,∞ is a free indeterminate, which can be thought of as representing
the cardinality of the algebraic closure of the base field. In that sense, the algebraic
counting polynomial can “count” infinite sets, for example the counting polynomial
of an affine i-space is ∞i ∈ Z[∞], and if V is a j-fold unramified cover of W , then
c(V ) = j · c(W ) ∈ Z[∞].

Similarly to simple differential systems, there exist simple algebraic systems. The
solution sets of simple algebraic systems form well-behaved covers (cf. Subsection 1.2.1),
and the counting polynomial of the solution set of a simple algebraic system can be read
off the degrees and orders of the equations and inequations in the system. An algebraic
version of the Thomas decomposition computes the algebraic counting polynomials of
a constructible set, as the algebraic counting polynomial is additive with respect to
disjoint decompositions and the Thomas decomposition algorithm can also decompose
an algebraic system into disjoint simple algebraic systems.

The most important property of the algebraic counting polynomial with regard to the
description of solution sets of systems of differential equations is that two constructible
sets V ⊆ W included in each other are equal if and only if their algebraic counting
polynomials c(V ) and c(W ) coincide (cf. Proposition 2.10 for the algebraic case and
Theorem 2.34 for the differential case). Furthermore, the algebraic counting polynomial
generalizes the dimension of a constructible set, as the dimension of a constructible set
V is the degree of its algebraic counting polynomial c(V ) (cf. Proposition 2.23).

The Counting Sequence and the Differential Counting Polynomial The coun-
ting sequence and the differential counting polynomial combine the ideas of the diffe-
rential dimension polynomial and the algebraic counting polynomial to give a more
detailed overview over the size of the solution set of a system of differential equations.
They generalize the differential dimension polynomial in the same sense as the algebraic
counting polynomial generalizes the dimension (cf. Theorem 2.36). In particular, they
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also generalize all above-mentioned measures of the size of the solution set of a system
of differential equations, like the Cartan characters.

The counting sequence is the sequence of algebraic counting polynomials indexed
by the order ` ∈ Z≥0, which count the different Taylor polynomials of degree `.
These algebraic counting polynomials indexed by the order ` are called `-th differential
counting polynomials. If there exists a closed form polynomial that ultimately describes
the `-th differential counting polynomials, then this closed form is called the differential
counting polynomial (cf. Definition 2.33).

Computing the counting sequence and the differential counting polynomial is hard.
One would hope that it can be read off the degrees of equations and inequations, sim-
ilarly to the algebraic case. However, as differential inequations have the above men-
tioned genericity restrictions, we need another means to ensure that terms are non-zero.
Thus, we use polynomial inequations for power series coefficients; disjoint splittings ne-
cessitate complementary equations for power series coefficients. Section 2.3 introduces
systems involving not only differential equations but also equations and inequations for
power series coefficients. These systems provide the background for describing counting
sequences and differential counting polynomials.

The definition of the counting sequence and the differential counting polynomial
then depends on turning a system of differential equations into algebraic systems which
only involve constraints for power series coefficients. Theorem 2.32 shows that this is
possible in principle, but countably infinitely many systems might be needed, and these
might involve countably infinitely many inequations. Thus, the problem of defining the
counting sequence reduces to the problem of defining the algebraic counting polynomial
for certain infinite algebraic systems (cf. Subsection 2.2.3). However, though unsolved
in general, this problem turns out to be easy for all systems of differential equations
encountered by the author. These infinite sets of inequations are necessary, e.g., in
Example 2.93. In particular, the counting sequence is not a sequence of polynomials in
Z[∞] but needs an additional indeterminate ℵ0 to describe countably infinite sets. The
Vessiot theory explains these countable infinite sets geometrically (cf. Appendix E).

Computation of the Differential Counting Polynomial. Determining the diffe-
rential counting polynomial is not algorithmic. This is to be expected, as even in the
case of a single inhomogeneous linear differential equation the problem of the existence
of formal power series solutions can be reduced to Hilbert’s tenth problem about Dio-
phantine equations, which is known to be unsolvable (cf. [DL84] and Subsection 2.5.5).
In particular, no general computational theory for formal power series solutions of sys-
tems of differential equations can exist. (Similar non-computability results hold for
smooth solutions [PER81].) Still it makes sense to study the counting sequence and the
differential counting polynomial in examples, as they provide a good description of the
size of the solution set of a differential system.

These noncomputability results imply that at best one can hope for a collection of
methods to compute the counting sequence and the differential counting polynomial
of many important classes of systems of differential equations. Section 2.5 describes
such methods and uses them to consider two big classes of interesting systems of diffe-
rential equations. The first class consists of simple differential systems that do not
involve inequations (cf. Theorem 2.72). This class contains all linear systems of diffe-
rential equations and most common semilinear systems of differential equations. The
second class contains first order ordinary differential equations of main degree one (cf.
Theorem 2.79). The proofs for these classes are again given using non-centered solu-
tions; Subsection 2.5.4 then describes the transfer to formal and convergent power series
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solutions.
The counting sequence and the differential counting polynomial solve the three

genericity problems of the differential dimension polynomial. First, one can choose
the center of expansion, but also keep it generic (cf. Example 2.3). Second, differential
inequations are not needed for defining or computing the differential counting polyno-
mial. Third, the counting sequence and the differential counting polynomial are additive
with respect to disjoint decompositions; hence, in contrast to the differential dimension
polynomial, it can describe and compare non-simple systems of differential equations.

Most important for applications, the counting sequence and the differential counting
polynomial can decide whether an inclusion of two solutions sets is proper under suitable
conditions: the case without countably infinite exceptional sets is tantamount to the
case of the algebraic counting polynomial (cf. Theorem 2.34 and Examples 2.67, 2.91,
2.92, and 2.94). The condition that no countably infinite sets appear is necessary (cf.
Remark 2.20). However, even if countably infinite sets appear, solution sets can still be
compared by estimating counting sequences and differential counting polynomials (cf.
Proposition 2.35).

Acknowledgements I thank all people who were part of my private and academic
life in the past years.

In particular, I thank Prof. Wilhelm Plesken for his supervision, support, and his
insistence on the existence of a differential counting polynomial. I thank Daniel Robertz,
Mohamed Barakat, Thomas Bächler, Vladimir Gerdt, and Werner Seiler for teaching
me during the last years and for their collaboration. I thank Prof. Bemelmans, Prof.
Hartmann, Prof. Melcher, and Prof. Walcher for interesting lectures, seminars, helpful
suggestions, and for pointing out relevant literature. I thank Alban Quadrat, Dongming
Wang, François Boulier, François Lemaire, and Thomas Cluzeau for discussion related
to this thesis (and other topics) on various conferences and visits.

I thank Thomas Bächler for taking care of “computer stuff” and Wolfgang Krass for
combing through a draft of this thesis for typographical errors. I thank my colleagues
(including student assistants) at Lehrstuhl B for thousands of small favors and a nice
working atmosphere.

I thank my family, friends, “Sportsfreunde”, and the “Teestunde” for constant sup-
port, encouragement, and food. I thank Carl Sagan for giving us a place in the cosmos.

This work was partially supported by the DFG Priority Program SPP 1489 and by
the DFG Graduate School “Experimentelle und konstruktive Algebra”.



Conventions

The following conventions are used throughout this thesis. All rings are associative,
unitial, of characteristic zero, and all ring homomorphisms map the one to the one; all
rings except for the skew polynomial rings from Subsection 1.3.4 are commutative. The
Zariski topology is always used in the classical sense of closed points. Associated primes
of an ideal are the preimages of the associated primes of its residue class ring. Applying
functions f : A → B to a set A′ ⊆ A results in the set f(A′) := {f(a′) | a′ ∈ A′}. The
word “algebraic” is used for polynomial systems as a contrast to differential polynomial
systems. A zero of a polynomial p is a solution of the equation p = 0. The term “(set
of) admissible solutions” stands for the elements that are considered as solutions, i.e.,
the solutions of the empty set of equations. Examples and remarks are finished with a
“/” and proofs with a “�”.
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Chapter 1

Simple Systems

1.1 An Overview

This expository section introduces simple systems and their properties by examples. It
gives informal definitions; the precise ones can be found in the following sections.

Polynomial differential equations can be translated into an algebraic setting by re-
placing unknown functions and their derivatives in differential equations by variables.
For example, the (left hand side of the) inviscid Burgers’ equation

∂

∂t
u(x, t) + u(x, t) · ∂

∂x
u(x, t) = 0

is represented by the differential polynomial

u0,1 + u0,0u1,0 .

The set of differential polynomials is the differential polynomial ring denoted by F{U},
where F is a differential field, e.g., F = C or F = C(x, t), and U is the set of unknown
functions. The variables ui,j are called differential variables. This construction works
for any number of independent variables instead of t and x. In examples it is often more
convenient to use the jet notation for differential variables, e.g., write ut,x,x for u1,2.

1.1.1 Simple Systems

The next step is to collect some desirable properties of differential systems. This leads
to the definition of simple differential systems, i.e., differential systems that satisfy five
properties given below.

Consider formal (or convergent) power series solutions. Simple systems allow to solve
inductively for the power series coefficients, beginning from lower order, and determine
one coefficient at a time. These coefficients are naturally in bijection to the differential
variables. Therefore, fix a total order, called ranking, on the differential variables. Then,
any non-trivial differential polynomial has a highest ranking differential variable called
leader. For any differential polynomial one can substitute values for the lower ranking
coefficients of a power series into all differential variables except for the leader. Thus,
one ends up with a univariate polynomial in the leader. The zeros of this univariate
polynomial are the possible values for the next power series coefficient. This works if
each differential variables appears at most once as leader of an equation or inequation.
This is the triangularity, the first property of simple systems.

13



14 CHAPTER 1. SIMPLE SYSTEMS

The triangularity yields an overview1 over the set of solutions. The existence of
an equation (respectively inequation) with a certain leader implies that a power series
coefficient can only take finitely (respectively all but finitely) many different values for
fixed lower ranking values. The degree even determines the number of the solutions.

This shows that the leaders play an important role and one would like to have the
leader of any differential polynomial well-defined, independent of the values of lower
ranking variables. Therefore, as second property, demand that the leading coefficient,
called the initial, of any differential polynomial in a system is non-zero for any solution of
the system. Also the derivatives of differential equations should have a non-zero initial;
it turns out that the initial of all derivatives of a differential polynomial p ∈ F{U} is its
separant. Thus, as third property, any differential polynomial should have a non-zero
separant2 for any solution of the system.

Additionally, all differential consequences should be included in the system. This is
made formal below by the passivity3, the fourth property for simple systems. The fifth
condition is a minimality condition.

1.1.2 Thomas Decomposition

Many differential systems appearing “in nature” are not simple. However, it is possible
to decompose those into a finite set of simple differential systems. This means that the
set of solutions is partitioned into classes which are the solution set of simple differential
systems. Such a decomposition is called (differential) Thomas decomposition.

The Thomas decomposition is algorithmic and has been implemented by the au-
thor. This implementation is used in many examples in this thesis. The following
introductory example describes some commands of this implementation. The exam-
ple was constructed by Robertz and shows that a Thomas decomposition can help
symbolic solvers of differential equations.

Example 1.1.
restart;

Load the package DifferentialThomas.
with(DifferentialThomas):

Define the two independent variables x and y and the functions (called dependent
variables) u and v.

ivar:=[x,y]:
dvar:=[u,v]:

The command ComputeRanking sets the ranking for all following computations. Its first
parameter is a list of independent variables. If the second parameter is a list of lists
of dependent variables, then a block ranking is used with previous blocks being higher,
i.e., each differential variable involving a dependent variable in the first list is higher
than each differential variable involving a dependent variable in the second list.

ComputeRanking(ivar,[[u],[v]]);
In this case write u� v. If the second parameter is given as a list of dependent variables,
then use a degree-reverse lexicographical ranking, which is a well-behaved ranking in
the sense that higher order implies higher ranking. For the following, decide to use such
a ranking.

1The following is an oversimplification; see Chapter 2 for precise non-generic statements.
2As the separant is the partial derivative of p by its leader, p is square-free if its separant is non-zero.
3Passivity is the version of the confluence in differential algebra and the Thomas decomposition

can be seen as a version of the Knuth-Bendix completion process [KB70].
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ComputeRanking(ivar,dvar);
A differential variable like u1,2 is encoded as

u[1,2];
u1,2

For a differential polynomial like
p:=u[2,0]^2+u[0,2]+u[1,0]+u[0,1];

p := u2,0
2 + u0,1 + u0,2 + u1,0

the derivative can be computed using the following command.
PartialDerivative(p,x);

2u2,0u3,0 + u1,1 + u1,2 + u2,0

Given two lists of differential polynomials as input, a differential Thomas decomposition
is computed using

res:=DifferentialThomasDecomposition([p],[]);

res := [DifferentialSystem,DifferentialSystem]

The differential polynomials in the first list of the input are treated as equations and
the differential polynomials in the second list of the input are treated as inequations.
This command returns a list of simple differential systems. In particular, the list is non-
empty if and only if the input has solutions. Intersections of Thomas decompositions
can be computed by the following command.

IntersectDecompositions(res,
DifferentialThomasDecomposition([u[1,0]],[]));

[DifferentialSystem]

Equations and inequations of these systems can be extracted.
DifferentialSystemEquations(%[1]);
DifferentialSystemInequations(%%[1]);

[u1,0, u0,1 + u0,2]

[]

These simple differential systems can be printed using
PrettyPrintDifferentialSystem(res[1]);

[
(
∂2

∂x2u (x, y)
)2

+ ∂
∂yu (x, y) + ∂2

∂y2u (x, y) + ∂
∂xu (x, y) = 0,

∂
∂yu (x, y) + ∂2

∂y2u (x, y) + ∂
∂xu (x, y) 6= 0

and
MyPDSolve(res[1]);
MyPDSolve(res[2]);{
u (x, y) = −1/12x3 + 1/2_C1 x2 − x_C1 2 + x_c1 + _C2 − _C3

ey −_c1y + _C4
}

{u (x, y) = ((x+ y + 1)_C2 −_C3 ) e−y + (x− y)_C1 + _C4}
is a wrapper to the algorithms in dsolve and pdsolve of Maple [map] to solve diffe-
rential equations (if possible). This set of solutions from the simple differential systems
seems to be more straightforward than the set of solutions resulting from converting
the differential equation into Maple language

JetList2Diff(p);(
∂2

∂x2u (x, y)
)2

+ ∂
∂yu (x, y) + ∂2

∂y2u (x, y) + ∂
∂xu (x, y)

and applying the solver from Maple directly:
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pdsolve(%);

u (x, y) = _F1 (x) + _F2 (y) ,where

[

{(
d2

dx2_F1 (x)
)2

= _c1 − d
dx_F1 (x) , d

2

dy2_F2 (y) = −_c1 − d
dy_F2 (y)

}
]

In particular, a decomposition into simple differential systems seems helpful when it
comes to solving a system of differential equations.

JetList2Diff(p);
factor(expand(subs(subs({_c[1]=g(y)},MyPDSolve(res[1])),%)));(

∂2

∂x2u (x, y)
)2

+ ∂
∂yu (x, y) + ∂2

∂y2u (x, y) + ∂
∂xu (x, y)

x d
dyg (y)−

(
d
dyg (y)

)
y + x d2

dy2 g (y)−
(
d2

dy2 g (y)
)
y − 2 d

dyg (y)

JetList2Diff(p);
factor(expand(subs(u(x, y) = _F1(x)+_F2(y),%)));(

∂2

∂x2u (x, y)
)2

+ ∂
∂yu (x, y) + ∂2

∂y2u (x, y) + ∂
∂xu (x, y)(

d2

dx2_F1 (x)
)2

+ d
dy_F2 (y) + d2

dy2_F2 (y) + d
dx_F1 (x)

Example 2.67 revisits this example in the context of the differential counting poly-
nomial and shows that most solutions of the differential equation are not among those
found above. /

The first important application of simple differential systems is to decide whether
a differential equation is a consequence of a system. For a simple differential system
this can be decided by the algorithm Reduce described below. It uses suitable pseudo-
reductions, a slight generalization of Euclidian division, to reduce a differential poly-
nomial modulo derivatives of differential equations. If the reduced form is zero, then
the polynomial is a consequence. This generalizes to non-simple differential systems: a
differential Thomas decomposition splits this system into simple differential systems,
and then a differential polynomial is a consequence of the original system if it is a
consequence of each of these simple differential systems.

Properties of parametric systems often depend on the values of their parameters.

Remark 1.2. An algebraic parameter a can be modeled as a new function. To make a
constant, add the differential equations ∂a = 0 for all possible partial derivatives ∂ to
the system of differential equations. /

The reduction with respect to simple differential system allows to prove theorems
automatically in the form of deciding whether certain conditions are consequences of
a differential system. The proof of the following well-known theorem is an example
for this. It deals with the relation of two curves, the template and the tractrix. The
template curve pulls the tractrix curve as if these two curves were connected by a fixed
rod. The tractrix moves in the direction of the template but keeps a constant distance;
thus, it is also called curve of pursuit. The template pushes the tractrix away when it
moves in the direction of the tractrix. Thereby, one can model the parking process of a
truck.

Theorem 1.3. Let (X(t), Y (t)) be the template curve with tractrix (x(t), y(t)) for dis-
tance d > 0 and non-degeneracy condition ẋẎ − Ẋẏ 6= 0. The evolute of the tractrix is
given by the intersection points of the normals of template and tractrix.
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Figure 1.1: A demonstration of tractrix and template
curves. The template curve is a light gray circle, the
tractrix is the somewhat pear-shaped black curve, and
the connecting rod is drawn in dotted gray. In the be-
ginning, the template curve pushes the tractrix away.
Then, the tractrix changes its direction and from that
moment on, the template curve pulls the tractrix.

Proof.
restart;
with(DifferentialThomas):

Set the ranking. In the following, the algebraic variable d, which stands for the distance,
always has the constraint ∂

∂td = 0, as explained in Remark 1.2.
ivar:=[t]:
dvar:=[x,y,X,Y,d]:
ComputeRanking(ivar,dvar);

The next simple procedure symbolically computes the normal ξ, η of a curve X, Y .
NormalDirection:=proc(X,Y)

PartialDerivative(X,t)*(X-xi)+PartialDerivative(Y,t)*(Y-eta);
end proc:

The following differential equations describe the interrelation of template and tractrix
curve.

L:=[
(X[0]-x[0])^2+(Y[0]-y[0])^2-d^2,
-y[1]*(X[0]-x[0])+x[1]*(Y[0]-y[0]),
d[1]

]:
Symbolically compute the intersection of the normals of template and tractrix:

Ntrac:=NormalDirection(x[0],y[0]);
Ntemp:=NormalDirection(X[0],Y[0]);
s:=solve({Ntrac,Ntemp},{xi,eta});

Ntrac := x1 (x0 − ξ) + y1 (y0 − η)

Ntemp := X1 (X0 − ξ) + Y1 (Y0 − η)

s :=
{
η = −X1X0x1−X1x1x0−X1y1y0+Y1Y0x1

X1y1−Y1x1
, ξ = y1X1X0+y1Y1Y0−Y1x1x0−Y1y1y0

X1y1 −Y1x1

}
Compute the evolute:

evo:=solve({
NormalDirection(x[0],y[0]),
PartialDerivative(NormalDirection(x[0],y[0]),t)
},{xi,eta});

evo :=
{
η = x1

3+y0y2x1+x1y1
2−y1y0x2

y2x1−y1x2
, ξ = y2x1x0−y1x2x0−y1x1

2−y1
3

y2x1−y1x2

}
Check whether these two solutions are equivalent modulo our equations, i.e., whether
their difference is zero modulo our equations. Compute simple differential systems from
the equations

res:=DifferentialThomasDecomposition(L,[x[1]*Y[1]-X[1]*y[1]]);

res := [DifferentialSystem,DifferentialSystem]

and reduce the difference with respect to both systems to zero
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differences:=[
numer(subs(evo,eta)-subs(s,eta)),
numer(subs(evo,zeta)-subs(s,zeta))]:

DifferentialSystemReduce(res[1],differences);
DifferentialSystemReduce(res[2],differences);

[0, 0]

[0, 0]

which implies the claim.

1.1.3 The Differential Dimension Polynomial

The set of differential consequence of some set S differential polynomials has the struc-
ture of a differential ideal, denoted I(S). This means that it is an ideal which is closed
under the action the prescribed derivation operators. One can assign the differential
dimension polynomial to the differential ideal I(S) associated to a simple differential
system S. The dimension polynomial was introduced by Kolchin to measure the size
of the set of solutions of a differential system, and this thesis generalizes his approach
from prime ideals to ideals associated to simple differential systems.

Example 1.4. Consider the differential equation ∂
∂xf(x, y) − f(x, y) = 0 and look for

power series solutions f(x, y) =
∑∞

i,j=0 ai,j
xiyj

i!j! centered around zero. The power series
coefficients a0,j for a solution are specified, then all other power series coefficients are
determined by the differential equation. This gives an overview about the number of
solutions by saying that up to order ` one can choose `+1 power series coefficients freely.
The differential dimension function Ω(`) = `+ 1 defined below formalizes this. /

Denote by F{U}≤` the ring of differential polynomials of order ≤ ` and for a diffe-
rential ideal I define I≤` := I ∩ F{U}≤`. Then the differential dimension function of I
is defined using the Krull dimension as

ΩI : Z≥0 7→ Z≥0 : ` 7→ dim(F{U}≤`/I≤`) .

As in the example, the differential dimension function is a polynomial function
for ` big enough. This polynomial is called differential dimension polynomial and the
following theorem states its existence and other astonishing properties.

Theorem 1.5. Let S, S′ be simple differential systems and I := I(S), J := I(S′) the
differentials ideals associated to S and S′, respectively. Assume that I ⊆ J .

• There is a numerical polynomial4 ωI(`) ∈ Q[`] called differential dimension poly-
nomial such that ωI(`) = ΩI(`) for sufficiently big ` ∈ Z≥0.

• 0 ≤ ωI(`) ≤ m
(
`+n
n

)
. In particular, dI ≤ n for dI := deg`(ωI).

• The degree dI and the leading coefficient of ωI are invariant under differential
birational maps5.

• ωI ≤ ωJ .
4I.e., a univariate polynomial p(`) ∈ Q[`] with p(`) ∈ Z for all ` ∈ Z. For two numerical polynomials

p, q ∈ Q[`] define the total order p ≤ q if p(`) ≤ q(`) for all ` sufficiently large.
5Denote by K(R) the total quotient ring, i.e., the localization at the non-zero-divisors, of a com-

mutative ring R. A differential birational map between two commutative rings R and R′ is a ring
isomorphism between K(R) and K(R′) compatible with derivations.
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• Assume that ωI = ωJ . Then, I = J if and only if the equations of same leaders
have the same degree.

A more complete version of this theorem is given in Theorem 1.74 below.

The differential dimension polynomial implies many other values, which describe
the set of solutions of a system of differential equations; examples are the Cartan
characters, Einstein’s strength and the differential type (cf. Subsection 1.6.4).

1.1.4 Differential Elimination

A differential Thomas decomposition can not only decide whether a differential polyno-
mial is a consequence but actually produce certain desirable consequences of differential
systems. For example, given the (standard) Navier-Stokes equations it automatically
produces the Poisson pressure equation and includes it into the system. More gener-
ally, by choosing a suitable ranking, one can force to include certain forms of differential
consequences into a simple differential system, e.g., consequences of low order or con-
sequences only involving certain differential indeterminates. The latter case is called
differential elimination and it uses a block ranking as introduced in Example 1.1 above.

Example 1.6 (Cole-Hopf Transformation, [BC99, pp. 599-600]). Consider the heat
equation h = vt + vxx and the viscous Burgers’ equation b = ut + uxx + 2ux · u for
two unknown functions u(t, x) and v(t, x). Claim: Any non-zero solution for the heat
equation can be transformed to a solution of Burgers’ equation using the Cole-Hopf
transformation λ : v 7→ vx

v . A differential Thomas decomposition of

{h = 0, v · u− vx︸ ︷︷ ︸
⇔u=λ(v)

= 0, v 6= 0}

consists of the single system S = {vx− v · u = 0, v · ux + vt + v · u2 = 0, v 6= 0}, and one
checks that the reduced form of b with respect to S is zero. This implies that λ maps
any non-zero solution of the heat equation to a solution of Burgers’ equation.

Claim: λ is surjective. For the proof use any elimination ranking with v � u. A
differential Thomas decomposition of {h = 0, b = 0, v · u − vx = 0, v 6= 0} consists of
the single system

S = {vx − v · u = 0, v · ux + vt + v · u2 = 0, v 6= 0, b = 0} .

The elimination ordering guarantees that the only constraint for u is Burgers’ equation
b = 0. The simplicity of S implies that for any solution f of Burgers’ equation there
exists a solution (g, f) of S; in particular, λ is surjective.

Claim: λ is not injective. Under any ranking, a differential Thomas decomposition
of {h = 0, v · u− vx = 0, u = 0} consists of the single system

S = {vx = 0, vt = 0, u = 0} .

Thus, all constants are mapped to zero by the Cole-Hopf transformation.
Example 1.78 computes the differential dimension polynomials of these equations

and uses it to show that MAPLE’s pdsolve [map] only finds a subset of the solutions. /

Example 1.7. Consider the Lotka-Volterra (predator-prey) equations.

d

dt
x(t) = x(t) (α− βy(t))

d

dt
y(t) = y(t) (−γ + δx(t))
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In them x models the number of prey and y number of predators. Furthermore, α, β, γ,
and δ are constants. The goal of this example is to demonstrate elimination for parame-
ter identification, i.e., to express the parameters α, β, γ, and δ in terms of the functions x
and y. The parameters cannot directly be measured in nature, but the amount of preda-
tor and prey can (to a certain extend). Therefore, use a block ranking with α, β, γ, δ
� x, y. Remark 1.2 allows to model the parameters. For a better presentation, exclude
the trivial cases where ∂

∂tx(t) = 0 and ∂
∂ty(t) = 0.

restart;
with(DifferentialThomas):
ivar:=[t]:
dvar:=[alpha,beta,gamma,delta,x,y]:
ComputeRanking(ivar,[dvar[1..4],dvar[5..6]]);
res:=DifferentialThomasDecomposition(

[x[1]-x[0]*(alpha[0]-beta[0]*y[0]),
y[1]-y[0]*(-gamma[0]+delta[0]*x[0]),
alpha[1],beta[1],gamma[1],delta[1]],

[x[1],y[1]]);

res := [DifferentialSystem]

The differential Thomas decomposition results in a single simple differential system.
In this system, one can solve for the constants:

zip((a,b)->print(a=rhs(isolate(JetList2Diff(
DifferentialSystemEquations(res[1])[b])

,a(t)))),[alpha,beta,gamma,delta],[$1..4]):

α =
x(t)( ddtx(t)) ddty(t)−x(t)

(
d2

dt2
x(t)

)
y(t)+( ddtx(t))

2
y(t)

(x(t))2 d
dt
y(t)

β =
−x(t) d

2

dt2
x(t)+( ddtx(t))

2

(x(t))2 d
dt
y(t)

γ = −
−x(t)y(t) d

2

dt2
y(t)+x(t)( ddty(t))

2
+( ddtx(t))y(t) d

dt
y(t)

( ddtx(t))(y(t))2

δ =
y(t) d

2

dt2
y(t)−( ddty(t))

2

( ddtx(t))(y(t))2

In particular, the right hand sides of the above are constant for solutions of the Lotka-
Volterra equations. There exist two equations in x and y only, characterizing all
possible solutions of the Lotka-Volterra equations, independent of the constants:

map(a->print(DifferentialSystemEquations(res[1])[a]),[5,6]):

x0
2x2y2 − x0

2x3y1 − x0x1
2y2 + 3x0x1x2y1 − 2x1

3y1

x1y0
2y3 − 3x1y0y1y2 + 2x1y1

3 − x2y0
2y2 + x2y0y1

2

/
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1.2 Simple Systems

Differential algebra is easily described: it is (99 per cent or more)
the work of Ritt and Kolchin.

Irving Kaplansky
in [Kap57, Preface]

Differential algebra is no longer (99 per cent or more) the work
of Ritt and Kolchin

Daniel Bertrand
in [Ber96]

This section recalls basic definitions used throughout this work, both for the alge-
braic case of polynomial rings and for the differential case. Furthermore, it introduces
the concepts of simple systems and the Thomas decomposition. It sketches the com-
binatorial approach of Janet, which is used for the definition of simple differential
systems and later to describe the freedom to choose a solutions of a system.

1.2.1 Algebraic Systems

This subsection looks at algebraic systems as a preparation for differential systems,
because many properties of differential systems originate in properties of algebraic sys-
tems.

Let F be a field of characteristic 0 and R := F [y1, . . . , yn] be the polynomial ring
in n variables. A total order < on {1, y1, . . . , yn} with 1 < yi for all 1 ≤ i ≤ n is
called a ranking. An indeterminate x is called leader6 of p ∈ R if x is the <-largest
variable occurring in p. In this case write ld(p) = x. If p ∈ F , then define ld(p) = 1.
The degree mdeg(p) of p in ld(p) is called main degree of p. The leading coefficient
init(p) ∈ F [ z | z < ld(p) ] of ld(p)mdeg(p) in p is called initial of p. For simplicity of
this text always assume that y1 < . . . < yn. The highest power of the leader appearing
in a polynomial is often underlined for a better overview.

Given a polynomial p ∈ R, the symbols p= and p 6= denote the equation p = 0 and
inequation p 6= 0, respectively7. Abusing notation, sometimes p= or p6= also denote the
underlying polynomial p. Call a set S of finitely many equations and inequations an
(algebraic) system over R; its subset S<x := {p ∈ S | ld(p) < x} is a system over
F [ z | z < x ]. The subsets of all equations p= ∈ S and all inequations p 6= ∈ S are
denoted by S= and S 6=, respectively. Define Sx := {p ∈ S | ld(p) = x}. When it is
clear that |Sx| = 1, write Sx to denote the unique element of Sx.

Denote by F the algebraic closure of F . For a ∈ Fn define the (complete) evalu-

6In the context of algebraic triangular decompositions, the leader is usually called main variable.
The term leader is used in [Tho37] and has later been adopted in differential algebra.

7However, especially in examples, equations and inequations are often denoted by p = 0 (and p 6= 0)
when no confusion is possible with “p is (not) the zero polynomial”.
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ation homomorphism

φa : R→ F : yi 7→ ai .

Let 1 ≤ j, k ≤ n with k ≤ j + 1. For a ∈ F
j define the (partial) evaluation

homomorphism

φ<yk,a : R→ F [yk, . . . , yn] :

{
yi 7→ ai, i < k
yi 7→ yi, otherwise .

A solution of p= or p 6= is a tuple a ∈ Fn with φa(p) = 0 or φa(p) 6= 0, respectively.
Call a ∈ Fn a solution of a system S if it is a solution of each element in S. The set of
all solutions of S is denoted by Sol(S).

A system S is triangular if |Syi | ≤ 1 for all 1 ≤ i ≤ n and S ∩ {c=, c6= | c ∈
F} = ∅. The solutions of a triangular system can be found by iteratively finding zeros
of a univariate polynomial and substituting the solution in the following polynomials.
The following example demonstrates this and motivates further properties of algebraic
system, collected in the definition of simple algebraic systems.

Example 1.8. The set of solutions over the complex numbers C of

p = y3 + (3x+ 1)y2 + (3x2 + 2x)y + x3 = 0 .

equals the union of the solutions sets of the following two triangular (for x < y) systems.

S1 := { y3 + (3x+ 1)y2 + (3x2 + 2x)y + x3 = 0, 27x3 − 4x 6= 0 }
S2 := { 6y2 + (−27x2 + 12x+ 6)y − 3x2 + 2x = 0, 27x3 − 4x = 0 }

Substituting a solution of the univariate polynomial in x into the equation with leader
y yields a univariate polynomial in y. Here, this univariate polynomial can be solved
for y. In general triangular systems the univariate polynomial might degenerate to a
non-zero constant. To prevent this, the initials of all polynomials need to be non-zero
after substituting the solutions of lower ranking polynomials.

S2S2 S2

x

y

The geometric way of looking at this substitution are fibers of projections. The diagram
shows the solutions of {p = 0} in the real affine plane. The cardinality of the fibers of
the projection onto the x-component along the y-axis depends on the x-value. However,
when considering all solutions in the complex affine plane, this cardinality stays constant
within each system; it is 3 for 27x3 − 4x 6= 0 corresponding to the degree of (S1)y and
2 for 27x3 − 4x = 0 corresponding to the degree of (S2)y. /
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As in this example, the Thomas approach uses the evaluation homomorphisms φ<x,a
to treat each polynomial p ∈ Sx as the family of univariate polynomials φ<x,a(p) ∈
F [x] for a ∈ Sol(S<x). In addition to triangularity, the following definition of simple
(algebraic) systems formalizes that initials are non-zero and the fibers of all projections
have the same cardinality. This equality of fiber cardinalities is ensured by square-
freeness.

Definition 1.9. Let S be an algebraic system.

(1) S has non-vanishing initials if φa(init(Syi)) 6= 0 for all a ∈ Sol(S<yi) and all
1 ≤ i ≤ n.

(2) S is square-free if the univariate polynomial φ<yi,a(S<yi) ∈ F [yi] is square-free
for all a ∈ Sol(S<yi) and all 1 ≤ i ≤ n.

(3) S is called simple if it is triangular, has non-vanishing initials and is square-free.

Let S be a simple algebraic system and 1 ≤ i ≤ n. Then, S<yi is also a simple
algebraic system in F [y1, . . . , yi−1] (and also in R). Furthermore, φ<yi,a(S) is also a
simple algebraic system in F [yi, . . . , yn] for all a ∈ Sol(S<yi) [Ple09a, Lemma 3.2].

Remark 1.10. Every simple algebraic system S has a solution. In particular, if b ∈
Sol(S<x) and Sx is not empty, then φ<x,b(Sx) is a univariate polynomial with exactly
mdeg(Sx) distinct roots. If Sx is an equation, each solution b ∈ Sol(S<x) extends to
a solution (b, a) ∈ Sol(S≤x) with mdeg(Sx) possible choices a ∈ F . Otherwise, all
but finitely many a ∈ F yield a solution (b, a) ∈ Sol(S≤x), because an inequation Sx
excludes mdeg(Sx) different a, and Sx = ∅ imposes no restriction on a.

Conversely, if (a1, . . . , an) ∈ Sol(S), then (a1, . . . , ai) ∈ Sol(S≤yi) for any 1 ≤
i ≤ n. More specific, Sol(S≤yi) is equal to the projection of Sol(S) onto its first i
components. /

Properties (1) and (2) in the definition of simple algebraic systems are characterized
via solutions of lower-ranking equations and inequations. If this set of solutions is
infinite, then it is not feasible to check these properties for all solutions. Instead, use
polynomial equations and inequations to partition the set of solutions of the lower-
ranking system to ensure the above properties of simple algebraic systems. This leads
to a Thomas decomposition.

Definition 1.11. Let S be a system. A set {Sj |1 ≤ j ≤ m} or tuple (Sj |1 ≤ j ≤ m)
of systems is called decomposition of S if

Sol(S) =
m⋃
j=1

Sol(Sj) .

It is further called disjoint if Sol(Si) ∩ Sol(Sj) = ∅ ∀ 1 ≤ i < j ≤ m. A disjoint
decomposition into simple algebraic systems is called (algebraic) Thomas decom-
position.

For any algebraic system S, there exists a Thomas decomposition [Tho37, Tho62,
Wan98]. The algorithm Decompose (cf. Algorithm 1.32) presented below provides an-
other proof of this fact.

Example 1.12 (Quadratic Formula). Consider
{(
p := ax2 + bx+ c

)
=

}
in Q[a, b, c, x]

with respect to a < b < c < x and compute a Thomas decomposition.
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First, ensure that the initial init(p) of p is not zero. Therefore, insert (init(p))6= =
(a)6= into the system. Since this restricts the solution set of this system, consider the
complementary system {p=, (a)=}. This latter system simplifies to {(bx+ c)= , (a)=}.
Similarly, add (b) 6= into this system to ensure init(bx+ c) 6= 0 and get the special case
system {(c)= , (b)= , (a)=}. Up to this point, there are three systems, where the second
and third one are easily checked to be simple:
x

c

b

a

(
ax2 + bx+ c

)
=

(a)6=

x

c

b

a

(bx+ c)=

(b) 6=

(a)=

x

c

b

a

(c)=

(b)=

(a)=

Second, ensure that p is square-free by insertion of
(
4ac− b2

)
6= into the first system.

Again, consider the complementary system {(p)= ,
(
4ac− b2

)
=
, (a)6=}. As p is a square

in this system, replace it by its square-free part 2ax+ b. All systems are simple:
x

c

b

a

(
ax2 + bx+ c

)
=(

4ac− b2
)
6=

(a)6=

x

c

b

a

(2ax+ b)=(
4ac− b2

)
=

(a)6=

x

c

b

a

(bx+ c)=

(b) 6=

(a)=

x

c

b

a

(c)=

(b)=

(a)=

/

1.2.2 Differential Algebra and Differential Systems

This subsection introduces the standard setup of differential algebra, including the diffe-
rential polynomial ring, the polynomial ring in the unknown functions and their deriva-
tives, and differential algebras.

Let ∆ = {∂1, . . . , ∂n} be a non-empty set of derivation operators and F a diffe-
rential ring, i.e., the ∂j ∈ ∆ are commuting Z-linear operators ∂j : F → F satisfying
the Leibniz rule. Given a differential indeterminate u, the differential polyno-
mial ring F{u} := F

[
ui | i ∈ Zn≥0

]
is the polynomial ring generated by the infinite

algebraically independent set {u}∆ := {ui | i ∈ Zn≥0}. The operation of ∂j ∈ ∆
on {u}∆ is defined by ∂jui = ui+ej , and this operation extends Z-linearly and via
the Leibniz rule to F{u}. Let U = {u(1), . . . , u(m)} be a non-empty set of differen-
tial indeterminates (also called the set of dependent variables). The multivariate
differential polynomial ring is given by F{U} := F{u(1)} . . . {u(m)}. Its generators
{U}∆ := {u(j)

i | i ∈ Z
n
≥0, j ∈ {1, . . . ,m}} are the differential variables. Call a finite

set of equations and inequations, i.e., a subset of F{U}{=, 6=}, a (differential) system
over F{U}. Let u(j)

i be a differential variable. Call ordu
(j)
i := |i| :=

∑n
j=1 ij the order

of u(j)
i and ordk u

(j)
i := ik the order of u(j)

i in ∂k for k = 1, . . . , n.
From now on let F be a differential field of characteristic zero, i.e., a field that is

a differential ring. In many examples, the differential field contains elements y1, . . . , yn
with ∂iyj = δij , where δij denotes the Kronecker delta, or more generally, F is a
field of meromorphic functions in n complex variables y1, . . . , yn. In these cases, call
the elements y1, . . . , yn independent variables.

Slightly more general is the category of differential F -algebras over ∆; its object
class are the F -algebras on which ∆ operates as a set of commuting derivations, and its
sets of morphisms are F -algebra homomorphism that commute with the derivations from
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∆. In an algorithmic setup one considers the full subcategory of finitely differentially
generated differential F -algebras over ∆ with objects that are generated as F -
algebras by a finite set of elements and (consecutive) derivatives of these elements8.
Differential ideals are ideals of a differential algebra that are closed under the action
of ∆, and any finitely differentially generated differential F -algebra is the quotient of
a finitely generated differential polynomial ring by a differential ideal. A differential
F -subalgebra of a differential F -algebra is a subalgebra closed under derivations from
∆. A differential subalgebra is generated by some elements if it is the intersection of all
differential subalgebras containing these elements.

1.2.3 Rankings and Janet Division

This subsection focuses on a combinatorial approach called Janet division [GB98a].
The Janet division organizes the infinite set of differential variables by partitioning
them into finitely many cones. A combinatorial approach based on the Janet divi-
sion guarantees inclusion of all integrability conditions in a differential system. This
subsection presents an algorithm for inserting new equations into an existing set of equa-
tions and adjusting this cone decomposition accordingly. For an overview of modern
development see [Ger05, Sei10], the original ideas are formulated in [Jan29].

A (differential) ranking < is defined as a total order on the set of differential
variables and 1 with 1 < u ∀ u ∈ U , such that

(1) u < ∂ju and
(2) u < v implies ∂ju < ∂jv

for all u, v ∈ {U}∆ and ∂j ∈ ∆. From now on let < be an arbitrary and fixed diffe-
rential ranking. For any finite set of differential variables, a differential ranking induces
an algebraic ranking. Thereby, in accordance to the algebraic setting, define the largest
differential variable ld(p) appearing in a differential polynomial p ∈ F{U} as leader,
which is set to 1 for p ∈ F . Furthermore, define mdeg(p) and init(p) as the main
degree, i.e. degree in the leader, and the initial, i.e. coefficient of ld(p)mdeg(p), respec-
tively. Note that ld(∂p) = ∂ ld(p) for all p ∈ F{U} and all ∂ ∈ ∆.

Special classes of rankings are used in different contexts. The first class of rankings is
used for elimination. A (differential) ranking < is called block ranking or elimination
ranking if there is a partition U =

⊎k
i=1Bi such that u(j)

i < u
(j′)
i′ if u(j) ∈ Bh and

u
(j′)
i′ ∈ Bh′ for h < h′. Write B1 � B2 � . . . � Bk. The second class of rankings is

useful for proving convergence of power series solutions. A ranking < is called Riquier
if u(j)

i < u
(j′)
i′ implies u(j′)

i < u
(j)
i′ for all i, i′ ∈ Zn≥0 and all j, j′ ∈ {1, . . . ,m}. The next

class of rankings is used for counting the set of solutions. A (differential) ranking <
is called orderly ranking if |i| < |i′| implies u(j)

i < u
(j′)
i′ for any i, i′ ∈ Zn≥0 and any

j, j′ ∈ {1, . . . ,m}. The “standard” ranking is the degree-reverse lexicographical
ranking, which is an orderly Riquier ranking. Here, u(j)

i < u
(j′)
i′ if and only if

|i| < |i′| or
|i| = |i′|, in = i′n, . . . , ik+1 = i′k+1, and ik < i′k or
i = i′ and j < j′ .

It is easy to see that rankings on F{U} are in bijection to term orderings on
F [y1, . . . , yn]m. Much work has been done on classification of term orderings and rank-

8The differential polynomial rings are the free objects in this category.
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ings. The case m = 1 is treated in [Rob85, Wei87], Riquier rankings in [CS99], and
the general case in [RR97].

The following example demonstrates how to view rankings and uses them to motivate
the Janet cone decomposition.

∂t

∂xu0,0
u1,0

u0,1

u2,0

u0,2

u3,0

u2,1

u1,2

u0,3

<

< <
<

<

<
<

<

<

Example 1.13. Consider a differential indeterminate u
and derivations ∆ = {∂x, ∂t}. In this setting, any par-
tial differential equation in one dependent variable and two
independent variables with constant coefficients can be rep-
resented as a differential polynomial in C{u}.

Let < be the orderly ranking defined by ui1,i2 < uj1,j2
if and only if either i1 + i2 < j1 + j2 or i1 + i2 = j1 + j2 and
i2 < j2 holds. Thus, the smallest differential variables are:
u0,0 < u1,0 < u0,1 < u2,0 < u1,1 < u0,2 < u3,0. When considering the set of differential
variables as a grid in the first quadrant of a plane, the diagram illustrates this ranking.

Consider (u0,1+u0,0u1,0)= representing the inviscid Burgers’ equation ∂u
∂t +u∂u∂x = 0.

As in the algebraic part, the diagram visualizes equations by attaching them to their
leaders. However, contrary to the algebraic part, differential equations imply their
derivatives as consequences. Thus, a differential equation not only implies restrictions
to its leader, but also to the derivatives of its leader. For example ∂t(u0,1 + u0,0u1,0) =
u0,2 + u0,1u1,0 + u0,0u1,1. The diagram illustrates this by drawing a cone with apex u0,1.

∂t

∂xu0,0
u1,0

u0,1

u2,0

u1,1

u0,2

u3,0

u2,1

u1,2

u0,3

(u0,1 + u0,0u1,0)=

(u2,0)=

Now, consider solutions of the in-
viscid Burgers’ equation linear in x.
So, add the second equation (u2,0)= to
the system. This second equation also
affects the derivatives of its leader. In
particular, (u0,1 +u0,0u1,0)= and (u2,0)=

both affect the differential variable u2,1

and its derivatives. This inhibits tri-
angularity of the system. According to
the approach suggested by Janet, disallow certain equations to be differentiated by
certain partial derivations. In this example, allow (u2,0)= to be differentiated only by
∂x. The diagram illustrates this by drawing a (degenerate) cone with apex u2,0 in di-
rection of ∂x. Thus, the differential consequence (∂tu2,0)= is not yet considered and, so,
consider it as a separate equation for further treatment in Example 1.40. /

The cones of the previous example are an important technical part of the simple
systems, as they ensure the inclusion of all compatibility conditions. Furthermore, they
provide the combinatorial background for counting.

A set W of differential variables is closed under the action of ∆′ ⊆ ∆ if ∂iw ∈ W
for all ∂i ∈ ∆′ and w ∈W . The smallest set containing a differential variable w, which
is closed under ∆′, is called a cone and denoted by {w}∆′ . In this case, the elements
of ∆′ are called reductive derivations9. The ∆′-closed set generated by a set W of
differential variables is defined as

{W}∆′ :=
⋂

Wi⊇W
Wi ∆′-closed

Wi ⊆ {U}∆ .

9 In [Ger99] and [Sei10, Chap. 7] the reductive derivations are called multiplicative variables and
in [BGLHR10] they are called admissible derivations.
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For a finite set W = {w1, . . . , wr}, the Janet division algorithmically assigns a
set of reductive derivations to the elements of W such that the cones generated by the
w ∈ W are disjoint (cf. [GYB01] for a faster algorithm). The derivation ∂l ∈ ∆ is
Janet-reductive for the cone generated by w = u

(j)
i ∈W if and only if

il = max
{
i′l | u

(j)
i′ ∈W, i

′
k = ik for all 1 ≤ k < l

}
holds [Ger05, Ex. 3.1]. Remark that j is fixed in this definition, i.e., only take into
account other differential variables belonging to the same differential indeterminate.
Denote the reductive derivations assigned to w by ∆(w,W ) ⊆ ∆ and call {w}∆(w,W )

the Janet cone of w with respect to W . Cones can be described by a pair of a
differential variable and a subset of the derivations, i.e. and element of {U}∆ × P(∆).

The Janet division ensures disjointness of cones but not necessarily that the union
of cones equals {W}∆. The problem is circumvented by enriching W to its Janet
completion W̃ ⊇W . This completion W̃ is successively created by adding any

w̃ = ∂iwj 6∈
⊎
w∈W̃

{w}
∆(w,W̃ )

to W̃ , for wj ∈ W̃ and ∂i ∈ ∆ \∆(wj , W̃ ), leading to the disjoint Janet decomposi-
tion

{W}∆ =
⊎
w∈W̃

{w}
∆(w,W̃ )

that algorithmically separates a ∆-closed set {W}∆ into finitely many cones {w}
∆(w,W̃ )

.
For details and proofs see [Ger05, Def. 3.4] and [GB98a, Cor. 4.11].

Similarly, the complement of a ∆-closed set {W}∆ can be decomposed into cones.
An algorithm for this is given in Appendix B.

Extend the Janet decomposition from differential variables to differential polyno-
mials according to their leaders, i.e., ∆(q, T ) := ∆(ld(q), ld(T )) for finite T ⊂ F{U}
and q ∈ T . Call a derivative of an equation by a finite (possibly empty) sequence
of derivations a prolongation. If all these derivations are reductive, the derivative
is called a reductive prolongation of q with respect to T . Otherwise it is called a
non-reductive prolongation.

A differential polynomial p ∈ F{U} is called reducible modulo q ∈ F{U} if there
exists i ∈ Zn≥0 such that ∂i11 · . . . · ∂inn ld(q) = ld(∂i11 · . . . · ∂inn q) = ld(p) and mdeg(∂i11 ·
. . . · ∂inn q) ≤ mdeg(p). For i 6= (0, . . . , 0) the condition on the main degree always holds.
Now restrict to reductive prolongations: For a finite set T ⊂ F{U}, call a differential
polynomial p ∈ F{U} Janet-reducible modulo q ∈ T w.r.t. T if p is reducible modulo
q and ∂i11 · . . . · ∂inn q is a reductive prolongation of q w.r.t. T , with i ∈ Zn≥0 from the
reducibility conditions. Furthermore, p is Janet-reducible modulo T if there is a
q ∈ T such that p is Janet-reducible modulo q w.r.t. T .

1.2.4 Non-centered Power Series Solutions

All previous differential algebra definitions are purely formal and do not involve so-
lutions. However, the definition of square-freeness or non-vanishing initials for simple
systems require a set of admissible solutions. This subsection defines a set of admissible
solutions for differential systems based on solutions of algebraic systems. Such a unified
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set of admissible solutions both for the algebraic and differential case allows unified
algorithms, definitions, and proofs.

All fields are of characteristic zero.
Solutions for algebraic systems are n-tuples Fn ∼= F

{y1,...,yn} in the algebraic closure
F of F , where each entry in the tuples is indexed by one of the n indeterminates. The
admissible solutions considered here are tuples indexed by the differential variables, i.e.,
lie in F

{U}∆ . Section 1.4 below connects this novel set of admissible solutions with
formal and convergent power series.

To smooth notation, write the image of a differential variable ui as coefficient of zi

in the formal power series ring F [[z1, . . . , zn]], where zi := zi11 · . . . · zinn . More formally,
define the set of non-centered power series

E := F [[z1, . . . , zn]]U ≡
m⊕
j=1

F [[z1, . . . , zn]] ,

which is isomorphic as F -vectorspace to F {U}∆ by the algebraization isomorphism

α : E
∼−→ F

{U}∆ :

u(j) 7→
∑
i∈Zn≥0

a
(j)
i

zi

i!

 7→ (
u

(j)
i 7→ a

(j)
i

)
where i! := i1! · . . . · in!.

The name “algebraization isomorphism” indicates that a non-centered power series
is turned into an (infinite) tuple, which is suitable for algebraic equations. The non-
centered power series are a first step towards formal and convergent power series. They
are already power series, but their coefficients lie in the differential field F . In all
examples in this thesis F is a field of meromorphic functions. In this case the non-
centered power series are power series with variable coefficients. For example, if F =
C(y) and U = {u}, then u 7→ (1 + yz+ 1

y
z2

2! + . . .) ∈ E. They are called “non-centered”,
because one can specialize to (most) ζ ∈ C as center of expansion by substituting y by ζ
and z by y−ζ to get a formal power series u 7→ (1+ζ(y−ζ)+ 1

ζ
(y−ζ)2

2! +. . .) ∈ C[[y−ζ]]U ;
of course, ζ should not be a pole of any coefficient. Non-centered solutions are not
related with Taylor series of meromorphic functions at various centers of expansion
(cf. Example 1.59). The definition of E delays the problem of choosing a suitable
(non-singular) center and allows to concentrate on algorithms for now.

Now, the definition of solutions is the same as in the algebraic case. For e ∈ E, let

φe : F{U} → F : u
(j)
i 7→ α(e)(u

(j)
i )

be the F -algebra homomorphism evaluating the differential variables at e. A differen-
tial equation or inequation for m functions U = {u(1), . . . , u(m)} in n indeterminates
is an element p ∈ F{U}{=, 6=}, written p= or p 6=, respectively. A non-centered (power
series) solution of p= or q 6= is an e ∈ E with φe({p}∆) = {0} or φe({q}∆) 6= {0},
respectively. Here, {p}∆ := {∂ip | i ∈ Zn≥0} ⊂ F{U}. Furthermore, e ∈ E is called a
non-centered solution of a system S of differential equations and inequations if it is a
non-centered solution of each element in S. Denote the set of non-centered solutions of
S by SolE(S) ⊆ E.

The non-centered solutions are used in [BLOP09, Paragraph 7] under the name “for-
mal power series solutions”, however, without passing to an explicit center of expansion
to obtain (actual) formal power series solutions over the field of constants.
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Non-centered solutions connect solutions of differential ideals with algebraic solu-
tions. Let Mon(∆) denote the free commutative monoid generated by ∆. The differen-
tial ideal 〈P 〉∆ generated by a set of equations P := {p1, . . . , pk} ⊂ F{U}{=} is equal
to the algebraic ideal 〈Mon(∆)P 〉 generated by all derivations of the elements in P .
Obviously, φe({p}∆) = {0} if and only if φe(〈p〉∆) = {0}, as {p}∆ generates the diffe-
rential ideal 〈p〉∆ in F{U}. Further connections of non-centered solutions and ideals
follow from the Nullstellensatz for non-centered solutions (cf. Theorem 1.65).

In differential algebra one usually considers solutions in a universal differential field.
However, in contrast to non-centered power series, this class of fields is highly non-
constructive. Nonetheless, non-centered solutions are connected to solutions in the
universal differential field and can be considered as such a solution. As the univer-
sal differential field take the universal closure F̂ of the algebraic closure F . Then,
F [[z1, . . . , zn]] ↪→ F ((z1, . . . , zn)) ↪→ F̂ , where the second embedding comes from the
definition of universal differential fields [Kol73, §II.2 and §III.7].

1.2.5 Simple Differential Systems

These preparations allow the main definition in this chapter: simple differential systems.
Call a set of differential variables T ⊂ {U}∆ minimal, if for any S ⊂ {U}∆ with⊎

t∈T
{t}∆(t,T ) =

⊎
s∈S
{s}∆(s,S)

the condition T ⊆ S holds [GB98b, Def. 4.2]. Call a set of differential polynomials
minimal, if the corresponding set of leaders is minimal.

Simple differential systems should contain all differential consequences. For this,
it suffices to check whether the non-reductive prolongations of equations are already
consequences. Let p ∈ F{U} with x = ld(p) and define the separant sep(p) := ∂p

∂x . For
a differential system of equations S = S= say that a differential polynomial p ∈ F{U}
reduces to zero modulo S if qp lies in the (algebraic) ideal generated by the elements
of S and their reductive prolongations for at least one q in the monoid generated by the
initials and separants of S=. This definition means that p is a consequence of S, in the
sense that it lies in the differential ideal associated to S (cf. Definition 1.64).

Definition 1.14 (Simple Differential Systems). A differential system S is (Janet-)
passive if all non-reductive prolongations of (ST )= reduce to zero modulo (ST )=.

A differential system S is called simple if

(1) S is algebraically simple (in the finite set of differential variables appearing in it),
(2) S is passive,
(3) S= is minimal, and
(4) no inequation in S 6= is reducible modulo S=.

A set {S1, . . . , Sm} or tuple (Sj |1 ≤ j ≤ m) of differential system is called decom-
position of S if SolE(S) =

⋃m
j=1 SolE(Sj). It is further called disjoint if SolE(Si) ∩

SolE(Sj) = ∅ ∀ 1 ≤ i < j ≤ m. A disjoint decomposition into simple differential
systems is called (differential) Thomas decomposition.

Examples of simple differential systems and differential Thomas decompositions
can be found in the overview Section 1.1.
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1.3 The Decomposition Algorithms

In mathematics: “This isn’t a proof. You can’t have a whole step
that’s just ‘Mathematica said so.’ ”
In physics: “What a waste. Half of this proof could be replaced
by ‘mathematica said so.’ ”

Zachary Weinersmith
in [Wei, 2861]

This section presents an algorithm to compute algebraic and differential Thomas
decompositions as defined in the last section (cf. Definitions 1.11 and 1.14). It begins
with the conceptually simpler algebraic case before presenting the differential algorithm.
Most of this section grew out of joint work with Thomas Bächler, Vladimir Gerdt
and Daniel Robertz [BGLHR10, BGLHR12]. There exist easier describable Thomas
decomposition algorithms [Wan98, Ger08, Rob12, LHR13]. In contrast to these algo-
rithms, the algorithms presented here lead to the definition of the differential counting
polynomial (cf. Subsection 2.4.3) and yield a fast implementation.

Assume that the ground field F , both in the algebraic or differential setting, is com-
putable10 and of characteristic 0. Let ∆ = {∂1, . . . , ∂n} be a non-empty set of derivation
operators and U = {u(1), . . . , u(m)} be a non-empty set of differential indeterminates.

In a nutshell, the main algorithm works as follows. Due to case distinctions, it needs
to treat several systems successively until each system is simple. It represents each
system as a pair consisting of a candidate simple system and a queue of unprocessed
equations and inequations, similar to [GB98b, MM99]. In each step, the algorithm
chooses a suitable polynomial from the queue, (pseudo-)reduces it, and both ensures a
non-zero initial and square-freeness by a case distinction. Such a case distinction splits
the system into two systems; it subjoins a new polynomial to the queue as an inequation
and at the same time creates a new system with the same polynomial subjoined to the
queue as an equation. Thereby, no solution is lost and the solution sets are disjoint.
After the splitting, the algorithm subjoins the reduced polynomial to the candidate
simple system. If there already is a polynomial in the candidate simple system with
the same leader, then it combines both polynomials in one of the following three ways.
First, for a pair of equations a generalization of the Euclidean algorithm computes the
gcd; the degree of the gcd depends on more case distinctions. Second, the algorithm
replaces an equation p and an inequation q by p/ gcd(p, q) and, third, two inequations
by their lcm. In the differential case, the algorithm additionally takes derivations of
equations into account to ensure passivity.

Even though a system is a set of equations and inequations, this section often
considers systems with an additional structure. View any system S as a pair of sets
S = (ST , SQ), such that S can be recovered from the union ST ∪ SQ. Here, ST repre-
sents the candidate simple system and SQ is the queue. Triangularity is required for

10A field F is called computable if there exists an embedding F ↪→ Z≥0 with a recursive image such
that addition and multiplication are algorithmic. It follows that subtraction and division are algorithmic
(cf. [Rab60]). Many examples sloppily talk about non-computable fields (mostly of complex numbers or
finitely generated fields of functions over the complex numbers) instead of the computable differential
subfield containing all relevant elements. In these cases assume that the algorithms are performed over
a computable field which is contained in the larger field; this larger field is not computable but can be
used for an interpretation of the solutions.
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ST , and (ST )x denotes the unique (in)equation of leader x in ST , if it exists. Moreover,
ST fulfills a weak form of the other simplicity conditions, i.e., for any indeterminate
x where (ST )x is non-empty φa(init((ST )x)) 6= 0 and φ<x,a(S<x) is square-free for all
a ∈ Sol((ST )<x ∪ (SQ)<x). In particular, ST is simple if SQ = ∅.

1.3.1 Algebraic Reduction

This subsection describes a reduction algorithm, a form of Euclidian division modulo
a set of equations.

Let R := F [y1, . . . , yn] be a polynomial ring in n variables. From now on, let
prem be any pseudo remainder algorithm in R and pquo the corresponding pseudo
quotient algorithm. To be precise, if p, q ∈ R with ld(p) = ld(q) = x, then

m · p = pquo(p, q, x) · q + prem(p, q, x) (1.1)

holds, where degx(q) > degx(prem(p, q, x)), ld(m) < x and m | init(q)k for some k ∈
Z≥0. Note that φa(init(p)) 6= 0 and φa(init(q)) 6= 0 imply φa(pquo(p, q, x)) 6= 0 and
φa(m) 6= 0 for any a ∈ Fn. Clearly ld(pquo(p, q, x)) ≤ x.

The following algorithm employs prem to reduce a polynomial modulo the candidate
simple system ST .

Algorithm 1.15 (Reduce).
Input: A system S = (ST , SQ), a polynomial p ∈ R
Output: A polynomial q with φa(q) = 0 if and only if φa(p) = 0 for each a ∈ Sol(S).
(Further properties of Reduce are stated in Remarks 1.17 and 1.18.)
Algorithm:
1: x← ld(p); q ← p
2: while x > 1 and (ST )x is an equation and mdeg(q) ≥ mdeg((ST )x) do
3: q ← prem(q, (ST )x, x)
4: x← ld(q)
5: end while
6: if x > 1 and Reduce(S, init(q)) = 0 then
7: return Reduce(S, q − init(q)xmdeg(q))
8: else
9: return q

10: end if

Before giving a proof, the following example explains why the initial deserves special
treatment in the reduction algorithm.

Example 1.16. Reduce p := q1 := x2 +y2x+x+y modulo the simple algebraic system
S = ST = {(yx2 − 1)=, (y

2 + 1)=}, which is displayed on the left.

x

y

Sx = (yx2 − 1)=

Sy = (y2 + 1)=

x2 + y2x+ x+ y =: q1

(y3 + y)︸ ︷︷ ︸x+ y2 + 1 =: q2

y · q1 − Sx

y2 + 1 =: q3

0
q3 − Sy

y3 + y = init(q2)

0
init(q2)− y · Sy
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In the first reduction step, q1 is pseudo-reduced modulo Sx. The result q2 still has
leader x, but a main degree smaller than Sx. The initial of q2 reduces to 0, which removes
the highest power of x from q2. The resulting polynomial q3 now pseudo-reduces to 0
modulo Sy, i.e. Reduce({Sx, Sy}, p) = 0. /

Proof of Algorithm 1.15. Each step decreases the main degree or leader of q. This can
happen only a finite number of times. Similarly, the recursions in lines 6 and 7 are called
with a polynomial either of lower main degree or lower leader. This proves termination.

Show correctness. There exists a product m ∈ R \ {0} of (factors of) initials of
elements in ST with ld(m) < ld(p) such that

Reduce(S, p) = mp−
∑

z≤ld(p)

cz · (ST )z (1.2)

with cz ∈ R and ld(cz) ≤ ld(p) if (ST )z is an equation and cz = 0 otherwise. The
inequation φa(m) 6= 0 holds for all a ∈ Sol(S≤ld(p)) due to the requirements for ST .
This implies

φa(Reduce(S, p)) = φa(m)︸ ︷︷ ︸
6=0

φa(p)−
∑
z≤x

φa(cz)φa((ST )z)︸ ︷︷ ︸
=0

,

and therefore φa(p) = 0 if and only if φa(Reduce(S, p)) = 0.

This algorithm is central for the application of simple algebraic systems. For ex-
ample, Proposition 1.62 shows that this algorithm solves the radical ideal membership.
The following remarks describe some easy properties of the reduction.

Remark 1.17. Let S = ST be a system and p, q ∈ R with q = Reduce(S, p).

(1) If Sld(q) is an equation, then mdeg(q) < mdeg(Sld(q)).
(2) If q 6= 0, then Reduce(S, init(q)) 6= 0.
(3) ld(q) ≤ ld(p) and if ld(q) = ld(p) then mdeg(q) ≤ mdeg(p).
(4) If q = 0, then φa(p) = 0 ∀ a ∈ Sol(S≤ld(p)).

/

The next properties of the reduction solicit a proof.

Remark 1.18. Let S = (ST , SQ) be a system and p ∈ R with ld(p) = x.

(1) If (SQ)=
<x = ∅ and Reduce(S, p) 6= 0 hold, then either ∃ a ∈ Sol(S<x ∪ {(ST )x})

such that φa(p) 6= 0 or Sol(S<x) = ∅.
(2) If (SQ)≤x = ∅, i.e., S≤x = (ST )≤x is simple, then Reduce(S, p) 6= 0 implies
∃ a ∈ Sol(S≤x) such that φa(p) 6= 0.

(3) Let S = (ST , ∅) be simple. Then Reduce(S, p) = 0 if and only if φa(p) = 0 ∀ a ∈
Sol(S≤x).

/

Proof. For the first part let |Sol(S<x)| > 0. Then |Sol(S<x∪{(ST )x})| > 0 holds, since
ld((ST )x) = x, mdeg((ST )x) > 0, and the univariate polynomial φ<x,a((ST )x) ∈ F [x]
has positive degree for each a ∈ Sol(S<x). Assume that φa(p) = 0 ∀ a ∈ Sol(S<x ∪
{(ST )x}). Then (ST )x is an equation and degx(p) ≥ degx((ST )x) and therefore p 6=
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Reduce(S, p). In fact, the assumption further implies ld(Reduce(S, p)) < x, as otherwise
degx(Reduce(S, p)) ≥ degx((ST )x) would hold. By repeating the previous arguments,
inductively conclude ld(Reduce(S, p)) = 1. As φa(p) = 0, conclude Reduce(S, p) = 0,
which is a contradiction.

The second part follows from the first part. The second part and Remark 1.17.(4)
imply the third part (cf. [Wan98, Thm. 4]).

Say that a polynomial p reduces to q modulo ST if Reduce(S, p) = q, and it is
reduced modulo ST if it reduces to itself. A polynomial p ∈ F{U} is called tail
reduced modulo ST if its tail p − init(p) ld(p)mdeg(p) and its initial init(p) are tail
reduced modulo ST , where a monomial in F{U} is tail reduced modulo ST if it is
reduced modulo ST .

1.3.2 Splitting

Let R := F [y1, . . . , yn] or R = F{U}.
The Thomas decomposition uses subalgorithms that decompose the solution set of

a system into disjoint sets. These splitting algorithms are mostly based on subresultant
methods (cf. [Hab48], [Mis93, Chap. 7], [Yap00, Chap. 3]). This subsection does not
give the technical proofs based on the subresultant methods, as they were worked out
by Thomas Bächler, and instead refers to [BGLHR12].

The following one-line algorithm underlies all splitting algorithms. It splits a system
S into two systems with disjoint solution sets and thereby ensures a case distinction
with respect to the solutions of another polynomial p.

Algorithm 1.19 (Split).
Input: A system S = (ST , SQ), a polynomial p ∈ R
Output: The disjoint decomposition (S ∪ {p 6=} , S ∪ {p=}) of S.
Algorithm:
1: return ((ST , SQ ∪ {p 6=}) , (ST , SQ ∪ {p=}))

The following splitting subalgorithms are better understood when first described in
the context of the main algorithm, which was sketched at the beginning of this section.
Consider an equation or inequation q for which a property (like a non-zero initial) needs
to be ensured with respect to a system S. Each such subalgorithm returns two systems
for the input S and q. The first system S1 contains this additional inequation, which
ensures this additional property. The second system S2 contains the complementary
equation, and q is added back into the queue of S2. The main algorithm then puts
S2 aside for later treatment. In each case (S1 ∪ {q}, S2) is a disjoint decomposition of
S ∪ {q}.

The first splitting algorithm InitSplit makes sure that an initial does not vanish.

Algorithm 1.20 (InitSplit).
Input: A system S = (ST , SQ), an equation or inequation q with ld(q) = x.
Output: Two systems S1 and S2, where (S1 ∪ {q}, S2) is a disjoint decomposition of
S ∪ {q}. Moreover, φa(init(q)) 6= 0 holds for all a ∈ Sol(S1) and φa(init(q)) = 0 for all
a ∈ Sol(S2).
Algorithm:
1: (S1, S2)← Split(S, init(q))
2: (S2)Q ← (S2)Q ∪ {q}
3: return (S1, S2)
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The further splitting algorithms need some preparation. Consider a multivariate
polynomial p ∈ R as the family of univariate polynomials φ<ld(p),a(p) for certain a ∈ Fn.
To ensure triangularity and square-freeness, compute the gcd of two polynomials, which
in general depends on a ∈ Fn. Subresultants provide a generalization of the Euclidean
algorithm that takes the tuple a ∈ Fn into account.

Definition 1.21. Let p, q ∈ R with both ld(p) = ld(q) = x and degx(p) = dp >
degx(q) = dq. Let p, q, prem(p, q, x), . . . be the subresultant polynomial remainder
sequence of p and q w.r.t. x, where each polynomial is a pseudo remainder of the previ-
ous two polynomials for a choice of prem. Denote this sequence by SPRS(p, q, x) and by
SPRSi(p, q, x), i < dq the polynomial of degree i in SPRS(p, q, x) if it exists, or 0 other-
wise. Furthermore, SPRSdp(p, q, x) := p, SPRSdq(p, q, x) := q and SPRSi(p, q, x) := 0,
dq < i < dp. For 0 < i < dp define resi(p, q, x) := init (SPRSi (p, q, x)), resdp(p, q, x) :=
1 and res0(p, q, x) := SPRS0 (p, q, x). Note that res0(p, q, x) is the usual resultant.

The subresultant polynomial remainder sequence is well-behaved with respect to
evaluation. In particular, the subresultant polynomial remainder sequence yields a well-
behaved sequence for the Euclidian algorithm when applying φ<ld(p),a. The resi(p, q, x)
lead to the case distinctions according to the various possibilities of the degrees of all
possible gcds after evaluation with φ<ld(p),a for a ∈ Sol(S<x).

Definition 1.22. Let S = (ST , SQ) be a system and p1, p2 ∈ R with ld(p1) = ld(p2) =
x. If |Sol(S<x)| > 0, call

i := min {i ∈ Z≥0 | ∃ a ∈ Sol(S<x) such that degx(gcd(φ<x,a(p1), φ<x,a(p2))) = i}

the fiber cardinality of p1 and p2 w.r.t. S. Moreover, if (SQ)=
<x = ∅, then

i′ := min{i ∈ Z≥0 |Reduce(ST , resi(p1, p2, x)) 6= 0,

Reduce(ST , resj(p1, p2, x)) = 0 ∀ j < i}

is the quasi fiber cardinality of p1 and p2 w.r.t. S. A disjoint decomposition (S1, S2)
of S such that

(1) degx(gcd(φ<x,a(p1), φ<x,a(p2))) = i ∀ a ∈ Sol ((S1)<x)

(2) degx(gcd(φ<x,a(p1), φ<x,a(p2))) > i ∀ a ∈ Sol ((S2)<x)

is called i-th fibration split of p1 and p2 w.r.t. S. A polynomial r ∈ R with ld(r) = x
such that degx(r) = i and

φ<x,a(r) ∼ gcd(φ<x,a(p1), φ<x,a(p2)) ∀ a ∈ Sol ((S1)<x)

is called i-th conditional greatest common divisor of p1 and p2 w.r.t. S, where
p ∼ q if and only if p ∈ (F \ {0})q. Furthermore, q ∈ R with ld(q) = x and degx(q) =
degx(p1)− i such that

φ<x,a(q) ∼ φ<x,a(p1)

gcd(φ<x,a(p1), φ<x,a(p2))
∀ a ∈ Sol ((S1)<x)

is called i-th conditional quotient of p1 by p2 w.r.t. S. Replacing φ<x,a(p2) in the
above definition with ∂

∂x(φ<x,a(p1)) results in an i-th square-free split and i-th con-
ditional square-free part of p1 w.r.t. S.
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Example 1.23. Consider the system S := {(x3 + y)=} and the polynomial q := x2 +
x+y+1 with y < x. Compute res0(Sx, q, x) = y3 +7y2 +5y+1, res1(Sx, q, x) = −y and
res2(Sx, q, x) = 1. The fiber cardinality of Sx and q w.r.t. S is 0. A zeroth fibration split
is given by S1 := S ∪ {(res0(Sx, q, x))6=} and S2 := S ∪ {(res0(Sx, q, x))=}. The fiber
cardinality w.r.t. S2 is 1. A first fibration split is given by S2,1 := S2 ∪ {(−y) 6=} and
S2,2 := S ∪ {(−y)=}. Note in this case that Sol(S2,1) = Sol(S2) and Sol(S2,2) = ∅.
A zeroth conditional quotient of Sx and q is Sx. A first conditional gcd and a first
conditional quotient are −yx+2y+1 and y2x2+(2y2+y)x+4y2+4y+1, respectively. /

The quasi fiber cardinality exists to give a lower bound to the fiber cardinality.

Lemma 1.24 ([BGLHR12, Lemma 2.16]). Let |Sol(S<x)| > 0 and (SQ)=
<x = ∅. For

p1, p2 as in Definition 1.22 with φa(init(p1)) 6= 0 ∀ a ∈ Sol(S<x) and mdeg(p1) >
mdeg(p2), let i be the fiber cardinality and i′ the quasi fiber cardinality of p1 and p2

w.r.t. S. Then i′ ≤ i with equality if and only if |Sol (S<x ∪ {resi′(p1, p2, x)6=})| > 0.

It is in general hard to compute the fiber cardinality directly. However, in the
case where the quasi fiber cardinality is strictly smaller than the fiber cardinality, the
corresponding fibration split leads to one inconsistent system and one where the quasi
fiber cardinality is increased. The following algorithm splits a system into subsystems,
depending on the different quasi fiber cardinality of two given polynomials.

Algorithm 1.25 (ResSplit, [BGLHR12, Algorithm 2.18]).
Input: A system S = (ST , SQ) with (SQ)=

<x = ∅, two polynomials p, q ∈ R with
ld(p) = ld(q) = x, mdeg(p) > mdeg(q) and φa(init(p)) 6= 0 for all a ∈ Sol(S<x).
Output: The quasi fiber cardinality i of p and q w.r.t. S and an i-th fibration split
(S1, S2) of p and q w.r.t. S.
Algorithm:
1: i← min {i ∈ Z≥0 | Reduce(ST , resj(p, q, x)) = 0 ∀ j < i and

Reduce(ST , resi(p, q, x)) 6= 0}

2: return (i, S1, S2) := (i, Split(S, resi(p, q, x)))

Apply the fiber cardinality and fibration split to compute a gcd of a polynomial in
ST and some other polynomial.

Algorithm 1.26 (ResSplitGCD, [BGLHR12, Algorithm 2.19]).
Input: A system S = (ST , SQ) with (SQ)=

<x = ∅, where (ST )x is an equation, and an
equation q= with ld(q) = x. Furthermore, mdeg(q) < mdeg((ST )x).
Output: Two systems S1 and S2 and an equation q̃= such that:

a) S2 = S̃2 ∪ {q} where
(
S1, S̃2

)
is an i-th fibration split of (ST )x and q w.r.t. S,

b) q̃ is an i-th conditional gcd of (ST )x and q w.r.t. S,

where i is the quasi fiber cardinality of p and q w.r.t. S.
Algorithm:
1: (i, S1, S2)← ResSplit (S, (ST )x, q)
2: (S2)Q ← (S2)Q ∪ {q}
3: return S1, S2,SPRSi((ST )x, q, x)=

Note that i = 0 yields an inconsistency, and so the main algorithm ensures i > 0
before calling ResSplitGCD by adding the resultant of two equations to the system.

The following algorithm is similar. It is used to divide an equation by its gcd with
an inequation.
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Algorithm 1.27 (ResSplitDivide, [BGLHR12, Algorithm 2.20]).
Input: A system S = (ST , SQ) with (SQ)=

<x = ∅ and two polynomials p, q with ld(p) =
ld(q) = x and φa(init(p)) 6= 0 for all a ∈ Sol(S<x). Furthermore, if mdeg(p) ≤ mdeg(q),
then φa(init(q)) 6= 0.
Output: Two systems S1 and S2 and a polynomial p̃ such that:

a) S2 = S̃2 ∪ {q} where
(
S1, S̃2

)
is an i-th fibration split of p and q′ w.r.t. S,

b) p̃ is an i-th conditional quotient of p by q′ w.r.t. S,

where i is the quasi fiber cardinality of p and q′ w.r.t. S, with q′ = q for mdeg(p) >
mdeg(q) and q′ = prem(q, p, x) otherwise.
Algorithm:
1: if mdeg(p) ≤ mdeg(q) then
2: return ResSplitDivide(S, p, prem(q, p, x))
3: else
4: (i, S1, S2)← ResSplit (S, p, q)
5: if i > 0 then
6: p̃← pquo(p,SPRSi(p, prem(q, p, x), x), x)
7: else
8: p̃← p
9: end if
10: (S2)Q ← (S2)Q ∪ {q}
11: return S1, S2, p̃
12: end if

Applying the last algorithm to a polynomial p and ∂
∂ ld(p)p yields an algorithm to

make p square-free.

Algorithm 1.28 (ResSplitSquareFree, [BGLHR12, Algorithm 2.21]).
Input: A system S = (ST , SQ) with (SQ)=

<x = ∅ and a polynomial p with ld(p) = x and
φa(init(p)) 6= 0 for all a ∈ Sol(S<x).
Output: Two systems S1 and S2 and a polynomial r such that if mdeg(p) = 1, then
S1 = S, S2 = {1=}, and r = p or if mdeg(p) > 1, then

a) S2 = S̃2 ∪ {p} where
(
S1, S̃2

)
is an i-th square-free split of p w.r.t. S,

b) r is an i-th conditional square-free part of p w.r.t. S,

where i is the quasi fiber cardinality of p and ∂
∂xp w.r.t. S.

Algorithm:
1: if mdeg(p) = 1 then
2: return S, {1=}, p
3: end if
4: (i, S1, S2)← ResSplit

(
S, p, ∂∂xp

)
5: if i > 0 then
6: r ← pquo

(
p,SPRSi

(
p, ∂∂xp, x

)
, x
)

7: else
8: r ← p
9: end if

10: (S2)Q ← (S2)Q ∪ {p}
11: return S1, S2, r
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All ResSplit-based algorithms require (SQ)=
<x = ∅ to ensure that all equations of a

smaller leader than x are used when reducing modulo ST . The order in which polyno-
mials are treated by the main algorithm must therefore be restricted to incorporate low
ranking equations into ST as soon as possible. Any suitable order is a selection strategy
in the sense defined below. Denote by P(M) the power set of a set M .

Definition 1.29 (Select). A selection strategy is a map

Select : P
(
R{=,6=}

)
−→ R{=,6=} :

Q 7−→ q ∈ Q

with the following properties:

(1) If Select(Q) = q= is an equation, then Q=
<ld(q) = ∅.

(2) If Select(Q) = q 6= is an inequation, then Q=
≤ld(q) = ∅.

These conditions are necessary for termination. The following example yields an
infinite loop when they are violated.

Example 1.30. Consider R := F [a, x] with a < x and the system S with ST := ∅ and
SQ :=

{
(x2 − a)=

}
. To insert (x2−a)= into ST , apply the ResSplitSquareFree algorithm:

Calculate res0(x2− a, ∂∂x(x2− a), x) = res0(x2− a, 2x, x) = −4a, res1(x2− a, 2x, x) = 2
and res2(x2− a, 2x, x) = 1 according to Definition 1.21. The quasi fiber cardinality is 0
and ResSplitSquareFree yields two new systems S1, S2 with (S1)T = {(x2−a)=}, (S1)Q =
{(−4a)6=} and

(S2)T = ∅, (S2)Q = {(x2 − a)=, (−4a)=} .

Now consider what happens with S2. When selecting (x2− a)= as the next equation to
be treated, in violation of the properties in Definition 1.29, ResSplitSquareFree splits up
S2 into S2,1, S2,2 with (S2,1)T = {(x2 − a)=}, (S2,1)Q = {(−4a)6=, (−4a)=} and

(S2,2)T = ∅, (S2,2)Q = {(x2 − a)=, (−4a)=, (−4a)=} .

As S2 equals S2,2 up to a duplicate equation, this results in an endless loop. /

1.3.3 The Algebraic Algorithm

Let R := F [y1, . . . , yn]. The following trivial algorithm inserts a new equation into ST .
It is replaced with a non-trivial algorithm in the differential case. This algorithm is only
applied in well-behaved situations in the main algorithm, where (ST )x is superfluous.

Algorithm 1.31 (InsertEquation).
Input: A system S = (ST , SQ) and an equation r= with ld(r) = x such that both
φa(init(r)) 6= 0 and φ<x,a(r) is square-free for all a ∈ Sol(S<x).
Output: A system S where r= is inserted into ST .
Algorithm:
1: if (ST )x is not empty then
2: ST ← (ST \ {(ST )x})
3: end if
4: ST ← ST ∪ {r=}
5: return S
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This subalgorithm allows to present the main algorithm. The general structure is as
follows: In each iteration, a system S is selected from a list P of unfinished systems. An
equation or inequation q is chosen from the queue SQ according to the selection strategy.
Then q is reduced modulo ST and incorporated into the candidate simple system ST
with the splitting algorithms as described above. In doing so, the algorithm may add
new systems Si to P . Any obviously inconsistent system, i.e., a system containing an
equation c= for c ∈ F \ {0} or the inequation 06=, is discarded.

Algorithm 1.32 (Decompose).
Input: A system S′ = (∅, (S′)Q).
Output: A Thomas decomposition of S′.
Algorithm: The algorithm is printed on page 39.

Demonstrate the algorithm with a simple example. All systems which are obviously
inconsistent are omitted.

Example 1.33. Let R := F [a, x] with a < x, and S = (ST , SQ) := (∅, {(x2 + x +
1)=, (x + a)6=}). According to Select, q := (x2 + x + 1)= is chosen. As init(q) = 1 and
res0(q, ∂∂xq, x) = 1, the original system S is replaced by

(
{(x2 + x+ 1)=}, {(x+ a) 6=}

)
.

Now, the algorithm selects q := (x + a) 6= and ResSplitDivide(S, (ST )x, q) computes
res0((ST )x, q, x) = prem((ST )x, q, x) = a2 − a + 1, res1((ST )x, q, x) = init(q) = 1, and
res2((ST )x, q, x) = 1. As ST contains no equation of leader a, none of these polynomials
can be reduced. Then, decompose S into

S := ({(x2 + x+ 1)=, (a
2 − a+ 1) 6=}︸ ︷︷ ︸

=ST

, {}︸︷︷︸
=SQ

) ,

which is already simple, and

S1 := ({(x2 + x+ 1)=}︸ ︷︷ ︸
=(S1)T

, {(x+ a)6=, (a
2 − a+ 1)=}︸ ︷︷ ︸

=(S1)Q

) .

Replace S1 by

S1 :=
(
{(x2 + x+ 1)=, (a

2 − a+ 1)=}, {(x+ a)6=}
)

and apply ResSplitDivide(S1, ((S1)T )x, q) to S1 again. This time, Reduce((S1)T , a
2−a+

1) = 0 holds and S1 is replaced with

S1 := ({(x− a+ 1︸ ︷︷ ︸
pquo(x2+x+1,x+a,x)

)=, (a
2 − a+ 1)=}, {16=}) .

Thus, a Thomas decomposition of {(x2 + x+ 1)=, (x+ a) 6=} is(
{(x2 + x+ 1)=, (a

2 − a+ 1) 6=}, {(x− a+ 1)=, (a
2 − a+ 1)=}

)
. /

The proof is postponed until after sketching how to compute a Thomas decompo-
sition of set theoretic constructions. This also works in the differential case.

Proposition 1.34. Let S, S1, S2 be simple systems over the same ring. A Thomas
decomposition of the following sets can be computed.

(1) Sol(S1) ∩Sol(S2).
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Algorithm 1.32 (Decompose)
1: P ← {S′}; Result ← ∅
2: while |P | > 0 do
3: Choose S ∈ P ; P ← P \ {S}
4: if |SQ| = 0 then
5: Result ← Result ∪ {S}
6: else
7: q ← Select(SQ); SQ ← SQ \ {q}
8: q ← Reduce(ST , q); x← ld(q)
9: if q /∈ {0 6=, c= | c ∈ F \ {0}} then

10: if x 6= 1 then
11: if q is an equation then
12: if (ST )x is an equation then
13: if Reduce(ST , res0((ST )x, q, x)) = 0 then
14: (S, S1, p)← ResSplitGCD(S, q); P ← P ∪ {S1}
15: S ← InsertEquation(S, p=)
16: else
17: SQ ← SQ ∪ {q=, res0((ST )x, q, x)=}
18: end if
19: else
20: if (ST )x is an inequationa then
21: SQ ← SQ ∪ {(ST )x}; ST ← ST \ {(ST )x}
22: end if
23: (S, S2)← InitSplit(S, q); P ← P ∪ {S2}
24: (S, S3, p)← ResSplitSquareFree (S, q); P ← P ∪ {S3}
25: S ← InsertEquation(S, p=)
26: end if
27: else if q is an inequation then
28: if (ST )x is an equation then
29: (S, S4, p)← ResSplitDivide (S, (ST )x, q); P ← P ∪ {S4}
30: S ← InsertEquation(S, p=)
31: else
32: (S, S5)← InitSplit(S, q); P ← P ∪ {S5}
33: (S, S6, p)← ResSplitSquareFree (S, q); P ← P ∪ {S6}
34: if (ST )x is an inequation then
35: (S, S7, r)← ResSplitDivide (S, (ST )x, p); P ← P ∪ {S7}
36: (ST )x ← (r · p)6=
37: else if (ST )x is empty then
38: (ST )x ← p 6=
39: end if
40: end if
41: end if
42: end if
43: P ← P ∪ {S}
44: end if
45: end if
46: end while
47: return Result

aRemember that (ST )x might be empty, and thus neither an equation nor an inequation.
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(2) Fn \Sol(S), the complement of the solutions of S.

(3) Sol(S1) \Sol(S2).

(4) Sol(S1) ∪Sol(S2).

Proof. For (1) just compute a Thomas decomposition of S1 ∪ S2.
Turn to (2). Let k = |S| and pi the i-th smallest polynomial in S according to the

ranking, 1 ≤ i ≤ k. For p1 ∈ S= define S(1) := {p1 6= 0} and T (1) := {p1 = 0}. For
p1 ∈ S 6= define S(1) := {p1 = 0} and T (1) := {p1 6= 0}. Let 2 ≤ i ≤ k. For pi ∈ S=

define S(i) := T (i−1)∪{pi 6= 0} and T (i) := T (i−1)∪{p1 = 0}. For pi ∈ S 6= define S(i) :=
T (i−1)∪{pi = 0} and T (i) := T (i−1)∪{p1 6= 0}. Claim that

⋃
1≤i≤k Decompose(S(i)) is a

Thomas decomposition of Fn \Sol(S). For this show first disjointness of the solution
sets of the S(i), second that the S(i) have no solution in common with S, and third
that all elements that are not solutions of S are a solution of some S(i). For the first
point it is clear by induction that the solutions of S(i) and T (i) are disjoint for all i.
Then T (j) ⊂ S(i) for j < i implies the disjointness of S(i) and S(j). The second point
follows as pi = 0 in S implies pi 6= 0 in S(i) and pi 6= 0 in S implies pi = 0 in S(i) for
all 1 ≤ i ≤ k. For the third point, let a ∈ Fn \Sol(S). Then, there exists a minimal i
such that φa(pi) 6= 0 if pi ∈ S= or φa(pi) = 0 if pi ∈ S 6=. Then, a ∈ Sol(S(i)).

Now, Sol(S1) \ Sol(S2) = Sol(S1) ∩
(
F
n \Sol(S2)

)
and Sol(S1) ∪ Sol(S2) =

(Sol(S1) \Sol(S2))] (Sol(S1) ∩Sol(S2))] (Sol(S2) \Sol(S1)) imply (3) and (4).

Proof (Correctness of Algorithm 1.32). First, note that it is easily verified that the in-
put specifications of all subalgorithms are fulfilled (in particular, for lines 14 and 29, cf.
Remark 1.17.(1)).

The following two loop invariants prove correctness of the Decompose algorithm.

(1) P ∪ Result is a disjoint decomposition of the input S′.

(2) For all systems S ∈ P ∪ Result , ST is triangular and

(a) φ<x,a(p) is square-free and
(b) φa(init(p)) 6= 0

for all p ∈ ST with ld(p) = x and all a ∈ Sol(S<x).

Begin with the first loop invariant. At the beginning of the algorithm, the loop
invariant holds, as P∪Result = {S′}. Assume that P∪Result is a disjoint decomposition
of S′ at the beginning of the main loop. It suffices to show that all systems added to P
or Result add up to a disjoint decomposition of the system S, that is chosen in line 3.
If SQ = ∅ holds in line 4, the algorithm just moves S from P to Result .

In line 17, adding res0((ST )x, q, x)= to S does not change the solutions of S, as for
each a ∈ Fn the univariate polynomials φ<x,a((ST )x) and φ<x,a(q) have a common zero
if and only if their resultant res0(φa((ST )x), φa(q), x) ∼ φa(res0((ST )x, q, x)) is zero.

Note now that if (S, Si) is the output of any of the ResSplitGcd, InitSplit, ResSplit-
SquareFree and ResSplitDivide algorithms, then (S ∪ {q}, Si) is a disjoint decomposition
of S0 ∪ {q}, where S0 is the input of the respective algorithm. It remains to be shown
that lines 15, 25, 30, 36 and 38 are equivalent to putting q back into the system S.

Let a ∈ Sol(S<x). In the context of line 15, ResSplitGCD guarantees

φ<x,a(p) = 0⇐⇒ φ<x,a((ST )x) = 0 and φ<x,a(q) = 0 .
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In the context of line 30, ResSplitDivide ensures that

φ<x,a(p) = 0⇐⇒ φ<x,a((ST )x) = 0 and φ<x,a(q) 6= 0 .

In lines 25, 36 and 38, p has the same solutions as q, due to ResSplitSquareFree and

φ<x,a(p) ∼ φ<x,a(q)

gcd(φ<x,a(q), φ<x,a( ∂
∂xq))

=
φ<x,a(q)

gcd(φ<x,a(q), ∂∂xφ<x,a(q))
.

In addition, in line 36,

φ<x,a(r) ∼ φ<x,a((ST )x)

gcd(φ<x,a((ST )x), φ<x,a(p))

implies

φ<x,a(r · p) ∼ lcm(φ<x,a((ST )x), φ<x,a(p)) .

This concludes the proof of the first loop invariant.
Now, prove the second loop invariant. At the beginning, the loop invariant holds

because S′T = ∅ holds for the input system S′. Assume that the second loop invariant
holds at the beginning of the main loop.

One easily checks that all steps in the algorithm allow only one polynomial (ST )x
in ST for each leader x, thus triangularity obviously holds.

Show that all polynomials added to ST have non-zero initial and are square-free.
For Sol(S<x) = ∅, the statement is trivially true. So, let a ∈ Sol(S<x).

For the equation p= added as conditional gcd of (ST )x and q in line 15, it holds that
φ<x,a(p) is a divisor of φ<x,a((ST )x). As φ<x,a((ST )x) is square-free by assumption, so
is φ<x,a(p). The inequation added to S in ResSplitGCD is by Definition 1.21 the initial
of p=.

The equation p= inserted into ST in line 25 and the inequation p 6= inserted in line
38 are square-free due to ResSplitSquareFree, and their initials are non-zero as p is either
identical to q, or it is a pseudo quotient of q by SPRSi

(
q, ∂∂xq, x

)
for some i > 0. On

the one hand, if p equals q, the call of InitSplit for q ensures a non-zero initial for p.
On the other hand, the polynomial SPRSi

(
q, ∂∂xq, x

)
has initial resi

(
q, ∂∂xq, x

)
, which

is added as an inequation by ResSplitSquareFree. This implies that the initial of the
pseudo quotient is also non-zero.

The equation p= that replaces the old equation (ST )x in line 30 is the quotient of
(ST )x by an inequation. It is square-free, because φ<x,a(p) is a divisor of φ<x,a((ST )x),
which is square-free by assumption. Again, p is either identical to (ST )x or a pseudo
quotient of (ST )x by SPRSi ((ST )x, q, x) for some i > 0, and, using the same arguments
as in the last paragraph, the initial of p does not vanish.

Finally, consider the inequation (r ·p)6= added in line 36 as a least common multiple
of ((ST )x)6= and p6=. The inequation φ<x,a(p) is square-free and has non-vanishing initial

for the same reasons as before. Due to φ<x,a(r) ∼ φ<x,a((ST )x)
gcd(φ<x,a((ST )x),φ<x,a(p)) , the polynomi-

als φ<x,a(r) and φ<x,a(p) have no common divisors. As φ<x,a(r) divides φ<x,a((ST )x),
using the same arguments as before, φ<x,a(r) is square-free and has a non-vanishing
initial. This completes the proof of the second loop invariant.

It is obvious that a system S with SQ = ∅ for which these loop invariants hold is
simple. Thus, the algorithm returns the correct result when it terminates.
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The next issue is termination. The system S chosen from P is treated in one of
three ways: It is either discarded, added to Result , or replaced in P by at least one new
system. For proving that P is empty after finitely many iterations, define an order on
the systems and show that it is well-founded (cf. below). Thereby termination follows,
since the systems in the tree of systems produced by the algorithm descend with respect
to this well-founded order.

For transitive and asymmetric11 partial orders <i for i = 1, . . . ,m, define the com-
posite order “ < ” := [<1, . . . , <m] as follows: a < b if and only if there exists
i ∈ {1, . . . ,m} such that a <i b and neither a <j b nor b <j a for j < i. The composite
order is transitive and asymmetric. An order < is well-founded, if each <-descending
chain becomes stationary. If each <i is well-founded, so is the composite order <.

Now define the orders and show their well-foundedness:

Definition and Remark 1.35. Define the order ≺ on algebraic systems as the com-
posite order [≺1,≺2,≺3,≺4] of the four orders defined below. It is well-founded since
the ≺i are.

(1) For i = 1, . . . , n define ≺1,yi by S ≺1,yi S′ if and only if mdeg
(
(ST )=

yi

)
<

mdeg
(
(S′T )=

yi

)
, with mdeg

(
(ST )=

yi

)
:=∞ if (ST )=

yi is empty. Define the composite
order ≺1 as [≺1,y1 , . . . ,≺1,yn ]. Since degrees can only decrease finitely many times,
the orders ≺1,yi are clearly well-founded and, thus, ≺1 is.

(2) Define a map µ from the set of all systems over R to {1, y1, . . . , yn, y∞}, where µ(S)
is minimal such that there exists an equation p ∈ (SQ)=

µ(S) with Reduce(ST , p) 6= 0,
or µ(S) = y∞ if no such equation exists. Then, S ≺2 S

′ if and only if µ(S) < µ(S′)
with 1 < yi and yi < y∞ for i ∈ {1, . . . , n}. The order ≺2 is well-founded since <
is well-founded on the finite set {1, y1, . . . , yn, y∞}.

(3) S ≺3 S
′ if and only if there is p6= ∈ R 6= and a finite (possibly empty) set L ⊂ R 6=

with ld(q) < ld(p) ∀ q ∈ L such that SQ]{p 6=} = S′Q]L holds. Well-foundedness
follows by induction on the highest appearing leader x in (SQ) 6=: For x = 1 a
system S can only ≺3-decrease by removing one of the finitely many inequations
in (SQ)6=. Assume that the statement is true for all indeterminates smaller x.
By the induction hypothesis S can only ≺3-decrease finitely many times without
changing (SQ)6=x . To further ≺3-decrease S, remove an inequation from (SQ)6=x .
As (SQ)6=x is finite, this process can only be repeated finitely many times until
(SQ) 6=x = ∅. Now, the highest appearing leader in (SQ)6= is smaller than x and by
the induction hypothesis, the statement is proved.

(4) S ≺4 S
′ if and only if |SQ| < |S′Q|.

Proof (Termination of Algorithm 1.32). Tacitly use the fact that reduction never makes
polynomials bigger in the sense of Remark 1.17.(3).

Denote the system chosen from P in line 3 by Ŝ and the system added to P in line
43 by S. Prove that the systems S, S1, . . . , S7 generated from Ŝ are ≺-smaller than Ŝ.
For i = 1, . . . , 4 use the notation S 6�6≺i S

′ if neither S ≺i S′ nor S′ ≺i S holds.

For j = 1, . . . , 7, ((Sj)T )= = (ŜT )= and thus Sj 6�6≺1
Ŝ. The properties of Select in

Definition 1.29 require that there is no equation in (ŜQ)= with a leader smaller than
x. However, the equation added to the system Sj returned from InitSplit is the initial
of q, which has a leader smaller than x and does not reduce to 0 (cf. Remark 1.17.(2)).

11A relation ≺ is asymmetric, if S ≺ S′ implies S′ 6≺ S for all S, S′. Asymmetry implies irreflexivity.
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Furthermore, the equations added in one of the subalgorithms based on ResSplit have a
leader smaller than x and do not reduce to 0. In each case Sj ≺2 Ŝ is proved.

It remains to show S ≺ Ŝ. If q is reduced to 0=, then it is omitted from SQ and so
S ≺4 Ŝ. As the system is otherwise unchanged, S 6�6≺i Ŝ, i = 1, 2, 3 and therefore S ≺ Ŝ
holds. If q is reduced to c6= for some c ∈ F \ {0}, then S ≺3 Ŝ and S 6�6≺i Ŝ, i = 1, 2,
since the only change was the removal of an inequation from SQ. Otherwise, exactly
one of the following cases will occur:

Lines 14-15 set (ST )x to p= of smaller degree than (ŜT )x and 20-25 add (ST )x as a
new equation. Both cases result in S ≺1 Ŝ.

In line 17, ST = ŜT implies S 6�6≺1
Ŝ. The polynomial q is chosen according to Select

(cf. 1.29.(1)), which implies (ŜQ)=
<x = ∅ and (SQ)=

<x = {res0((ST )x, q, x)=}. Line 13
ensures Reduce(S, res0((ST )x, q, x)) 6= 0 and, thus, S ≺2 Ŝ follows.

Consider lines 29-30. If the degree of (ST )x is smaller than the degree of (ŜT )x, then
S ≺1 Ŝ. In case the degree doesn’t change and S 6�6≺1

Ŝ and (SQ)= = (ŜQ)= guarantees

S 6�6≺2
Ŝ. However, q is removed from SQ and replaced by an inequation of smaller

leader, which implies S ≺3 Ŝ.
In 31-39, obviously S 6�6≺i Ŝ, i = 1, 2. As before, q is removed from SQ and replaced

by an inequation of smaller leader, which once more implies S ≺3 Ŝ.

1.3.4 Skew Polynomial Rings and Ore Algebras

This subsection provides the language for compact description of the results of the
differential reduction. The goal is to describe the ring F{U}[∆] of differential operators
with functions in F{U} as coefficients.

This subsection follows [Rob12] to describe this ring in the context of Ore algebras,
similar to many other classes of algebras “acting as linear operators” (cf. [CS98, Chy98,
Rob06] as further references). A non-trivial example is the Weyl algebra, i.e. the
non-commutative algebras of linear differential operators with polynomial coefficients.
There exist Gröbner basis algorithms for many important Ore-algebras and rather
general implementations of Ore-algebras, e.g., [LS03, CQR04, CQR07, Rob07].

In this subsection let A be a (not necessarily commutative) F -algebra and domain.
Let ∂ be an indeterminate, ρ : A → A an F -algebra endomorphism and δ : A → A a
ρ-derivation, i.e. an F -linear map satisfying δ(ab) = ρ(a)δ(b) + δ(a)b for all a, b ∈ A.
The skew polynomial ring A[∂; ρ, δ] is the (not necessarily commutative) F -algebra
generated by A and ∂ obeying the commutation rule ∂a = ρ(a)∂ + δ(a) for all a ∈ A.

If the F -algebra endomorphism ρ : A → A is injective, then A[∂; ρ, δ] is a domain.
In this case, the construction of skew polynomial rings can be iterated. Let ∆ =
{∂1, . . . , ∂n} be a set of indeterminates for some n ∈ Z≥0. The Ore algebra

B := A[∂1; ρ1, δ1][∂2; ρ2, δ2] . . . [∂n; ρn, δn]

is the (not necessarily commutative) F -algebra generated by A and ∆ with relations
∂id = ρi(d)∂i + δi(d) for all d ∈ A[∂1; ρ1, δ1] . . . [∂i−1; ρi−1, δi−1] and all i ∈ {1, . . . , n}.
The maps ρi are F -algebra monomorphisms of A[∂1; ρ1, δ1] . . . [∂i−1; ρi−1, δi−1], and the
δi are ρi-derivations of A[∂1; ρ1, δ1] . . . [∂i−1; ρi−1, δi−1] for all i ∈ {1, . . . , n} subject to

ρi(∂j) = ∂j ρi ◦ ρj = ρj ◦ ρi ρi ◦ δj = δj ◦ ρi
δi(∂j) = 0 δi ◦ δj = δj ◦ δi δi ◦ ρj = ρj ◦ δi
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for all 1 ≤ j ≤ i ≤ n as restrictions to A[∂1; ρ1, δ1] . . . [∂i−1; ρi−1, δi−1].
Denote the ring of linear differential operators12 over F by F [∆] := F [∂1, . . . , ∂n] :=

F [∂1; idF , ∂1][∂2; id, ∂2] . . . [∂n; id, ∂n]. In general it is a non-commutative ring; it is
commutative if and only if F is a field of constants, i.e., ∆F = {0}. Any ranking
induces a term order on F [∆]. The operation of the derivations ∂i on F{U} extends to
a left module operation of F [∆] on F{U}. The ring F [∆] of linear differential operators
over F is filtered by degree in ∆.

The ring of differential operators with functions as coefficients F{U}[∆] is
the iterated skew polynomial ring

F{U}[∆] := F{U}[∂1; idF{U}, ∂1][∂2; id, ∂2] . . . [∂n; id, ∂n] .

F{U} is a F{U}[∆]-module, where F{U} acts by multiplication and ∆ by application.

1.3.5 Differential Thomas Algorithm

This subsection presents an algorithm for the differential Thomas decomposition and
shows correctness and termination. Versions of the algorithms InsertEquation and Re-
duce, modified for the differential case, replace their algebraic counterparts.

The differential version of InsertEquation adds an equation p to (ST )=, with p not
reducible modulo (ST )=. Then, it removes all polynomials from ST that have a leader
which is derivative of ld(p); this ensures minimality. In addition, when adding a new
equation to (ST )=, it puts, according to Janet’s cone decomposition, all minimal non-
reductive prolongations into the queue SQ; this ensures passivity.

Algorithm 1.36 (InsertEquation).
Input: A system S′ = (S′T , S

′
Q) and a polynomial p= ∈ F{U} not reducible modulo

(S′T )=.
Output: A system S, where (ST )= ⊆ (S′T )= ∪ {p=} is maximal satisfying

∅ = (ld(ST ) \ {ld(p)}) ∩ {ld(p)}∆ and
SQ = S′Q ∪ (S′T \ ST ) ∪ {(∂iq)= | q ∈ (ST )=, ∂i 6∈ ∆(q, (ST )=)} .

Algorithm:
1: S ← S′

2: ST ← ST ∪ {p=}
3: for q ∈ ST \ {p} do
4: if ld(q) ∈ {ld(p)}∆ then
5: SQ ← SQ ∪ {q}
6: ST ← ST \ {q}
7: end if
8: end for
9: Reassign reductive derivations to (ST )=

10: SQ ← SQ ∪ {(∂iq)= | q ∈ (ST )=, ∂i /∈ ∆(q, (ST )=)}
11: return S

Correctness and termination are obvious. A non-reductive prolongation might be
added to SQ several times in successive calls of InsertEquation; the implementation re-
members which prolongations have been added before to avoid redundant computations.

The basic idea of the reduction is as follows. The Janet partition of certain diffe-
rential variables into cones finds the unique reductor. This reductor is prolonged and
used for a pseudo reduction.

12We do not expect confusion about the different meanings of ∂i here.
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Algorithm 1.37 (Reduce).
Input: A differential system S = (ST , SQ) and a polynomial p ∈ F{U}.
Output: A polynomial q that is not Janet-reducible modulo ST with the property
φe(p) = 0 if and only if φe(q) = 0 for each e ∈ SolE(S).
Algorithm:
1: x← ld(p)
2: while exists q= ∈ (ST )= and i ∈ Zn≥0 with ij = 0 for ∂j 6∈ ∆(q, (ST )=) such that
∂i11 · . . . · ∂inn ld(q) = ld(p) and mdeg(∂i11 · . . . · ∂inn p) ≥ mdeg(q) hold do

3: p← prem(p, ∂i11 · . . . · ∂inn q, x)
4: x← ld(p)
5: end while
6: if Reduce(S, init(p)) = 0 then
7: return Reduce(S, p− init(p)xmdeg(p))
8: else
9: return p

10: end if

For a meaningful pseudo-reduction, initials (and initials of the prolongations) of
reductors should be non-zero. The initial of any non-trivial prolongation of r is sep(r),
and the separant of any square-free equation r is non-zero (cf. [Kol73, §I.8, Lemma 5] or
[Hub03b, §3.1]). So, making sure that the equations have non-vanishing initials and are
square-free, as in the algebraic case, ensures that reduction modulo all prolongations
of r is legitimate. This provides the correctness of the reduction algorithm13 and is
used in Lemma 1.46 to establish a connection between simple algebraic and differential
systems.

Termination of the reduction algorithm follows from Dickson’s Lemma 1.38. The
differential variables of one differential indeterminate are in bijection to Zn≥0. The leaders
appearing in the reduction are a sequence of differential variables where no differential
variable is a derivative of a previous one. These sequences are finite, i.e., the ranking <
is well-founded.

Lemma 1.38 (Dickson, [CLO92, 2.4, Theorem 5], [Kol73, §0.17, Lemma 15]). The
partial order on Zn≥0 given by componentwise comparison is a well-quasi-ordering, i.e.,
there is no infinite sequence a ∈

(
Zn≥0

)Z≥0 with ai 6≤ aj for all i < j.

As in the algebraic case, say that a polynomial p reduces to q modulo ST if
Reduce(S, p) = q, and it is reduced modulo ST if it reduces to itself. A polynomial
p ∈ F{U} is called tail reduced modulo ST if its tail p − init(p) ld(p)mdeg(p) and its
initial init(p) are tail reduced modulo ST , where a monomial in F{U} is tail reduced
modulo ST if it is reduced modulo ST .

The reduction algorithm is central for the application of simple differential systems.
The first three properties of the algebraic reduction algorithm from Remark 1.17 also
apply for the differential reduction algorithm. Furthermore, Proposition 1.66 shows that
this algorithm solves the radical ideal membership. The following properties describe
the (differential) linear combinations constructed by a reduction. These properties are

13 In differential algebra, one often distinguishes a (full) differential reduction as used here and
a partial (differential) reduction. Partial reduction only employs proper derivations of equations for
reduction (cf. [Kol73, §I.9] or [Hub03b, §3.2]). This is useful for separation of differential and algebraic
parts of the algorithm and for the use of Rosenfeld’s Lemma (cf. [Ros59]), which is the theoretical
basis for the Rosenfeld-Gröbner algorithm (cf. [BLOP09, BLOP95, Hub03b]).
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direct consequences of the reduction algorithm Reduce and the properties of the pseudo
reduction prem in equation (1.1) on page 31.

Remark 1.39. Let S = (ST , SQ) be a differential system with S= = {p1, . . . , ps} and
p ∈ F{U} with Reduce(S, p) = 0. Then there exists bi ∈ F{U}[∆] (cf. Subsection 1.3.4
for the ring F{U}[∆]) for i ∈ {1, . . . , s} and q ∈ F{U} with qp =

∑s
i=1 bipi, such that

the following additional properties are fulfilled:

(1) q is a (possibly empty) product of the initials and separants of S=.

(2) ord q ≤ ord p.

(3) bi ∈ F{U}[∆(pi, S
=)] for all i ∈ {1, . . . , s}.

(4) ord bi ≤ ord p for all i ∈ {1, . . . , s}.
(5) deg∆(bi) + ord pi ≤ ord p for all i ∈ {1, . . . , s}.

/

Example 1.40. This continuation of Example 1.13 treats the remaining differential
consequence (u2,1)= and reduces it modulo the system S with

ST :=
{
p1 := (u0,1 + u0,0u1,0)=, p2 := (u2,0)=

}
.

∂t

∂x

0 3u1,0u2,0

reduce
modulo p2

u0,0u3,0
+3u1,0u2,0

reduce
modulo ∂xp2

u2,1

reduce
modulo ∂2xp1

p1

p2

The cone generated by ld(p1) contains
ld(u2,1) = u2,1. Thus, reduce (u2,1) mod-
ulo ∂2

xp1 where the pseudo reduction yields
u0,0u3,0 + 3u1,0u2,0. Second, reduce u0,0u3,0 +
3u1,0u2,0 modulo ∂xp2, because u3,0 lies in the
cone generated by (u2,0)=. This results in
3u1,0u2,0 and a third reduction step modulo
p2 produces zero. Thus, the only differen-
tial consequence is already implied by the
system. Recall that this desirable situation
without integrability conditions is called pas-
sivity. /

Now the differential decomposition algorithm can be stated.

Algorithm 1.41 (Decompose).
Input: A differential system S′ = (∅, S′Q).
Output: A differential Thomas decomposition of S′.
Algorithm: The algorithm is obtained from the algebraic algorithm Decompose (cf. Al-
gorithm 1.32 and page 39) by replacing the two subalgorithms InsertEquation and Reduce
with their differential counterparts Algorithm 1.36 and Algorithm 1.37, respectively.

Proof (Correctness of Algorithm 1.41). The correctness proof of the algebraic decom-
position Algorithm 1.32 also holds verbatim for the differential case. In particular, the
output is algebraically simple. The following additional three loop invariants for any
system S ∈ P ∪Result show correctness:

(1) (ST )= is minimal.

(2) No inequation in (ST ) 6= is Janet-reducible modulo ST .
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(3) Let r be any non-reductive prolongation of (ST )=. Then r reduces to zero by
using both conventional differential reductions14 of (SQ)= and reductions modulo
reductive prolongations of (ST )=.

The first loop invariant is a purely combinatorial matter proved in [Ger02] for an
algorithm using exactly the same combinatorial approach.

The second loop invariant is equally simple. On the one hand, a newly added
inequation q in ST is not Janet-reducible modulo (ST )=, since algorithm Reduce is
applied to it before insertion. On the other hand, algorithm InsertEquation removes all
inequations from ST which are divisible by the newly added equation.

The third loop invariant holds at the beginning of the algorithm, as ST is empty.
Claim that reduction of an equation q= ∈ SQ by (ST )= in line 8 does not affect

the loop invariant, i.e. any non-reductive prolongation r reducing to zero beforehand
reduces to zero afterwards. Prove this claim by performing a single reduction step on q,
which generalizes by an easy induction. Let q′ := prem(q, p, x) = m · q− pquo(q, p, x) · p
be a pseudo remainder identity (see (1.1) on page 31) reducing q to q′ modulo p. Then a
pseudo remainder identity prem(r, q, x) = m′ · r− pquo(r, q, x) · q describing a reduction
of r modulo q can be rewritten as the iterated identity

m · prem(r, q, x)︸ ︷︷ ︸
prem(prem(r,p,x),q′,x)

= m ·m′ · r − pquo(r, q, x) · q′ − pquo(r, q, x) · pquo(q, p, x) · p.

Using the Leibniz rule the same holds for reduction modulo partial derivatives of q.
This holds especially for an equation q= ∈ SQ reducing to 0 modulo (ST )= in line 8,
which can be removed from SQ without violating the loop invariant.

Show that line 25, where InsertEquation inserts the square-free part p= of q= into
ST , does not violate the third loop invariant. First, the non-reductive prolongations
in {(∂ir)= | r ∈ (ST )=∂i /∈ ∆(r, (ST )=)} are added to SQ as equations. Thus,
any of these reduce to 0 modulo (SQ)=. Second, moving equations from ST back
into SQ in InsertEquation does not change the loop invariant either, because their re-
ductive prolongations can still be used for reduction afterwards. Third, every non-
reductive prolongation that reduced to zero using q= ∈ (SQ)= still reduces to zero
after InsertEquation. This holds for two reasons. On the one hand, everything that
reduces to zero modulo q=, also reduces to zero modulo p=. Write m · q = p · q1 with
ld(m) < x and φa(m) 6= 0 ∀a ∈ SolE(S<ld(q)). Then p algebraically pseudo-reduces
q to zero. Any derivative ∂q of q is reduced to zero modulo p= and (∂p)=, since
∂(m · q) = (∂p) · q1 + p · (∂q1) for any ∂ ∈ ∆. Inductively, the same holds for repeated
derivatives of q=. Therefore, p= implies all constraints given by q=. On the other hand,
all reduction steps modulo p= are either Janet-reductions modulo p= w.r.t. ST or diffe-
rential reductions modulo non-reductive prolongations of p=. The latter equations have
been added to SQ.

When computing the gcd of two equations in line 14, the gcd of q and (ST )x is
inserted into ST and reduces everything to zero that both q and (ST )x did. As above,
the non-reductive prolongations are covered by inserting them into SQ, and the reductive
prolongations are implied. Dividing an equation (ST )x by an inequation q 6= in lines 29
and 30 also influences (ST )=. The new equation p=, being a divisor of (ST )x, reduces
everything to zero that (ST )x and its non-reductive prolongations did by the same
arguments as before. This proves the third loop invariant.

14i.e. modulo any prolongation
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When the algorithm terminates, SQ is empty and thus all non-reductive prolonga-
tions from (ST )= Janet-reduce to zero modulo (ST )=. The system is therefore passive.
Furthermore, the first loop invariant implies minimality and the second loop invariant
implies that no inequation is reducible by an equation, since for a passive set reducibility
is equivalent to Janet-reducibility.

The termination proof uses six orders on differential systems, similar to the four
orders used for the termination of the algebraic decomposition algorithm.

Definition and Remark 1.42. Define the orders ≺1a, ≺1b, ≺1c, ≺2, ≺3, and ≺4 for
differential systems, and the composite order “ ≺ ” := [≺1a,≺1b,≺1c,≺2,≺3,≺4].

≺1a: For V ⊆ {U}∆ there is a unique minimal set ν(V ) ⊆ V with V ⊆ {ν(V )}∆
[CLO92, Chap. 2, §4, exercise 7 and 8], called canonical differential generators
of V . For a system S, define ν(S) as ν(ld((ST )=)). For systems S, S′ define
S ≺1a S

′ if and only if min<(ν(S) \ ν(S′)) < min<(ν(S′) \ ν(S)). An empty set is
assumed to have y∞ as minimum, which is <-larger than all differential variables.
By Dickson’s Lemma 1.38, ≺1a is well-founded.

≺1b: For systems S, S′ define S ≺1b S
′ if and only if S 6�6≺1a

S′ and

min
<

(
ld((ST )=) \ ld((S′T )=)

)
< min

<

(
ld((S′T )=) \ ld((ST )=)

)
.

Minimality of (ST )= at each step of the algorithm and a property of the Janet
division [GB98a, Prop. 4.13] imply well-foundedness of ≺1b [GB98a, Thm. 4.14].

≺1c: For systems S and S′ with S 6�6≺1a
S′ and S 6�6≺1b

S′, both (ST )= and (S′T )= have
the same leaders y1, . . . , y`. Define S ≺1c,yk S′ if and only if mdeg((ST )=

yi) <
mdeg((S′T )=

yi). This order is clearly well-founded. For these systems define S ≺1c

S′ as [≺1c,y1 , . . . ,≺1c,y` ], which is again well-founded as a composite order.

≺2: As in the algebraic case, define a map µ from the set of all systems over F{U}
to {1} ∪ {U}∆ ∪ {y∞} with µ(S) minimal such that there exists an equation
p ∈ (SQ)=

µ(S) with Reduce(ST , p) 6= 0 and µ(S) = y∞ otherwise. Then, S ≺2 S
′ if

and only if µ(S) < µ(S′) with 1 < u
(j)
i and u(j)

i < y∞ for all u(j)
i ∈ {U}∆. The

order ≺2 is well-founded since < is well-founded by Dickson’s Lemma.

≺3: This is verbatim the same condition as in the algebraic case. S ≺3 S′ if and
only if there is p 6= ∈ R 6= and a finite (possibly empty) set L ⊂ R 6= with ld(q) <
ld(p) ∀ q ∈ L such that SQ ] {p 6=} = S′Q ] L holds. For well-foundedness do a
Noetherian induction instead of an ordinary induction.

≺4: This is identical to the algebraic case: S ≺4 S
′ if and only if |SQ| < |S′Q|.

Proof (Termination of Algorithm 1.41). Prove termination the same way as in the alge-
braic case. All arguments where systems get ≺2, ≺3, or ≺4 smaller apply verbatim here.
In the algebraic case a system ≺1-decreases if and only if either an equation is added
to ST or the degree of an existing equation in ST is decreased. Adapt this argument
to the differential case: On the one hand, inserting a new equation with a leader that
is not yet present in ld((ST )=) decreases either ≺1a or ≺1b. On the other hand, if an
existing equation in (ST )= is replaced by one with the same leader and lower degree, the
system ≺1c-decreases. Thus, like in the algebraic termination proof, there is a strictly
decreasing chain of systems which proves termination.
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1.3.6 An Example

The following example demonstrates a non-trivial application of the differential Thomas
decomposition. The example produces a non-trivial decomposition and deals with many
systems. It uses other computer algebra packages, in particular differential equation
solvers, to extract additional information from simple differential systems. As the ques-
tion of this example concerns real solutions instead of non-real (complex) solutions, the
example gets rid of systems only having complex solutions. Finally, it deals with certain
non-polynomial differential equations, as explained in the following remark.

Remark 1.43. Many differential equations “in nature” are not polynomial in their
unknown functions, for example differential equations involving a term of the form
f(u(t)), e.g., sin(u(t)) or

√
u(t). Thus, the approach of differential algebra is not directly

applicable. However, the Thomas decomposition can still be applied to many of these
cases. If f satisfies ∂`f = q(f, ∂f, . . . , ∂`−1f) = 0, then add new dependent variables
g(0), . . . , g(`−1), where g(i) replaces ∂if(u). Obviously, the relation ∂g(`−1) = (∂u) ·
q(g(0), g(1), . . . , g(`−1)) holds and additionally the chain rule implies ∂g(i) = (∂u) ·g(i+1).

This generalizes to partial differential equations and to functions depending on more
than one differential variable. Note that this has the drawback that initial conditions for
the additional differential variables g(i) used to model f(u) cannot be set. In particular
the relations between the g(i) are no characterization of f(u). /

Example 1.44 (Landau-Lifshitz-Gilbert equations). This example automatically
replicates some of the results about the Landau-Lifshitz-Gilbert equations from
[Mül07] using the differential Thomas decomposition.

restart;
with(DifferentialThomas):
with(LinearAlgebra):
with(jets):

The Landau-Lifshitz-Gilbert equations describe a unit magnetization vector
m:=<u(t),v(v),w(t)>;

m :=


u (t)

v (v)

w (t)


with three dependent variables u, v, and w as entries.

ivar:=[t]:
dvar:=[u,v,w]:
ComputeRanking(ivar,dvar):
m:=<u[0],v[0],w[0]>:

Following [Mül07] assume a magnetic field
h_eff:=<0,0,h3-lambda*m[3]>;

h_eff :=


0

0

−λw0 + h3


for some λ ∈ {−1, 0, 1}. This means that there is a constant external field in the
direction of the w-axis and a self interaction of the magnetic vector in the same direction.
Assume an additional spin torgue term counteracting the damping. It is given by the
following vector, which is also aligned in direction to the w-axis.

j:=<0,0,j3>;
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j :=


0

0

j3


Under these additional assumptions the Landau-Lifshitz-Gilbert equations can be
given by the equations

(α2 + 1)mt = −αm×m× heff + αm× j−m× heff −m×m× j

LLG:=(alpha^2+1)*map(a->PartialDerivative(a,t),m)
+CrossProduct(m,h_eff)
-alpha*CrossProduct(m,CrossProduct(m,h_eff))
+alpha*CrossProduct(m,j)
+CrossProduct(m,CrossProduct(m,j)):

where α is a positive15 real number indicating the strength of the damping.
The assumption that the vectors (0, 0, h3) and (0, 0, j3) are aligned implies that the

Landau-Lifshitz-Gilbert equations are symmetric with respect to rotations around
the w-axis. To show this, we use the Maple package jets [Bar01] and apply the
rotational symmetry around the w-axis. This does not change the equations, i.e., the
difference of the original equations and the transformed equations is zero.

CallJets(cchvec,[
[t=t,u[0]=cos(beta)*u[0]-sin(beta)*v[0],
v[0]=sin(beta)*u[0]+cos(beta)*v[0],w=w],

[[LLG[1],[u[0]]],[LLG[2],[v[0]]],[LLG[3],[w[0]]]],
ivar,dvar]):

simplify(LLG-convert(map(a->a[1],%),Vector));
0

0

0


This shows that all periodic solutions must be parallel to the equator, so add d

d tw(t) = 0
to the set of equations.

LLG:=[op(convert(LLG,list)),w[1]]:
The assumption that the magnetization vector has unit length has another consequence.

u(t)^2+v(t)^2+w(t)^2-1=0;
LLG:=[op(LLG),Diff2JetList(lhs(%))]:

(u (t))2 + (v (t))2 + (w (t))2 − 1 = 0

The parameters α, λ, j3, h3 can be modelled by a differential indeterminates whose
derivative is zero (cf. Remark 1.2).

LLG:=[op(LLG),alpha[1],j3[1],h3[1],lambda[1]]:
We use the inequation α 6= 0, as α > 0 is impossible in the complex setting. With
hindsight, add the inequation α2 + 1 6= 0 for α. This inequation is implied as α is a
positive real constant, and it removes several systems of non-real (complex) solutions
from the Thomas decomposition. At last, assume that the external field and the spin
torque are non-degenerate, i.e., that h3 and j3 are non-zero.

ineq:=[alpha[0],alpha[0]^2+1,h3[0],j3[0]]:

15Follow the convention of [Cim07] instead of [Mül07], which switches the signs of α and thereby
has α > 0 instead of 0 > α. Thereby, we can circumvent the inconsistency in the notation in [Mül07]
assuming α > 0 at the beginning of the introduction and silently switching to 0 > α beginning from
equation (2). As a consequence, some of the signs in our results differ from [Mül07].
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Compute a Thomas decomposition of this system.
ComputeRanking(ivar,[op(dvar),alpha,j3,h3,lambda]);
res:=DifferentialThomasDecomposition(LLG,ineq):
nops(res);

24

It consists of 24 simple systems. However, many of these systems contain only non-real
(complex) solutions. Remove the systems with the following four pairs of constraints:

u(t)2 + v(t)2 = 0, v(t) 6= 0;

j2
3 + (h3 − λ)2 = 0, (h3 − λ) 6= 0;

j2
3 + (h3 + λ)2 = 0, (h3 + λ) 6= 0;

j2
3 + 4λ2 = 0, λ 6= 0.

res:=remove(a->
DifferentialSystemReduce(a,u[0]^2+v[0]^2)=0

and v[0] in DifferentialSystemInequations(a), res):
res:=remove(a->

DifferentialSystemReduce(a,j3[0]^2+(h3[0]-lambda[0])^2)=0
and h3[0]-lambda[0] in DifferentialSystemInequations(a), res):

res:=remove(a->
DifferentialSystemReduce(a,j3[0]^2+(h3[0]+lambda[0])^2)=0

and h3[0]+lambda[0] in DifferentialSystemInequations(a), res):
res:=remove(a->

DifferentialSystemReduce(a,j3[0]^2+4*lambda[0]^2)=0
and lambda[0] in DifferentialSystemInequations(a), res):

nops(res);
6

We go through the remaining 6 systems. The simplicity of these systems allows to easily
work with these systems. Furthermore, solutions with different behavior are split apart
into different systems, and they can be examined individually.

The generic system results from the input by incorporating some inequations needed
to imply the simplicity and by modifying the equations to equivalent equations. Thus,
much information about the Landau-Lifshitz-Gilbert equations in this setup can
be read off this system. First we observe the equation αh3(t)−αλw(t)−j3(t) = 0 holds.

PrettyPrintDifferentialSystem(res[1])[3];
GenericEquation:=Diff2JetList(lhs(%)):

−α (t)λ (t)w (t) + α (t)h3 (t)− j3 (t) = 0

This equation holds whenenever w(t) 6= −+1. Confirm this for all systems:
map(b->DifferentialSystemReduce(b,w),

select(
a->0<>DifferentialSystemReduce(a,

GenericEquation),
res)

);
[−1, 1]

Thus, w(t) = −+1 in all systems where αh3(t)− αλw(t)− j3(t) = 0 does not hold.
The simplicity allows to solve this system (and also the following ones). However,

to simplify the solutions effectively, Maple should work with real numbers.
with(RealDomain):

We make some assumptions about signs of trigonometric functions to get a simplified
form. Making the opposite assumption on this sign changes other signs in the solutions.
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sol:=MyPDSolve(res[1]):

l:=[
subs(sol,alpha(t))=alpha,subs(sol,lambda(t))=lambda,
subs(sol,j3(t))=j3,subs(sol,h3(t))=h3]:

u(t)=simplify(factor(subs(l,subs(sol,u(t)))),trig) assuming alpha>0:
simplify(%) assuming cos(j3*signum(lambda)*(-t+_C5)/alpha)>0:
subs([-j3+alpha*h3+alpha*lambda=c1,-j3+alpha*h3-alpha*lambda=c2],%):
simplify(subs([c2=c3/c1],%)):
subs(c3=(-j3+alpha*h3+alpha*lambda)*(-j3+alpha*h3-alpha*lambda),%):
subs(signum(lambda)=lambda,%);

u (t) =
√
− (αh3 − αλ− j3) (αh3 + αλ− j3) cos

(
j3 λ (C5−t)

α

)
α−1 (|λ|)−1

v(t)=simplify(factor(subs(l,subs(sol,v(t)))),trig) assuming alpha>0:
simplify(%) assuming cos(j3*signum(lambda)*(-t+_C5)/alpha)>0:
subs(signum(lambda)=lambda,%);

v (t) = −
√
− (αh3 − αλ− j3) (αh3 + αλ− j3) sin

(
j3 λ (C5−t)

α

)
α−1λ−1

w(t)=subs(l,subs(sol,w(t)));

w (t) = αh3−j3
αλ

In this case u and v are phase shifted, and the angular velocity is −+ j3
α , as λ ∈ {−1, 0, 1}.

The solutions are real if and only if
factor(subs([j3=j3_durch_alpha*alpha,lambda=1],

-(-j3+alpha*h3-alpha*lambda)*(-j3+alpha*h3+alpha*lambda)))>0:
solve(subs(alpha=1,%),j3_durch_alpha) assuming j3_durch_alpha>0:
subs(j3_durch_alpha=j3/alpha,%);{

j3
α < h3 + 1, h3 − 1 < j3

α

}
holds. (This last computation yields the same results for λ = −1.)

We move on to the second system.
sol:=MyPDSolve(res[2]):
l:=[

subs(sol,alpha(t))=alpha,subs(sol,lambda(t))=lambda,
subs(sol,j3(t))=j3,subs(sol,h3(t))=h3]:

u(t)=simplify(factor(subs(l,subs(sol,u(t)))),trig) assuming alpha>0:
simplify(%) assuming cos(j3*lambda*(-t+_C4)/alpha)>0:
subs(signum(lambda)=lambda,%);

u (t) = j3 (2αλ− j3)

∣∣∣∣cos

(
j3 λ (C4 − t)

α

)
λ−1

∣∣∣∣α−1
(√

j3 (2αλ− j3)
)−1

v(t)=simplify(factor(subs(l,subs(sol,v(t)))),trig) assuming alpha>0:
simplify(%) assuming cos(j3*lambda*(-t+_C4)/alpha)>0:
subs(signum(lambda)=lambda,%):
simplify(%) assuming cos(j3*lambda*(-t+_C4)/alpha)>0;

v (t) = −
√
j3 (2αλ− j3) sin

(
j3 λ (C4 − t)

α

)
α−1λ−1

w(t)=subs(l,subs(sol,w(t)));

w (t) = αλ−j3
αλ

The “real” differential equations (in contrast to the parameter equations) are the same
as in the last system with the additional constraint h3 = λ. Similarly, the third system
has the constraint h3 = −λ.
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These first three systems included the constraint λ 6= 0. In contrast, in the fourth
system λ = 0 holds. It is a special case of the generic first systems with the following
solutions.

sol:=MyPDSolve(res[4]):
l:=[

subs(sol,alpha(t))=alpha,subs(sol,lambda(t))=lambda,
subs(sol,j3(t))=j3,subs(sol,h3(t))=h3]:

u(t)=simplify(factor(subs(l,subs(sol,u(t)))),trig) assuming alpha>0:
simplify(%) assuming cos(h3*(-t+_C4))>0:
subs(signum(lambda)=lambda,%);

u (t) =
√
−C1

2 + 1 cos (h3 (C4 − t))
v(t)=simplify(factor(subs(l,subs(sol,v(t)))),trig) assuming alpha>0:
simplify(%) assuming cos(h3*(-t+_C4))>0:
subs(signum(lambda)=lambda,%);

v (t) = − sin (h3 (C4 − t))
√
−C1

2 + 1

w(t)=subs(l,subs(sol,w(t)));
w (t) = C1

The angular velocity seems independent of α for this system. However, the equation
JetList2Diff(DifferentialSystemEquations(res[4])[4])=0;

α (t)h3 (t)− j3 (t) = 0

is included in this system and, thus, the angular velocity is still −+ j3
α .

The last two systems have the constant solution at the south pole and north pole.
MyPDSolve(res[5]);

{α (t) = C3, h3 (t) = C1, j3 (t) = C2, λ (t) = C4, u (t) = 0, v (t) = 0, w (t) = − 1}
MyPDSolve(res[6]);

{α (t) = C3, h3 (t) = C1, j3 (t) = C2, λ (t) = C4, u (t) = 0, v (t) = 0, w (t) = 1}

Summing up, the Landau-Lifshitz-Gilbert equations with an additional spin
torque term aligned to the self interaction have the following cyclic solutions and equi-
librium points. The first four systems show that for j3

α ∈ (h3 − 1, h3 + 1) there is
a periodic cycle with angular velocity j3

α . The last two systems show that there are
equilibrium points at (u(t), v(t), w(t)) = (0, 0,−+1). /

1.3.7 Implementation

This subsection describes the implementation of the differential Thomas decomposition
algorithm in the Maple [map] package DifferentialThomas [BLH12]. It also lists some
typical optimizations to make the computations feasible and other implementations of
triangular decomposition algorithms.

First, list some commands of this implementation not yet presented in the overview
Section 1.1. The commands Leader, Separant, and Initial compute the leader,
separant, and initial, respectively, for a given differential polynomial. The com-
mand DifferentialSystemReduce computes the result of a pseudo reduction with
respect to a given system, DifferentialSystemNormalForm additionally divides the
result of this pseudo reduction by the initials and separants that were multiplied to
the input, and DifferentialSystemLinearCombination additionally outputs the lin-
ear combination (coefficients in F{U}[∆]) of the result. Using Proposition 1.34, the
command ComplementOfDecomposition computes a Thomas decomposition of the
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complement of the solutions of a list of disjoint simple systems. Both commands
RemoveSuperfluousInequations and SimplifyInequationsInDifferentialSystem
apply certain heuristics to remove and simplify inequations in a simple differential sys-
tem without changing the set of solutions. Further commands for invariants of the diffe-
rential ideal associated to a simple differential system are described in Subsection 1.6.4.

Run time bounds for any algorithm in differential algebra are high. For example, a
bound for orders in the differential Nullstellensatz is given in [GKOS09] by the Acker-
mann function. In contrast to these off-putting bounds, examples “from nature” have
decent runtime in practice, as soon as algorithmic optimizations are used. Some of these
optimizations used in the Decompose algorithm are described now.

Pseudo remainder sequences for the same pairs of polynomials are usually needed
several times in different branches of the Decompose algorithm. As these calculations
are expensive in general, the implementation always keeps the results in memory and
reuses them when the same pseudo remainder sequence is requested again to avoid
repeated computations.

To avoid coefficient growth, polynomials should be represented as compact as pos-
sible. Once the initial of a polynomial is known to be non-zero, the content of a poly-
nomial (in the univariate sense) is non-zero, too. Thus, every time an initial is added
to the system as an inequation, divide the polynomial by its content. Additionally, the
multivariate content, which is an element of the field F , can be removed.

The reduction algorithms 1.15 and 1.37 do not recognize that non-leading coefficients
are zero. However, one can reduce the coefficients modulo the polynomial equations of
lower leader, in addition to reduction of the polynomial itself. Thereby, in some cases
the sizes of coefficients decrease, in other cases they increase. The latter is partly due
to multiplying the whole polynomials with the initials of the reductors. Finding a good
heuristic for this coefficient reduction is crucial for efficiency. For testing examples it
turns out that after each reduction done in the algorithm, one should to a tail reduction.
Further tail reduction for the equations in a system, e.g., when new equations are
present, do not speed up an implementation. To get a smaller output, it is usually good
to do a tail reduction for the final systems.

Factorization of a polynomial improves computation time in many cases. More pre-
cisely, the system S ]{(p · q)=} decomposes disjointly into (S ∪{p=}, S ∪{p 6=, q=}) and
the system S ∪ {(p · q)6=} is equivalent to S ∪ {p6=, q6=}. In fact, the algorithm keeps
inequations factored at all times, which speeds up the computations and allows a better
overview over the inequations, even though it contradicts the triangularity. In most
cases, the computation of two smaller problems resulting from a factorization is (often
much) cheaper than the computation of the big, original problem. This idea extends to
factorizations over an extension of the base field: Let Yi :=

{
yj | yj < yi, (ST )=

yj 6= ∅
}

and Zi :=
{
yj | yj < yi, (ST )=

yj = ∅
}
. Assume that (ST )=

yi is irreducible over the field
Fi := F (Zi)[Yi]/〈(ST )=

<yi〉 for all i ∈ {1, . . . , n}, where 〈(ST )=
<yi〉 is the ideal generated

by (ST )=
<yi in the polynomial ring F (Zi)[Yi]. Factorization over Fn instead of F may

split the polynomial into more factors, but it is not clear whether this improves run-
time. Tests show that factorization w.r.t. F should be preferred over factorization w.r.t.
extension fields for F = Q.

In the algebraic algorithm, polynomials need not be square-free when they are in-
serted into the candidate simple system. Efficiency can sometimes be improved by
postponing the computation of the square-free split as long as possible. This differen-
tial equations need to be made square-free to ensure that their separant is non-zero, i.e.
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non-trivial prolongations have a non-zero initial. However, tests show that postponing
the square-freeness of inequations yields faster computations.

In the differential case, application of criteria can decrease computation time by
avoiding useless reductions of non-reductive prolongations. Janet’s combinatorial ap-
proach already avoids many reductions of ∆-polynomials, as used in other approaches
(see [GY06]). In addition, use the involutive criteria 2-4 (cf. [GB98a, Ger05, AH05]),
which together are equivalent to the chain criterion. Applicability of this criterion in
the nonlinear differential case was shown in [BLOP09, §4, Prop. 5].

The algorithm should detect the inconsistencies as early as possible to discard them.
One of the problems is that selection strategies postpone the costly treatment of inequa-
tions. A test detecting whether inequations in SQ reduce to zero is comparably cheap
and shows a big speed-up.

Another possible improvement is parallelization, since the main loop in Decompose
(1.32) can naturally be used in parallel for different systems.

The axioms of a selection strategy (see Definition 1.29) already strongly limit the
choice for the polynomial considered in the current step. However, the remaining free-
dom is another important aspect for the speed of an actual implementation. Consider
two main approaches to selection strategies (see Definition 1.29).

(1) The “equations first” strategies: Select only chooses an inequation if Q does not
contain any equations. Among the equations or inequations, it prefers the ones
with smallest leader.

(2) The “leader first” strategies: Select always chooses an equation or inequation with
the smallest leader occurring in Q. If there are both equations and inequations
with that leader, it chooses an equation.

In experimental observation “leader first” strategies usually produce decompositions
with less systems, while “equations first” strategies are more efficient.

Other systems perform a decomposition similar to the Thomas decomposition (for
benchmarks see [BGLHR12]).

The RegularChains package [LMMX05] is shipped with recent versions of Maple
[map]. Its Triangularize command implements a decomposition of an algebraic variety
given by a set of equations by means of regular chains. If the input also contains
inequations, the resulting decomposition is represented by regular systems instead. It is
possible to make these decompositions disjoint using theMakePairwiseDisjoint command.

The εpsilon package by [Wan03] implements different kinds of triangular decom-
positions in Maple. It is the only software package independent of this work that
implements the algebraic Thomas decomposition. It closely resembles the approach
that [Tho37, Tho62] suggested, i.e., polynomials of higher leader are considered first.
All polynomials of the same leader are combined into one common consequence, re-
sulting in new conditions of lower leader. These are not taken into account right away
and will be treated in later steps. Contrary to the approach here, one cannot reduce
modulo an unfinished system. Therefore, one needs extra inconsistency checks to avoid
spending too much time on computations with inconsistent systems. εpsilon implements
such checks in order to achieve good performance.

The Maple packages diffalg [BH04] and DifferentialAlgebra by Boulier and Cheb-
Terrab deal with ordinary and partial differential equations as described by [BLOP09].
They compute a radical decomposition of a differential ideal, i.e., a description of the
vanishing ideal of the Kolchin closure [Kol73, §IV.1] of the set of solutions. Compu-
tation of integrability conditions is driven by reduction of ∆-polynomials [Ros59, Sect.
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2], the analogon of s-polynomials in differential algebra. Just like in RegularChains, this
approach does not give disjoint solution sets, although in principle disjointness might
be achieved. The diffalg package is superseded by the package DifferentialAlgebra. Dif-
ferentialAlgebra is based on the BLAD-libraries [Bou09], a set of stand-alone C-libraries
with an emphasis on usability for non-mathematicians and extensive documentation.

In contrast to other algorithms, the Thomas decomposition only relies on com-
putations over the ground field; neither algebraic [Rit50] nor transcendental [BLOP09,
BLOP95] field extensions are necessary. Furthermore, polynomials need not be factored
[Rit50] nor inverted [KRMS98].
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1.4 Power Series Solutions
We assume φ to be expanded in a Taylor series in the neigh-
borhood of a point P (which presupposes the analytic character
of φ). The totality of its coefficients describes then the function
completely.

Albert Einstein
in [Ein53a, First example]

Some [. . . ] argued that you may always consider any function as
analytic [. . . ] as they can be approximated with arbitrary preci-
sion by analytic ones. But, in my opinion, this objection would
not apply, the question not being whether such an approximation
would alter the data very little, but whether it would alter the
solution very little.

Jacques Hadamard
in [Had53, I.II, p. 33]

Let F be a differential field of characteristic zero. Let ∆ = {∂1, . . . , ∂n} be a
non-empty set of derivation operators and U = {u(1), . . . , u(m)} be a non-empty set of
differential indeterminates.

Formal or convergent power series solutions are solutions in C[[y1− ζ1, . . . , yn− ζn]]
for ζ1, . . . , ζn ∈ C. In contrast, recall the definition of the set of non-centered power
series

E := F [[z1, . . . , zn]]U ∼=
m⊕
j=1

F [[z1, . . . , zn]]

from Subsection 1.2.4. Taking them as admissible solutions suits the Thomas de-
composition algorithms in the last section and, using the algebraization isomorphism
α : E → F

{U}∆ , they are solutions of the differential system viewed as algebraic system.
However, they are different from the set of formal or convergent power series solutions,
and they can be thought of as formal power series at a generic center of expansion if F
is a field of meromorphic functions over C.

Non-centered solutions can be turned into formal power series solutions by substi-
tuting the center of expansion into the elements of F if F is a field of meromorphic
functions. For example the non-centered power series (1 + yz + 1

yz
2 + . . .) ∈ C(y)[[z]]

yields a formal power series in C[[y − ζ]] when substituting z by y − ζ and y in the
coefficients by ζ ∈ C. However, two regularity conditions need to be satisfied for this.
First, the non-centered solutions need to be regular in the sense that they come from
algebraic solutions. Second, the center ζ of expansion needs to be regular in the sense
that no poles appear when evaluating the coefficients of the equation at ζ and that
initials and separants are not zero when evaluated at ζ. Both kinds of regularities are
generic properties. This section introduces these regularity conditions and shows that
regular non-centered solutions yield formal power series solutions at regular points and
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that these formal power series solutions converge for convergent initial conditions. The
case of non-regular points or solutions is studied in Chapter 2.

Fix an orderly16 ranking <. Then, there are only finitely many differential variables
not ranking higher than any differential variable u(j)

i ∈ {U}∆. Denote the polynomial
ring of these differential variables by F{U}≤u(j)

i

and denote the polynomial ring of all
differential variables up to order ` ∈ Z≥0 by F{U}≤`.

1.4.1 Regular Non-centered Solutions

This subsection shows that each simple differential system has a non-centered solution.
In doing so, it describes the subset SoloE of regular non-centered solutions that allows
a good passage to formal power series solutions.

Let S be a simple differential system and u(j)
i ∈ {U}∆ a differential variable. Define

the simple algebraic system up to u(j)
i associated to S as

S≤u(j)
i

:=
(
{δp | p ∈ S=, δ ∈ Mon(∆(p, S=))} ∪ S 6=

)
∩ F{U}≤u(j)

i

,

where Mon(∆(p, S=)) is the free commutative monoid generated by the reductive pro-
longations ∆(p, S=) from the Janet cone decomposition. Let ` ∈ Z≥0. Define the
simple algebraic system up to order ` associated to S as S≤` := S≤u(j)

i

, where

u
(j)
i ∈ {U}∆ is the largest differential variable of order ` w.r.t. the chosen ranking.

∂y

∂x

Example 1.45. Consider F = C(x, y), U = {u} and
∆ = {∂x, ∂y} with respect to the degree-reverse lexicographi-
cal ranking. Let S := {uxy = 0, uyyy = 0, ux 6= 0} be a simple
system. As indicated by the cones in the diagram, the reduc-
tive derivations of the equation uxy are ∆(uxy, S

=) = {∂x, ∂y}
and those of uyyy are ∆(uyyy, S

=) = {∂y}. Some simple alge-
braic systems associated to S are:

S≤0 = ∅, S≤1 = {ux 6= 0}
S≤2 = S≤1 ] {uxy = 0}
S≤3 = S≤2 ] {uxxy = 0, uxyy = 0, uyyy = 0}

These systems are simple. This is true in general and explains the name simple algebraic
system associated to S. /

Lemma 1.46. Let S be a simple differential system and u
(j)
i ∈ {U}∆ a differential

variable. The simple algebraic system S≤u(j)
i

up to u
(j)
i associated to S is a simple

algebraic system in F{U}≤u(j)
i

. In particular, this holds for F{U}≤`.

Proof. No two inequations with the same leader exist, since S≤u(j)
i

= S 6= ∩ F{U}≤u(j)
i

,
which is triangular. No two equations with the same leader exist, since the Janet
decomposition into cones is disjoint. No inequation in S 6= is reducible modulo S=,
and thus no inequation in S≤u(j)

i

has the same leader as a reductive prolongation of an
equation. The triangularity follows.

16The results of this section generalize to the case of weighted orderly rankings.
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The initials of elements in S do not vanish, since S is simple. The initials of pro-
longations of equations in S do not vanish, since these initials are the separants of the
equations in S, which do not vanish because of the square-freeness.

The elements of S are square-free, since S is a simple algebraic system. The prolon-
gations of equations in S are square-free, since their main degree is 1.

Let S be a simple differential system in F{U}. Recall that the set of non-centered
power series E are isomorphic to F {U}∆ using the algebraization α (cf. page 28). Using
the inverse of α turns (algebraic) solutions of the simple algebraic system associated to S
into (differential) non-centered solution. Define the regular non-centered solutions
of S as

SoloE(S) := α−1(
⋂

`∈Z≥0

Sol(S≤`)) ⊆ E ,

where the algebraic systems S≤` are considered as systems in F{U} instead of F{U}≤`.
These solutions are only defined for simple differential systems, as they depend on the
Thomas decomposition. Simple systems have a solution by Remark 1.10, hence clearly
SoloE(S) 6= ∅.

Lemma 1.47. Let S be a simple differential system. Then SoloE(S) ⊆ SolE(S), and,
in particular, SolE(S) 6= ∅.

Proof. Recall that a non-centered solution of p= or q 6= is defined as an e ∈ E with
φe({p}∆) = {0} or φe({q}∆) 6= {0}, respectively. If q ∈ S 6=, then φe(q) 6= 0 by
construction and, thus, φe({q}∆) 6= {0}. Let p ∈ S=. By construction φe(∂b11 . . . ∂bnn p) =
0 for all reductive prolongations ∂b11 . . . ∂bnn p of p, i.e., for all ∂b11 · . . . · ∂bnn ∈ ∆(p, S=).
So consider ∂b11 . . . ∂bnn p for general ∂b11 . . . ∂bnn . By the passivity condition for simple
systems and Remark 1.39, there is a product q of initials and separants of equations in
S= such that

q · ∂b11 . . . ∂bnn p =
∑
s∈S=

cs(∂)s

for an operator cs(∂) ∈ F [∆(s, S=)]. As S is simple, φe(q) 6= 0 and by construction
φe(cs(∂)s) = 0 for all s ∈ S. This implies φe(∂b11 . . . ∂bnn · p) = 0.

In general, SoloE(S) 6= SolE(S) for S simple:

Example 1.48. Let F = C, ∆ = {∂t} and U = {u}, and consider the simple differential
system S := {u1 − 1 = 0, u0 6= 0}. Its sets of solutions are given by

SolE(S) = { z + a ∈ C[[z]] | a ∈ C } and
SoloE(S) = { z + a ∈ C[[z]] | 0 6= a ∈ C } .

Note that the inequation u0 6= 0 is satisfied on all solutions of the equation u1−1 = 0. /

Differential variables can be classified depending on how much freedom of choice they
allow for a solution of a simple differential system S. Partition the set of differential
variables {U}∆ into three sets B=, B 6= and B0. A differential variable belongs to
B= if it lies in the cone generated by equations of S. These differential variables are
called principal. A differential variable u(j)

i belongs to B 6= and is called generically
parametric if there is an inequation q ∈ S 6= with ld(q) = u

(j)
i . Because of both the

triangularity and reduced inequations (cf. Definition 1.14.(4)), B=∩B 6= = ∅ holds. The
differential variables in B0 := {U}∆ \

(
B= ∪B 6=

)
are called parametric.
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Remark 1.49. Let S be a simple differential system. Any solution e ∈ SoloE(S)
satisfies φe(q) 6= 0 for any inequation q 6= (cf. proof of Lemma 1.47). However, for a non-
centered solution it would suffice that any derivative of q is non-zero when evaluated by
φe. It seems algorithmically hard to say whether a choice of a generically parametric
power series coefficient yields a non-centered solution. This also means that if S does
not have any inequation, then SoloE(S) = SolE(S). Section 2.3 replaces the infinitely
many derivations of an inequation by another infinite process, leading to the counting
polynomial. /

Certain inequations from a simple differential system can be removed. If all solutions
of an inequation q 6= 0 are solutions of {p1 = 0, . . . , pk = 0}, then the inequation q 6= 0
is superfluous, as is the case if the system {p1 = 0, . . . , pk = 0, q = 0} with q inserted
as equation has no solution. RemoveSuperfluousInequations implements this.

1.4.2 Formal Power Series Solutions

This subsection describes how to turn non-centered solutions into formal power series
solutions centered around a point ζ = (ζ1, . . . , ζn) ∈ Cn. Many results of this section
are similar to the ones in [P9́7], which shows these results without the detour over
non-centered solutions. Assume without loss of generality17 for the rest of this section
that the differential field F is a field of meromorphic functions in n complex variables
y1, . . . , yn defined on Cn, as all statements are local, and ∂i = ∂

∂yi
. Additionally, for

better legibility, assume for the rest of this section, that F contains the complex num-
bers. This means that the field of constants of F is C, where an element f ∈ F is called
a constant if ∆f = {0} and the set of constant elements of F is called the field of
constants of F . If F is equal to its field of constants, then F is called field of constants.

The meromorphic functions in F can be evaluated at the point ζ. Denote by ψζ the
evaluation of elements in F at the point ζ, i.e.,

ψζ : F → C ∪ {∞} : f(y1, . . . , yn) 7→ f(ζ1, . . . , ζn) .

In the following, meromorphic functions are only evaluated at points which are not
poles. By abuse of notation extend ψζ to F{U} → C{U} ∪ {∞} and to E 7→ C[[y1 −
ζ1, . . . , yn − ζn]]U ∪ {∞} by applying it to every coefficient, substituting zi by yi − ζi,
and assigning ∞ if one coefficient has a pole.

Example 1.50. Consider the ordinary linear differential equation p := y2u1−u+y = 0
over the differential field F = C(y). The set of non-centered solutions depends on one
parameter a0 ∈ F , and each such solutions is of the following form.

e(a0) := a0 +
a0 − y
y2

z1 +
(1− 2y)a0 + y2 − y

y4

z2

2
+ . . . ∈ E

Any 0 6= ζ ∈ C specializes such a solution to a formal power series solution

ψζ(e(a0)) = a0 +
a0 − ζ
ζ2

(y − ζ)1

1!
+

(1− 2ζ)a0 + ζ2 − ζ
ζ4

(y − ζ)2

2!
+ . . . ∈ C[[y − ζ]] .

The set of these formal power series solutions depends on one parameter as the set of
non-centered solutions, and all formal power series converge locally (cf. Theorem 1.60).

17A differential system can be considered over the differential field generated by its coefficients. Such a
field is finitely differentially generated and Seidenberg’s embedding theorem (cf. [Sei58, Sei69]) applies.
This theorem states that every finitely differentially generated differential field of characteristic zero is
differentially isomorphic to a differential field of meromorphic functions in n complex variables.
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There is a different behavior around the center ζ = 0, which is a zero of the initial
of p. A computations yields a unique formal power series

∞∑
i=1

(i− 1)! yi ∈ C[[y]]

there, and this formal power series does not converge in any neighborhood.
Thus, the number of formal power series solutions depends on the center ζ. /

We use three regularity conditions18 for the point ζ with respect to a system S.
The first condition implies that no poles appear in S at ζ, the second condition implies
that finding solutions of S is easy at ζ, and the third condition implies that a Thomas
decomposition can be sensibly interpreted around ζ.

Definition 1.51. Let S be a (not necessarily simple) differential system over F . A
point ζ ∈ Cn is called weakly regular with respect to S if ψζ(p) 6=∞ for all p ∈ S.

Let S be a simple differential system over F . Then a point ζ ∈ Cn is called regular
with respect to S if it is weakly regular with respect to S and ψζ(init(p)) 6= 0 and
ψζ(sep(p)) 6= 0 for all p ∈ S.

Let S be a (not necessarily simple) differential system over F . Call ζ ∈ Cn strongly
regular with respect to S if there is a differential C-subalgebra A of F such that

(1) ψζ(a) ∈ C for all a ∈ A,
(2) S ⊂ A{U}{=, 6=}, and there is an associated Thomas decomposition {S1, . . . , Sk}

of S which can be obtained by computations over A{U} such that no inequation
q 6= with a trivial leader and a zero at ζ is removed (cf. line 7 in Decompose), and

(3) the point ζ is regular with respect to each of the systems S1, . . . , Sk of the asso-
ciated Thomas decomposition.

We define formal power series solutions in the ring C[[y1− ζ1, . . . , yn− ζn]] of power
series centered around ζ. Therefore, we expand the coefficients of a differential polyno-
mial into formal power series centered around ζ using a map Ψζ , and we substitute the
differential variables by suitable derivatives of formal power series centered around ζ.
The operation of ∂i ∈ ∆ on C[[y1 − ζ1, . . . , yn − ζn]] is given by ∂iyi = 1 and ∂iyj = 0
for i 6= j. Denote by Fζ the subring of F whose elements do not have a pole at ζ. A
holomorphic function can be expressed locally as a power series, and thus there exists
a differential homomorphism of C-algebras

Ψζ : Fζ → C[[y1 − ζ1, . . . , yn − ζn]]

called expansion around ζ. In contrast to the evaluation ψζ at ζ, the expansion
around ζ yields a formal power series. It can be extended to differential polynomials by
applying it to the coefficients, which yields a differential homomorphism of C-algebras

Ψζ : Fζ{U} → C[[y1 − ζ1, . . . , yn − ζn]]{U} .

Differential variables can be evaluated at a formal power series f ∈ C[[y1− ζ1, . . . , yn−
ζn]]U in a differentially compatible way. Formally, define the differential extension
of f , the homomorphism of differential F -algebras

Φf : C[[y1 − ζ1, . . . , yn − ζn]]{U} → C[[y1 − ζ1, . . . , yn − ζn]] : u
(j)
i 7→ ∂if(uj) .

18This is similar to [PR05] and [Rob12, Remark 2.1.66, Remark 2.1.68]. Note that the first source
has an omission and the second one gives no proofs.
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Now, the usual definition of formal power series solutions can be given in this setting.
Let S be a differential system and ζ ∈ Cn a weakly regular point with respect to S.
Define the set SolC,ζ(S) of formal power series solutions of S around ζ as

{f ∈ C[[y1 − ζ1, . . . , yn − ζn]]U |Φf (Ψζ(p)) = 0,Φf (Ψζ(q)) 6= 0 for all p ∈ S=, q ∈ S 6=}.

The next theorem yields the connection between formal power series solutions and
non-centered solutions.

Theorem 1.52. Let F ⊇ C be a differential field of meromorphic functions in n complex
variables and ζ ∈ Cn a regular point with respect to a simple differential system S. Let
e ∈ SoloE(S) such that no φe(u

(j)
i ) has a pole in ζ for a parametric or generically

parametric differential variable u(j)
i . Then, ψζ(e) ∈ SolC,ζ(S).

The proof is postponed to the end of this subsection. Call the set of these formal
power series solutions constructed in this theorem regular formal power series solu-
tions (with respect to S) and denote them by SoloC,ζ(S). This theorem implies the
following corollary, asSoloE(S) 6= ∅ for S, and the parametric and generically parametric
can be chosen as constants.

Corollary 1.53. Let F ⊇ C be a differential field of meromorphic functions in n
complex variables and ζ ∈ Cn a regular point with respect to a simple differential system
S over F{U}. Then, SolC,ζ(S) 6= ∅.

The proof of the following proposition shows that the detection of most strongly
regular points ζ ∈ Cn with respect to a differential system S over F{U} is possible after
a Thomas decomposition {S1, . . . , Sk} of S is computed.

Proposition 1.54. Let F = C(y1, . . . , yn) and S a simple differential system over F .
The set of strongly regular points with respect to S is Zariski-open in Cn

Proof. Compute a Thomas decomposition {S1, . . . , Sk} of S. Let G be a set of all field
elements by which one divides during the algorithm. Let {T1, . . . , Tk′} be the set of all
intermediate T -lists (cf. Section 1.3) during the algorithm. For each p ∈ Si for 1 ≤ i ≤ k
or p ∈ Ti for 1 ≤ i ≤ k′ let I ′p be the ideal generated by the F -coefficients of init(p), I ′′p
be the ideal generated by the F -coefficients of sep(p), and Ip := I ′p ∩ I ′′p . Then the set
of strongly regular points is given by the complement of the zero set in Cn of⋂

g∈G
〈g〉 ∩

⋂
1≤i≤k

⋂
p∈Si

Ip ∩
⋂

1≤i≤k′

⋂
p∈Ti

Ip

where all ideals are taken in the polynomial ring C[y1, . . . , yn].

The next proposition shows that formal power series solutions are compatible with
splitting a system into simple differential systems.

Proposition 1.55. Let F ⊇ C be a differential field of meromorphic functions in n
complex variables and ζ = (ζ1, . . . , ζn) ∈ Cn a strongly regular point with respect to a
system S of differential equations and inequations over F{U} and {S1, . . . , Sk} the asso-
ciated Thomas decomposition. Then, the set of formal power series solutions around ζ
of the systems in this differential Thomas decomposition partitions the set of solutions
of S around ζ, i.e.,

SolC,ζ(S) =

k⊎
i=1

SolC,ζ(Si) .
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Proof. This follows similar to the proof of the Decompose-algorithms (cf. Algorithm 1.41
and Algorithm 1.32): Every splitting (cf. Split, i.e., Algorithm 1.19) partitions the set
of non-centered solutions of the system. This is clearly also true for formal power series
solutions centered around ζ. The conditions for strong regularity ensure that one does
not divide by zero or get poles during the computation.

The following lemma is used in the proof of Theorem 1.52.

Lemma 1.56. Let F ⊇ C be a differential field of meromorphic functions in n complex
variables and ζ = (ζ1, . . . , ζn) ∈ Cn a regular point with respect to a simple differential
system S over F{U}. Let e ∈ SoloE(S) such that no φe(u

(j)
i ) has a pole in ζ for a

parametric or generically parametric differential variable u(j)
i . Then ψζ(e) ∈ C[[y1 −

ζ1, . . . , yn − ζn]].

Proof. For the proof it suffices to show that φe(u
(j)
i ) does not have a pole in ζ for any

differential variable u(j)
i ∈ {U}∆. For principal differential variables show that the zeros

of equations solved in the definition of SoloE are holomorphic at ζ. These polynomial
equations have holomorphic coefficients by the choice of (generically) parametric diffe-
rential variables, the definition of (weakly) regular points and by induction over the
differential variables in order of their ranking. Furthermore, the initial of these polyno-
mials does not have a zero at ζ by the definition of regular points and, hence, the inverse
of the initial is still a holomorphic function. Thus, the zero is a zero of a polynomial
with initial 1 and holomorphic coefficients. By Hensel’s Lemma its zeros are again
holomorphic19. The claim follows.

The following lemma clarifies the connection between the different evaluation maps.
It can be proved by a lengthy but straight forward computation.

Lemma 1.57. Let e ∈ E, p ∈ F{U}. Then, ψζ(Φψζ(e)(Ψζ(p))) = ψζ(φe(p)) if ζ ∈ Cn
regular w.r.t {p=}.

Proof of Theorem 1.52. Lemma 1.56 states that everything done here is well-defined
and does not yield poles. Let p ∈ S= and q ∈ S 6=. We have to show that Φψζ(e)(Ψζ(p)) =
0 and Φψζ(e)(Ψζ(q)) 6= 0. Let r ∈ F{U}. The formal power series Φψζ(e)(Ψζ(r)) ∈
C[[y1−ζ1, . . . , yn−ζn]] is zero if and only if all its coefficients are. The coefficient of (y1−
ζ1)i1 . . . (yn− ζn)in is zero if and only if ψζ(∂iΦψζ(e)(Ψζ(r))) = 0. Thus, all power series
coefficients are zero if and only if ψζ({Φψζ(e)(Ψζ(r))}∆) = {0}. As Φψζ(e) and Ψζ are
homomorphisms of differential C-algebras this is equivalent to ψζ(Φψζ(e)(Ψζ({r}∆))) =
{0}. The claim follows from Lemma 1.57, as φe({p}∆) = {0} and φe({q}∆) 6= {0}.

The end of this subsection gives some concluding remarks. First, computing a
formal power series solution up to some order is straight forward using reduction. A so-
called quadratic Newton-like method exists for regular differential systems [HLR03].
However, contrary to the claims in this paper, the set of formal power series solutions is
not invariant under decomposing a system into regular differential systems20. Another
approach can be seen in the unpublished work [BL07].

Second, the results of this subsection can be strengthened in the case of constant
coefficients.

19Furthermore, these zeros are distinct, since the separant of the polynomial is non-zero at ζ.
20The decomposition in the sense of [HLR03] makes solution sets larger, e.g. {ut = 0, u 6= 0} is

decomposed into {ut = 0}, adding the zero function as solution.
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Corollary 1.58. Let S be a system of differential equations and inequations over C{U}.
The isomorphism E → C[[y1− ζ1, . . . , yn− ζn]]U :

∑
a

(j)
i

zi

i! 7→
∑
a

(j)
i

(y1−ζ1)i1 ·...·(y1−ζn)in

i!
restricts to a bijection between SolE(S) ⊂ E and SolC,ζ(S) for every ζ ∈ Cn.

Third, there is the following peculiar effect that constructing formal power series
solutions from non-centered solutions depends on the chosen center. This is particularly
noticeably in the bijection from the previous corollary.

Example 1.59. Consider F = C, U = {u}, ∆ = {∂y} and the system S = {uyy = 0}
consisting of a single ordinary differential equation. Then, e := z ∈ SolE(S) ⊂ C[[z]].
Consider the two points ζ = 0 ∈ C1 and ζ ′ = 1 ∈ C1. Then, the bijection from
Corollary 1.58 maps the non-centered solution e to y ∈ SolC,ζ(S) ⊂ C[[y]] for the point
ζ and to y − 1 ∈ SolC,ζ′(S) ⊂ C[[y − 1]] for the point ζ ′. /

1.4.3 Convergent Power Series Solutions

Riquier’s existence theorem ensures that the regular formal power series solutions in
the sense of Theorem 1.52 of simple differential systems are convergent under mild
assumptions. For proofs see [Riq10], [Tho29, Tho34, Tho40] or [Rit50, chap. VIII].
Additionally, [BR78, §4.6] proves the special case of one ordinary differential equation
of order two in an elegant way.

Let F ⊇ C be a differential field of meromorphic functions in n complex variables
y1, . . . , yn, ∂i = ∂

∂yi
, and ζ ∈ Cn a regular point with respect to a simple differential

system S. Let V = {v1, . . . , vk} ⊂ {U}∆ be a cone decomposition of the complement
of {ld(S=)}∆ in {U}∆ with corresponding set of reductive prolongations ∆(vi, V ) for
each vi, 1 ≤ i ≤ n. Let f := ψζ(e) ∈ SoloC,ζ(S). Call f a regular formal power
series solution of S with analytical initial conditions around ζ if the formal
power series

(
∂i1y1

. . . ∂inynf(u(j))
)
(w1, . . . , wn) represents an analytical function around ζ

for all u(j)
i ∈ V , where wi = yi − ζi if ∂i ∈ ∆(u

(j)
i , V ) and wi = ζi otherwise. Denote

the set of these solutions by SolhoC,ζ(S).
This means that the parametric and generically parametric differential variables are

partitioned into a finite set of classes. Each of these classes corresponds to a formal
power series in at most n indeterminates. If all of these formal power series are conver-
gent, then the corresponding solutions are also convergent under mild assumptions:

Theorem 1.60 (Riquier). Let < be an orderly Riquier ranking. Let F be a diffe-
rential field of meromorphic functions in n complex variables, S be a simple differential
system in F{U}, and ζ ∈ Cn a regular point with respect to S. Then all elements in
SolhoC,ζ(S) have positive radius of convergence.

[Ger09] states a casual version of Theorem 1.60 without the conditions of a regular
point and regular solutions. However, the assumptions of Theorem 1.60 are sharp.
Example 1.50 shows that ζ needs to be regular, and Example 2.90 shows that the
restriction to Sol0C,ζ instead of SolC,ζ is necessary. Furthermore, the theorem in [Ger09]
states a uniqueness, which is only satisfied in the quasi-linear case (cf. Example 2.78).

This theorem is a reformulation of the original result from [Riq10] in the context of
simple differential systems. Theorem 1.60 follows from the version in [Rit50] because
of the following reasons. [Rit50] needed the system to be tail reduced. This can be
done without loss of generality for S without changing the set of solutions. The system
needs to have equations which have all main degree one in [Rit50]. However, replacing
a differential equation in a simple differential system by its derivatives with respect to
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reductive prolongations ensures that all equations are of main degree one and conserves
simplicity. Doing this enlarges the set of solutions. An algebraic equation for the
coefficients of the power series rectifies this problem. For details see Subsection 2.5.1.
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1.5 Ideals and Simple Systems

For want of proper algebraic viewpoints, questions which date
from the beginning of mathematical analysis remained without
systematic treatment. [. . . ] The problem of the number of arbi-
trary constants [. . . ] failed to receive even a sound formulation.

Joseph Ritt
in [Rit38a]

This section treats the differential ideal associated to a simple differential system. It
contains all differential polynomials vanishing on all solutions of the simple system or,
equivalently, the elements that reduce to zero with respect to the simple systems. These
ideals are the basis for differential elimination (cf. Appendix A) and the differential
dimension polynomial (cf. Section 1.6).

1.5.1 Simple Algebraic Systems and their Ideals

This subsection introduces ideals associated to simple algebraic systems. Let F be a
field of characteristic zero and denote its algebraic closure by F .

Definition 1.61. Let S be an algebraic system over F [y1, . . . , yn] and q the product of
all initials of the equations in S=, i.e. q :=

∏
p∈S= init(p). Call

I(S) := 〈S=〉F [y1,...,yn] : q∞

=
{
p ∈ F [y1, . . . , yn]

∣∣∣qr · p ∈ 〈S=〉F [y1,...,yn] for some r ∈ Z≥0

}
the ideal associated to the system S. In particular, if S is a simple algebraic system
over F [y1, . . . , yn], then call I(S) the ideal associated to the simple system S.

For X ⊆ Fn denote the vanishing ideal of X in F [y1, . . . , yn] = O(F
n
) by

I(X) :=
{
p ∈ F [y1, . . . , yn]

∣∣φx(p) = 0 for all x ∈ X
}

.

By Hilbert’s Nullstellensatz the vanishing ideal is radical, and radical ideals are in
inclusion reverting bijection with closed sets in the Zariski topology on Fn. The ideal
of a simple algebraic system S describes the Zariski closure of the solutions of S.

Proposition 1.62 ([Rob12, Proposition 2.2.7]). Let S be a simple algebraic system over
F [y1, . . . , yn]. Then,

I(S) = I(Sol(S)) .

In particular, I(S) is a radical ideal21. Furthermore, a polynomial p ∈ F [y1, . . . , yn] is
an element of I(S) if and only if the remainder of an iterated pseudo-reduction of p
modulo S= is zero, i.e. Reduce(S, p) = 0.

21The radicalness of I(S) is an implication of the square-freeness of simple systems. Saturation is only
needed with respect to initials, whereas in other contexts (cf. [Hub03a, Theorem 7.5,Proposition 7.6])
a saturation with respect to the initials and separants is necessary for a radical ideal.
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Another description of the ideal associated to the simple algebraic system S is given
by saturating with respect to inequations instead of with respect to initials. This,
however, only gives the ideal up to powers, i.e., I(S) =

√
〈S=〉 : q∞ where q :=

∏
p∈S 6= p

[Rob12, 2.2.42]. Note that neither the initials of equations nor the inequations of a
simple algebraic system S are zero-divisors modulo I(S).

The solution set of a simple algebraic system is smooth.

Proposition 1.63. For a simple algebraic system S in F [y1, . . . , yn] the set Sol(S) is
smooth.

Proof. Let m = 〈y1, . . . , yn〉 be the maximal ideal in R := F [y1, . . . , yn] corresponding
to a point in Sol(S) and R̂ the completion of R with respect to m. The ideal R̂⊗R I(S)
is generated by S=, as the initials of S= are units in R̂. In the following, Hensel’s
lemma (in the form that it yields a unique root [Eis95, Theorem 7.4]) is applicable, as
sep(p) 6∈ m for each p ∈ S= due to the square-freeness of S. Thereby, the polynomial p
in S= of lowest leader x factors into a unit and a non-unit p̂ of main degree 1 in the ring
R̂. Thus, replace p by p̂ in the set of generators of R̂⊗R I(S) . Iteratively, substituting
x in the higher polynomials, R̂ ⊗R I(S) is generated by |S=| polynomials of degree
one. Thus, these polynomials are linear independent modulo R̂ ⊗R m. In particular,
R̂/(R̂⊗R I(S)) is a regular local ring. As R̂ is a flat R-module, also the completion of
R/I(S) with respect to m is a regular local ring. Thus, I(S) is smooth at m.

1.5.2 Simple Differential Systems and their Ideals

For this subsection let F be a differential field of characteristic zero, ∆ = {∂1, . . . , ∂n}
a non-empty set of derivation operators, and U = {u(1), . . . , u(m)} a non-empty set of
differential indeterminates.

This subsection introduces ideals associated to simple differential systems and their
most important properties. In general, differential ideals can be rather complicated,
for example there are differential ideals which are not finitely generated or even not
recursive [GMO91]. In contrast, ideals associated to simple differential systems have
manageable properties.

Definition 1.64. Let S be a differential system over F{U} and q the product of all
initials and separants22 of the equations in S=, i.e. q :=

∏
p∈S= (init(p) · sep(p)). Call

I(S) := 〈S=〉∆ : q∞

= {p ∈ F{U}|qr · p ∈ 〈S=〉∆ for some r ∈ Z≥0}

the ideal associated to the system S. In particular, if S is a simple differential
system over F{U}, then call I(S) the ideal associated to the simple system S.

The Kolchin topology is the differential algebra analogon of the Zariski topology
(cf. [Kol73, Chapter IV], [BC99]). A set X ⊆ E is Kolchin closed if there is a
differential ideal I in F{U} such that X = SolE(I). The Kolchin closed sets form the
closed sets of the Kolchin topology. The vanishing ideal of X ⊆ E in F{U} is

I(X) := IF{U}(X) := {p ∈ F{U}|φe(p) = 0 for all e ∈ X} .

The closure of a set X ⊆ E in the Kolchin topology is given by X = I(SolE(X)).
22In contrast to the algebraic case, saturation with respect to the separants is necessary, as they are

the initials of derivations of differential equations.
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The notion of the vanishing ideal in differential algebra depends on the set of ad-
missible solutions. However, it is independent of sets of admissible solution with a
Nullstellensatz, as stated below. In classical differential algebra this set of solutions lies
in a differential fields. There exists a Nullstellensatz of Ritt and Raudenbush. Ritt
proved that theorem for the case of differential equations with meromorphic coefficients
and power series at a generic center of expansion as solutions (cf. [Rit32, Theorem in
§VII]) and Raudenbush the general case of differential fields (cf. [Rau34, Theorem 9]).
A Nullstellensatz for non-centered solutions is easy to prove.

Theorem 1.65 (Nullstellensatz). Let I be a radical differential ideal in F{U}.

(1) I 6= 〈1〉∆ implies SolE(I) 6= ∅.
(2) f ∈ F{U} with f(SolE(I)) = {0} then f ∈ I.

Proof. Any radical differential ideal is finitely differentially generated [Kol73, Corol-
lary III.4.1] and, thus, has a non-trivial decomposition into simple differential systems.
Lemma 1.47 implies the existence of a solution for each of these systems, which proves
(1). Part (2) follows using the Rabinowitz-trick; see [Rit32, §85] for details.

There is no Nullstellensatz for formal power series solutions at a fixed center, as
t∂u∂t (t)− 1 has no such solution around zero. (The solutions are log(t) + c for c ∈ C.)

Proposition 1.66 (cf. [Rob12, Proposition 2.2.31, Lemma 2.2.42]). Let S be a simple
differential system in F{U}. Then

I(S) = I(SolE(S)) .

In particular, I(S) is a radical ideal. Furthermore, a differential polynomial p ∈ F{U}
is an element of I(S) if and only if the remainder of an iterated differential pseudo-
reduction of p module S= is zero, i.e. Reduce(S, p) = 0.

Again, I(S) =
√
〈S=〉∆ : q∞ for a simple differential system S where q :=

∏
p∈S 6= p

[Rob12, Lemma 2.2.42]. In particular, neither initials and separants of equations nor
inequations are zero-divisors modulo I(S).

Corollary 1.67. The maps SolE and I form an inclusion reverting bijection between
closed sets in the Kolchin topology on E and radical differential ideals.

A Thomas decomposition is compatible with decomposition of the associated ideals.

Proposition 1.68 ([Rob12, 2.2.51]). Let S be a (not necessarily simple) differential
system over F{U}. Let S1, . . . , Sk be a Thomas decomposition of S. Then

I(S) =
k⋂
i=1

I(Si) .

By the last two propositions, membership to a radical differential ideal can therefore
be decided by reducing modulo every simple differential system of a Thomas decom-
position.

Corollary 1.69. Let p1, . . . , p` ∈ F{U} and S1, . . . , Sk a Thomas decomposition of
{p1 = 0, . . . , p` = 0}. Let r ∈ F{U}. Then

r ∈
√
〈p1, . . . , p`〉 ⇔ Reduce(Si, r) = 0 for all i = 1, . . . , k .
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The following proposition shows that prime ideals can be described by simple diffe-
rential systems. It is true in both the algebraic and the differential case.

Proposition 1.70 ([Rob12, Proposition 2.2.45, 2.2.46]). For every prime ideal I in
F [y1, . . . , yn] resp. F{U} there exists a simple algebraic resp. differential system S with
I = I(S).

Proposition D.1 gives a sufficient criterion that I(S) is prime for a simple algebraic
or differential system S: all equations in S= have main degree one.
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1.6 The Differential Dimension Polynomial

“For many questions this number is sufficient to prove that two
systems are not equivalent”

Élie Cartan
in [CE79, Cartan, 29.4.1932]

The differential dimension polynomial is an important description of a simple diffe-
rential system and it measures the restrictiveness of aforementioned system on admissi-
ble solutions. Though it gives less information than the differential counting polynomial
(cf. Section 2.3), the dimension polynomial has the advantage that it is fully algorith-
mic (cf. Remark 1.77) and has stronger invariance conditions (cf. Theorem 1.74). This
section extends the differential dimension polynomial from prime differential ideals to
differential ideals associated to simple differential systems, and thereby makes the diffe-
rential dimension polynomial much more suitable for algorithmic computations.

For this section, let F be a differential field of characteristic zero, < an orderly
ranking, ∆ = {∂1, . . . , ∂n} be a non-empty set of derivation operators, and U =
{u(1), . . . , u(m)} be a non-empty set of differential indeterminates.

Preliminaries on Numerical Polynomials The differential dimension polynomial
is a numerical polynomial, i.e., a rational polynomial that maps an integer to an integer.
The following lemma is well-known.

Lemma 1.71. The Z-module of numerical polynomials of degree ≤ i is free with basis{(
`+ k

k

)
∈ Q[`]

∣∣∣∣0 ≤ k ≤ i} .

Remark 1.72. Define a total order on the numerical polynomials p =
∑d

k=0 ak
(
`+k
k

)
and q =

∑d
k=0 bk

(
`+k
k

)
by p ≤ q if p(`) ≤ q(`) for all ` sufficiently large. Then p ≤ q if

and only if either p = q or there is a j ∈ {0, . . . , d− 1} such that ak = bk for all k > j
and aj < bj . In the second case write p < q. If p(`− `0) ≤ q(`) ≤ p(`+ `0) for some `0
and all ` large enough, then the degrees and leading coefficients of p and q coincide. /

The next lemma shows how to express binomial coefficients in the standard basis
from Lemma 1.71. It can inductively be proved using Pascal’s rule

(
a−1
b

)
=
(
a
b

)
−
(
a−1
b−1

)
.

Lemma 1.73. Let `, k, d ∈ Z≥0. Then(
`+ k − d

k

)
=

min(k,d)∑
i=0

(−1)i
(
d

i

)(
`+ k − i
k − i

)
.

1.6.1 The Differential Dimension Polynomial

The existence and fundamental properties of the differential dimension polynomial for
prime ideals were first announced by Kolchin in [Kol64]. A first proof was published
by his student Johnson in [Joh69a] using differentials to reduce the problem to the
case of modules over a commutative ring. The originally announced proof by counting
cardinalities of transcendence bases was then published in Kolchin’s book [Kol73,
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§II.12]. A good historical reference for this topic is [BC99, §1.11], and a rich compilation
of result on dimension polynomials can be found in the monograph [KLMP99]. Recently,
Levin generalized the differential dimension polynomial to describe certain subsets of
the full solution set of a prime differential ideal [Lev10]. For other recent development,
especially with respect to difference dimension polynomials, see [Doe09].

This subsection relaxes the condition of primeness from Kolchin’s Theorem to
ideals associated to a simple differential system. This generalization is important for
constructive mathematics; a decomposition into prime ideals is computationally much
harder than a decomposition into simple differential systems.

The dimension polynomial yields invariants under differential birational maps. Re-
call that for a commutative ring R the total quotient ring K(R) is the localization
K(R) := Q−1R, where Q ⊂ R the multiplicatively closed set of non-zero-divisors. The
natural homomorphism R → K(R) : 1 7→ 1 is a monomorphism. Let R and R′ be
two differential algebras. A differential birational map from R to R′ is given by an
isomorphism ϕ : K(R)→ K(R′) of F -algebras that commutes with derivations.

The differential dimension function

ΩI : Z≥0 7→ Z≥0 : ` 7→ dim(F{U}≤`/I≤`) .

measures the size of the solution set of a differential ideal I ⊆ F{U} using the Krull
dimension. It depends on the filtration and is not invariant under birational maps.

The differential dimension polynomial implies certain invariants. A differential
transcendence basis of a differential F -algebra over ∆ is a set {r1, . . . , rd} ⊂ R of
maximal cardinality with

⊎d
i=1{ri}∆ algebraically independent over F . The differen-

tial dimension of R is defined23 as the cardinality d of a differential transcendence
basis. For example, a differential transcendence basis of F{U} is U = {u(1), . . . , u(m)},
and its differential dimension is m.

This allows to state the main theorem, the full version of Theorem 1.5.

Theorem 1.74. Let S be a simple differential system with respect to an orderly ranking
< and I := I(S) ⊆ F{U} the differential ideal associated to S. Then:

(1) There is a numerical polynomial ωI(`) ∈ Q[`] called differential dimension
polynomial such that ωI(`) = ΩI(`) for sufficiently big ` ∈ Z≥0.

(2) 0 ≤ ωI(`) ≤ m
(
`+n
n

)
. In particular, dI := deg`(ωI) ≤ n. Furthermore, ωI can

be written uniquely as ωI(`) =
∑n

i=0 ai
(
`+i
i

)
with ai ∈ Z for all i ∈ {0, . . . , n} by

Lemma 1.71.

(3) The values dI and ai for i ≥ dI are invariant under differential birational maps
and, thus, only depend on the isomorphism class of K(F{U}/I). Call adI the
typical dimension of I.

(4) an is equal to the differential dimension of F{U}/I.

Let S′ be a further simple differential systems with respect to <, and J := I(S′) ⊆ F{U}.
Assume that I ⊆ J . Then:

(5) ωI ≥ ωJ .

Additionally, assume that ωI = ωJ . Then:

23For a prime differential ideal I the differential dimension is often defined as m-th coefficient of
the differential dimension polynomial [Kol73, KLMP99]. The definition above includes non-prime
differential ideals. In the special case the definitions are equivalent by [KLMP99, Theorem 5.4.4].
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(6) ld(S=) = ld((S′)=).

(7) I = J if and only if degx(Sx) = degx(S′x) for all x ∈ ld(S=) = ld((S′)=).

Section 1.7 is dedicated to the proof of this theorem.

Remark 1.75. This theorem can be slightly strengthened, as I ⊆ J and ωI = ωJ
already imply degx(Sx) ≤ degx(S′x) for all x ∈ ld(S=) by Appendix D. Thus, I = J if
and only if

∏
x∈ld(S=) degx(Sx) =

∏
x∈ld(S=) degx(S′x). /

Remark 1.76. The degrees of the equations used in Theorem 1.74.(7) depend on the
chosen orderly ranking. This is not a problem for the comparison of two different sets
of solutions using Theorem 1.74.(7), as the dimension polynomials for both ideals only
need to be computed with respect to the same ranking. /

The differential dimension polynomial can be computed based on the Janet de-
composition, as the proof in Section 1.7 shows that the dimension polynomial can be
interpreted as the number of free differential variables in a simple differential system.
The formula follows from the next Subsection 1.6.2 about Hilbert-Samuel polynomi-
als, which are the “filtered version” of the Hilbert polynomials.

Remark 1.77. Let I = I(S) be the differential ideal associated to a simple differential
system S. The differential dimension polynomial of I is the Hilbert-Samuel polyno-
mialHSS of S defined in the next subsection. For its computation let S= = {p1, . . . , pk},
θi := ord(pi), and, using the Janet decomposition, let ηi = |∆(pi, S

=)| the number of
reductive prolongations of pi. Then,

ωI(`) = HSS(`) = m

(
`+ n

n

)
−

k∑
i=1

(
ηi + `− θi
`− θi

)

= m

(
`+ n

n

)
−

k∑
i=1

(
ηi + `− θi

ηi

)
/

Example 1.92 below presents the implementation of the dimension polynomial.

Example 1.78. Consider the heat equation h = vt + vxx and the viscous Burgers’
equation b = ut + uxx + 2ux · u from Example 1.6. MAPLE’s pdsolve [map] finds the
following sets of solutions.{

v(t, x) = F1(t)F2(x)
∣∣∣ d
dt
F1(t) = c1F1(t),

d2

dx2
F2(x) = −c1F2(x), c1 ∈ C

}
{
u(t, x) = c4 tanh(c3t+ c4x+ c2)− c3

2c4

∣∣∣c2, c3, c4 ∈ C
}

These sets of solutions only depend on a finite number of parameters. Both the singleton
consisting of the heat equation and the singleton consisting of the viscous Burgers’
equation are a simple differential system, and both these systems consist of one equation
with a leader of order two. In particular, their differential dimension polynomials

ωI({h=}) = ωI({b=}) = 1 ·
(
`+ 2

2

)
−
(

2 + `− 2

2

)
= 2`+ 1

show that the set of solutions depends on an infinite number of parameters and that the
solutions found by MAPLE’s pdsolve only account for a small subset of all solutions. /
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1.6.2 Hilbert Polynomials

Sets of differential variables closed under the action of the derivations in ∆ and their
complements allow to compute the differential dimension polynomial and to prove its
properties. This subsection describes certain combinatorial information given by the
Janet decompositions, which can be encoded in numerical polynomials. For details
and proofs see [Kol73, §0.17], [Rob12], [Cou95, §9], or [GP08, §5].

Let W be a set of differential variables closed under the action of ∆. Let W̃ =
{w1, . . . , wk} ⊂ W be a cone decomposition of W , i.e. W =

⊎
w∈W̃ {w}∆(w,W̃ )

. The
Hilbert function of W is defined as

h̃ : Z≥0 → Z≥0 : ` 7→
∣∣∣W ∩ {u(j)

i

∣∣∣ordu
(j)
i = l

}∣∣∣ .

Lemma 1.79. Let W̃ = {w1, . . . , wk} ⊂ W be a disjoint cone decomposition of some
set of differential variables W =

⊎
w∈W̃ {w}∆(w,W̃ )

. Let ηi be the number
∣∣∣∆(wi, W̃ )

∣∣∣ of
reductive prolongations of wi and θi := ord(wi). The Hilbert function h̃ equals

h̃W (`) =

k∑
i=1

(
ηi − 1 + `− θi

`− θi

)
=

k∑
i=1

(
ηi − 1− θi + `

ηi − 1

)
for ` ≥ max{θi|1 ≤ i ≤ k}. This is a numerical polynomial called the Hilbert
polynomial and denoted by HW (`). In particular, the Hilbert function is ultimately
a polynomial function. An important special case is H{U}∆(`) = m

(
`+n−1
n−1

)
.

Also the complement {U}∆ \W of a set W of differential variables closed under the
action of ∆ defines a Hilbert function

h̃{U}∆\W (`) := m

(
`+ n− 1

n− 1

)
− h̃W (`) ,

which is ultimately a polynomial function. A cone decomposition of this complement
(cf. Algorithm B.1) computes the Hilbert function with the same formulas as above.

Instead of the number of differential variables in order `, the Hilbert-Samuel
function

h̃sW : Z≥0 → Z≥0 : ` 7→
∣∣∣W ∩ {u(j)

i

∣∣∣ordu
(j)
i ≤ `

}∣∣∣ .

of a set W of differential variables closed under the action of ∆ counts the number of
differential variables up to order `.

Lemma 1.80. Let W̃ = {w1, . . . , wk} ⊂ W be a disjoint cone decomposition of a set
of differential variables W =

⊎
w∈W̃ {w}∆(w,W̃ )

. Let ηi be the number
∣∣∣∆(w, W̃ )

∣∣∣ of
reductive prolongations of wi and by θi := ord(wi). The Hilbert-Samuel function h̃s
is

HSW (`) =

k∑
i=1

(
ηi + `− θi
`− θi

)
=

k∑
i=1

(
ηi + `− θi

ηi

)
for ` ≥ max{θi|1 ≤ i ≤ k}. This is a numerical polynomial called the Hilbert-
Samuel polynomial and denoted by HSW (`). In particular, the Hilbert-Samuel
function is ultimately a polynomial function and HS{U}∆(`) = m

(
n+`
n

)
.
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Again, the same definitions hold for a complement {U}∆\W of a setW of differential
variables closed under the action of ∆. Define the Hilbert-Samuel function

h̃s{U}∆\W (`) := m

(
`+ n

n

)
− h̃sW (`) ,

which is ultimately a polynomial function and can be computed by a cone decomposition
of the complement of W .

For a differential system S define above functions and polynomials according to the
complement of the ∆-closed set generated by the leaders of the equations, i.e.,

HS(`) := H{U}∆\{ld(S=)}∆(`) the Hilbert polynomial of S,

HSS(`) := HS{U}∆\{ld(S=)}∆(`) the Hilbert-Samuel polynomial of S.

These numerical polynomials can be described in the standard basis.

Lemma 1.81. Let W̃ = {w1, . . . , wk} ⊂ W be a disjoint cone decomposition of a
set of differential variables W , i.e. W =

⊎
w∈W̃ {w}∆(w,W̃ )

. Denote by ηi the num-

ber
∣∣∣∆(w, W̃ )

∣∣∣ of reductive prolongations of wi and by θi the order ord(wi). For ` ≥
max{θi|1 ≤ i ≤ k} the following identities hold for the Hilbert polynomial H and
Hilbert-Samuel polynomial HS.

HW (`) =

k∑
i=1

(
(ηi − 1) + `− θi

(ηi − 1)

)
by Lemma 1.79

=

k∑
i=1

min(θi,ηi−1)∑
j=0

(−1)j
(
θi
j

)(
`+ (ηi − 1)− j

(ηi − 1)− j

)
by Lemma 1.73

HSW (`) =

k∑
i=1

(
ηi + `− θi

ηi

)
by Lemma 1.80

=

k∑
i=1

min(θi,ηi)∑
j=0

(−1)j
(
θi
j

)(
`+ ηi − j
ηi − j

)
by Lemma 1.73

1.6.3 Examples

For each differential prime ideal I there exists a simple differential system S with
I = I(S) Proposition 1.70. Thus, the differential dimension polynomial defined above
includes the version of Kolchin. Furthermore, there exist ideals which are not prime
but are associated to a simple differential system.

Example 1.82. Consider F = C, U = {u, v}, ∆ = {∂t}, p = u2
1 − v, q = v2

1 − v, and
S = {p = 0, q = 0, v 6= 0}. The differential ideal I := I(S) associated to S is not prime,
as p− q = u2

1 − v2
1 = (u1 − v1)(u1 + v1). /

In the original theorem of Kolchin two differential prime ideals I ⊆ J are equal if
and only if ωI = ωJ . The version of the theorem given here needs the degrees of the
equations in the simple differential system as additional criterion for equality of ideals
associated to simple differential systems contained in each other (cf. Theorem 1.74.(7)).
The following example shows that this extra complication is necessary.
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Example 1.83. Consider the differential ideals 〈u0 · (u0−1)〉∆ ( 〈u0〉∆ in F{u}. Both
ideals are associated to a simple differential system that contains only the ideals gen-
erator as equation, and both ideals have differential dimension polynomial 0. However,
these ideals are not equal. /

The next example shows that using an orderly ranking is needed for the computation
of the differential dimension polynomial.

Example 1.84 ([CE79, Einstein, 16.5.1932]). Let F = C(x, t), U = {u} and ∆ =
{ ∂∂x ,

∂
∂t}. The heat equation ut +uxx = 0 has leader uxx for any orderly ranking. Thus,

the dimension polynomial is 2` + 1. However, “illegally” considering the formula of
the differential dimension polynomial for a ranking with ut > uxx yields the dimension
polynomial `+ 1. In particular, the leading coefficient does change. /

1.6.4 Interpretation of the Dimension Polynomial

This subsection describes information24 that the dimension polynomial yields about a
differential ideal. This is motivated by the following demonstrative example.

Example 1.85 ([CE79, Cartan, 3.12.1929, Appendix I]). Consider the m = 7 diffe-
rential indeterminates U = {X,Y, Z, r, u, v, w}, n = 4 derivations ∆ = { ∂∂t ,

∂
∂x
, ∂∂y ,

∂
∂z
},

and the system S consisting of the following differential equations.

Zy − Yz = 0,

Zx −Xz = 0,

Yx −Xy = 0,

Xx + Yy + Zz + 4π fr = 0,

rt + rxu+ rux + ryv + rvy + rzw + rwz = 0,

ut + uux + vuy + wuz −X = 0,

vt + uvx + vvy + wvz − Y = 0,

wt + uwx + vwy + wwz − Z = 0

This systems is simple with respect to the degree-reverse lexicographical ranking.
The dimension polynomial is given by

ωI(S)(`) = l3 +
13

2
`2 +

25

2
`+ 7 = 6

(
`+ 3

`

)
+

(
`+ 2

`

)
.

The second representation in the free basis of numerical polynomials is more useful. For
example, in the cone decomposition of the parametric differential variables

{X,Y }{ ∂
∂t
, ∂
∂y
, ∂
∂z

} ] {Z}{ ∂
∂t
, ∂
∂z

} ] {r, u, v, w}{ ∂
∂x
, ∂
∂y
, ∂
∂z

}
there are 6 cones of dimension 3 and 1 cone of dimension 2, similar to the coefficients
of the dimension polynomial.

The regular non-centered solutions SoloE(S) yield all formal power series solutions
of the system S by Remark 1.49, as S contains no inequations. In particular, the Janet

24Regard all descriptions of the solution set presented in this subsection as global descriptions, as
is standard in differential algebra. However, from the standpoint of differential geometry, they only
describe local properties, which are correct generically. Recall that the ranking < is orderly.
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cone decomposition shows exactly which coefficients can be chosen freely and which
coefficients are determined by these choices, i.e., providing (convergent) power series

X(t, 0, y, z), Y (t, 0, y, z), Z(t, 0, 0, z), r(0, x, y, z), u(0, x, y, z), v(0, x, y, z), w(0, x, y, z)

uniquely determines a solution (which by Riquier’s Existence Theorem 1.60 converges).
There are 6 functions in 3 indeterminates and 1 function in 2 indeterminates, as the
coefficients of the dimension polynomial. Cartan called the number of freely choosable
functions of the highest number of indeterminates the degré d’arbitraire or generality
index.

The dimension polynomial counts parametric differential variable up to a certain
order. For the number in a certain order, the Hilbert polynomial agrees with the
correct number on all but finitely many orders. For this example it is

HS(`) = 3`2 + 10`+ 7 = 6

(
`+ 2

`

)
+

(
`+ 1

`

)
.

Again, 6 and 1 appear as coefficients. Einstein compared this polynomial to the
number

(
`+n−1

`

)
=
(
`+3
`

)
of power series coefficients freely choosable for an arbitrary

function in order `. He compared their asymptotic behavior by

3`2 + 10`+ 7(
`+3
`

) = 18
1

`
+O

((
1

`

)2
)

and 18 is called the strength of the (determined) differential system. It also equals

18 = deg`(

(
`+ 3

`

)
)!︸ ︷︷ ︸

=(n−1)!=3!=6

· init(3`2 + 10`+ 7)︸ ︷︷ ︸
= 6

(n−2)!
=3

= 6(n− 1)

where, again, the leading coefficient 6 of the dimension polynomial appears. /

Cartan characters and the index of generality The Cartan characters and
the index of generality are well-known descriptions of the size of solutions. We follow
[Sei10, Definition 6.2.1] and define them dependent on the coordinates. However, in
a dense subset of coordinates, the δ-regular coordinates, this definition coincides with
the intrinsic definition given in [Pom94, Definition III.B.11]. The intrinsic Cartan
characters are the smallest ones.

Let S be a simple differential system in F{U} and ` ∈ Z≥0 larger than any order
of a differential variable appearing in an equation of S. Similarly to Algorithm B.1 one
can compute a decomposition of {∆`U}∆ \ {ld(S=)}∆ into cones. It is easy to see that
such a decomposition is possible by using only cone generators of order `, and all cones
have at least one reductive derivation. Define the Cartan characters α(j)

` as the
number of these cones with j reductive derivations for 1 ≤ j ≤ n.

The Cartan characters do not determine the number of parametric differential
variables in order less than `, but they do determine it in order at least `. Thus, the
dimension polynomial determines the Cartan characters, but the Cartan characters
determine the dimension polynomial up to a constant.

Proposition 1.86. Let the dimension polynomial of a simple differential system S be
given as

ωI(S)(`) =
n∑
i=0

ai

(
`+ i

`

)
.
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Then, the Cartan characters of S are

α
(j)
` k =

n∑
i=j

(
`− 1 + i− j

i− j

)
ai .

From this representation one sees that the highest j such that α(j)
` 6= 0 is independent

of ` and is equal to the degree of the dimension polynomial. For this j it holds that
α

(j)
` = aj , independent of `. This number is called the index of generality or degré

d’arbitraire or highest non-zero Cartan character.

The Hilbert polynomial The dimension polynomial determines the Hilbert po-
lynomial. Let S be a simple differential system in F{U} with dimension polynomial

ωI(S)(`) =
n∑
i=0

ai

(
`+ i

`

)
.

Then, the Hilbert polynomial is

HS(`) :=

n∑
i=1

ai

(
`+ i− 1

`

)
.

However, the Hilbert polynomial contains less information than the dimension poly-
nomial, more precisely one cannot recover the coefficient a0 from HS .

The Hilbert polynomial cannot decide whether containment of ideals is proper, even
in the case of linear differential equations.

Example 1.87. Consider S1 = {ux = 0} in C{u} and S2 = {uxx = 0, uxy = 0} with
∆ = {∂x, ∂y}. Then I(S2) ⊆ I(S1) and HS1(`) = 1 = HS2(`). However, I(S2) 6= I(S1),
as ωI(S1)(`) = l + 1 6= l + 2 = ωI(S2)(`).

The Hilbert polynomial implies all other values in this subsection describing the
solution set of a set of differential equations. In particular, also these values cannot
decide whether I(S1) 6= I(S2). /

The Cartan characters yield the same information as the Hilbert polynomial,
which can be shown by a computation using Lemma 1.81. In particular, the Cartan
characters cannot decide whether ideals contained in each other are equal.

Proposition 1.88. Given a simple differential system S in F{U} for an orderly ranking
< with Cartan characters α(1)

k , . . . , α
(n)
k . Then the Hilbert polynomial is

HS(`) =
n∑
i=1

α
(i)
k

(
(`− k) + i− 1

(`− k)

)
,

and it is independent of k (cf. [Sei94, Section III]) for k large enough. The coefficients
of the Hilbert polynomial in basis HS(`) :=

∑n
i=1 ai

(
`+i−1
`

)
are given by

ai =

n∑
j=i

α
(j)
k (−1)j−i

(
k

j − i

)
.
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Free functions The number of free functions one can choose to get a formal power
series solution is strongly linked to the previous values. A similar approach can be
found in [Sei94] and [Sei10, Section 8.2]. Let S be a simple differential system in F{U},
` ∈ Z≥0 larger than any order of a differential variable appearing in any equation or
inequation of S, and α(1)

` , . . . , α
(n)
` the Cartan characters of S. Denote by W the set

of parametric differential variables of order smaller than `. One can arbitrarily (i.e.,
only restricted by inequations) choose the power series coefficients corresponding to W
and the α(j)

` formal power series in j indeterminates for 1 ≤ j ≤ n corresponding to the
cones constructed for the Cartan characters. All these choices lead to

∏
p∈S= mdeg(p)

solutions.

Einstein’s Strength Often, in physical applications the number of arbitrary power
series in n indeterminates is zero and there is a non-zero number of arbitrary power
series in n − 1 indeterminates. For this case Einstein introduced the strength of
a system in [Ein53a, Ein53c]. The strength was used in mathematical physics and
calculated for many examples [Mar74, Hoe77, Mat87, Mat92, Sei95]. The paper [Sch75]
gives the connection between the strength and the number of arbitrary power series in
n − 1 indeterminates for semilinear25 systems and generalizes the strength to the case
of power series in an arbitrary number of indeterminates. The connection to the other
values is described by [Sué91] and generalized to the nonlinear case in [Sei94, Sei10].

Let S be a simple differential system in F{U}. Consider the Hilbert polynomial
HS(k) of S and asymptotically compare it to the number

(
n+`−1

`

)
of coefficients in order

` of a formal power series. Develop HS(`)

(n+`−1
` )

by powers of 1
` to get

HS(`)(
n+`−1

`

) = Z(0) + Z(1) 1

`
+O

(
1

`2

)
In Einstein’s examples there was always Z(0) = 0 and Z(1) 6= 0. The integer Z(1) is
called the strength26 of the system S. Hilbert polynomial, dimension polynomial,
and Cartan characters imply the strength. For a different formula see [Sei94].

Proposition 1.89. Let S be a simple differential system in F{U} for an orderly ranking
< with Hilbert polynomial HS(`) =

∑n
i=1 ai

(
`+i−1
`

)
, ` ∈ Z≥0 larger than any order of

a differential variable appearing in any equation or inequation of S, and α(1)
` , . . . , α

(n)
`

the Cartan characters of S. Then the following holds.

Z(0) = an = α
(n)
`

Z(1) = (n− 1)an−1 = (n− 1)
(
−`α(n)

` + α
(n−1)
`

)
In differential algebra The following corollaries about invariants in differential alge-
bra follow easily from Theorem 1.74 and the previous results in this subsection. Always
assume that ` is large enough for the Cartan characters to be defined. The general
reference is [KLMP99, Section 5.6].

Corollary 1.90. Let S be a simple differential system in F{U}. The differential di-
mension of I(S) is also equal to the highest Cartan character α(n)

` . Furthermore, the
25I.e., systems where all equations have an initial in F and are of main degree one.
26The term strength is used for Z(1) in the literature. However, in [Ein53a] Einstein did not call

Z(1) the strength of a system but “coefficient of freedom”. More paradoxical, a system is stronger (in
the sense of Einstein) if the strength Z(1) is smaller.
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differential dimension is equal to the number of arbitrary formal power series in n = |∆|
indeterminates which can be chosen arbitrarily for a solution.

Let dI(S) be the largest index such that adI(S)
6= 0 (adI(S)

6= 0 is the typical di-
mension). Call dI(S) the differential type of I(S). The differential type can be
characterized similarly to the Krull dimension by chains of prime ideals [Joh69b]. By
Theorem 1.74 both the differential type and typical dimension are invariants of I(S)
under differential birational maps.

Corollary 1.91. Let S be a simple differential system in F{U} for an orderly ranking
<. The differential type of I(S) is equal to the index of the highest non-zero Cartan
character, and the typical dimension dI(S) is also equal to the generality index. These
numbers are invariant under differential birational maps.

Several of the values describes in this subsection allow an a-priori estimation. Some
of these estimates from the literature are collected in Appendix C.

Example 1.92. The computation of the differential dimension polynomial is imple-
mented. Consider the incompressible Navier-Stokes-Equations.

restart;

with(DifferentialThomas):

ivar:=[t,x,y,z]: dvar:=[u,v,w,p]:

ComputeRanking(ivar,dvar);
L := [

u[1,0,0,0]+u[0,0,0,0]*u[0,1,0,0]+v[0,0,0,0]*u[0,0,1,0]
+w[0,0,0,0]*u[0,0,0,1]+p[0,1,0,0]
-1/rl*(u[0,2,0,0]+u[0,0,2,0]+u[0,0,0,2]),

v[1,0,0,0]+u[0,0,0,0]*v[0,1,0,0]+v[0,0,0,0]*v[0,0,1,0]
+w[0,0,0,0]*v[0,0,0,1]+p[0,0,1,0]
-1/rl*(v[0,2,0,0]+v[0,0,2,0]+v[0,0,0,2]),

w[1,0,0,0]+u[0,0,0,0]*w[0,1,0,0]+v[0,0,0,0]*w[0,0,1,0]
+w[0,0,0,0]*w[0,0,0,1]+p[0,0,0,1]
-1/rl*(w[0,2,0,0]+w[0,0,2,0]+w[0,0,0,2]),

u[0,1,0,0]+v[0,0,1,0]+w[0,0,0,1]
]:

res:=DifferentialThomasDecomposition(L,[]);

res := [DifferentialSystem]

A Thomas decomposition yields one simple differential system, which only adds the
Poison pressure equation as compatibility condition to the input. We compute the
dimension polynomial and also its representation in the free basis.

DifferentialSystemDimensionPolynomial(res[1]);

s3 + 11/2 s2 + 17/2 s+ 4

DifferentialSystemDimensionPolynomialCanonicalBase(res[1]);

6
(

3+s
s

)
−
(

2+s
s

)
− 1− s

Furthermore, the Hilbert polynomial can be computed,
DifferentialSystemHilbertPolynomial(res[1]);

3 s2 + 8 s+ 4

DifferentialSystemHilbertPolynomialCanonicalBase(res[1]);
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−2 + 6
(

2+s
s

)
− s

as can the strength,
DifferentialSystemStrength(res[1]);

18

and the Cartan characters. The latter ones are a list of numbers and are measured
depending on the differentiation order. When called with a system as sole parameter,
the following command computes the Cartan characters in the smallest reasonable
order. A positive interger given as a second parameter is used for the order.

DifferentialSystemCartanCharacters(res[1]);

2, [15, 11, 6, 0]

DifferentialSystemCartanCharacters(res[1],3);

3, [32, 17, 6, 0]

Older implementations are cited in [KLMP99, IX.§1], which also shows alternative
approaches to compute the differential dimension polynomial. /

1.7 Proofs for the Differential Dimension Polynomial

This section proves Theorem 1.74 about the differential dimension polynomial. First
it reduces the crucial parts of the statements to the case of algebraic systems. Then,
it studies Krull dimensions and zero-divisors in the case of simple algebraic systems.
This allows to prove the theorem. The proof uses elementary facts from commutative
algebra (cf. [Eis95, §2, §3, §8]).

Let F be a differential field of characteristic zero, < an orderly ranking, ∆ =
{∂1, . . . , ∂n} be a non-empty set of derivation operators, and U = {u(1), . . . , u(m)} be a
non-empty set of differential indeterminates.

1.7.1 A Reduction to the Algebraic Case

The following lemma, which is essential for the proof of the Theorem 1.74, is a conse-
quence of passivity. Define I(S)≤` := I(S) ∩ F{U}≤`.
Lemma 1.93. Let S be a simple differential system in F{U}, ` ∈ Z≥0, and < an
orderly ranking. Then the equality

IF{U}≤`(S≤`) = I(S)≤`

of algebraic ideals in F{U}≤` holds, where S≤` is the simple algebraic system up to order
` associated to S (cf. Subsection 1.4.1).

Proof. Let p ∈ F{U}≤`. Then p ∈ I(S≤`) if and only if Reduce(S≤`, p) = 0 (cf.
Proposition 1.62). This is equivalent to the existence of a (possibly empty) product q of
initials of equations in (S≤`)

= and the existence of as ∈ F{U}≤` for all s ∈ (S≤`)
= such

that qp =
∑

s∈(S≤`)= ass. As the initial of a derivative ∂p for ∂ ∈ ∆ and p ∈ F{U} is the
separant sep(p), this holds if and only if there exists a product q of initials and separants
of equations in (S≤`)

= and there exist at ∈ F{U}≤`[∆(t, S=)] such that deg∆(at) ·
ord(t) ≤ ` for all t ∈ S= ∩ F{U}{=}≤` with qp =

∑
S=∩F{U}{=}≤`

att; this equivalence

follows from [Rob12, 2.2.42], which implies that the ideals associated to simple systems
are saturated with respect to inequations, in particular separants. This is equivalent to
Reduce(S, p) = 0 (cf. Remark 1.39) and to p ∈ I(S) (cf. Proposition 1.66).
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1.7.2 The Algebraic Case - Zero Divisors and Dimension

Lemma 1.93 reduces certain questions about differential ideals to questions about alge-
braic ideals. Now, the proof of Theorem 1.74 about the differential dimension polyno-
mial needs statements about ideals associated to simple algebraic systems.

Certain invariants of an ideal associated to a simple algebraic system can directly be
read off the simple algebraic system. This subsection discusses the (Krull-)dimension
and zero-divisors of ideals associated to simple algebraic systems.

It turns out that the dimension is equal to the number of indeterminates that do
not show up as leaders of equations. A similar result is valid for regular chains (cf.
[Hub03a, Theorem 4.4]).

Theorem 1.94. Let S be a simple algebraic system in R = F [y1, . . . , yn]. Then R/I(S)
is equidimensional27 of dimension dim(R/I(S)) = n− |S=|.

Further results on prime decompositions of algebraic and differential ideals associ-
ated to simple algebraic systems are collected in Appendix D.

For the proof one needs to look at zero-divisors of ideals associated to simple alge-
braic systems. They are used in this and other proofs and also clarify the connection
between simple systems and regular chains. It is clear from the definition by saturation
of an ideal I(S) associated to a simple algebraic system S that none of the initials
of equations are zero-divisors modulo I(S). This lemma is a stronger version of this
statement:

Lemma 1.95. Let S be a simple algebraic system in F [y1, . . . , yn] where Syn is an
equation. Then init(Syn) is not a zero-divisor in F [y1, . . . , yn]/I(S<yn).

Proof. By definition of simple systems φa(init(Syn)) 6= 0 ∀ a ∈ Sol(S<yn) holds (cf.
Definition 1.9.(1)). In particular, Sol(init(Syn)) is not a superset of any irreducible
component of Sol(S<yn). Thus, init(Syn) is not contained in any associated prime of
I(S<yn). Since the set containing zero and zero-divisors is the union of the associated
primes the claim follows.

Corollary 1.96. Let S be a simple algebraic system in F [y1, . . . , yn] and 1 ≤ i ≤ n.
Then

I(S<yi) = I(S) ∩ F [y1, . . . , yi−1] .

A system S is called a regular chain if S does not contain an inequation, init(p=)
is not a zero-divisor modulo I(S<x) for every p= ∈ S= with ld(p=) = x, and S is
weakly triangular28, i.e., ld(Syi) is not a derivative of ld(Syj ) ∀ 1 ≤ i 6= j ≤ n and
S ∩ {c= | c ∈ F} = ∅. The above results imply that the equations of a simple systems
which are not needed for the Janet completion form a regular chain. Thus, many
results about regular chains (cf. [Hub03a, §5]) hold for simple systems and their ideals;
we do not use these statements.

Subsection 1.5.1 shows that inequations of a simple system S are not zero-divisors
modulo I(S). The next lemma generalizes this to all polynomials that vanish on none
of the points of Sol(S).

Lemma 1.97. Let S be a simple algebraic system in R = F [y1, . . . , yn] and q ∈ R such
that Sol({q=} ∪ S) = ∅. Let Q be the commutative multiplicative monoid generated by
all inequations in S. Then, 〈q, I(S)〉 ∩Q 6= ∅. In particular, I(S) : q∞ = I(S).

27In the sense that R/P has the same dimension for all associated primes in R/I(S).
28Being weakly triangular is a stronger condition than being triangular.
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Proof. Use (Q−1〈S=〉) ∩ R = I(S) from the following Lemma 1.98. Since q has no
solutions in common with S, the Nullstellensatz implies that the ring Q−1(R/〈q, S=〉)
is trivial. In particular, m ∩Q 6= ∅ for all maximal ideals m of R/〈q, I(S)〉 and, as S 6=
generates Q and m is maximal, m ∩ S 6= 6= ∅. The Nullstellensatz implies

∏
s∈S 6= s ∈√

〈q, I(S)〉. Thus, there is a k ∈ Z≥1 with Q 3
∏
s∈S 6= s

k ∈ 〈q, I(S)〉.

Lemma 1.98. Let S be a simple algebraic system in R = F [y1, . . . , yn] and Q the
multiplicatively monoid generated by init(S=). Then

(1) R/I(S) embeds into Q−1(R/I(S)),
(2) Q−1I(S) is generated by S= in Q−1R, and
(3) Q−1I(S) ∩R = I(S).

Proof. The embedding follows from Lemma 1.95. The second statement follows as the
initials of S= are units in Q−1R and so the saturation from Definition 1.61 is trivial.
The last statement is trivial as I(S) embeds into Q−1I(S).

The last ingredient for the proof of Theorem 1.94 is a form of the Gauss lemma.

Lemma 1.99 (Gauss, cf. [Eis95, Exercise 3.4]). Let R be a Noetherian ring. Let
p ∈ R[x] and denote by I the ideal in R generated by the coefficients of p. Then I
contains a non-zero-divisor of R if and only if p is a non-zero-divisor of R[x].

Proof of Theorem 1.94. Using the notation from Lemma 1.98, we examine the local-
ization Q−1(R/I(S)). By the Gauss Lemma 1.99 an equation Syi is not a zero-
divisor modulo Q−1I(S<yi), as its leading coefficient is invertible. Thus, S= is a reg-
ular sequence in Q−1R. Since this regular sequence generates the ideal Q−1I(S) by
Lemma 1.98, the ring Q−1(R/I(S)) is a complete intersection. Thus, Q−1(R/I(S))
is Cohen-Macaulay. By the Unmixedness Theorem [Eis95, Corollary 18.14] every
associated prime of Q−1(R/I(S)) has the same codimension n− |S=|.

The results from Q−1(R/I(S)) transfer back to R/I(S). Let P be an associated
prime of I(S). It can be written as P = P ′ ∩R for an associated prime P ′ of Q−1I(S)
as Q−1I(S)∩R = I(S). The codimension of P ′ and P are equal as codimensions of an
ideal in localizations and the codimension the intersection of the ideal with the original
ring are equal. So every associated prime of I(S) has codimension n− |S=| and, thus,
I(S) has codimension n− |S=|.

The dimension formula in Theorem 1.94 follows more easily by integral ring exten-
sions after the localization with Q; this would not have implied equidimensionality.

Corollary 1.100. Let S be a simple algebraic system in R = F [y1, . . . , yn]. The set
{y1, . . . , yn} \ ld(S=) forms a transcendence basis for every associated prime of I(S).

Proof. By Lemma 1.95 an associated prime contains no initial of an element in S=.
This implies that the elements of ld(S=) are algebraic over Y := {y1, . . . , yn} \ ld(S=).
Now, Y is a transcendence basis due to dimension arguments from Theorem 1.94.

Lemma D.3 is a stronger form of this corollary. It states that this transcendence
basis {y1, . . . , yn} \ ld(S=) is minimal with respect to the ranking.

Corollary 1.96 states that the intersection of ideals associated to simple algebraic
systems with subrings is well-behaved. This holds in a stronger version for the associated
primes of I(S) (cf. also [Hub03a, Proposition 5.8]).
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Lemma 1.101. Let S be a simple algebraic system in R = F [y1, . . . , yn] and 1 ≤ i ≤ n.
Then an ideal P is an associated prime of I(S<yi) if and only if there exists an associated
prime Q of I(S) such that P = Q ∩ F [y1, . . . , yi−1].

Note that I(S<yi) = I(S)∩ F [y1, . . . , yi−1], which follows easily from the reduction
statement in Proposition 1.62 (cf. also Proposition A.1).

Proof. For the one direction let Q be an associated prime of I(S). Then, P := Q ∩
F [y1, . . . , yi−1] is still a prime ideal that contains I(S<yi). Thus, it must contain a
minimal associated prime P ′ of I(S<yi). There exists a simple algebraic system S′

such that I(S′) = Q (cf. Proposition 1.70) and the set ld ((S′)=) is the same as ld(S=)
by Corollary 1.100. The residue class ring of the ideal P = I(S′<yi) has the same
transcendence basis as that of P ′ by Corollary 1.96. Thus, the ideals are equal, since
prime ideals of the same dimension that are contained in each other are equal.

For the converse let Q1, . . . , Qk be the associated primes of I(S). Then

I(S<yi) = I(S) ∩R<yi Corollary 1.96
= Q1 ∩ . . . ∩Qk ∩R<yi I(S) radical and equidimensional
= (Q1 ∩R<yi) ∩ . . . ∩ (Qk ∩R<yi) .

The first part of the proof shows that each Qj ∩R<yi is an associated prime of I(S<yi).
The ideal I(S<yi) is the intersection of its associated prime as it is radical (cf. Propo-
sition 1.62), and this intersection is minimal as I(S<yi) is equidimensional (cf. Theo-
rem 1.94). So any associated prime of I(S<yi) must be among the Qj ∩R<yi .

This lemma directly implies the following proposition.

Proposition 1.102. Let S be a simple algebraic system in F [y1, . . . , yn] and 1 ≤ i ≤ n.
If 0 6= p ∈ F [y1, . . . , yi−1] is not a zero-divisor modulo I(S<yi), then p is not a zero-
divisor modulo I(S).

1.7.3 The Proof

These preparations allow to prove most of Theorem 1.74. The proof of Theorem 1.74.(3)
follows on page 86, and the proof of Theorem 1.74.(6) and (7) follows on page 87.

Proof of Theorem 1.74.(1), (2), (4), and (5). Lemma 1.93 implies I≤` = I(S≤`). Then,
Theorem 1.94 states that dim(F{U}≤`/I≤`) equals the number of differential variables
in F{U}≤` minus the number of equations in S≤`. Now, the number of differential
variables in the complement of a set closed under ∆ follows easily from the combinatorial
approach by Janet (cf. Lemma 1.71 and Lemma 1.80). This proves (1) and (2).

For (4) let d denote the differential dimension of F{U}/I.
We first show the inequality an ≤ d. Note that there are an cones of dimension n in

the Janet decomposition of the complement of the ∆-closed set of differential variables
ld(S=). For each differential indeterminate u associated to such a cone there cannot
be a differential equation in S with a leader associated to u, as otherwise at least one
such equation has a cone of dimension n and the complement cannot have a cone of
dimension n. Thus, these an differential indeterminates are differentially independent,
since any constraint between these differential indeterminates would reduce to zero with
respect to S.

For the other inequality an ≥ d of (4) let {p1, . . . , pd} be a differential transcendence
basis of F{U}/I and denote by θi the order of pi for 1 ≤ i ≤ d and θ0 := maxi θi
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the maximal order. Then, the differential F -subalgebra F{p1, . . . , pd} generated by
p1, . . . , pd has an induced filtration F{p1, . . . , pd}≤` := F{U}≤` ∩F{p1, . . . , pd}. As the
pi are a differential transcendence basis,

dim(F{p1, . . . , pd}≤`) =
d∑
i=1

(
n+ (`− θi)

n

)
.

for ` ≥ θ0. Since F{p1, . . . , pd}/(I ∩ {p1, . . . , pd}) is a subalgebra of F{U}/I,

ωI(`) =
n∑
i=0

ai

(
`+ i

i

)
≥ dim(F{p1, . . . , pd}≤`)

=

d∑
i=1

(
n+ (`− θi)

n

)
≥ d

(
n+ (`− θ0)

n

)
for ` ≥ θ0. In particular, the leading coefficient an of ωI fulfills an ≥ d, as the total
order on numerical polynomials is equivalent to the order defined by the comparison of
the coefficients (cf. Remark 1.72).

The proof of (5) is trivial: I ⊆ J implies I≤` ⊆ J≤` for all ` ≥ 0. In particular,
the map from F{U}≤`/I≤` to F{U}≤`/J≤` is surjective and, thus, dim(F{U}≤`/I≤`) ≥
dim(F{U}≤`/J≤`).

Kolchin’s classical Theorem about the differential dimension polynomial states
that the degree, leading coefficient and coefficient of degree n of the dimension polyno-
mial are birational invariants of a prime differential ideal. This is claimed above for the
more general case of differential ideals associated to simple differential systems. The
next aim is to prove this invariance condition. We begin by showing that the filtration
on the differential polynomial ring F{U}/I(S) induces a filtration on the total quotient
ring K(F{U}/I(S)). This allows to use standard techniques of filtrations adapted from
Kolchin’s proof [Kol73, §II.12].

The differential polynomial ring F{U} admits a filtration by finitely generated F -
algebras F{U}≤i; call it the orderly filtration. It is not true for all differential ideals
I that the orderly filtration on the ring F{U}/I induces a filtration on K(F{U}/I).

Example 1.103. Consider ∆ = {∂t} and U = {u, v}. Let I be the differential ideal
generated by u0 · v1. The differential polynomial u0 is not a zero-divisor in F{U}≤0

∼=
F [u0, v0] modulo I≤0 = {0}. But obviously, u0 · v1 = 0 in F{U}/I.

The first total quotient ring of the filtration K(F{U}≤0/I≤0) = K(F [u0, v0]) =
F (u0, v0) contains the element 1

u0
, and the first total quotient ring

K(F{U}≤1/I≤1) = K(F [u0, v0, u1, v1]/〈u0 · v1〉)

does not. /

Recall from Subsection 1.3.4 that the ring F [∆] of linear differential operators is
filtered by order and that F{U} is a (left) F [∆]-module. The orderly filtration of F{U}
is compatible with the F [∆]-module structure of F{U}, since ∆(F{U}≤i) ⊆ F{U}≤i+1.

Let R be a F [∆]-algebra with a filtration (R≤i)
∞
i=0 and R≤0 = F . This filtration

is called exhaustive if
⋃
iR≤i = R. The filtration on F{U}/I induced by the orderly
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filtration is exhaustive for any differential ideal I in F{U}. If the differential ideal is
associated to a simple differential system, then there is an induced exhaustive filtration
on the total quotient ring of F{U}/I.

Lemma 1.104. Let S be a simple differential system in F{U} and I := I(S). Then,

K(F{U}≤`/I≤`) ↪→ K(F{U}≤`+1/I≤`+1)

induced by F{U}≤`/I≤` ↪→ F{U}≤`+1/I≤`+1 is a monomorphism for all ` ∈ Z≥0. In
particular, the total quotient ring K(F{U}/I) has an exhaustive filtration by the total
quotient rings K(F{U}≤`/I≤`).

Proof. Every non-zero-divisor p of F{U}≤`/I≤` is a non-zero-divisor when considered
in F{U}≤`+1/I≤`+1. This is the statement of Proposition 1.102, which also holds
for the differential cases due to Lemma 1.46. Thus, such a p maps to a unit in
K(F{U}≤`+1/I≤`+1) by the canonical map. This implies that the map F{U}≤`/I≤` →
K(F{U}≤`+1/I≤`+1) factors over K(F{U}≤`/I≤`) by the universal property of localiza-
tions.

Show that this map K(F{U}≤`/I≤`) → K(F{U}≤`+1/I≤`+1) is monic. Let the
ideal J ⊆ K(F{U}≤`/I≤`) be the kernel of K(F{U}≤`/I≤`) → K(F{U}≤`+1/I≤`+1).
As there is a bijection between ideals in K(F{U}≤`/I≤`) and ideals in F{U}≤`/I≤` not
containing zero-divisors, the intersection J ∩F{U}≤`/I≤` would be non-zero if and only
if J is non-zero. However, J ∩ F{U}≤`/I≤` is also the kernel of the monic composition
F{U}≤`/I≤` ↪→ F{U}≤`+1/I≤`+1 ↪→ K(F{U}≤`+1/I≤`+1) and, thus, zero.

The following lemma describes this filtration under differential birational maps.

Lemma 1.105. Let I and J be a differential ideals associated to simple differential
systems in the differential polynomial rings F{U} and F{V }, respectively. Let ϕ :
K(F{U}/I) → K(F{V }/J) be a differential birational map from F{U}/I to F{V }/J
and ϕ−1 its inverse. Then, for the filtrations from Lemma 1.104 there exists an `0 ∈ Z≥0

such that

ϕ(K(F{U}≤`/I≤`)) ⊆ K(F{V }≤`+`0/J≤`+`0) and

ϕ−1(K(F{V }≤`/J≤`)) ⊆ K(F{U}≤`+`0/I≤`+`0)

Proof. It suffices to show only one of the two inclusions; the other inclusion follows by
symmetry and taking `0 to be the maximum of the `0’s of both inclusions.

For legibility write R := F{U}/I and R′ := F{V }/J . Then

R≤` = F [∆]≤`R≤0 . (1.3)

The orderly filtration on F{V }/J is exhaustive. Thus, there exists an `0 ∈ Z≥0 with

ϕ(R≤0) ⊆ K(R′≤`0) . (1.4)

Then the claim follows:

ϕ(K(R≤`)) = K(ϕ(R≤`))

= K(ϕ(F [∆]≤`R≤0)) by (1.3)
= K(F [∆]≤`ϕ(R≤0)) as ϕ commutes with ∆

⊆ K(F [∆]≤` K(R′≤`0)) by (1.4)

⊆ K(R′≤`+`0)
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The Krull-dimension is well-behaved for finitely generated F -algebras. However,
information about the Krull-dimension is lost when passing to the total quotient
ring. For example dim(F [x]) = 1 but dim(K(F [x])) = dim(F (x)) = 0. Thus, use
maxP∈Ass(R) trdegF (K(R/P )) as notion of dimension, which is better-behaved when
passing to the total quotient ring. This dimension coincides with the Krull-dimension
for finitely generated F -algebras R, i.e., dim(R) = maxP∈Ass(R) trdegF (K(R/P )). It is
well-behaved when passing to the total quotient ring:

dim(R) = max
P∈Ass(R)

trdegF (K(R/P )) = max
P∈Ass(K(R))

trdegF (K(K(R)/P )) . (1.5)

For this notion of dimension, the dimensions of both F{U}≤`/I≤` and its quotient
ring agree. This allows to give the next part of the proof.

Proof of Theorem 1.74.(3). By Lemma 1.105 there exists an `0 ∈ Z≥0 with

ϕ(K(F{U}≤`/I≤`)) ⊆ K(F{V }≤`+`0/J≤`+`0) .

Since ϕ is a monomorphism,

K(F{U}≤`/I≤`) ∼= ϕ(K(F{U}≤`/I≤`))
⊆ K(F{V }≤`+`0/J≤`+`0)

which implies

dim(F{U}≤`/I≤`) = max
P∈Ass(K(F{U}≤`/I≤`))

trdegF (K(K(F{U}≤`/I≤`)/P ))

≤ max
P∈Ass(K(F{V }≤`+`0/J≤`+`0 ))

trdegF (K(K(F{V }≤`+`0/J≤`+`0)/P ))

= dim(F{V }≤`+`0/J≤`+`0)

using (1.5) twice. This implies ωI(`) ≤ ωJ(`+ `0) and by symmetry ωJ(`) ≤ ωI(`+ `0).
At last, Remark 1.72 proves the claim.

The proof of Theorem 1.74.(6) and (7) uses relations between ideals and equations
in simple algebraic systems, which are presented in the following two propositions.

Proposition 1.106. Let S, S′ be simple algebraic systems in R = F [y1, . . . , yn] with
I(S) ⊆ I(S′) and |S=| = |S′=|. Then the sets of leaders of the equations of S and S′

coincide, i.e., ld(S=) = ld(S′=).

Proof. Let {P1, . . . , Pk} the associated primes of I(S) and {Q1, . . . , Q`} the associated
primes of I(S′). The condition |S=| = |S′=| implies that all Pi and Qi are of the
same dimension (cf. Theorem 1.94). Further, the intersections I(S) =

⋂k
i=1 Pi and

I(S′) =
⋂`
i=1Qi are minimal, and all ideals are radical (cf. Proposition 1.62). The

condition I(S) ⊆ I(S′) now implies k ≥ ` and {P1, . . . , Pk} ⊇ {Q1, . . . , Q`}. By
renaming, assume without loss of generality that {P1, . . . , P`} are the associated primes
of I(S′).

Assume that the claim does not hold. Let x ∈ {y1, . . . , yn} such that S has an
equation of leader x and S′ does not has an equation of leader x. Then reduce(S′, Sx) =
0 as Sx ∈ I(S) ⊆ I(S′) (cf. Proposition 1.62). This implies reduce(S′, q) = 0 for
q := init(Sx) as there is no equation in S′ with leader x to reduce Sx. This initial q is
not a zero-divisor module I(S) and, thus, not contained in any associated prime ideal
P1, . . . , Pk of I(S). However, q is contained in each one of P1, . . . , P` as q ∈ I(S′). This
implies k = 0 and I(S) = 〈1〉. Hence S has no solutions, which is a contradiction to
every simple algebraic system having a solution (cf. Remark 1.10).
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Proposition 1.107. Let S, S′ be simple algebraic systems in R = F [y1, . . . , yn] with
I(S) ⊆ I(S′) and |S=| = |S′=|. Then, I(S) = I(S′) if and only if degx(Sx) = degx(S′x)
for all x ∈ ld(S=) = ld((S′)=) (for this last equality ld(Sx) = ld(S′x) see Proposi-
tion 1.106).

Proof. Assume that degx(Sx) = degx(S′x) for all x ∈ ld(S=) and show I(S) = I(S′).
The statement is clear for I(S≤y1) = I(S′≤y1

) as these are principle ideals contained in
each other and generated by a polynomial of the same degree. Assume by the induction
that I(S)<yi = I(S′)<yi and let p ∈ R with ld(p) = yi. Thus, init(p) ∈ I(S) if and only
if init(p) ∈ I(S′) as ld(init(p)) < yi. Furthermore, there is an equation in S of leader
yi if and only if there is in S′, and if they exist they have the same degree in yi. Thus,
p can be reduced with respect to S if and only if it can be with respect to S′ as can
easily be seen by the reduction algorithm reduce (cf. Algorithm 1.15).

Assume that there is an x ∈ ld(S=) with degx(Sx) > degx(S′x) and show I(S) 6=
I(S′). (The methods of this proof easily imply that degx(Sx) < degx(S′x) contradicts
I(S) ⊆ I(S′).) Then, reduce(S, S′x) = 0 holds, since S′x ∈ I(S) and this implies
reduce(S, q) = 0 for q := init(S′x) as there is no equation in S with leader x to reduce S′x.
So q ∈ I(S). Now, I(S) = I(S′) would contradict I(S′) being saturated with respect to
q by the definition of ideals associated to simple algebraic systems (cf. Definition 1.61).

Proof of Theorem 1.74.(7). Again, Lemma 1.93 reduces the statements to the algebraic
case. In this case, Proposition 1.106 implies (6), and (7) follows from Proposition 1.107,
because the only equations of main degree greater one in S≤` are those of S for every
` ∈ Z≥0.
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Chapter 2

Differential Counting Polynomials

This chapter discusses the size of the set of power series solutions of systems of differen-
tial equations in detail, using counting polynomials. This yields a more precise overview
over the solutions than the differential dimension polynomial. However, computing the
differential version of the counting polynomial is not algorithmic. In particular, the
differential Thomas decomposition is not used in this chapter, and instead we rely on
certain modifications of the algebraic Thomas decomposition for equations and inequa-
tions, which both restrict the power series coefficients. Another result of this chapter
are certain phenomena of differential equations that involve countable infinite sets.

2.1 An Overview

This expository section introduces the algebraic counting polynomial, the counting se-
quence, and the differential counting polynomial and its properties by examples. It
gives informal definitions; the precise ones can be found in the following sections.

2.1.1 Algebraic Counting Polynomial

The motivation for the differential counting polynomial originates from the algebraic
counting polynomial, which in a certain sense describes the cardinality of the solution
set of an algebraic system over F [y1, . . . , yn] for a field F of characteristic zero. The
algebraic counting polynomial can be read off a simple algebraic system, and it can be
computed for any algebraic system using an algebraic Thomas decomposition.

Simple systems over the univariate polynomial ring motivate the algebraic counting
polynomial. If such a system is given by a square-free equation of degree d, then its
solution set is finite and its algebraic counting polynomial is d. If such a system is
given by a square-free inequation of degree d, then its solution set is cofinite in F and
its algebraic counting polynomial is ∞− d. Here, ∞ is a formal indeterminate of the
polynomial ring Z[∞] and might be interpreted as the cardinality of the algebraic closure
F of F .

This generalizes for any simple algebraic system S using the fibration of the space
induced by the ranking. There exists a covering projection from the solution set of
S≤yn to the solution set of the restricted simple algebraic system S≤yn−1 viewed in
F
n−1. View the elements in the fibres of this covering projection as elements in F .

Each such fiber has the same cardinality or cocardinality in F , which depends only
on the degree of the equation or inequation of S with leader yn. Then the counting
polynomial of S≤yn is defined as the algebraic counting polynomial of any such fiber

89
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multiplied by the algebraic counting polynomial of S<yn . A Thomas decomposition
allows to examine the solution sets of arbitrary systems.

Example 2.1. Recall from Example 1.8 that a Thomas decomposition of

{p := y3 + (3x+ 1)y2 + (3x2 + 2x)y + x3 = 0}

is given by

S1 := { y3 + (3x+ 1)y2 + (3x2 + 2x)y + x3 = 0, 27x3 − 4x 6= 0}
S2 := { 6y2 + (−27x2 + 12x+ 6)y − 3x2 + 2x = 0, 27x3 − 4x = 0}

S2S2 S2

S1

x

y

The image shows the solution set of {p = 0} in the real affine plane. The cardinality
of the fibers of the projection onto the x-component along the y-axis depends on y and
is constant within each system; i.e., the fibers of the projection onto the x-component
are of cardinality 3 and 2 in the solution sets of S1 and S2, respectively. (This image
cannot show certain complex, non-real solutions of S1.)

Rephrasing this, the system S1 implies that for each x-value in F except the three
solutions of 27x3 − 4x = 0 there are 3 solutions of {p = 0}. This set of solutions
can be described by (∞ − 3) · 3. The system S2 implies that for three solutions of
27x3 − 4x = 0 there are 2 solutions of {p = 0}. This set of solutions can be described
by 3 · 2. Adding up, the solution set of the system {p = 0} has algebraic counting
polynomial (∞− 3) · 3 + 3 · 2 = 3∞− 3 ∈ Z[∞]. /

2.1.2 Motivating Examples for the Differential Counting

In a nutshell, the idea when counting solutions of differential equations is to give the
algebraic counting polynomial for the set of Taylor polynomials of degree ` for each
` ∈ Z≥0. The sequence of these algebraic counting polynomials is called counting
sequence, and the `-th element of this sequence is called the `-th differential counting
polynomial. Furthermore, if these differential counting polynomials can ultimately be
given by a closed formula, then this closed formula is called the differential counting
polynomial. We give some expository examples for this.

Example 2.2. Consider the heat equation uxx − ut = 0 with uxx as leader. Then, for
a power series solution ansatz

u(t, x) =
∞∑

i,j=0

gi,j
tixj

i!j!
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a coefficient gi,j+2 is uniquely determined by the coefficient gi+1,j for all i, j ≥ 0. The
linearity of these equations implies that a power series coefficient can either be chosen
freely (the g0,i’s and g1,i’s) or is uniquely determined. In particular, 2`+ 1 coefficients
can be chosen freely up to order `. The counting sequence is ` 7→ ∞2`+1, the `-th
differential counting polynomial is ∞2`+1 for all ` ∈ Z≥0, and the differential counting
polynomial is ∞2`+1. /

The degree of the algebraic counting polynomial of a variety is equal to its Krull
dimension. Also the dimension polynomial is defined using the Krull dimension. This
allows the differential counting polynomial to generalize the dimension polynomial in a
way made precise by Theorem 2.36.

This generalization can easily be understood for a set of differential equations with
constant coefficients over the complex numbers C, as in the previous example. Any
such linear system can be transformed into one simple differential system S, and the
number of free power series coefficients is given by the differential dimension function
ΩI(S), i.e., the counting sequence is

` 7→ ∞ΩI(S)(`) ,

and the differential counting polynomial is ∞ωI(S)(`), using the differential dimension
polynomial ωI(S)(`). Thus, for the linear case, the counting sequence holds no more
information than the differential dimension function and essentially no more informa-
tion than the differential dimension polynomial. Such a formula also holds for certain
nonlinear systems of equations. In the case of one simple differential system S over
the complex numbers without inequations, for each power series coefficient there are
as many choices as the degree of the equation for this coefficient, once all lower power
series coefficients are fixed. Thus, the counting sequence is

` 7→
∏

1≤i≤s
ord(pi)≤`

mdeg(pi) · ∞ΩI(S)(`) ,

(cf. Theorem 2.72) and the differential counting polynomial is∏
1≤i≤s

mdeg(pi) · ∞ωI(S)(`) .

The next example allows variable coefficients. It turns out that the differential
counting polynomial depends on the chosen center for a power series solution.

Example 2.3. Consider the Bessel equation

p := t2 · u′′ + t · u′ + (t2 − α2) · u = 0

for a constant coefficient1 α ∈ C and consider power series solutions of the form

u(x) =
∞∑
k=0

gi
(t− t0)k

k!

expanded around the center t0.
In this example we show that for t0 6= 0 the differential counting polynomial for

formal power series solutions is ∞2; for t0 = 0 it is ∞ if α ∈ Z, and it is 1 if α 6∈ Z. All
of these solutions are locally convergent power series.

1Many applications restrict to α ∈ 1
2
Z or α ∈ Z.
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Figure 2.1: Bessel functions of the first and second kind in the left resp. right plot for
the values 0, 1, 2, and 3 of α.

t

u

α = 0

α = 1

α = 2 α = 3

α = 0

α = 3

t

u

We begin with an expansion point t0 6= 0. In this case the initial of the equation is
non-zero and one can use ∂kt p to solve for the coefficient gk+2. Thus, only the coefficients
g0 and g1 can be chosen freely. In particular, the zeroth differential counting polynomial
is ∞ and the `-th differential counting polynomials are ∞2 for all ` ≥ 1. Riquier’s
Existence Theorem 1.60 implies that all these solutions converge locally. The solutions
are the linear combinations of the Bessel functions of the first and second kind.

Now, let t0 = 0 and consider the derivatives

∂kt p = t2 · uk+2 + (1 + 2k) · t · uk+1 + (k2 + t2 − α2) · uk
+ 2k · t · uk−1 + (k2 − k) · uk−2

of p. After substituting of t by 0 all coefficients of these prolongations of the differential
equation vanish except for the third and fifth one; the equation (k2 − α2)gk + (k2 −
k)gk−2 = 0 remains.

In case of α 6∈ Z the coefficient of gk in this equation is non-zero for all k. Further-
more, the cases k = 0 and k = 1 imply that the power series coefficients g0 and g1 of
order 0 and 1 are zero. Thus, the only analytical solution is the zero solution2, since
the k-th coefficient is computed as a multiple of the (k − 2)-th coefficient. This yields
the constant sequence ` 7→ 1 as counting sequence.

In case of α ∈ Z the power series coefficients smaller than order |α| of the solution
are zero, as in the previous case α 6∈ Z. However, the coefficient of g|α| when substituting
t = 0 in ∂

|α|
t p does vanish, and this prolongation finds g|α|−2 = 0, again. So there is

no equation for the power series coefficient of order |α|, which can therefore be chosen
freely. All further coefficients are determined3 and, thus, the `-th differential counting
polynomial is ∞ for ` ≥ |α| and 1 for ` < |α|. The solutions are the Bessel functions
of the first kind. /

For certain classes of differential equations the differential counting polynomial can
be given by a closed formula.

Theorem 2.4 (cf. Theorem 2.79). Let p := A(u)u1 + B(u) ∈ C{u} and ordinary
differential equation with A(u), B(u) ∈ C[u] and A(u) not the zero polynomial. The
differential counting polynomial of the set of solutions of p = 0 is

∞− b+ d+ e

at a generic center of expansion. Here b ∈ Z is the number of distinct zeros of A, d ∈ Z
is the number of distinct common zeros of A and B, and e ∈ Z is the number of distinct
common zeros of A and B that appear in A and B with the same multiplicity.

2The other solutions c·sin(t)√
t

for c ∈ C \ {0} do not have a power series expansion around 0.
3Every second coefficient from order |α| on is non-zero, provided that the coefficient of order |α| was

chosen non-zero.
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2.1.3 A Geometric Interpretation and Demotivating Example

So far, the counting sequences and the differential counting polynomials were rather well-
behaved. However, in general, more involved behavior appears. The following example
is intended to give some geometric intuition for possible behaviors. Its descriptive plots
shows certain kinds of singularities which prevent the existence of formal power series
solutions. This approach is sketched in Appendix E and explains why a certain ansatz
for a formal power series does not yield a solution.

Example 2.5 ([KS12]). Consider the differential sphere equation p = u2
t+u

2+t2−1 = 0
and complex formal power series solutions of the form

u(x) =
∞∑
k=0

gi
(t− t0)k

k!

as set of admissible solutions. It turns out that for g2
0 + t20 − 1 = 0 and t0 6= 0 no

formal power series solution exists and for t0 = 1 and g0 = −+1 two formal power series
solutions exist. This example gives plausibility arguments for this (cf. Example 2.91 for
details).

The geometric approach interprets (possible) solutions as points on the variety given
by the equation p, i.e., the sphere, in the space with coordinates t, u, and ut. On these
three coordinates remains a differential structure, the contact distribution. It determines
the direction any solution of a differential equation might take in the space given by
the coordinates t, u, and ut. Further, a solution of a differential equation should move
along the surface of the sphere. This motivated the definition of the Vessiot space,
the intersection of the contact distribution with the tangent space of the sphere. The
sphere and its Vessiot space are plotted in Figure 2.2.

Figure 2.2: The sphere u2
1 + u2 + t2 − 1 = 0 and its Vessiot spaces in a real picture.

Integrating along the Vessiot space yields a generalized (called “geometric”) solu-
tion in this jet space of order one. Two of these solutions are plotted on the surface
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of the sphere. Each of these geometric solutions is smooth when crossing the equator,
plotted in brown. However, after projection to the t-u-plane plotted below the sphere,
these geometric solutions have a singularity in the sense that the function cannot be
extended and “goes back”. In particular, they admit no expansion into a formal power
series. Such points are called regular singularities (more specifically impasse points or
cusps). This can be explained by the Vessiot spaces being transversal with respect to
the projection to the t-u-plane everywhere except for the equator.

This behavior appears everywhere along the equator except for the two points with
t = 0. At these two points the Vessiot space is singular in the sense that it is two-
dimensional. Example 2.91 shows that each of these points admits two complex formal
power series solutions. These points are called irregular singularities and at these points
various behavior is possible. /

This example indicates that at regular singularities there exists no formal power
series solution. What happens at the irregular singularities is more involved; in general,
the behavior at such a singularity is not decidable by looking at any finite order.

2.1.4 Algebraic Complications

In general, differential equations show much more tantalizing behavior than the ex-
amples in this overview. The order ` can appear in the coefficients of the counting
polynomials, e.g., Example 2.92 has the following counting sequence.

l 7→

{
∞`+2 −∞`+1 + (`+ 1)∞` − `∞`−1, ` ≥ 1

∞2 −∞+ 1, ` = 0

Other examples can have countably many infinite exceptional cases, e.g., Example 2.93
has counting sequence

l 7→

{
∞3 −∞2 +∞−ℵ0, ` ≥ 1

∞2 −∞+ 1, ` = 0
,

where ℵ0 is a new indeterminate, which can be interpreted as the cardinality of a
countable set. Furthermore, there are examples where the center of expansion changes
the counting sequence on a countably infinite set (cf. Example 2.90)

These examples demonstrate that certain aspects of the cardinality of the set of
solutions of differential equations can only be described using countably infinite sets.
Such involved behavior can only appear at irregular singularities from the geometric
approach.
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2.2 Algebraic Counting Polynomials

“ Wenn ein Gebilde von n Parametern [. . . ] abhängt, [. . . ] so
nimmt das Gebilde∞n verschiedene Lagen an, wenn die Parame-
ter variieren. So giebt es z. B. auf der Geraden∞1, in der Ebene
∞2, im Räume∞3 Punkte, denn die Lage des Punktes hängt von
bez. 1, 2, 3 Parametern (Coordinaten) ab. Ferner giebt es in der
Ebene ∞3 Kreise, da zur Bestimmung des Kreises drei Grössen
[. . . ] genügen, u. s. w.”

Sophus Lie
in [Lie67, p. 2]

This section begins with the algebraic counting polynomial for constructible sets,
i.e., sets in the affine space given by equations, inequations, and unions. Describing the
solution set of systems of differential equations requires a generalization to systems with
countably many inequations and countably many such systems. This section introduces
these generalizations.

Let F be a field of characteristic zero, F its algebraic closure, and R = F [y1, . . . , yn].
Certain affine projections induced by the ranking y1 < . . . < yn on R are important for
the algebraic counting polynomial.

Remark 2.6. Consider the indeterminates y1, . . . , yn of R as coordinate system of an
affine n-space W over F . The ranking y1 < . . . < yn induces an ascending filtration of
affine subspaces Wi of W , where Wi is the zero set of yi+1, . . . , yn. For all 1 ≤ i ≤ n
this induces a unique affine projection πi : W → W commuting with y1 ⊕ . . .⊕ yi and
having image Wi. Abusing notation, denote by πi the corestriction W →Wi of πi. The
coordinates yi identify W ≡ F

n; then πi : F
n → F

i
: (a1, . . . , an) 7→ (a1, . . . , ai). /

2.2.1 The Counting Polynomial of Algebraic Systems

The idea of the algebraic counting polynomial is as follows. Let πi−1 : F
n → F

i,
1 < i ≤ n be a projection induced by the ranking < and (πi−1)|F i : F

i → F
i−1 its

restriction. The properties of a simple algebraic system S correspond to the following
fibration structure on its solution set. For any solution a ∈ Sol(S<yi), denote its fiber by
si,a := (πi−1)−1

|F i
({a}); this fibre is interpreted as subset of F . If Syi is an equation, then

the fiber cardinality is |si,a| = mdeg(Syi). If Syi is an inequation, then si,a = F \ s̃i,a
with |s̃i,a| = mdeg(Syi). If Syi is empty, then si,a = F . The cardinalities of si,a or s̃i,a
are independent of the choice of the solution a ∈ Sol(S<yi) (cf. Remark 1.10).

Let ∞ be a free indeterminate in the polynomial ring Z[∞]. It represents the
cardinality of F . Define the type of constraints the following way. An equation p= ∈
R{=} has type τ(p=) := mdeg(p) ∈ Z[∞]. An inequation p 6= ∈ R{6=} has type τ(p6=) :=
∞−mdeg(p) ∈ Z[∞]. The empty set has type τ(∅) :=∞ ∈ Z[∞].

Definition 2.7. Let S be a simple algebraic system over R. The algebraic counting
polynomial c(S) = c(S,∞) of S is given by

c(S) :=

n∏
i=1

τ(Syi) .
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For (not necessarily simple) systems S define the algebraic counting polynomial by

c(S) :=
k∑
i=1

c(Si) ,

where {S1, . . . , Sk} is a Thomas decomposition of S. (This is independent of the
Thomas decomposition by Proposition 2.12 or [Ple09a, Proposition 3.3].)

A constructible set in Fn is a union of solution sets of algebraic systems. Let V ⊆
F
n be a constructible set. Call a set {S1, . . . , Sk} of disjoint simple algebraic systems

with V =
⊎k
i=1 Sol(Si) a Thomas decomposition of V . This is algorithmic using

Proposition 1.34 if V is given as the (not necessarily disjoint) union of algebraic systems.
Define the algebraic counting polynomial of V as c(V ) = c(V,∞) :=

∑k
i=1 c(Si),

where {S1, . . . , Sk} is a Thomas decomposition4 of V . The Thomas decomposition
clearly implies that an affine projection of a constructible set is again constructible.

Example 2.8. The algebraic counting polynomial of the empty set is 0 ∈ Z[∞], of a
singleton it is 1 ∈ Z[∞], and of the affine i-space it is ∞i ∈ Z[∞]. /

The algebraic counting polynomial of constructible sets in Fn is not invariant under
the change of ranking and not invariant under the action of GLn(F ), as the following
example shows. The generic counting polynomial of [Ple09a] is coordinate invariant.

Example 2.9. Consider p := xy − 1 ∈ C[x, y] and V := Sol({p = 0}). A Thomas
decomposition of V is given by {{x 6= 0, p = 0}} for the ranking x < y, and the counting
polynomial is c(V ) =∞− 1. The polynomial p̃ := (x− y)(x+ y)− 1 = −y2 + x2 − 1 ∈
C[x, y] arises from p by an invertible linear transformation. A Thomas decomposition
of Ṽ := Sol({p̃ = 0}) for the ranking x < y is given by {{x2 − 1 6= 0, p̃ = 0}, {x2 − 1 =
0, y = 0}} and the algebraic counting polynomial is c(Ṽ ) = 2(∞− 2) + 2 = 2∞− 2,
which does not equal c(V ).

x

y

y = 1
x

x

y
y2 = x2 − 1

The (real) pictures shows the fiber cardinalities. For p the fibers of the projection on the
x-axis have cardinality 1 everywhere except over 0, and for p̃ the fibers of this projection
have cardinality 2 everywhere except over −+1. /

The following proposition states the fundamental properties of the algebraic counting
polynomial. Define the total order ≤ on Z[∞] by p ≤ q if the leading coefficient of q−p
is non-negative (p, q ∈ Z[∞]).

Proposition 2.10 ([Ple09a, Corollary 3.4, 3.5]). Let V,W ⊆ F
n and U ⊆ F

m be
constructible sets.

4Again, this is independent of the Thomas decomposition [Ple09a, Proposition 3.3].
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(1) c(V ∪W ) + c(V ∩W ) = c(V ) + c(W )

(2) Let V ⊆W . Then c(V ) ≤ c(W ) with equality if and only if V = W .

(3) V × U ⊆ Fn × Fm ' Fn+m is constructible and c(V × U) = c(V )c(U).

In particular, the decision whether for two Thomas decompositions {S1, . . . , Sk}
and {S′1, . . . , S′`} satisfying

⋃k
i=1 Sol(Si) ⊆

⋃`
i=1 Sol(S′i) the equality

⋃k
i=1 Sol(Si) =⋃`

i=1 Sol(S′i) of solutions sets holds is algorithmic by computing the algebraic counting
polynomials of the Thomas decompositions.

Similarly to Proposition 2.10 one easily verifies the following.

Lemma 2.11. Let 1 ≤ i ≤ n and πi : F
n → F

i be a projection associated to the ranking
(cf. Remark 2.6). If V ⊂ Fn is constructible such that for a 1 ≤ i ≤ n each non-empty
fiber U of πi has the same algebraic counting polynomial, then c(V ) = c(U) · c(πi(V )).

The algebraic counting polynomial can be characterized axiomatically. For a similar
characterization see [BP, Proposition 2.1]

Proposition 2.12. Let Fn be an affine n-space with projections πi : F
n → F

i as in
Remark 2.6. Let C be the set of constructible sets in Fn. Then there is a unique map
c̃ : C → Z[∞] with the following properties.

(1) c̃({a}) = 1 for all a ∈ Fn.
(2) c̃(A) =∞ for all affine 1-spaces A over F .

(3) c̃(V ]W ) = c̃(V ) + c̃(W ) for all disjoint constructible sets V,W ⊆ Fn.
(4) If V ⊂ Fn is constructible such that for a 1 ≤ i ≤ n each non-empty fiber U of πi

has the same value under c̃, then c̃(V ) = c̃(U) · c̃(πi(V )).

The algebraic counting polynomial c fulfills these conditions and, hence, is equal to c̃.

This proof is given by a generalization of [Ple09a, Proposition 3.3], which is sketched
in [BP, Proposition 2.1]

The uniqueness of the algebraic counting polynomial implies the following.

Corollary 2.13. Let V ⊆W be constructible sets. Then c(W \ V ) = c(W )− c(V ).

Corollary 2.14. Let ∅ 6= V ⊆ F
n be a constructible set and c(V ) =

∑d
i=0 ai∞i be its

algebraic counting polynomial with ai ∈ Z, 0 ≤ i ≤ d, and ad 6= 0. Then ad > 0.

Proof. By the additivity from Proposition 2.12.(3), assume without loss of generality
that V can be described by one simple algebraic system S. We prove the claim by an
induction on the dimension n. If n = 0, then V is the singleton and c(V ) = 1. If
n = 1, then V is finite and c(V ) = |V | or V is cofinite and c(V ) = ∞ − |F 1 \ V |.
Assume that the claim is true for n − 1 and let πn−1 : F

n → F
n−1 be the projection.

Then the leading coefficient of c(πn−1(V )) is positive by the induction hypothesis. The
algebraic counting polynomials of each fiber U = π−1

n−1({v}), v ∈ V , of πn−1 are identical
and have an algebraic counting polynomial with positive leading coefficient, by the case
n = 1. Now, Proposition 2.12.(4) implies c(V ) = c(πn−1(V )) ·c(U), and this polynomial
has positive leading coefficient as product of two polynomials with positive leading
coefficient.
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Even though the algebraic counting polynomial is not coordinate invariant, the alge-
braic counting polynomial implies the (coordinate independent) Euler characteristic5.
This was pointed out by Frank-Olaf Schreyer. See [Mar11] for similar work.

Theorem 2.15. Let F = C, V a constructible set in Cn, and c(V )(∞) ∈ Z[∞] its
algebraic counting polynomial. Then the Euler characteristic χ(V ) of V is given by

χ(V ) = c(V, 1) = c(V )|∞=1 .

Proof. The Euler characteristic maps disjoint unions into addition and set difference
of two sets contained in each other into a difference [Ful93, p. 92]. The same holds for
the algebraic counting polynomial (cf. Proposition 2.12.(3)). This implies that without
loss of generality V is the solution set of a simple algebraic system S over F [y1, . . . , yn].

Show the claim by induction over the dimension n. For n = 1 there are two pos-
sibilities for V . If V is finite, then both the algebraic counting polynomial and the
Euler characteristic are equal to the cardinality |V |. If V is cofinite in F , then both
the algebraic counting polynomial is c(V )(∞) = ∞− |C \ V |. In this case the Euler
characteristic is given by χ(C) = χ(V ) = χ(C)− χ(C \ V ) = 1− |C \ V | = c(V, 1).

For n > 1 the system S either an equation with leader yn, an inequation with
leader yn, or no constraint. In the first case, V is a mdeg(Syn)-sheeted covering space
of SolCn−1(S<yn). On the one hand, χ(V ) = mdeg(Syn) · χ(SolCn−1(S<yn)) (cf. e.g.
[Spa81, Theorem 9.3.1]). On the other hand,

c(V ) = c(S) = mdeg(Syn) · c(S<yn) = mdeg(Syn) · c (SolCn−1(S<yn)) .

In the second case, V = (C×SolCn−1(S<yn)) \ Sol(S<yn ∪ {(Syn)=}). The Euler
characteristic behaves multiplicatively with respect to ×. Thus,

χ(V ) = χ(C) · χ (SolCn−1(S<yn))− χ (Sol(S<yn ∪ {(Syn)=})) .

The first case implies χ(Sol(S<yn ∪{(Syn)=})) = mdeg(Syn) ·χ(SolCn−1(S<yn)). Thus,

χ(V ) = 1 · χ (SolCn−1(S<yn))−mdeg(Syn) · χ (SolCn−1(S<yn))

= (1−mdeg(Syn)) · χ (SolCn−1(S<yn)) .

At last, c(V ) = (∞−mdeg(Syn)) ·χ(SolCn−1(S<yn)) completes the proof of the second
case. Finally, the third case of no constraint is trivial.

The following corollary is a typical application of the Euler characteristic. It uses
the knowledge of all but one coefficient of the algebraic counting polynomial and of the
Euler characteristic to deduce the missing coefficient.

Corollary 2.16. Fix the Ranking x > y, and let f(x) ∈ C[x] of degree deg(f) ≥ 1.
The algebraic counting polynomial of the system S := {y − f(x) = 0} is

c(S) = deg(f) · ∞ − (deg(f)− 1)

Proof. When exchanging the order of the variables into y > x the system describes
the graph of a function and, thus, has algebraic counting polynomial ∞. In particular,
deg(c(S)) = 1, as the degree of the algebraic counting polynomial is coordinate inde-
pendent. Since generically the projection of Sol({y − f(x) = 0}) onto the y-axis is a
deg(f)-sheeted covering, the coefficient of ∞ in c(S) is deg(f). The Euler character-
istic formula implies c(S)(1) = 1. This determines the constant coefficient of c(S).

5The Euler characteristics with or without compact support coincide for the case of locally closed
sets [Ful93, p. 92-95]
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Proposition D.1 implies a sufficient criterion for prime ideals. The following version
of the criterion involves the algebraic counting polynomial. If the solution set of a simple
algebraic system S has an algebraic counting polynomial with leading coefficient one,
then I(S) is prime.

2.2.2 Simple Algebraic σ-Systems

For counting the number of solutions of algebraic systems there are only finitely many
exceptional values for each indeterminate. However, for a differential system there can
be countably many exceptional values for one indeterminate (cf. Example 2.93). Thus,
we need countably many inequations (for the generic case) and countably many (special)
cases. This subsection generalizes simple algebraic systems to this context.

Let I be a countable index set. Let F be a field of characteristic 0 and denote by
F the algebraic closure of F . Let R := F [yi|i ∈ I] be the polynomial ring (in possibly
infinitely many variables). A well-founded total order < on {1, yi|i ∈ I} with 1 < yi for
all i ∈ I is called a ranking. The concepts of leader, main degree, and initial are the
same as in the case of finitely many indeterminates. For readability, assume a natural
total order on I by setting either I = Z>0 or I = {1, . . . , n} for n ∈ Z>0 such that i < j

implies yi < yj . For a ∈ F
I define the (complete) evaluation homomorphism

φa : R→ F : yi 7→ ai .

Let j, k ∈ I with k − 1 ≤ j. Define the (partial) evaluation homomorphism

φ<yk,a : R→ F [yi|i ∈ I, k ≤ i] :

{
yi 7→ ai, i < k
yi 7→ yi, otherwise

for a ∈ F j or a ∈ F I . A solution of an equation or inequation p is a tuple a ∈ F I with
φa(p) = 0 or φa(p) 6= 0, respectively. Call a ∈ F I a solution of a set S of equations
and inequations, if it is a solution of each element in S. The set of all solutions of S is
denoted by Sol(S). Again, for a set S of equations and inequations define S=, S 6=, Sx,
S<x, and S≤x as the subsets of all equations, inequations, elements of leader x, elements
of leader smaller x, and elements of leader smaller or equal x, respectively.

Call a set of finitely many equations and countably many inequations an (alge-
braic) σ-system over R. Non-vanishing initials of σ-systems is defined exactly as for
systems. Furthermore, square-freeness of equations is defined as for systems and a set
T of inequations with the same leader is square-free if and only if all products of all
finite subsets of T are square-free in the sense of systems.

Definition 2.17. Let S be a σ-system. Call S weakly triangular if |S=
yi | ≤ 1 ∀ 1 ≤

i ≤ n, S ∩ {c=, c6= | c ∈ F} = ∅, and if |S=
yi | = 1, then S 6=yi = ∅, 1 ≤ i ≤ n. Call S

simple if it is weakly triangular, has non-vanishing initials, and is square-free.

A simple algebraic σ-system S over R shares many properties with simple algebraic
systems. For example, S<yi is also a simple algebraic σ-system in F [y1, . . . , yi−1] for
all i ∈ I. If a ∈ Sol(S<yi), then φ<yi,a(S) is also a simple algebraic σ-system in
F [yj |j ≥ i, j ∈ I] for all i ∈ I. Furthermore, every simple algebraic σ-system S has
a solution. In particular, if b ∈ Sol(S<x), then φ<x,b(p) is a univariate polynomial
with exactly mdeg(Sx) distinct roots for all p ∈ Sx. Conversely, if (ai|i ∈ I) ∈ Sol(S),
then (a1, . . . , ai) ∈ Sol(S≤yi) for any i ∈ I. Thus, πi(Sol(S)) = Sol(S≤yi) for a simple
algebraic σ-system, where πi is the projection from Remark 2.6. (This remark easily
generalizes to the context of infinite dimensional affine spaces.)
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Let S be a σ-system. A family (Sj)j∈J of σ-systems for a (not necessarily finite)
index set J is called algebraic σ-decomposition of S if Sol(S) =

⋃
j∈J Sol(Sj). A

disjoint decomposition of a system into simple algebraic σ-systems is called algebraic
Thomas σ-decomposition.

2.2.3 The Counting Polynomial for Algebraic σ-Systems

This subsection extends the algebraic counting polynomial to algebraic σ-systems in
finitely many indeterminates. This is motivated, as counting in the differential case re-
quires counting polynomials of algebraic σ-systems. Therefore, take the defining condi-
tions for the algebraic counting polynomial in Proposition 2.12 as axioms. The algebraic
counting polynomial is not unique in this case of algebraic σ-systems.

Countable infinite exceptional sets are the reason for introducing σ-systems. For the
representation of these countably infinite exceptional sets, use the additional symbol ℵ0.
This symbol is necessary for example for the σ-system S := {x− i 6= 0|i ∈ Z≥0} in C[x].
Its solution set is given by Sol(S) = C \ Z≥0. Think of the cardinality of this set as
the cardinality of C minus a countable set and write ∞− ℵ0 for its algebraic counting
polynomial.

Remark 2.18. To avoid problems that the cardinality of fields is also countable, assume
that the cardinality of ground field F is not countable. Otherwise, the system S :={
x− i 6= 0

∣∣i ∈ Q} in Q[x] would have algebraic counting polynomial ∞ − ℵ0 but no
solutions. /

Call a subset of Fn elementarily describable if it is a solution set of a σ-system.
Call V ⊆ F

n describable if it is a countable union of elementarily describable sets.
Let Z[∞,ℵ0] be the polynomial ring in two indeterminates ∞ and ℵ0.

Definition 2.19. Let Fn be the affine n-space with projections πi : F
n → F

i from
Remark 2.6. Let V be a describable set in Fn. Then, call any element c(V ) ∈ Z[∞,ℵ0]
that results from applying the following five axioms an algebraic counting polyno-
mial of V .

(1) c({a}) = 1 for all a ∈ Fn.
(2) c(A) =∞ for all affine 1-spaces A over F .
(3) c(V ]W ) = c(V ) + c(W ) for all disjoint describable sets V,W ⊆ Fn.
(4) If V ⊂ F

n is describable such that for a 1 ≤ i ≤ n each non-empty fiber U of πi
has a same value under c, then c(V ) = c(U) · c(πi(V )).

(5) c(F 1 \M) =∞−ℵ0 for M ⊂ F 1 is countably infinite.

For an algebraic σ-system S define the algebraic counting polynomial c(S) as c(Sol(S)).

We comment on the definition of the algebraic counting polynomial.

Remark 2.20. The algebraic counting polynomial is not unique; for example, the set
SolC({x− i 6= 0|i ∈ Z≥0}) = SolC({x− i 6= 0|i ∈ Z≥1}) ] {0} can have both counting
polynomial ∞−ℵ0 and ∞−ℵ0 + 1. Hence, Proposition 2.10.(2), which states that the
algebraic counting polynomial decides equality of contained sets, does not hold anymore.
However, it holds for the important special case of well-fibred sets (cf. Theorem 2.29). /

Remark 2.21. It seems unreasonable to “add” infinitely many algebraic counting poly-
nomials. If we did this by a kind of “σ-additivity”, then the following might happen.
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For example, the set C \ {0} has algebraic counting polynomial ∞ − 1, but we can
decompose this set into C \ Z≥0 ]

⊎
i∈Z≥1

{i}, and the σ-additivity yields the algebraic
counting polynomial

c
(

(C \ Z≥0) ]
⊎

i∈Z≥1

{i}
)

= (∞−ℵ0)︸ ︷︷ ︸
c(C\Z≥0)

+
∑
i∈Z>0

1︸︷︷︸
c({i})

= (∞−ℵ0) + ℵ0 =∞ .

To avoid this problem, the definition of the algebraic counting polynomial for σ-systems
only includes additivity (cf. Definition 2.19.(3)), but no σ-additivity. The axiomatic
definition of the algebraic counting polynomial means that it is not defined for every
countable infinite union of σ-systems, for example it is not defined for the set Z≥0.
Instead, the algebraic counting polynomial is much more “unique” and definitive. /

Remark 2.22. Similarly6 to Corollary 2.14 one shows that any algebraic counting
polynomial of an elementarily describable set has a leading coefficient in Z≥1 when con-
sidered as a polynomial in the indeterminate∞ with coefficients in Z[ℵ0]. In particular,
ℵ0 does not appear in the leading coefficient. By Lemma 2.63 below, the degree and
leading coefficient in the indeterminate ∞ is well-defined (once a ranking is fixed).

This also holds for any describable set that allows a description by (possibly infinitely
many) simple algebraic σ-systems {Sj |j ∈ J} such that the number of σ-systems Sj
with |S=

j | = min
{
|S=
j |
∣∣j ∈ J} is finite. /

Recall that the number of equations in a σ-system is finite. Ideals associated to
a σ-system S can be defined using the same formula I(S) := 〈S=〉 : q∞ for q :=∏
p∈S= init(p) as in Definition 1.61.

Proposition 2.23. Let S be a simple algebraic system or simple algebraic σ-system in
R = F [y1, . . . , yn]. Then, dim(R/I(S)) = deg∞(c(S))

Proof. For a system S this follows directly from Theorem 1.94. For a σ-system S this
follows as I(S) only depends on S=.

The examples in this thesis utilize two constructions for an algebraic counting poly-
nomial. The first construction works for elementarily countable sets and uses an exten-
sion of the type, which was defined at the beginning of Subsection 2.2.1. A finite set of in-
equationsQ ⊂ F [y1, . . . , yn] with the same leader x has type τ(Q) =∞−

∑
q∈Q degx(q).

A countably infinite set of inequations Q ⊂ (F [y1, . . . , yn] \F ){6=} with the same leader
has type τ(Q) = ∞ − ℵ0. With these definitions, this construction is proved as a
natural generalization of Proposition 2.12.

Lemma 2.24. Let S be a simple algebraic σ-system in F [y1, . . . , yn]. Then a counting
polynomial c(S) of S can be given by c(S) :=

∏n
i=1 τ(Syi).

The second construction for an algebraic counting polynomial works for certain
infinite unions of algebraic σ-systems. This shows how to “add” the algebraic counting
polynomials of infinitely many simple algebraic σ-systems of a certain form. Note, that
the resulting algebraic counting polynomial does not involve ℵ0 if none of the σ-systems
does.

6 Here, one cannot assume that the algebraic counting is independent of the decomposition. However,
that set has to be decomposed for axiom (4) being applicable, and this axiom is the only axiom that
allows to increase dimensions. Just take this decomposition for the proof.
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Lemma 2.25. Let P := {Tj |j ∈ Z≥0} be a family of algebraic simple algebraic σ-
systems over R = F [y1, . . . , yn]. Assume that P satisfies the following conditions.

(1) The sets SolF ((Tj)≤y1), j ∈ Z≥0, partition F .
(2) For all j ∈ Z≥1 the set SolF ((Tj)≤y1) is finite.
(3) Let aj ∈ Sol(Tj), and let T ′j := φ≤y1,aj (Tj) be the corresponding simple algebraic

σ-systems in F [y2, . . . , yn] for all j ∈ Z≥0. Then there is a k ∈ Z>0 such that
c(T ′j) exists for all j ∈ Z>k ∪ {0} and c(T ′j) = c(T ′0) for all j > k.

(4) Let k be as in (3). For all j ∈ {1, . . . , k} there exists an algebraic counting
polynomial c(Tj) ∈ Z[∞,ℵ0], and c(Tj) 6∈ Z[∞] for at most one of those j.

Let d :=
∣∣∣⊎k

j=1 SolF ((Tj)≤y1)
∣∣∣. Then an algebraic counting polynomial of P is given by

c(P ) := (∞− d) · c(T ′0) +
k∑
j=1

c(Tj) ∈ Z[∞,ℵ0] ,

where the sum and product is taken in the ring Z[∞,ℵ0].

Proof. Let k be as in condition (3). Then, c(
⊎∞
j=0 SolF ((Tj)≤y1)) = c(F ) = ∞ by

condition (1) and Definition 2.19.(2). Due to (1), Definition 2.19.(3) implies

∞ = c
( ∞⊎
j=0

SolF ((Tj)≤y1)
)

= c
( k⊎
j=1

SolF ((Tj)≤y1)
)

+ c
(
SolF ((T0)≤y1) ]

∞⊎
j=k+1

SolF ((Tj)≤y1)
)

= d+ c
(
SolF ((T0)≤y1) ]

∞⊎
j=k+1

SolF ((Tj)≤y1)
)
,

as d = c(
⊎k
j=1 SolF ((Tj)≤y1)) by Definition 2.19.(1) and Definition 2.19.(3). Thus,

c
(
SolF ((T0)≤y1) ]

∞⊎
j=k+1

SolF ((Tj)≤y1)
)

=∞− d .

By condition (3), c(Tj) = c(T ′0) for all j > k. Thus, Definition 2.19.(4) implies

c
(
SolF (T0) ]

∞⊎
j=k+1

SolF (Tj)
)

= (∞− d) · c(T ′0) .

Due to the disjointness of the systems in P , Definition 2.19.(3) implies the claim.

Example 2.26. Consider the simple algebraic σ-systems

T0 := {x− j 6= 0, y + 1 = 0|j ∈ Z≥1},
T1 := {x− 1 = 0, 4y2 − 1 = 0}, and
Tj := {x− j = 0, 2y − j = 0} for j ≥ 2

over C[x, y] with x < y. Let P := {Tj |j ∈ Z≥0}. The assumptions of Lemma 2.25 are
satisfied with k = 1 and, thus, c(P ) = (∞− 1) · 1 + 2 =∞+ 1. /
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Figure 2.3: Diagram of the solutions of Example 2.26
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2.2.4 Well-fibred Sets and the Avoidance of Countable Sets

Countable exceptional sets and the corresponding symbol ℵ0 complicate the use of the
algebraic counting polynomial for σ-systems in applications (cf. Remark 2.20). This
subsection describes sets that do not lead to such complications. Call a describable set
V with c(V ) ∈ Z[∞] well-fibred. Example 2.26 shows that well-fibred sets are more
general than constructible sets. These sets show a similar behavior regarding counting
polynomials as constructible sets, in particular the algebraic counting polynomial for
these sets is strong enough to decide equality of sets contained in each other.

We begin with some lemmas describing properties of well-fibred systems. To state
the first lemma, call a set W ⊂ F

n elementarily well-fibred if either n = 1 and W
is constructible or n > 1, πn−1(W ) ⊆ F

n−1 is elementarily well-fibred, and the fibres
of π−1

n−1({w}) for w ∈ πn−1(W ) are constructible with the same counting polynomials.
Note that elementarily well-fibred sets admit an algebraic counting polynomial in Z[∞].

Lemma 2.27. Let V be a well-fibred set. Then, there exists a finite partition V =⊎k
i=1Wi of V into elementarily well-fibred sets Wi.

Proof. The claim clearly holds for n = 1. The only axiom that allows to increase the
dimension n is axiom (4). In general, one needs to partition V before applying axiom
(4), but this partition needs to be finite, as otherwise axiom (3) is not applicable to
recombine the counting polynomials of these systems. Elementarily well-fibred sets are
exactly the sets for which axiom (4) is applicable without previous splittings.

Lemma 2.28. Let V be a well-fibred set. Then, the algebraic counting polynomial of V
is unique.

Proof. The proof of [Ple09a, Proposition 3.3] regarding the uniqueness of counting poly-
nomials holds for well-fibred sets. One only needs to replace a decomposition into simple
systems with a decomposition into elementarily well-fibred sets, as in Lemma 2.27.

These lemmas allow to generalize the proof in [Ple09a] that we can decide equality
of well-fibred sets contained in each other. One might say that the countable infinite
sets are the only problem in deciding equality of sets, and no problems appear when
ℵ0 is not contained in the counting polynomial of a set. Recall the total order “≤” for
polynomials in Z[∞] defined before Proposition 2.10.

Theorem 2.29. Let V ⊆ W ⊆ F
n be two well-fibred sets. Then, c(V ) ≤ c(W ) with

equality if and only if V = W .

Even in cases when ℵ0 appears in the counting polynomial of two describable sets
V ⊆ W with algebraic counting polynomial c(V ) and c(W ), we can use the algebraic
counting polynomial to prove that V 6= W . This is done using the following two
estimations for the algebraic counting polynomial. First, any subset of F 1 with a
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countably infinite complement can be enlarged to a set with finite complement. Thus,
we say that the counting polynomial ∞− ℵ0 is bounded from above by ∞− k for all
k ∈ Z≥0, and we write ∞− ℵ0 ≺ ∞− k. Second, any subset of F 1 with a countably
infinite complement can be shrunk to a finite set. Thus, we say that the counting
polynomial∞−ℵ0 is bounded from below by k for all k ∈ Z≥0, and we write k ≺ ∞−ℵ0.

More formally, let p(ℵ0,∞) ∈ Z[ℵ0,∞] and q(∞) ∈ Z[∞]. We write p ≺ q if
q(∞) = p(∞− k,∞) and p � q if q(∞) = p(k,∞) for some k ∈ Z≥0.

Proposition 2.30. Let V1 ⊆ V2 ⊆ F
n be to describable sets with counting polynomials

p1(ℵ0,∞) := c(V1) and p2(ℵ0,∞) := c(V2). If there exist q1, q2 ∈ Z[∞] with p1 ≺ q1 �
q2 ≺ p2, then V1 6= V2.

The methods from this subsection easily allow to prove that all coefficients of the
counting polynomial “above ℵ0” are unique, and the problem from Remark 2.20 only
affects the lower coefficients. More formally, let p =

∑n
i=0 ai∞i be an algebraic counting

polynomial with coefficients ai ∈ Z[ℵ0] and let 0 ≤ k < n be the highest index with
ak ∈ Z[ℵ0] \ Z. Then, the coefficients aj for k < j ≤ n are unique. Of course, this
statement also holds for the counting sequence and the differential counting polynomial
in the next section; however, it is tedious to state in these cases.
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2.3 The Differential Counting Polynomial

“In my opinion, a theory is the more valuable the more strongly
it restricts possibilities, without coming into conflict with reality.
It is like a wanted poster which is supposed to characterize a
criminal; the more precisely it points him out the better.”

Albert Einstein
in [CE79, 8.12.1929]

Let F be a differential field of characteristic zero such that its field of constants
is not countable (cf. Remark 2.18), F its algebraic closure, < an orderly7 ranking,
∆ = {∂1, . . . , ∂n} a non-empty set of derivation operators, and U = {u(1), . . . , u(m)} a
non-empty set of differential indeterminates.

This section tries to describe (or to “count”) the set of solutions of a system of
differential equations, i.e., to assign a counting sequence and a differential counting
polynomial. More specifically, to count the number of non-centered solutions (cf. Sub-
section 1.2.2), i.e., solutions in the set

E := F [[z1, . . . , zn]]U ∼=
m⊕
j=1

F [[z1, . . . , zn]] ∼= F {U}∆ .

This section succeeds in reducing the definition of the counting polynomial in the diffe-
rential case to determining the algebraic counting polynomial of algebraic σ-systems.
This approach is extended to formal power series solutions in Subsection 2.5.4.

Even though the counting sequence and the differential counting polynomial are
non-unique in general, certain parts of them are well-defined. First if no ℵ0 appears in
the counting sequence or the differential counting polynomial, the they are unique; fur-
thermore, they decide equality of solution sets contained in each other by Theorem 2.34.
Second, the leading term (in the sense defined below) is connected to the differential
dimension polynomial and thus unique by Theorem 2.36.

Determining the counting sequence or differential counting polynomial is not algo-
rithmic (cf. Subsection 2.5.5), but many important special cases are either algorithmic
or there are theoretical arguments that let us succeed (cf. Section 2.5).

2.3.1 Mixed Algebraic-Differential Systems

This subsection introduces systems that are hybrids of algebraic and differential sys-
tems, called algebraically restricted systems of differential equations. They combine
differential equations with algebraic constraints for power series coefficients.

Consider the following set of indeterminates.

G := G(U,∆) :=
{
g

(j)
i | i ∈ Z

n
≥0, j ∈ {1, . . . ,m}

}
Call the polynomial ring F [G] the polynomial ring of indetermined power series
coefficients. Call the isomorphism

ρ : F{U} ∼−→ F [G] : u
(j)
i 7→ g

(j)
i

7Example 1.84 and Theorem 2.36 demonstrate that this condition is necessary.
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of F -algebras the forgetful map8. Extend this map to ρ : F{U} ] F [G] → F [G]
via IdF [G] and to ρ : (F{U} ] F [G]){=,6=} → F [G]{=, 6=} in the obvious way. Call the
elements of F [G]{=} power series coefficient equations and the elements of F [G]{6=}

power series coefficient inequations.

Definition 2.31. Call a countable set P ⊂ F{U}{=} ] F [G]{=,6=} an algebraically
restricted σ-system of differential equations if P ∩

(
F{U}{=} ] F [G]{=}

)
is finite

and an algebraically restricted system of differential equations if P is finite.

Now, we define non-centered solutions of algebraically restricted σ-systems of diffe-
rential equations. Slightly generalize the definition of the algebraization isomorphism
α and the evaluation map φe for e ∈ E from Subsection 1.2.4 to be defined on power
series coefficient equations and inequations. So, by abuse of notation, define

α : E → F
{U}∆

⊎
G

:

u(j) 7→
∑
i∈Zn≥0

a
(j)
i

zi

i!

 7→ {
u

(j)
i 7→ a

(j)
i

g
(j)
i 7→ a

(j)
i

and

φe : F{U} ] F [G]→ F :

{
u

(j)
i 7→ α(e)(u

(j)
i )

g
(j)
i 7→ α(e)(g

(j)
i )

.

A non-centered solution of p= ∈ F [G]= or p 6= ∈ F [G]6= is an e ∈ E with φe(p) = 0
or φe(p) 6= 0, respectively. Furthermore, e ∈ E is called a non-centered solution of
an algebraically restricted σ-system of differential equations P , if it is a non-centered
solution of each element in P . The set of non-centered solutions of P is denoted by
SolE(P ) ⊆ E. The image of SolE(P ) under E � E/E>`, i.e., the set of non-centered
solutions of P truncated at order `, is denoted by SolE(P )≤` ⊆ E/E>`.

2.3.2 Definition of the Differential Counting Polynomial

This subsection defines the counting sequence and the differential counting polynomial
in the following way. Theorem 2.32 yields an algebraic Thomas σ-decomposition of
an algebraically restricted system of differential equations. This theorem can be seen
as a substitute for the Thomas decomposition, which does not exist anymore in this
setup. For the σ-systems in this σ-decomposition, the algebraic counting polynomial (cf.
Subsection 2.2.3) defines the counting sequence and the differential counting polynomial.

Theorem 2.32. Let P ⊂ F{U}{=} ∪F [G]{=,6=} be an algebraically restricted system of
differential equations. Let ` ∈ Z≥0. There exists a countable set C of simple algebraic
σ-systems in F [G]≤` with

SolE(P )≤` =
⊎
P̃∈C

SolE(P̃ )≤` .

The proof of this theorem successively turns differential equations in F{U}{=} into
power series coefficient equations and inequations in F [G]{=,6=}. As a differential equa-
tion has infinitely many consequences for power series coefficients, this yields an infinite
decomposition. We postpone the proof of this theorem to page 120 in the next section.

8It forgets the differential structure and forgetful functors are often r ight adjoints.
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This theorem explains the necessity to define the algebraic counting polynomial
for σ-systems, as the truncated solutions of differential equations can be described by
algebraic σ-systems. Using the infinite decomposition, we can define differential versions
of the counting polynomial.

Definition 2.33. Let P be an algebraically restricted system of differential equations.
Let C` be a countable set of algebraic σ-systems with SolE(P )≤` =

⊎
P̃∈C` SolE(P̃ )≤`

from Theorem 2.32 for each ` ∈ Z≥0.

(1) If the algebraic counting polynomial is defined for all C`, then define a counting
sequence of P (or SolE(P ))

c(P ) : ` 7→ c(C`)

as element in Z[∞,ℵ0]Z≥0 .
(2) Define an `-th differential counting polynomial as the polynomial c(P )(`) ∈

Z[∞,ℵ0] for all ` ∈ Z≥0.
(3) If there exists a polynomial

p ∈ Q[`,ℵ0,∞,∞`,∞
`2

2! , . . . ,∞
`n

n! ]

such that c(P )(`) = p for ultimately all `, then call p a differential counting
polynomial of P and denote it by c(P ).

If I = 〈p1, . . . , pk〉∆ is a radical differential ideal, then define c(I) := c({p1, . . . , pk}) and
c(I) := c({p1, . . . , pk}).

Note that the definition of the counting sequence explicitly allows to prescribe initial
conditions with power series coefficient equations and inequations. In contrast, diffe-
rential inequations are not suitable to define a counting sequence (cf. Remark 1.49).

To simplify the notation, we speak of “the” counting sequence and “the” differential
counting polynomial, even though they are not unique. Furthermore, we write ∞`2

instead of (∞
`2

2! )2 and use similar simplifications. The computation of examples is
postponed after the development of suitable means in Subsection 2.5.1.

2.3.3 Equality of Sets and the Differential Counting Polynomial

For the application of the counting sequence and differential counting polynomial, we
need statements that compare the counting sequence and differential counting polyno-
mial for solution sets contained in each other. If no ℵ0 appears, then the description
of well-fibred sets from Subsection 2.2.4 allows a satisfying statement: the counting
sequence and the differential counting polynomial are both strong enough to decide
whether two sets of solutions contained in each other are equal. If ℵ0 appears, then
Remark 2.20 prevents such a strong statement. However, the counting sequence (and
also the differential counting polynomial) still allows to prove that certain sets are dif-
ferent. This is stated formally in the following theorem and proposition, which are both
a direct corollary of Subsection 2.2.4.

The statement of the next theorem uses the following inductively defined total order
“≤” for polynomials p, q ∈ Q[`,∞,∞`,∞

`2

2! , . . . ,∞
`n

n! ]. First, p ≤ q if and only if
0 ≤ q − p. If p ∈ Q, then “≤” extends the natural order on Q. If p 6∈ Q, then 0 ≤ p if
and only if 0 ≤ init(p), for the algebraic ranking ` <∞ <∞` <∞

`2

2! < . . . <∞
`n

n! .
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Theorem 2.34. Let P1, P2 ⊂ F{U}{=} ∪ F [G]{=,6=} be two algebraically restricted sys-
tem of differential equations with SolE(P1) ⊆ SolE(P2), such that the counting se-
quences c(P1) and c(P2) exist. Then:

(1) If c(P1)(`) ∈ Z[∞] for all ` ∈ Z≥0, then c(P1) is the unique9 counting sequence.
(2) If c(P1)(`), c(P2)(`) ∈ Z[∞] for all ` ∈ Z≥0, then c(P1)(`) ≤ c(P2)(`) for all

` ∈ Z≥0, and equality holds if and only if SolE(P1) = SolE(P2).

Assume the differential counting polynomials c(P1) and c(P2) exist. Then:

(3) If c(P1) ∈ Q[`,∞,∞`,∞
`2

2! , . . . ,∞
`n

n! ], then c(P1) is the unique differential coun-
ting polynomial.

(4) If c(P1), c(P2) ∈ Q[`,∞,∞`,∞
`2

2! , . . . ,∞
`n

n! ], then c(P1) ≤ c(P2), and equality
holds if and only if SolE(P1) = SolE(P2).

Remark 2.20 indicates that a stronger version of this theorem is unlikely. However,
the estimation of algebraic counting polynomials from Proposition 2.30, which proves
that two sets are not equal, generalizes to the differential case. The definition of the
estimation ≺ is given before Proposition 2.30.

Proposition 2.35. Let P1, P2 ⊂ F{U}{=} ∪ F [G]{=, 6=} be two algebraically restricted
system of differential equations with SolE(P1) ⊆ SolE(P2) such that the counting se-
quences c(P1) and c(P2) exist. If there exist an ` ∈ Z≥0 and q1, q2 ∈ Z[∞] with
c(P1)(`) ≺ q1 � q2 ≺ c(P2)(`), then SolE(P1) 6= SolE(P2).

2.3.4 Comparison to the Differential Dimension Polynomial

The counting sequence and the differential counting polynomial are connected to the
differential dimension polynomial. This implies that certain parts of the counting se-
quence and the differential counting polynomial are unique, even though they are not
unique when ℵ0 appears in them (cf. Remark 2.20 and Theorem 2.34).

Under the assumptions of the following theorem, both the `-th differential counting
polynomial and the differential counting polynomial have an element in Z≥1 as leading
coefficient, i.e., every such polynomial has a leading term

λc(I)(`) := a(`) · ∞f(`) for some a : Z≥0 → Z≥1 and f : Z≥0 → Z≥0 ,

when considered as polynomial in the indeterminate ∞ resp. the indeterminates ∞
`i

i!

for 0 ≤ i ≤ n and coefficients in Z[ℵ0] resp. Q[ℵ0, `].

Theorem 2.36. Let I := I(S) the differential ideal associated to a simple differential
system S. Let ΩI be the differential dimension function, and ωI be the differential
dimension polynomial. If a counting sequence c(I) of I exists, then for the leading
terms of the `-th differential counting polynomial the following holds

λc(I)(`) = a(`) · ∞ΩI(`) , where a(`) =
∏

p=∈S=

ord(p)≤`

mdeg(p) ∈ Z≥1 .

If a differential counting polynomial c(I) of I exits, then

λc(I) = a(`) · ∞ωI(`) , where a(`) =
∏

p=∈S=

mdeg(p) ∈ Z≥1 .

9It is of course only unique for the fixed ranking, as indicated after Theorem 2.36.
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The same holds for the counting sequence and differential counting polynomial of the
simple system S.

We postpone the proof to the next section (page 122).
The counting sequence and the differential counting polynomial depend on the cho-

sen orderly ranking (cf. Remark 1.76). Again, this is not a problem for comparing
solution sets using Theorem 2.34 and Proposition 2.35, as all counting sequences or all
differential counting polynomials only need to be computed with respect to the same
ranking.

2.4 Proofs for the Differential Counting Polynomial

The goal of this section is to prove the two unproved theorems of the previous section.
The idea of the proof of Theorem 2.32 is to adapt the algebraic Thomas decompo-

sition for a system of differential equations by treating the differential equations and all
their iterated derivatives as algebraic equations. Furthermore, we allow finitely many
power series coefficient equations and inequations. Of course, this is a decomposition of
infinitely many equations in infinitely many indeterminates, so an algorithmic approach
does not terminate. However, the algorithmic approach presented below produces “rea-
sonable” simple algebraic systems at some step. In general, these “reasonable” systems
still do not correctly characterize all truncated non-centered solutions up to order `,
but further steps only produce new inequations, whereas no new equations arise. In
that sense, this decomposition “convergences” against the σ-systems needed for Theo-
rem 2.32.

The proof of Theorem 2.36 builds on a structural statement about algebraic ideals
associated to simple σ-systems, in particular, how the algebraic counting polynomial
behaves under taking the Zariski closure. For the purpose of the ideal, one can ignore
the countable set of inequations, as they play no role in defining the ideal.

Let F be a differential field of characteristic zero such that its field of constants is not
countable, F its algebraic closure, < an orderly ranking, ∆ = {∂1, . . . , ∂n} a non-empty
set of derivation operators, and U = {u(1), . . . , u(m)} a non-empty set of differential
indeterminates. The given orderly ranking < on F{U} induces an (algebraic) ranking
on F [G]. Thereby, write G = {g1, g2, . . .} where the indeterminates gi are defined by
the total order gi < gi+1 induced by the ranking.

2.4.1 StrongReduce

This preparatory step for the proof introduces a stronger form of the reduction algo-
rithm. This stronger reduction ensures that two properties are generically satisfied for
a polynomial with respect to a simple algebraic system. First, the resulting polynomial
is generically square-free and, second, prime relative to the equation of the same leader
in the simple algebraic system, in case such a polynomial exists. To achieve this, it uses
the splitting algorithms ResSplitDivide (cf. Algorithm 1.27) and ResSplitSquareFree (cf.
Algorithm 1.28) as post-processing of the result of Reduce (cf. Algorithm 1.15).

Recall that the two algorithms ResSplitDivide and ResSplitSquareFree return two
systems and a polynomial. Denote the latter polynomial by writing [3] behind the
procedure names ResSplitDivide and ResSplitSquareFree.

For this subsection assume that σ-systems have a finite T -list as candidate simple
system (allowing weak triangularity instead of triangularity) and a Q-list as queue (cf.
Section 1.3). The formal definition of these lists is given below.
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Algorithm 2.37 (StrongReduce).
Input: A system S and a polynomial p ∈ R reduced with respect to S such that
(SQ)<ld(p) = ∅.
Output: A polynomial q ∈ R with φa(p) = 0 if and only if φa(q) = 0 for each a ∈ Sol(S).
Further properties of the output are given in Remark 2.38.
Algorithm:
1: x← ld(p)
2: q ← p
3: for r ∈ S 6=x do
4: q ← ResSplitDivide(S, q, r)[3]
5: end for
6: q ← ResSplitSquareFree(S, q)[3]
7: return q

This algorithm appears in two senses below. The first sense is a strict algorithmic
sense as written here. In the second sense StrongReduce is interpreted rather as a
function and not as an algorithm. Then, we can loosen the condition of S being a
system and allow S to be a σ-system with countably many inequations. In this case, the
for-loop in line 3 is formally infinite. However, at most mdeg(q) calls of ResSplitDivide
in line 4 can change q, and we only perform these finitely many calls.

The following remark describes cases, where StrongReduce does not change the po-
lynomial in its input. In a nutshell, this is the case if this polynomial is (a) generically
squarefree on the solutions of the input system and (b) has generically no common
divisor with the corresponding polynomial in the system.

Remark 2.38. Let S be a system and p ∈ R a polynomial reduced with respect to S.
Then, StrongReduce(S, p) = p if and only if both (a) Reduce(ST , res0(p, ∂∂xp, x)) 6= 0,
and (b) if ST has an equation of leader x, then Reduce(ST , res0((ST )x, p, x)) 6= 0.

In particular, the equality StrongReduce(S, p) = p holds in the following two sce-
narios. First, if S′ is a system with S′T having an equation of leader x and q ∈ R
reduced with respect to S′, then this equality holds for S and p, where (S, S1, p) =
ResSplitGCD(S′, q). Second, if S′ is a system with S′T having no an equation of leader
x and q ∈ R reduced with respect to S′, then this equality holds for S and p, where
(S, S1, p) = ResSplitSquareFree(S′, q). /

2.4.2 Algebraic Systems and Reduction

This subsection introduces the “data structure” which turns algebraically restricted
systems of differential equations into algebraic systems. This is used both for the proof of
Theorem 2.32 in this section and in the next section for examples (cf. Subsection 2.5.1).

This “data structure” associates the corresponding equation or set of inequations for
each indeterminate by the allocation map β defined below. Both in the algebraic and
differential algorithm in Section 1.3, the unique equation or inequation in the T -list with
leader x was associated to the indeterminate x. The equations and inequation with an
appropriate leader were created by reductions among the equations and inequations. In
contrast, in this context, a differential equation cannot be reduced by an algebraic equa-
tion to yield an equation with appropriate leader. Thus, the association of a differential
equation to an indeterminate is a process from a differential equation to an algebraic
equation. This process begins with the pre-allocation map β, which creates a suitable
derivative of the differential equation. Then, the differential structure is removed by the
forgetful map ρ (cf. Subsection 2.3.1). Finally, we are left with an algebraic equation,
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which can be manipulated by Reduce and StrongReduce. The image of the allocation
map β is the result of this process.

An algebraically restricted σ-system of differential equations P has the subsets con-
sisting of differential equations, power series coefficient equations, power series co-
efficient inequations, and power series coefficients restrictions, denoted by P ∂,= :=
P ∩ F{U}{=}, P a,= := P ∩ F [G]{=}, P a, 6= := P ∩ F [G]{6=}, and P a := P a,= ∪ P a,6=,
respectively.

Let P be an algebraically restricted σ-system of differential equations. Now, we
define weakly triangular algebraic σ-systems Pi. (Thus, the reduction and splitting
algorithms from Subsections 1.3.1, 2.4.1, and 1.3.2 also work for the case of algebraic
σ-systems when setting (Pi)T := Pi.) Define P0 := ∅. Suppose inductively that Pi−1 is
a weakly triangular σ-system in F [g1, . . . , gi−1] for some i ∈ Z>0. Define Pi using the
pre-allocation map

β : G→ P1({P ∂,=}∆) ] P1(P a,=) ] P(P a,6=)

where P(A) denotes the power set of a set A and P1(A) denotes its subset of sets of
cardinality one. If β(gi) ⊂ P a then let Pi := Pi−1 ∪ β(gi) and if β(gi) ⊂ {P ∂,=}∆ then
let

Pi := Pi−1 ∪ StrongReduce(Pi−1,Reduce(Pi−1, ρ(β(gi)))) .

Assume that ld(Pi \Pi−1) ⊆ {gi} so Pi is a weakly triangular σ-system in F [g1, . . . , gi].

Definition 2.39. Call a function β : G → P1(P a,=) ] P(P a,6=) an allocation map if
there exist β and Pi for all i ∈ Z≥1 as described above with β(gi) = Pi \ Pi−1. Call
the map β the corresponding pre-allocation map. Call the corresponding weakly
triangular algebraic σ-systems Pi the i-th combined algebraic σ-system associated
to P by β.

Assume that all algebraically restricted σ-systems of differential equations have an
allocation map. (If not explicitly specified otherwise, it is the empty set constantly.)

The following example demonstrates why StrongReduce is used.

Example 2.40 (cf. Example D.6). Let ∆ = {∂t} and U = {u}. Consider solutions10

u(t) =
∑∞

i=0 gi
ti

i! centered around zero of the differential equation p := u2
t −4u = 0 such

that the solution has a zero at the center of expansion, i.e., consider the algebraically
restricted system of differential equations P := {(p)=, (g0)=}.

Begin to construct a suitable pre-allocation map β and the corresponding allocation
map β. For the first combined algebraic σ-system P1 define β(g0) := {(g0)=} and get
P1 = {(g0)=}. The only constraint for g1 is given by p. Therefore, set β(g1) := {p=}.
For the corresponding value of the allocation map get ρ(β(g1)) = ρ(p=) = (g2

1 − 4g0)=.
This equation is the square (g2

1)= after being reduced modulo P1. Only the application
of ResSplitSquareFree in StrongReduce yields β(g1) = {(g1)=}. /

The reduction with respect to algebraic systems easily carries over to algebraically
restricted σ-system of differential equations: they can reduce elements in F [G].

Algorithm 2.41 (Reduce).
Input: An algebraically restricted σ-system of differential equations P with allocation
map β, a polynomial p ∈ F [G].
Output: A polynomial q with φe(p) = 0 if and only if φe(q) = 0 for each e ∈ Sol(P ).
Algorithm:

10Using above notation, gi = gi+1.
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1: gi ← ld(p). // This defines i
2: Pi ← i-th combined algebraic σ-system associated to P by β
3: return Reduce(Pi, p)

For an algebraically restricted σ-system of differential equations the T -list, the can-
didate simple system, and Q-list, the queue, are defined similarly to those of algebraic
systems in Section 1.3. Let P be an algebraically restricted σ-system of differential
equations with allocation map β. Call the weakly triangular set PT =

⋃
i∈Z≥1

Pi the
T -list of P , where Pi is the i-th combined algebraic system associated to P by β. The
Q-list of P , i.e., the queue of unprocessed polynomials, is given by

PQ := (P a \ im(β)) ∪
{
p ∈ ρ

(
{P ∂,=}∆

)∣∣∣Reduce(P, p) 6= 0
}

.

The second set in this union seems counterintuitive. It is needed, as differential equa-
tions can never be moved into the T -list, as a differential equation has infinitely many
consequences. To prevent cluttering up the Q-list by superfluous constraints, the re-
duction to zero is used to decide whether the influence of one derivative of a differential
equation is already included in the T -list. Note that both the T -list and the Q-list only
contain equations and inequations in F [G], but no differential equations.

The proof uses the set of solutions of PT as superset of the set of solutions of P . It
successively enlarges PT such that SolE(PT ) “converges” against SolE(P ).

2.4.3 An Infinite Decomposition

This subsection proves Theorem 2.32. The main tool is Construction 2.46 below. It is
an infinite process for algebraically restricted systems of differential equations, similar
to the algebraic Thomas decomposition of algebraic systems. As it might run infinitely
long, it can only “converge” against the correct solution set. When computing the
counting sequence and the differential counting polynomial in practice, this gives an
approximation and often leads to a good guess for the correct answer. (Of course, one
has to verify this guess.)

In general, the (pre) allocation maps can return sets of inequations. In this subsec-
tion these sets are always finite, and thus one can multiply these inequations. We use
this to simplify the notation in this subsection and change Definition 2.39 in such a way
that the (pre) allocation maps returns singletons.

We begin with a technical subalgorithm. It inserts a newly treated equation into the
T -list by changing the pre-allocation map β. In addition to a system, this algorithm
gets two equations p= and r= as input. The idea behind these two equations is the
following. The equation r= is the original equation and may be a differential equation.
The power series coefficient equation p= is the result of applying reduction, gcd and
square-free methods to r=. This subalgorithm keeps track of r= to set the image of the
pre-allocation map β to r=.

Algorithm 2.42 (InsertEquation).
Input:

• An algebraically restricted system of differential equations P ′ with allocation map
βP ′ ,

• an equation p= ∈ F [G]{=} with ld(p) = gi, and

• an equation r= ∈ (F{U} ∪ F [G]){=} with ρ(r=) ∈ PQ
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such that StrongReduce(P ′,Reduce(P ′, ρ(r))) = p.
Output: An algebraically restricted system of differential equations P with allocation
map βP with β(gi) = p, SolE(P ) = SolE(P ′) and Reduce(P, ρ(r)) = Reduce(P, p) = 0.
In particular, Reduce(P, ρ(r)) implies that ρ(r) is removed from the Q-list of P .
Algorithm:
1: P ← P ′.
2: if r ∈ F [G] then
3: if p 6= r then
4: P a ← (P a \ {r=}) ∪ {p=}
5: end if
6: βP (gi)← p=

7: else if r ∈ F{U} then
8: if p 6= Reduce(P, ρ(r)) then
9: P a ← P a ∪ {p=}

10: βP (gi)← p=

11: else
12: βP (gi)← r=

13: end if
14: end if

Proof. First, show that β(gi) = p. In line 6 and line 10 the image of the pre-allocation
map β is set to the equation p=. In line 12 the image of the pre-allocation map β is
set to the equation r=. From the condition StrongReduce(P ′,Reduce(P ′, ρ(r))) = p it
follows that p lies in the image of the allocation map β.

Second, show that SolE(P ) = SolE(P ′). The substitution of r= by p= in line 4 does
not change the set of solutions, since both appear as power series coefficient equations,
and the algorithms Reduce and StrongReduce, which descibe the relation between r=

and p=, do not change the set of solutions. Similarly, adding p= to the system in line 9
also leaves the set of solutions of the system unchanged, as the power series coefficient
equation p= is just a consequence of the differential equation r=; the equation p= is
even equivalent to ρ(r=) on the set of solution.

The third point Reduce(P, ρ(r)) = Reduce(P, p) = 0 follows easily from β(gi) = p
and StrongReduce(P ′,Reduce(P ′, ρ(r))) = p.

Remark 2.43. The following algorithm InfiniteDecompose sloppily uses the algorithms
InitSplit, ResSplitGCD, ResSplitSquareFree, and ResSplitDivide for algebraically restricted
system of differential equations rather than for algebraic or differential systems. This
is justified because all splittings are done with respect to power series equations and
inequations in F [G]. More specific, splitting an algebraically restricted system of diffe-
rential equations P with respect to a polynomial p ∈ F [G] results in two algebraically
restricted systems of differential equations P1 and P2 with P a,6=1 = P a,6= ∪ {p6=} and
P a,=2 = P a,= ∪ {p=}. /

The selection strategy needs to be adapted to algebraically restricted systems of
differential equations.

Definition 2.44. A selection strategy for algebraically restricted systems of diffe-
rential equations is a map, which maps an algebraically restricted system of differential
equations P with PQ 6= ∅ to an element q ∈ PQ, such that the following two properties
are satisfied:

(1) If Select(P ) = q, then ld(Reduce(P, PQ)) ∩ {gi ∈ G | gi < ld(Reduce(P, q))} = ∅.



114 CHAPTER 2. DIFFERENTIAL COUNTING POLYNOMIALS

(2) If Select(P ) = q 6= is an inequation, then additionally ld(Reduce(P, (PQ)=))∩{gi ∈
G | gi ≤ ld(Reduce(P, q))} = ∅ holds.

Construction 2.46 may produce countably many systems. For “convergence”, all of
these systems need to be treated repeatedly. To achieve this, choose systems according
to the following condition. Let P(A) denote the power set of a set A.

Definition 2.45 (Choose). A choice for algebraically restricted systems of differential
equations is a map

Choose : P ({P | P algebraically restricted system of differential equations})
−→ {P | P algebraically restricted system of differential equations} :

L 7−→ P ∈ L

with the property min(ld(Choose(L)Q)) = min(ld(P ′Q)|P ′ ∈ L).

Construction 2.46 (InfiniteDecompose).
Input: An algebraically restricted system of differential equations P
Computation steps: They are printed on page 115.

Proof. We show that the input of each subalgorithm is sound. This is clear for the
subalgorithms InitSplit, ResSplitGCD, ResSplitSquareFree, and ResSplitDivide. For the
two calls of InsertEquation p= is reduced with respect to P , since q is reduced with respect
to P , ld(p) = ld(q), and mdeg(p) ≤ mdeg(q). At last, condition StrongReduce(P, q) = p
for q = Reduce(P, ρ(r)) follows from Remark 2.38.

Note that a polynomial p ∈ {P ∂,=}∆ is removed from the Q-list by adding it (or a
divisor of it) to the T -list. Thus, p reduces to zero and is no longer contained in the
Q-list.

Note that we do not claim termination of this construction. However, now we show
several properties of this construction, in particular that it produces the systems of the
statement of Theorem 2.32.

The proof of the first loop invariant of the correctness proof of the algorithm De-
compose (cf. page 40) can almost verbatim be used to prove the following lemma.

Lemma 2.47. In Construction 2.46

SolE(P ′) =
⊎
P∈L

SolE(P )

after each while loop.

Lemma 2.48. Let P be an algebraically restricted system of differential equations in L
in Construction 2.46 and gi ∈ G. Then, PT is triangular, φ<gi,a(p) is square-free, and
φa(init(p)) 6= 0 for all p ∈ PT with ld(p) = gi and all a ∈ Sol((PT )<gi ∪ (PQ)<gi).

Before giving the proof, which is similar to the second loop invariant of the correct-
ness proof of Decompose (cf. page 40), an easy corollary springs to mind.

Corollary 2.49. Let P be an algebraically restricted system of differential equations in
L in Construction 2.46 and gi ∈ G. If (PQ)≤gi = ∅, then (PT )≤gi is a simple algebraic
system.
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Construction 2.46 (InfiniteDecompose)
1: L← {P ′}
2: while |L| > 0 do
3: P ← Choose(L); L← L \ {P}
4: r ← Select(P ); q ← Reduce(P, ρ(r)); x← ld(q)
5: if q /∈ {c= | c ∈ F \ {0}}a then
6: if x 6= 1 then
7: if q is an equation then
8: if βP (x) is an equation then
9: if Reduce(PT , res0(βP (x), q, x)) = 0 then

10: (P, P1, p)← ResSplitGCD(P, q); L← L ∪ {P1}
11: P ← InsertEquation(P, p=, r=)
12: else
13: P a,= ← P a,= ∪ {res0(βP (x), q, x)=}
14: end if
15: else
16: (P, P2)← InitSplit(P, q); L← L ∪ {P2}
17: (P, P3, p)← ResSplitSquareFree (P, q); L← L ∪ {P3}
18: P ← InsertEquation(P, p=, r=)
19: end if
20: else if q is an inequation then
21: if βP (x) is an equation then
22: (P, P4, p)← ResSplitDivide (P, βP (x), q); L← L ∪ {P4}
23: P a,= ← P a,= ∪ {p=}; βP (x)← {p=}
24: else
25: (P, P5)← InitSplit(P, q); L← L ∪ {P5}
26: (P, P6, p)← ResSplitSquareFree (P, q); L← L ∪ {P6}
27: if βP (x) is an inequation then
28: (P, P7, r)← ResSplitDivide (P, βP (x), p); L← L ∪ {P7}
29: βP (x)← (r · p) 6=
30: else if βP (x) is empty then
31: βP (x)← p6=
32: end if
33: end if
34: end if
35: end if
36: L← L ∪ {P}
37: end if
38: end while

aq 6= 0 is not possible because of the definition of PQ.
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Proof of Lemma 2.48. One easily checks that all steps in the algorithm allow only one
polynomial (PT )gi in PT for each leader gi, thus triangularity obviously holds.

At the beginning of Construction 2.46 the statement holds, because PT = ∅ for
the input system P . So assume that the condition holds at the beginning of the main
loop. Show that all polynomials added to the image of the allocation map β, and thus
to PT , have non-zero initial and are square-free. For Sol((PT )<gi ∪ (PQ)<gi) = ∅, the
statement is trivially true. So, let a ∈ Sol((PT )<gi ∪ (PQ)<gi).

For the equation p= added as conditional gcd of (PT )gi and q in line 11, φ<gi,a(p) is a
divisor of φ<gi,a((PT )gi). As φ<gi,a((PT )gi) is square-free by assumption, so is φ<gi,a(p).
The inequation added to P in ResSplitGCD is the initial of p=.

The equation p= inserted into PT in line 18 and the inequation p 6= inserted in line
31 are square-free due to ResSplitSquareFree, and their initials are non-zero as p is either
identical to q, or it is a pseudo quotient of q by SPRSi

(
q, ∂

∂gi
q, gi

)
for some i > 0. On

the one hand, if p equals q, the call of InitSplit for q ensures a non-zero initial for p. On
the other hand, the polynomial SPRSi

(
q, ∂

∂gi
q, gi

)
has initial resi

(
q, ∂

∂gi
q, gi

)
, which is

added as an inequation by ResSplitSquareFree.
The equation p= that replaces the old equation (PT )gi in line 23 is the quotient of

(PT )gi by an inequation. It is square-free, because φ<gi,a(p) is a divisor of φ<gi,a((PT )gi),
which is square-free by assumption. Again, p is either identical to (PT )gi or a pseudo
quotient of (PT )gi by SPRSi ((PT )gi , q, gi) for some i > 0 and, using the same arguments
as in the last paragraph, the initial of p does not vanish.

Finally, consider the inequation (r ·p)6= added in line 29 as a least common multiple
of ((PT )gi)6= and p6=. The inequation φ<gi,a(p) is square-free and has a non-vanishing

initial for the same reasons as before. Due to φ<gi,a(r) ∼ φ<gi,a((PT )gi )

gcd(φ<gi,a((PT )gi ),φ<gi,a(p)) ,
the polynomials φ<gi,a(r) and φ<gi,a(p) have no common divisors. As φ<gi,a(r) divides
φ<gi,a((PT )gi), using the same arguments as before, φ<gi,a(r) is square-free and has a
non-vanishing initial. This completes the proof.

The following lemmas are a first step towards a formal statements of the form “all
systems and all constraints in the systems are treated at some point”. For their formu-
lation we use the following language. In Construction 2.46, call the systems P1, . . . , P7

and the system P added to L in line 36 the children of a system P chosen in line 3.
The latter system P added to L in line 36 is also called the heir of the system P chosen
in line 3. Similarly, define a descendent as an element in the transitive hull of children
and a successor as an element in the transitive hull of heir.

Lemma 2.50. Consider a chain P = P (1), P (2), . . . of algebraically restricted system of
differential equations, such that P (j+1) is a child of P (j). Let gi ∈ G. Then there is a
k ∈ Z≥2 such that P (k)

Q ∩ F [g1, . . . , gi]
{=, 6=} = ∅.

Proof. The proof is similar to the termination of Decompose (cf. page 42). Define ≺ as
the composite order [≺1,≺2,≺3,≺4] of the four orders defined below. (It depends on
gi from the statement of the lemma.) The ≺j are well-founded (the proof is the same
as in Definition and Remark 1.35), and thus ≺ is. Let P, P ′ be algebraically restricted
systems of differential equations.

(1) For j = 1, . . . , i define ≺1,gj by P ≺1,gj P ′ if and only if mdeg
(
(PT )=

gj

)
<

mdeg
(
(P ′T )=

gj

)
, with mdeg

(
(PT )=

gj

)
:= ∞ if (PT )=

gj
is empty. Define the com-

posite order ≺1 as [≺1,g1 , . . . ,≺1,gi ].
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(2) Define the map µ from the set of algebraically restricted systems of differential
equations to {1, g1, . . . , gi, g∞}, where µ(P ) is minimal such that there exists an
equation p ∈ (PQ)=

µ(S) with Reduce(P, p) 6= 0, or µ(S) = g∞ if no such equation
exists. Then, P ≺2 P

′ if and only if µ(P ) < µ(P ′) with 1 < gj and gj < g∞ for
1 ≤ j ≤ i.

(3) P ≺3 P
′ if and only if there is p 6= ∈ F [g1, . . . , gi]

6= and a finite (possibly empty) set
K ⊂ F [g1, . . . , gi]

6= with ld(q) < ld(p) ∀ q ∈ K such that P a, 6=Q ]{p6=} = (P ′)a,6=Q ]K
holds.

(4) P ≺4 P
′ if and only if |ρ(PQ) ∩ F [g1, . . . , gi]| <

∣∣∣ρ(P ′Q) ∩ F [g1, . . . , gi]
∣∣∣.

Tacitly use the fact that reduction never makes polynomials bigger in the sense of
Remark 1.17.(3). Again, for j = 1, . . . , 4 use the notation P 6�6≺j P

′ if neither P ≺j P ′

nor P ′ ≺j P holds.
Denote the system chosen from L in line 4 by P̂ and the system added to L in line

36 by P . Let q be the element selected from and reduced with respect to P̂ in line 4,
and x its leader. Prove that the children P, P1, . . . , P7 of P̂ are ≺-smaller than P̂ . Note,
that P (i+1) is generated from P (i) as one of these children. As ≺ is well-founded, this
means that ρ(PQ) ∩ F [g1, . . . , gi] after finitely many steps by order ≺4. Since x > gi
implies the claim by the axiom (1) from the definition of Select, assume that x ≤ gi.

For j = 1, . . . , 7, ((Pj)T )= = (P̂T )=, and thus Pj 6�6≺1
P̂ . The properties of Select

in Definition 2.44 directly require that there is no equation in (P̂Q)= with a leader
smaller than x. However, the equation added to the system Pj returned from InitSplit
is the initial of q, which has a leader smaller than x and does not reduce to 0 (cf. Re-
mark 1.17.(2)). Furthermore, the equations added in one of the subalgorithms based
on ResSplit have a leader smaller than x and do not reduce to 0. In each case Pj ≺2 P̂
is proved.

It remains to show P ≺ P̂ . If q is reduced to 0=, then it is omitted from PQ,
and so P ≺4 P̂ . As the system is otherwise unchanged, P 6�6≺j P̂ , 1 ≤ j ≤ 3, and

therefore P ≺ P̂ holds. If q is reduced to c6= for some c ∈ F \ {0}, then P ≺3 P̂ and
P 6�6≺j P̂ , 1 ≤ j ≤ 2, since the only change was the removal of an inequation from P a,6=.
Otherwise, one of the following cases occurs:

Lines 10-11 set βP (x) to p= of smaller degree than β
P̂

(x) and 15-18 add βP (x) as a
new equation. In both cases P ≺1 P̂ .

In line 13, PT = P̂T implies P 6�6≺1
P̂ . The polynomial q is chosen according to Select

(cf. Definition 2.44.(1)), which implies (P̂Q)=
<x = ∅ and (PQ)=

<x = {res0(βP (x), q, x)=}.
Line 9 ensures Reduce(P, res0(βP (x), q, x)) 6= 0 and, thus, P ≺2 P̂ follows.

Consider lines 22-23. If the degree of βP (x) is smaller than the degree of β
P̂

(x), then
P ≺1 P̂ . In case the degree doesn’t change, P 6�6≺2

P̂ and (PQ)= = (P̂Q)= guarantees

P 6�6≺1
P̂ . However, q is removed from PQ and replaced by an inequation with smaller

leader, which implies P ≺3 P̂ .
In lines 24-32, obviously P 6�6≺j P̂ , 1 ≤ j ≤ 2. As before, q is removed from PQ and

replaced by an inequation of smaller leader, which once more implies P ≺3 P̂ .

Lemma 2.51. In Construction 2.46 each system in L will be chosen after a finite
number of steps.
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Proof. Let P ′ ∈ L and gi = min(ld(P ′Q)). The map Choose ensures that the algorithms
treat a system with a polynomial of minimal leader in its Q-list. Lemma 2.50 implies
that PQ ∩ F [g1, . . . , gi]

{=, 6=} = ∅ for all P ∈ L \ {P ′} after a finite number of steps. At
that point, P ′ will be chosen.

Lemma 2.52. Let P ′ be an algebraically restricted system of differential equations and
p ∈ (P ′)Q. Then there is a number k ∈ Z≥0 such that each descendent of P ′ has selected
p (via Select) after k runs of the while loop in Construction 2.46.

Proof. This follows directly from Lemma 2.50 and Lemma 2.51

Proposition 2.53. Let P ′ be an algebraically restricted system of differential equations.
Then, for every e ∈ E \ SolE(P ′) there exists an k ∈ Z>0 such that after k steps of
the while loop in Construction 2.46 this element e is not contained in SolE(PT ) for all
P ∈ L.

Proof. As e 6∈ SolE(P ′) there exists a constraint in the system that does not have
e as a solution, i.e., there is an p ∈ (P ′)a,6= with φe(p) = 0, there is a p ∈ (P ′)a,=

with φe(p) 6= 0, or there is a p ∈ ρ({(P ′)∂,=}∆) with φe(p) 6= 0. By Lemma 2.52 the
constraint is selected after a finite number of steps in each descendent of P ′.

The “convergence” of Construction 2.46 is shown in two steps. The first step shows
that after finitely many steps no new equations of the given order ` arise. The second
step looks at inequations.

Let P be an algebraically restricted system of differential equations with T -list PT
and i ∈ Z≥1. Let q :=

∏
p∈(PT )=

≤gi
init(p) ∈ F [g1, . . . , gi]. Call the ideal

IT,≤gi(P ) := 〈(PT )=
≤gi〉 : q∞

=
{
p ∈ F [g1, . . . , gi]

∣∣qr · p ∈ 〈(PT )=
≤gi〉 for some r ∈ Z≥0

}
in F [g1, . . . , gi] the ideal associated to the T -list of P up to gi. The next goal is
to describe how these ideals approximate a differential ideal.

Lemma 2.54. Let P ′ ⊂ F{U}= be an algebraically restricted system of differential
equations and P a descendent of P ′. Then, IT,≤gi(P ′) ⊆ IT,≤gi(P ) for all gi ∈ G.

Proof. It suffices to consider the case when P is a child of P ′. Adding new equations
to P ′T increases the ideal and adding an inequation to P ′T does not change the ideal.
Furthermore, the two cases when changing an existing equation, i.e., when computing
the gcd of two equations or dividing an equation by an inequation, replace the equation
by a divisor modulo the lower equation in P ′T .

Lemma 2.55. Let P ′ = (P ′)∂,= be a system of differential equations, viewed as an
algebraically restricted system of differential equations. If Construction 2.46 is started
with P ′, then ⋂

P∈L
IT,≤gi(P ) ⊆ ρ(

√
〈(P ′)∂,=〉∆) ∩ F [g1, . . . , gi]

at all steps and for all gi ∈ G.
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Proof. Obviously, SolE(IT,≤gi(P )) ⊇ SolE(P ) for all P ∈ L, and thus⋃
P∈L

SolE(IT,≤gi(P )) ⊇
⊎
P∈L

SolE(P ) = SolE(P ′) ,

where the last equality is from Lemma 2.47. Applying the vanishing ideal operator I
and making use of the inclusion reverting bijection from Corollary 1.67 results in

I(
⋃
P∈L

SolE(IT,≤gi(P ))) =
⋂
P∈L
I(SolE(IT,≤gi(P ))) ⊆ I(SolE(P ′))

Then, IT,≤gi(P ) ⊆ I(SolE(IT,≤gi(P ))) and by the Nullstellensatz for non-centered
solutions (cf. Theorem 1.65 and Corollary 1.67)

√
〈(P ′)∂,=〉∆ = I(SolE(P ′)).

Lemma 2.56. Let P ′ ⊂ F{U}= be an algebraically restricted system of differential
equations. Then, for every gi ∈ G there is an k ∈ Z>0 such that Construction 2.46
started with P ′ results in

IF [G](SolE(P ′)) ∩ F [g1, . . . , gi] ⊆ IT,≤gi(P )

after k steps of the while loop for all descendents P ∈ L of P ′.

Proof. This is a claim about the polynomial ring R := F [g1, . . . , gi] in finitely many
variables. In particular, R is Noetherian and its ideals have a primary decomposition.

By Lemma 2.50 the lower part of the Q-list (PQ)≤gi of all descendents P of P ′ is
empty after a finite number of steps. At that point, by Corollary 2.49 and Proposi-
tion 1.62 the ideal IT,≤gi(P ) is radical. By Lemma 2.54 the ideals IT,≤gi(P ) increase
when going to a child of a system. Thus, is suffices to consider only descendents P of
P ′ with (PQ)≤gi = ∅.

Let P be any descendent of P ′ with (PQ)≤gi = ∅ and IT,≤gi(P ) =
⋂h
i=1 pi the prime

decomposition of the radical ideal IT,≤gi(P ). Show that J := IF [G](SolE(P ′))∩R ⊆ pi
for all 1 ≤ i ≤ h, perhaps after substituting P by a descendent. Assume on the contrary
that J 6⊆ pi for an 1 ≤ i ≤ h. By the Nullstellensatz, there exists an e ∈ SolE(pi) \
SolE(J), as both ideals are radical. As SolE((PT )≤gi) ∩SolE(pi) is dense in SolE(pi)
(cf. Proposition 1.62), there is even an e ∈ (SolE((PT )≤gi) ∩SolE(pi)) \SolE(J). By
Propositon 2.53 all descendents of P will not have e as a solution after a certain number
of steps. At that point, the prime component pi is removed from the decomposition
or replaced by larger components. As the ring is Noetherian, prime components can
only be removed a finite number of times until all components contain J .

Proposition 2.57. Let P ′ ⊂ F{U}= be an algebraically restricted system of differential
equations. Then, for every gi ∈ G and R := F [g1, . . . , gi] there is an k ∈ Z>0 such that
after k steps of the while loop of Construction 2.46

IF [G](SolE(P ′)) ∩R =
⋂
P∈L
IT,≤gi(P ) .

Proof. The inclusion “⊇” is clear, since the ideal IF [G](SolE(P ′))∩R contains by defini-
tion all polynomials in R that all solutions of P ′ fullfill as equations, and the polynomials
in
⋂
P∈L IT,≤gi(P ) are fullfilled as equations by all solutions of P ′. The inclusion “⊆”

follows from Lemma 2.56.

Inconsistent systems, and only those, lead to termination of Construction 2.46.
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Corollary 2.58. For a system P ⊂ F{U}= of differential equations with SolE(P ) = ∅
the while loop in Construction 2.46 terminates without system, i.e., L = ∅.

The last ingredient of the proof of Theorem 2.32 is the comprehensive Thomas
decomposition, a stronger form of a Thomas decomposition which is also disjoint after
certain projections. Let πi : F

n → F
i

: (a1, . . . , an) 7→ (a1, . . . , ai) the projections for
1 ≤ i ≤ n from Remark 2.6. Let {S1, . . . , Sk} be a set of algebraic systems with disjoint
solutions sets. Call {S1, . . . , Sk} comprehensive with respect to yl, 1 ≤ l ≤ n, if

πl(Sol(Si)) ∩ πl(Sol(Sj)) ∈ {∅, πl(Sol(Sj))}

for all 1 ≤ i, j ≤ k. Using the constructions from Proposition 1.34 it is theoretically
easy, but computationally hard, to compute a comprehensive decomposition. Similar
definitions exists for triangular chains [CGL+07].

Proof of Theorem 2.32. Start Construction 2.46 with P . Let gi be the largest element
in G such that the corresponding differential variable has order `.

Without loss of generality assume that during Construction 2.46 all combined alge-
braic systems are comprehensive with respect to gi. To keep the language understand-
able, several systems having the same projection onto the lower i variables are grouped
together and referred to as one system. This is justified, as the main interest of the
theorem lies in this projection.

According to Proposition 2.57 there is a finite number k of steps of the while loop
in Construction 2.46 such that

IF [G](SolE(P )) ∩ F [g1, . . . , gi] =
⋂
P ′∈L

IT,≤gi(P ′) .

As IF [G](SolE(P ))∩F [g1, . . . , gi] is a radical ideal in a Noetherian ring, it has a prime
decomposition into finitely many prime ideals. At this number k of steps of the while
loop, there are systems P ′ in L such that IT,≤gi(P ′) is the intersection of a subset of
the above prime ideals. By increasing the number k of steps of the while loop, one may
assume that the ideals of these systems never split in further steps of the while loop in
Construction 2.46. Let P ′ be one of these systems.

Let P ′′ be the heir of P ′, in particular the solutions sets of P ′ and P ′′ have the
same Zariski closure. Then Proposition 1.107 is applicable to the combined algebraic
systems (P ′)i and (P ′′)i associated to P ′ and P ′′, as both systems have the same ideal,
and thus their number of equations is identical by Theorem 1.94. Proposition 1.107
then states that not only the number of equations in (P ′)i and (P ′′)i is identical, but
also their leaders and degrees. Inductively, the successors of P ′ share the same ideal
IT,≤gi(P ′) associated to the T -list up to gi.

So all successors P ′′′ of P ′ share the same set of equations in their combined algebraic
systems (P ′′′)i, but possibly have more inequations. Thus, the system⋃

P ′′′ successor of P ′
(P ′′′)i

is an algebraic σ-system.
This results in a finite set of algebraic σ-systems having truncated solutions that are

dense in the truncated solutions of P . The complement of this dense set is described
by a countable set of algebraically restricted systems of differential equations. Continue
with these systems inductively. The ideals of these systems are stricly lager than the
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previous ideals. In particular, each chain of children in the “genealogical tree” of systems
has finite depth11, since the polynomial ring F [g1, . . . , gi] is Noetherian. Hence, the
number of algebraic σ-systems remains countable.

The algebraic σ-systems resulting this process are simple by Corollary 2.49.

2.4.4 Ideals and Inequations

This subsection explains how “tweaking” the inequations of a simple algebraic system
(including changing the solution set) yields insights into ideals and algebraic counting
polynomials of simple (σ-)systems. In particular, the leading coefficient of the algebraic
counting polynomial is fixed under certain permutations of the indeterminates. These
statements about leading terms of algebraic counting polynomials prove Theorem 2.36.

The following obvious lemma is the basis for the results of this subsection.

Lemma 2.59. Let S be a simple algebraic system in R = F [y1, . . . , yn] and q ∈ S an
equation or inequation with ld(q) = yi+1. If yi does not appear in q, then S is also
simple with respect to the ranking y1 < . . . < yi−1 < yi+1 < yi < yi+2 < . . . < yn and
the algebraic counting polynomial of S is the same for both rankings.

The assumptions of Lemma 2.59 are rarely satisfied. However, we demonstrate that
removing a certain subset of lower dimension from the set of solutions assures these
assumptions if the system S has an equation with leader yi.

Example 2.60. Let R = Q[x, y] with x < y and S = {p := x2 − 1 = 0, q(x, y) :=
2y − x 6= 0}. Let ξ1 and ξ2 be the two zeros of p. Consider

q(ξ1, y) · q(ξ2, y) = 4y2 − 2(ξ1 + ξ2)y + ξ1ξ2 .

Here, replacing the elementary symmetric polynomials in the ξi by the coefficients of p
yields 4y2−1. The system S′ := {p = 0, 4y2−1 6= 0} is still simple and apart from a set
of lower dimension has the same solution set as S (cf. Figure 2.4). Furthermore, S′ is
also simple for the ranking y < x by Lemma 2.59. The algebraic counting polynomials
for the systems are c(S) = 2∞− 2 and c(S′) = 2∞− 4. /

Figure 2.4: The solutions of S in Example 2.60 on the left and of S′ on the right.

x

y

x

y

A generalisation of this example is the following lemma.

Lemma 2.61. Let S be a simple algebraic system in R = F [y1, . . . , yn], p= ∈ S= an
equation, and q 6= ∈ S 6= an inequation with ld(p) = x < ld(q) = z. There is an inequation
q′ of degree degz(q

′) = degz(q) · degx(p) with x not actually appearing in q′ such that
S′ := (S ∪ {q′6=}) \ {q 6=} is still simple. In particular, I(S′) = I(S).

11However, this tree has countably infinite breadth, in general.
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Proof. Let d := degx(p). Take q′′ :=
∏d
k=1 q|x=ξk for indeterminates ξk. Replacing the

l-th symmtric polynomial el(ξ1, . . . , ξd) of degree l in q′′ by the coefficient of xd−l in p=

(seen as polynomial in x) leads to a polynomial q′ with the claimed properties.

Lemma 2.62. Let S be a simple algebraic system in R = F [y1, . . . , yn]. Let X :=
ld(S=) and Y := {y1, . . . , yn} \ X. Let c be the algebraic counting polynomial with
respect to the ranking y1 < . . . < yn. Let c′ be the algebraic counting polynomial with
respect to the ranking Y < X such that the variables within X and Y are ordered by the
previous ranking. Then the leading coefficients of c(Sol(S)) and c′(Sol(S)) coincide.

Proof. Use Lemma 2.61 to replace each inequation with an inequation not involving
leaders of lower ranking equations. This changes the degree of inequations, but does
not change the leading coefficient of the algebraic counting polynomial. Now, use
Lemma 2.59 to change the ranking such that all inequations have lower leaders than all
equations. The system remains simple with the same algebraic counting polynomial.

Lemma 2.63. Let S ⊂ F [y1, . . . , yn] be a simple algebraic σ-system. Then, both alge-
braic counting polynomials c(Sol(S)) of Sol(S) and c(Sol(S)) of the Zariski closure
Sol(S) of Sol(S) in F

n have the same degree and the same leading coefficient when
considered as polynomial in the indeterminate ∞.

Proof. The claim about the degree follows directly from Proposition 2.23, which equates
the dimension with the degree of the algebraic counting polynomial. Show the claim
about the leading coefficient by induction on the number n of indeterminates. For
shorter notation write T := Sol(S) and T for its Zariski closure.

The claim is clear for n = 1. If |T | is finite, then T = T and c(T ) = |T | = c(T ).
Otherwise, c(T ) =∞ and c(T ) ∈ {∞− ℵ0 + a,∞− b | a ∈ Z, b ∈ Z≥0}.

Assume that the claim is shown for n − 1. By Lemma 2.62 assume without loss
of generality that (Syn)= is an equation. (Lemma 2.62 does not apply when T = F

n;
however, this case is trivial.) Let πn−1 : F

n → F
n−1 be the projection associated to

the ranking (cf. Remark 2.6). Then, πn−1(T ) ⊆ πn−1(T ) ⊆ πn−1(T ), where πn−1(T ) is
the Zariski closure of both πn−1(T ) and πn−1(T ). Let a be the leading coefficient of
c(πn−1(T )). By the induction hypothesis, a is also the leading coefficient of c(πn−1(T ))
and c(πn−1(T )).

By Definition 2.19.(4), the leading coefficient of c(T ) is a · degyn(Syn). Show that
this is also the leading coefficient of c(T ). Therefore, assume without loss of generality
that S is a system, i.e., a finite set, by removing inequations from S such that it
remains simple, which does not change the degree and leading coefficient of the algebraic
counting polynomial. Under this assumption the claim is clear, as a dense open set of
T is a degyn(Syn)-cover of a dense open set of πn−1(T ). (The exceptional sets are
of lower dimension and so their algebraic counting polynomial has a lower degree by
Proposition 2.23.)

Proof of Theorem 2.36. By Lemma 2.63 assume without loss of generality that the set
of solutions SolE(I)≤` up to order ` is constructible (and not just describable). Now,
the claim follows directly from the definition of the differential dimension function ΩI :
` 7→ dim(F{U}≤`/I≤`) and that the dimension coincides with the degree of the algebraic
counting polynomial (cf. Proposition 2.23). The formula for a(`) follows from the proof
of Lemma 2.63.

The claim for the differential counting polynomial follows, as the differential dimen-
sion polynomial ωI ultimately coincides with ΩI .
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By Proposition 1.66, the solution set SolE(S) of S has the solution set SolE(I) of I
as Kolchin closure. In particular, the truncated solutions of SolE(S)≤` and SolE(I)≤`
have the same Zariski closure. Thus, the claim for c(S) follows from Lemma 2.63.
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2.5 Examples of Counting Polynomials

“To many, mathematics is a collection of theorems. For me,
mathematics is a collection of examples; a theorem is a state-
ment about a collection of examples and the purpose of proving
theorems is to classify and explain the examples. . . ”

John Conway
in [Con81, v]

In this section we compute counting sequences and differential counting polynomials.
In general, there cannot be an algorithm that decides the existence of formal power series
solutions (cf. Subsection 2.5.5). Thus, we can at best hope for tricks that determine the
counting sequence and the differential counting polynomial for many classes of examples.
This section introduces enumerable systems, for which the counting sequences can easily
be defined and read off, and decomposes the set of solutions of differential equations
disjointly into enumerable systems for some important classes of differential equations.

A first class of examples consists of simple differential systems that do not involve
inequations. This is a vast class of examples, which includes systems of linear differential
equations and most systems of semilinear differential equations “from nature”. The
second class consists of first order ordinary differential equations of main degree one.

Up to that point, all examples are treated using non-centered solutions; then Sub-
section 2.5.4 describes how to deal with variable coefficients and how to consider formal
or convergent power series solutions. In this context, several examples of unexpected
behavior are treated, including examples which show that countable infinite “exceptional
sets” appear.

Let F be a differential field of characteristic zero such that its field of constants
is not countable, F its algebraic closure, < an orderly ranking, ∆ = {∂1, . . . , ∂n} a
non-empty set of derivation operators, and U = {u(1), . . . , u(m)} a non-empty set of
differential indeterminates.

2.5.1 Enumerable systems

This subsection introduces enumerable systems, a special form of algebraically restricted
systems of differential equations that allows to read off the counting sequence, as these
systems are simple and make all algebraic and differential constraints obvious.

Recall from Definition 2.39 the definition of the allocation map β and the corre-
sponding i-th combined algebraic σ-system Pi associated to an algebraically restricted
σ-systems of differential equations P by β. Stripped of the technicalities, β assigns an
equation or a set of inequations to each variable in the polynomial ring F [G] of inde-
termined power series coefficients. Combining the equations and inequations assigned
to the lowest ranking i variable yields Pi.

Definition 2.64. Let P be algebraically restricted σ-systems of differential equations
together with an allocation map β. Call P an enumerable system12 if

(1) (simplicity) all combined algebraic systems Pi associated to P by β are simple,
(2) (algebraic constraints) P a,= ] P a,6= ⊆ PT , and
12strictly speaking, enumerable systems are not systems, but σ-systems.
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(3) (differential constraints/passivity) Reduce(P, p) = 0 for all p ∈ ρ(〈P ∂,=〉∆),
where ρ is the forgetful map that turns a differential equation into an algebraic
equation (cf. Subsection 2.3.1).

The following proposition and theorem state that an enumerable system is well-
suited for describing its set of solutions.

Proposition 2.65. Let P be an enumerable system with allocation map β and Pi the
combined algebraic systems associated to P by β for all i ∈ Z≥1. Then,

SolE(P ) =
∞⋂
i=1

SolE(Pi) .

Before giving the proof, we present a theorem that is a direct corollary of this
proposition.

Theorem 2.66. Let P be an enumerable system with allocation map β and Pi the
combined algebraic systems associated to P by β. Let i` ∈ Z≥0 such that gi` is the
highest ranking variable in G of order ` for each ` ∈ Z≥0. Then,

SolE(P )≤` = SolE(Pi`)≤` .

In particular, the counting sequence c(P ) of P is given by

c(P ) : Z≥0 → Z[∞,ℵ0] : ` 7→ c(Pi`) ,

where the algebraic counting polynomials c(Pi`) can be defined by Lemma 2.24, as the
Pi` are simple algebraic σ-systems in F [g1, . . . , gi` ].

This theorem describes the counting sequence for a single enumerable system. In
general, a system of differential equations or an algebraically restricted system of diffe-
rential equations needs to be decomposed into enumerable systems.

Proof of Proposition 2.65. Let e ∈ SolE(P ). Show that e ∈ SolE(Pi) for all i ∈ Z≥1

by induction on i. For i = 1 the claim is clear. So assume that e ∈ Sol(Pi−1). If
(Pi)gi is empty or comes from an element in P a, then there is nothing to show. So
let (Pi)gi = StrongReduce(Pi−1,Reduce(Pi−1, ρ(p))) for a derivative p of an element in
P ∂,=. Then, φe(ρ((Pi)gi)) = 0 if and only if φe((Pi)gi) = 0 for all e ∈ E, as φe = φe ◦ ρ
follows directly from the definitions. The algorithms StrongReduce and Reduce do not
change the set of solutions. The claim follows by induction.

Let e ∈ SolE(Pi) for all i. It is clear that e ∈ SolE(P a) from the condition
of algebraic constraints in the definition of enumerable systems. Use the passivity
of enumerable systems for proving that e ∈ SolE(P ∂,=): Let p ∈ 〈P ∂,=〉∆. As
Reduce(Pi, p) = 0 for some i there are q1, . . . , qk, q ∈ F [G] and p1, . . . , pk ∈ P=

i such that
qρ(p)−

∑k
j=1 qjpj = 0. Now φe(pj) = 0 for all j and φe(q) 6= 0 imply φe(p) = 0.

The following example demonstrates that enumerable systems can be useful to de-
termine the counting sequence.

Example 2.67. Consider the differential equation p := u2
2,0 + u0,2 + u0,1 + u1,0 over

the differential field F = C for U = {u} and ∆ = {∂x, ∂y} with respect to the degree
reverse lexicographical ranking. As seen in Example 1.1, Maple [map] suggests

L1 :=
{
f1(x) + f2(y)

∣∣∣ (∂2
xf1(x)

)2
= b1 − ∂xf1(x), ∂2

yf2(y) = −b1 − ∂yf2(y), b1 ∈ C
}
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as the solution set of S := {p = 0}, or, with the help of the Thomas decomposition,

L2 :=
{
− 1

12
x3 +

1

2
b1x

2 + (b2 − b21)x− b2y + b3 − b4e−y + b5

∣∣∣b1, b2, b3, b4, b5 ∈ C}
]
{
b1(x+ y + 1)− b2e−y + b3(x− y) + b4

∣∣∣b1, b2, b3, b4 ∈ C} .

The question remains whether any of these two sets of solutions is complete. This
question can be decided by comparing the counting sequence of the system S = {p = 0}
with the counting sequences of the sets L1 and L2.

To compute the counting sequence of S = {p = 0}, split this system into the two
systems S1 := {p = 0, q := g0,2 + g1,0 + g0,1 6= 0} and S2 := {p = 0, q = 0}. The
system S1 is enumerable with the pre-allocation map β1 mapping gi+2,j to {(∂ix∂

j
yp)=}

for i, j ∈ Z≥0, g0,2 to {q 6=}, and to the empty set otherwise. In system S2 the power
series coefficient equation q = 0 is equivalent to g2,0 = 0. Using g2,0 = 0 instead of
q = 0, S2 is enumerable by the pre-allocation map β2, which maps gi,j+2 to {(∂ix∂

j
yp)=}

for i, j ∈ Z≥0, g2,0 to {(g2,0)=}, and to the empty set otherwise. Here, the leader of
ρ(∂ix∂

j
yp) = 2g2,0gi+2,j+gi,j+2 +lot, where lot stand for term of order at most i+j+1, is

gi,j+2, since 2g2,0gi+2,j vanishes due to the equation (g2,0)= for all (i, j) ∈ Z2
≥0 \{(0, 0)}.

Thus, the counting sequences of these systems are:

c(S1)(`) =


0 7→ ∞,
1 7→ ∞3,
` 7→ 2∞2`(∞− 1), ` ≥ 2

c(S2)(`) =


0 7→ ∞,
1 7→ ∞3,
` 7→ ∞2`, ` ≥ 2 .

As the systems (S1)≤1 and (S2)≤1 have equal solution sets, and all algebraic simple
system up to order ` ≥ 2 associated to these two systems are disjoint, the counting
sequence of S is

c(S)(`) =


0 7→ ∞,
1 7→ ∞3,
` 7→ 2∞2`+1 −∞2`, ` ≥ 2 .

The solution set L1 results from an unsuccessful application of the separation of
variables and describes a set of solutions of S with counting sequence c(L1)(`) = 2∞4

for ` large enough. The counting sequence of L2 is c(L2)(`) = ∞5 +∞4 for ` large
enough. Both these counting sequences of solution sets are tiny in comparison of the
counting sequence of S. Thus, neither L1 nor L2 captures the complete solution set
of S. However, it is not clear how many of the missing solutions can be described by
elementary functions.

Of course, also the differential dimension polynomial implies that neither L1 nor L2

is the complete set of solutions of S, as a Thomas decomposition of S consists of two
simple differential systems with differential dimension polynomials 2`+ 1 and 4. /

As seen in this example, the counting sequence of disjoint enumerable systems is not
additive for lower orders. To add them, one has to check whether the corresponding
combined algebraic σ-systems are disjoint.

A formal description of prolonging the system is helpful for examples. The idea is
to replace a differential equation p= by its derivatives ∆p and the algebraic equation
ρ(p)=. The following lemma ensures correctness and does not require a proof.
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Lemma 2.68. Let p= ∈ F{U}{=} be a differential equation and e ∈ E. Then, e ∈
SolE(p=) if and only if e ∈ SolE(∆p=) ∩ SolE(ρ(p=)). In particular, let P be an
algebraically restricted system of differential equations and p= ∈ P ∂,=. Then,

SolE(P ) = SolE ((P \ {p=}) ∪∆p= ∪ {ρ(p=)}) .

Algorithm 2.69 (SingleProlongation).
Input: An algebraically restricted system of differential equations P ′, a differential
equation p= ∈ (P ′)∂,=.
Output: An algebraically restricted system of differential equations P with SolE(P ′) =
SolE(P ) and P ∂,= = (P ′)∂,= \ {p=} ∪ {∆p=}.
Algorithm:
1: P := P ′;
2: P ∂,= := P ∂,= \ {p=} ∪ {∆p=};
3: P a,= := P a,= ∪ {ρ(p=)};
4: return P ;

All differential equations in an algebraically restricted system of differential equa-
tions can be prolonged collectively. Let P ′ be an algebraically restricted system of
differential equations and ` ∈ Z≥0. Call an algebraically restricted system of differential
equations P with SolE(P ′) = SolE(P ) and P ∂,= ∩ F{U}≤` = ∅ a prolongation of P ′

up to order `.

Algorithm 2.70 (Prolongation).
Input: An algebraically restricted system of differential equations P ′, a non-negative
integer ` ∈ Z≥0

Output: A prolongation P of P ′ up to order `.
Algorithm:
1: P := P ′;
2: while P ∂,= ∩ F{U}≤` 6= ∅ do
3: Let p= ∈ P ∂,= ∩ F{U}≤`;
4: P := SingleProlongation(P, p=);
5: end while
6: return P ;

2.5.2 Simple Systems without Inequations

Many important classes of systems of differential equations yield a decomposition into
one simple differential system without inequation. These systems allow to compute
the counting sequence and even the differential counting polynomial using the simple
algebraic systems up to certain orders. The following lemma describes how to use the
Janet cone decomposition to construct an allocation map, which makes such systems
enumerable.

Lemma 2.71. Let P = P ∂,= = {p1, . . . , ps} be a simple differential system in F{U}
without inequations. Then, with a suitable allocation map, P is an enumerable system.

Proof. First define the pre-allocation map β. If gi ∈ G is contained in the cone
{ld(pj)}∆(pj ,P ) for some 1 ≤ j ≤ s, then gi = ρ(δ ld(pj)) for some δ in the free com-
mutative monoid Mon(∆P (pj)) generated by the reductive derivations ∆P (pj) from
the Janet cone decomposition. In this case define β(gi) := δpj . Otherwise, define
β(gi) := ∅. Denote by β the allocation map corresponding to β.
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Let i ∈ Z≥0. As usual, denote by Pi the combined algebraic systems associated to
P by β and denote by P≤ui the simple algebraic system up to ui associated to S, where
ui is the i-th smallest differential variable with respect to the ranking < in {U}∆. Now,
Pi = ρ(P≤ui). This follows directly from the construction of both sides, as the image of
β intersected with F [g1, . . . , gi] equals Pi. As the P≤ui are all simple (cf. Lemma 1.46),
the simplicity condition (1) from Definition 2.64 is fulfilled.

The condition (2) of algebraic constraints from Definition 2.64 is trivially fulfilled,
as P a = ∅. The condition (3) of passivity from Definition 2.64 is fulfilled, as P is
differentially passive. Refrain from spelling out the details, and refer to Lemma 1.47 or
Proposition 2.65 for a similar proof.

This lemma implies a closed formula for the differential counting polynomial of
simple differential systems without inequations.

Theorem 2.72. Let P = P ∂,= = {p1, . . . , ps} be a simple differential system in F{U}
without inequations. Then, its counting sequence is

c(P ) = l 7→
∏

1≤i≤s
ord(pi)≤`

mdeg(pi) · ∞ΩI(P )(`) ,

where ΩI(P ) is the differential dimension function, and its differential counting polyno-
mial is ∏

1≤i≤s
mdeg(pi) · ∞ωI(S)(`) ,

where ωI(P ) is the differential dimension polynomial (cf. Theorem 1.74).

Proof. Lemma 2.71 implies that P is an enumerable system. The claim follows by
spelling out Theorem 2.66 using the same combinatorial means as in Subsection 1.6.4.

The following examples of systems of differential equations yield a Thomas decom-
position into simple differential systems (usually only a single one) without inequations.
This is trivially the case for systems of linear differential equations. Another of these
examples are semilinear systems P = P ∂,= ⊂ F{U}{=} of differential equations, i.e.,
systems where all equations have an initial in F and are of main degree one. Even
though pseudo reduction does not respect semilinearity, many examples of semilinear
systems of differential equations stay semilinear during a Thomas decomposition.

Example 2.73. The Ricatti equation ut − a(t)u2 − b(t)u − c(t) is a semilinear first
order differential equation. By Theorem 2.72 it has differential counting polynomial
∞. /

Example 2.74. Let F = C(x, t), ∆ = {∂t, ∂x}, and U = {u}. The viscous (cf.
Example 1.6) Burgers’ equation uxx−ut−uux = 0 has differential counting polynomial
∞2`+1 by Theorem 2.72. /

Example 2.75. Consider the inviscid Burgers’ equation p := ut+uux. For an orderly
ranking with ut > ux the equation is semilinear and by Theorem 2.72 the counting
polynomial is ∞`+1.

For a ranking with ux > ut the differential counting polynomial is the same with
a more involved proof. Look for a power series solution

∑∞
i,j=0 ai,j

tixj

i!j! . The system
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{p = 0} splits into S1 := {p = 0, a0,0 6= 0} and S2 := {p = 0, a0,0 = 0}. The first
system S1 has counting polynomial (∞−1)∞`. For the second system the leading term
of ρ(p) = a0,0a0,1 + a1,0 is a1,0 after applying the relation a0,0 = 0. Similarly, using the
same relation, the leading term of ρ(∂it∂

j
xp) is ai+1,j . Thus, there is a linear relation for

all derivatives of ut and the relation a0,0. This yields differential counting polynomial
∞` for this system. The counting polynomials of these two systems add up to ∞`+1.

One might expect a shock wave appearing for the second ranking. However, the
approach presented here looks at germs of analytic solutions and cannot prescribe initial
values at a point where the shock wave forms. Thus, it cannot capture shock waves. /

Example 2.76. Let F = C, ∆ = {∂x, ∂y, ∂z, ∂t}, U = {u, v, w, p}, and fix the degree-
reverse lexicographical ranking. The system S of the incompressible Navier-Stokes
equations is given by the following equations (cf. also Example 1.92).

ut + u · ux + v · uy + w · uz + px −
(
uxx + uyy + uzz

)
= 0,

vt + u · vx + v · vy + w · vz + py −
(
vxx + vyy + vzz

)
= 0,

wt + u · wx + v · wy + w · wz + pz −
(
wxx + wyy + wzz

)
= 0,

ux + vy + wz = 0

A differential Thomas decomposition for S is given by the one system where the Pois-
son pressure equation is added to S, i.e.

S ∪
{

2 · uy · vx + 2 · uz · wx + 2 · vz · wy + u2
x + v2

y + w2
z + pxx + pyy + pzz = 0

}
.

In particular, the Thomas decomposition of S does not contain any inequation. The
differential dimension function ΩI(S) is equal to the polynomial function ωI(S)(`) =

`3 + 11
2 `

2 + 17
2 ` + 4. By Theorem 2.72, the differential counting polynomial of the

incompressible Navier-Stokes equations is

c(S) =∞`3+ 11
2
`2+ 17

2
`+4 . /

Example 2.77. Chemical reactions are often described by the differential equations
derived from the law of mass action. By this law, the rate of every (elementary) reaction
is in proportion to the product of the concentrations of the reactants. For each system
of reactions, this translates into a system of semilinear ordinary differential equations.
These systems are modeled by a differential indeterminate for each chemical molecule
involved and the differential equations are in bijection to the differential variables of
order one (via the leader map ld). Thus, these systems are simple and Theorem 2.72
implies that their differential counting polynomial is ∞m, where m is the number of
molecules.

However, several of these differential equations additionally assume some fixed initial
values, usually that certain concentrations are initially zero. These assumptions can be
modeled as power series coefficient equations, which preserve countability of the system.
Of course, this decreases the differential counting polynomial to∞m−i if i initial values
are fixed.

For example, for the Michaelis-Menten kinetics

ds

dt
= −k1es+ k−1c,

de

dt
= −k1es+ (k−1 + k2)c,

dc

dt
= k1es− (k−1 + k2)c,

dp

dt
= k2c
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with unknown functions s, e, c, p and rate constants k1, k−1, k2 one additionally assumes
c(0) = 0 and p(0) = 0 [Mur02, §6.1]. Thus, the differential counting polynomial is
∞4−2 = ∞2. Using a stoichiometric conservation law and that the last equation is
uncoupled from the previous ones, the equations can be rewritten to

ds

dt
= −k1e0s+ (k1s+ k−1)c,

dc

dt
= k1e0s− (k1s+ k−1 + k2)c

for a constant e0 = e(0) and the additional assumption c(0) = 0. The differential
counting polynomial ∞2 can also be seen in this rewritten form of these equations,
when the implied equation de0

dt = 0 is added to the system. /

Example 2.78. The ordinary simple differential system {u2
t − 1 = 0} has counting

polynomial 2∞. For any constant a0 there are two solutions u(t) = −+t+ a0. /

2.5.3 First Order ODEs of Main Degree 1

This subsection considers ordinary differential equations, i.e., ∆ := {∂}, for a single
differential indeterminate U := {u}.

Theorem 2.79. Consider ∆ := {∂}. Let p := A(u)u1 +B(u) ∈ F{u} for A(u), B(u) ∈
F [u] with A(u) not the zero polynomial. The differential counting polynomial of P :=
{p = 0} is

c(P ) =∞− b+ d+ e .

Here b ∈ Z is the number of distinct zeros13 of A(u), d ∈ Z is the number of distinct
common zeros of A(u) and B(u), and e ∈ Z is the number of distinct common zeros of
A(u) and B(u) that appear in A(u) and B(u) with the same multiplicity. The zeroth
differential counting polynomial c(P )(0) is ∞− b+ d and c(P ) = c(P )(`) for all ` ≥ 1.

We postpone the proof until the end of the section, and instead give an interpretation
of this theorem and examples. Assume that F = C in the context of Theorem 2.79.
Then, by Corollary 1.58, there are ∞− b formal power series solutions that correspond
to solutions with a zeroth coefficient that is not a zero of A(u). Over R these solutions
locally converge by the Picard-Lindelöf theorem. Let κ be a common zero of A(u)
and B(u). Then the constant function u(t) = κ is a solution, which can easily be seen
by splitting of u− κ from p. There are d of these solutions. The remaining e solutions
can be interpreted over the fields R and C. Let κ be a common root of A(u) and B(u)
with the same multiplicity λ in both polynomials. The zeroth power series coefficient
of such a solution is κ if u − κ appears in A(u) and B(u) with the same multiplicity.
Let (u − κ)λ be the corresponding factor of A(u) and B(u) and let A(u) := A(u)

q(u) and

B(u) := B(u)
q(u) . Let t0 be the expansion point for the power series. Then,

lim
t→t0

u′(t) = lim
t→t0

B(t)

A(t)
= lim

t→t0

B(t)

A(t)

is a well-defined non-zero value; it is the first power series coefficient. Hence, this power
series solution is different from above d solutions, which are constant.

We look at examples of Theorem 2.79. All these examples have constant coefficients
and by Corollary 1.58 the solutions can be interpreted as formal power series solutions.

13of course over the algebraic closure of F .
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Example 2.80. Consider uu1 − 1. According to Theorem 2.79, it has counting poly-
nomial14 ∞− 1 + 0 + 0. The solutions MAPLE’s dsolve [map] returns are −+

√
−2t+ c0,

which seems to indicate 2 ·(∞−1) solutions. However, when expanding the power series
−+
√
−2t+ c0 around 0, it can be written as

√
c0·q(

√
c0

2, t) for a q ∈ C[
√
c0

2, (
√
c0)−2][[t]].

The latter power series can be seen as power series with coefficients using a constant√
c0 ∈ C \ {0}. Similarly, using an ansatz directly from uu1 − 1 to compute a formal

power series solution yields the same power series.
In conclusion, c0 seems to be the “right” parameter for giving a closed form solution,

but the “wrong” parameter for a power series solution. /

Example 2.81. Consider uu1 − u. According to Theorem 2.79, it has differential
counting polynomial ∞− 1 + 1 + 1. Its solutions are u(t) = 0 and u(t) = t+ c0 for each
c0 ∈ C. /

Example 2.82. Consider u2u1 − u. According to Theorem 2.79, it has differential
counting polynomial∞−1 + 1 + 0. Its solutions are u(t) = 0 and the ones in (2.80). /

Example 2.83. Consider u2u1 − u2. According to Theorem 2.79, it has differential
counting polynomial ∞− 1 + 1 + 1. Its solutions are the same ones as in (2.81). /

Example 2.84. Consider A(u) = u(u+2)(u+1) ∈ C[u], B(u) = u(u+2)(u−2) ∈ C[u],
and

p = A(u)u1 +B(u) = u(u+ 2)(u+ 1)u1 + u(u+ 2)(u− 2) ∈ C{u} .

By Theorem 2.79, the differential counting polynomial is c({p = 0}) =∞− 3 + 2 + 2 =
∞+1. Check this using the MAPLE command dsolve [map]; three (families of) solutions
are returned:

u = 0

u = −2

u = 3 LambertW

(
1

3
c0 exp

(
−1

3
t− 2

3

))
+ 2

for a c0 ∈ C. Here LambertW denotes the “inverse” of z 7→ z exp(z) [CGH+96]. This
seems to indicate that there are∞+2 solutions. However, not all c0 ∈ C in the third fam-
ily of solutions allow a power series solution at every base point. More precisely, a power
series solution around t0 ∈ C is possible if and only if LambertW

(
1
3c0 exp

(
−1

3 t0 −
2
3

))
6=

−1. This holds if and only if c0 6= −3 exp
(

1
3 t0 −

1
3

)
. Thus, when excluding this one

solution from above ∞+ 2 ones, there are only ∞+ 1 left, as predicted. /

Proof of Theorem 2.79. Use the notation G := {gi|i ∈ Z≥0} for the indetermined power
series coefficients and the forgetful map ρ, which maps ui to gi.

Decompose the set of solutions of the system

S := {p := A(u)u1 +B(u) = 0}

14This example also shows that applying the inclusion-exclusion-principle to a Thomas decom-
position does not allow counting. A differential Thomas decomposition of uu1 − 1 = 0 yields
{{uu1 − 1 = 0, u 6= 0}}. By the inclusion-exclusion-principle applied to this system the set of solutions
of the systems {uu1 − 1 = 0} need to be considered and the set of solutions of {uu1 − 1 = 0, u = 0}
need to be removed. As {uu1− 1 = 0, u = 0} has no solutions, the original problem needs to be solved.
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into enumerable systems. System S splits into the two systems

T := {p = A(u)u1 +B(u) = 0, Ã(g0) 6= 0}

S(1) := {p = A(u)u1 +B(u) = 0, Ã(g0) = 0}

where Ã(u) is the square-free part of A(u). The following allocation map βT for the
system T turns it into an enumerable system.

βT : G→ F [G]{=, 6=}, i 7→

{
Ã(g0) 6= 0, i = 0

ρ
(
∂i−1p

)
= 0, i ∈ Z>0

.

Show that T with allocation map βT is enumerable. First, note that βT is its own
pre-allocation map. The combined algebraic systems T1 = {Ã(g0) 6= 0} is simple, since
Ã is a square-free univariate polynomial. The combined algebraic systems Ti for i > 1
are also simple, as they only additionally include ρ

({
∂i−1p

})
as equations; these are of

main degree one and the initial ρ(A)(g0) has the same zeros as the inequation Ã(g0) 6= 0,
which is contained in Ti. The condition on algebraic constraints and passivity are trivial.

Now show that T has differential counting polynomial ∞− b. There is an equation
of main degree one for all indeterminates except g0. Furthermore, the system T has an
inequation Ã(g0) of degree b for the leader g0. So the differential counting polynomial
is ∞− deg(Ã) =∞− b.

Rewriting system S(1) by prolongation up to order two yields

Prolongation(S(1), 2) = { ∂2p = 0,

Ã(g0) = 0,

B(g0) = 0,

(A′(g0)g1 +B′(g0)) · g1 = 0}

with ∂2p = A(u)u3 + (3A′(u)u1 +B′(u))u2 +A′′(u)u3
1 +B′′(u)u2

1. Splitting this system
with respect to g1 leads to the following two systems.

S(1,1) := { ∂2p = 0,

Ã(g0) = 0,

B(g0) = 0,

g1 = 0}

S(1,2) := { ∂2p = 0,

Ã(g0) = 0,

B(g0) = 0,

A′(g0)g1 +B′(g0) = 0,

g1 6= 0}

Lemma 2.86 shows that system S(1,1) is equivalent to the system {u1 = 0, Ã(g0) =
0, B(g0) = 0}. The latter system is again equivalent to {u1 = 0, C(g0) = 0}, where C
is the square-free part of the gcd of A and B. This system has differential counting
polynomial d, the number of distinct common zeros of A(u) and B(u). By Lemma 2.88
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system S(1,2) has differential counting polynomial e. Summing up the three differential
counting polynomials ∞− b, d, and e of the systems T , S(1,1), and S(1,2), respectively,
implies the claim.

Corollary 2.85. In the context of Theorem 2.79, let F be a differential field of mero-
morphic functions over C and ζ ∈ C. Assume that ζ is regular (cf. Definition 1.51) with
respect to {p = 0, A(u) 6= 0}. Then, the set of non-centered solutions in SolE({p = 0})
that correspond to ∞ − b + d in the differential counting polynomial are mapped to
convergent power series in SolC,ζ({p = 0}) by ψζ if they do not have a pole in ζ.

Proof. The image of SolE({p = 0}) under ψζ is contained in SolC,ζ({p = 0}) by
Theorem 1.52. The convergence of the ∞− b solutions from the system T follows from
Riquier’s Existence Theorem 1.60 applied to {p = 0, A(u) 6= 0}. The d solutions from
the systems S(1,1) are constant.

Prove the lemmas used in above proof of Theorem 2.79.

Lemma 2.86. Let p := A(u)u1 +B(u) ∈ F{U} for A(u), B(u) ∈ F [U ] such that A(u)
is not the zero polynomial and Ã is the square-free part of A. The system S(1,1) :=
{∂2p = 0, Ã(g0) = 0, B(g0) = 0, g1 = 0} is equivalent to the system {u1 = 0, Ã(g0) =
0, B(g0) = 0}.

Proof. The prolongation Prolongation(S(1,1), 3) of S(1,1) includes the power series equa-
tion B′(g0) ·g2 = 0. This power series equation arises from ρ(∂2p) and the two relations
g1 = 0 and Ã(g0) = 0, where Ã(g0) = 0 implies A(g0) = 0.

When splitting Prolongation(S(1,1), 3) with respect to g2, the case of g2 6= 0 is in-
consistent. This can be seen as in this case B′(g0) has to be zero. Then, another
prolongation implies the power series equation A′(g0) = 0 and successive further pro-
longations using g2 6= 0 imply the power series equations B′′(g0) = 0, A′′(g0) = 0,
B′′′(g0) = 0 and so on. In particular, (∂(deg(A))A(u)) = 0 is zero, but (∂(deg(A))A(u))
is a non-zero constant. As g2 6= 0 yields a contradiction, system S(1,1) is equivalent to
S(1,1) ∪ {g2 = 0}.

In every k-th further prolongation, the power series equation B′(g0) · g2+k = 0
appears. Setting g2+k 6= 0 yields a similar contradiction as above. Thus, S(1,1) has the
same set of solutions if the equations gi = 0, i ≥ 2, are added. The equation g1 = 0
is already contained in S(1,1). The equations gi = 0, i ≥ 1, together are equivalent
to u1 = 0. Thus, u1 = 0 can be added to S(1,1), which makes ∂2p = 0 and g1 = 0
superfluous.

The following formula is a generalization of the chain rule for the derivative.

Lemma 2.87 (Faà Di Bruno’s Formula, [Por01, §4.3]).

dk

dxk
f(g(x)) =

∑
(h1,...,hk)∈Zk≥0

1·h1+...+k·hk=k

k!

h1!h2! . . . hk!
· f (h1+...+hk)(g(x)) ·

k∏
j=1

(
g(j)(x)

j!

)hj

Lemma 2.88. Let p := A(u)u1 + B(u) ∈ F{U} for A(u), B(u) ∈ F [U ] such that
A(u) is not the zero polynomial and Ã the square-free part of A. The system S(1,2) :=
{∂2p = 0, Ã(g0) = 0, B(g0) = 0, A′(g0)g1 +B′(g0) = 0, g1 6= 0} has differential counting
polynomial e ∈ Z, where e is the number of distinct common zeros of A(u) and B(u)
that appear in A(u) and B(u) with the same multiplicity.
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Proof. Recognize S(1,2) as S1 in the following family

Sk := { ∂k+1p = 0,

Ã(g0) = 0,

A(1)(g0) = . . . = A(k−1)(g0) = 0,

B(0)(g0) = . . . = B(k−1)(g0) = 0,

A(k)(g0)g1 +B(k)(g0) = 0,

g1 6= 0}

of systems. Here,

∂k+1p =

k+1∑
i=0

(
k + 1

i

)
uk−i+2

∑
(h1,...,hi)∈Zi≥0

1·h1+...+i·hi=i

i!

h1!h2! . . . hi!
A(h1+...+hi)(u0) ·

i∏
j=1

(
uj
j!

)hj

+
∑

(h1,...,hk+1)∈Zk+1
≥0

1·h1+...+(k+1)·hk+1=k+1

(k + 1)!

h1!h2! . . . hk+1!
B(h1+...+hk+1)(u0) ·

k+1∏
j=1

(
uj
j!

)hj

by Faà Di Bruno’s Formula (cf. Lemma 2.87). As A(1)(g0) = . . . = A(k−1)(g0) =
B(0)(g0) = . . . = B(k−1)(g0) = 0 in Sk simply write

∂k+1p = hot(uk+2, . . . , u0)

+
(((k + 1

1

)
+

(
k + 1

2

))
A(k)(u)u1 +

(
k + 1

2

)
B(k)(u)

)
uk−1

1 u2

+ lot(u1, u)

= hot(uk+2, . . . , u0)

+
((k + 2

2

)
A(k)(u)u1 +

(
k + 1

2

)
B(k)(u)

)
uk−1

1 u2

+ lot(u1, u) ,

where hot(uk+2, . . . , u) ∈ F [uk+2, . . . , u] represents terms vanishing after first applying
the forgetful map ρ and afterwards reduction by the power series equations in Sk, and
lot(u1, u) ∈ F [u1, u0] represents lower order terms, which only involve the differential
variables u1 and u0. For k = min(deg(A(u)), deg(B(u))) + 1 the system Sk is incon-
sistent, because at least one of the equations A(k−1)(g0) = 0 or B(k−1)(g0) = 0 has a
constant, non-zero left hand side. Hence, for the remainder of this proof we assume
k ≤ min(deg(A(u)),deg(B(u))).

The initial of ρ(∂k+1p) is ((
(
k+2

2

)
A(k)(g0)g1 + (

(
k+1

2

)
B(k)(g0))gk−1

1 after reduction,
and it is non-zero if and only if B(k)(g0) is non-zero, because of the power series equation
A(k)(g0)g1 +B(k)(g0) = 0. So split Sk into two systems with respect to whether B(k)(g0)
is zero or non-zero.

In the first system add the equation B(k)(g0) = 0 to Sk. Then the equation
A(k)(g0)g1 + B(k)(g0) = 0 and the inequation g1 6= 0 imply A(k)(g0) = 0. Using these
new equations one easily sees that ρ(∂k+1p) reduces to zero and, thus, ∂k+1p can be
replaced by ∂k+2p. This yields the system Sk+1.

Consider the second system into which the inequation B(k)(g0) 6= 0 is added. This
inequation ensures that the initial

((
k+2

2

)
A(k)(u)u1 +

(
k+1

2

)
B(k)(u)

)
uk−1

1 of the reduced
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form of ρ(∂k+1p) is non-zero. The equation A(k)(g0)g1 +B(k)(g0) = 0 implies A(k)(g0) 6=
0 from B(k)(g0) 6= 0.

Claim that the resulting system

T k := { ∂k+1p = 0,

Ã(g0) = A(1)(g0) = . . . = A(k−1)(g0) = 0,

B(0)(g0) = . . . = B(k−1)(g0) = 0,

A(k)(g0)g1 +B(k)(g0) = 0,

A(k)(g0) 6= 0,

B(k)(g0) 6= 0,

g1 6= 0 }

can be transformed into an enumerable one by a suitable allocation map and algebraic
transformations for the univariate polynomials in g0. Therefore, show that not only the
coefficient of g2 in ρ(∂k+1p) does not vanish but also the coefficient of g` in ρ(∂k+`−1p)
for all ` > 2. In

ρ(∂k+`−1p)

=
k+`−1∑
i=0

(
k + `− 1

i

)
gk+`−i

∑
(h1,...,hi)∈Zi≥0

1·h1+...+i·hi=i

i!

h1!h2! . . . hi!
A(h1+...+hi)(g0) ·

i∏
j=1

(
gj
j!

)hj

+
∑

(h1,...,hk+`−1)∈Zk+`−1
≥0

1·h1+...+(k+`−1)·hk+`−1=k+`−1

(k + `− 1)!

h1!h2! . . . hk+`−1!
B(h1+...+hk+`−1)(g0) ·

k+`−1∏
j=1

(
gj
j!

)hj

all terms including gi for i > ` vanish because of A(1)(g0) = . . . = A(k−1)(g0) =
B(0)(g0) = . . . = B(k−1)(g0) = 0. The coefficient of g` is

=

(((
k + `− 1

k

)
+

(
k + `− 1

k − 1

))
A(k)(g0)g1 +

(
k + `− 1

`

)
B(k)(g0)

)
gk−1

1

=

((
k + `

`

)
A(k)(g0)g1 +

(
k + `− 1

`

)
B(k)(g0)

)
gk−1

1

This term is non-zero, completely analogous to the coefficient of g2.
Then the univariate polynomials in g0 imply that there are exactly as many solutions

for g0 in T k as the number of common zeros of A(g0) and B(g0) that appear with
cardinality k in both polynomials. So the union of the sets of solutions of all T k is the
number of distinct common zeros of A(u) and B(u) that appear in A(u) and B(u) with
the same multiplicity. This implies the claim for T k.
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2.5.4 Counting of Formal and Convergent Power Series Solutions

The previous subsections considered non-centered solutions. This subsection transfers
these previous results to formal and convergent power series solutions, and thus counts
the set of Taylor polynomials.

To achieve this, one would formally need to adapt the proof of Theorem 2.32 to
the context of formal power series solutions in Subsection 1.4.2. This proof is the same,
even though certain terms vanish of the center of expansion 15. On a dense subset of the
complex n-space the infinite computation is exactly the same as the one in Theorem 2.32.
In particular, for the important special case of constant coefficients, e.g., F = C, the set
of non-centered solutions is in bijection to the power series solutions (cf. Corollary 1.58).
As there is nothing to prove, this subsection deals mostly with examples.

The convergence of “most” formal power series solutions is again given by Riquier’s
Existence Theorem 1.60.

The approach to formal power series solutions in Subsection 1.4.2 motivates the
technical definitions needed for the examples. For this subsection, let C[G] be the
polynomial ring of indetermined power series coefficients over C, ζ = (ζ1, . . . , ζn) ∈ Cn
the center of expansion, F a field of meromorphic functions in n complex variables
y1, . . . , yn, and ∆ = {∂y1 , . . . , ∂yn}.

We define power series solutions in the ring C[[y1 − ζ1, . . . , yn − ζn]] of power se-
ries centered around ζ for algebraically restricted systems of differential equations. As
these solutions are already defined for differential equations in Subsection 1.4.2, we only
need to define them for power series coefficient equations and inequations. Therefore,
we extend the definition of the substitution homomorphism Φf of F -algebras, which
evaluates differential variables at a formal power series f ∈ C[[y1 − ζ1, . . . , yn − ζn]]U

in a differentially compatible way, to also evaluate the algebraic variables in the ring
F [G] of indeterminate power series coefficients. However, these variables are evaluated
by substituting them by one formal power series coefficient instead of an entire formal
power series:

Φf : C[G]→ C[[y1 − ζ1, . . . , yn − ζn]] : g
(j)
i 7→ f(u(j))i ,

where f(u(j))i is the coefficient of the monomial (y1 − ζ1)i1 . . . (yn − ζn)in in f(u(j)) ∈
C[[y1 − ζ1, . . . , yn − ζn]]. A formal power series solution around ζ of p= ∈ C[G]=

or q 6= ∈ C[G]6= is an f ∈ C[[y1 − ζ1, . . . , yn − ζn]]U with Φf (p) = 0 or Φf (q) 6= 0,
respectively. Let P be an algebraically restricted σ-system of differential equations. Call
such an f a formal power series solution around ζ of P if it is a solution of each element
in P . Denote the set of formal power series solutions of P around ζ by SolC,ζ(P ) ⊆
C[[y1 − ζ1, . . . , yn − ζn]]U .

Counting the Taylor polynomials up to order ` requires the following notion of
solutions. Let C[[y1 − ζ1, . . . , yn − ζn]]U>` be the C[[y1 − ζ1, . . . , yn − ζn]]-submodule of
C[[y1 − ζ1, . . . , yn − ζn]]U generated by the u(j) 7→ (y1 − ζ1)i1 . . . (yn − ζn)in for i ∈ Zn≥0

with |i| = `+ 1. Call the image SolC,ζ(P )≤` of SolC,ζ(P ) under

C[[y1 − ζ1, . . . , yn − ζn]]U � C[[y1 − ζ1, . . . , yn − ζn]]U/C[[y1 − ζ1, . . . , yn − ζn]]U>` ,

the set of formal power series solutions of P around ζ truncated at order `.
The definition of the counting series and the differential counting polynomial of

power series solutions is similar to the definition of the differential counting polynomial
15Formally, the Nullstellensatz used in the proof of Lemma 2.55 is no longer applicable, but substi-

tuting the center of expansion into both sides preserves the inclusion claimed in this lemma.
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of non-centered solutions in Definition 2.33. We only need to replace the solution sets
E, E>`, SolE , and SolE( )≤` with C[[y1− ζ1, . . . , yn− ζn]]U , C[[y1− ζ1, . . . , yn− ζn]]U>`,
SolC,ζ , and SolC,ζ( )≤`, respectively.

For the examples in this section, redefine the forgetful map ρ such that it inserts ζ
into functions in F in addition to forgetting the differential structure, i.e.,

ρ : F{U} ∼−→ C[G] :

{
u

(j)
i 7→ g

(j)
i

yi 7→ ζi
.

Extend it to ρ : F{U} ∪ C[G] → C[G] via IdC[G] and to ρ : (F{U} ∪ C[G]){=,6=} →
C[G]{=, 6=} in the obvious way. Strictly speaking, this is a partial function defined on
the elements without pole in ζ, but ρ is never applied to elements with a pole in ζ.

The rest of this subsection considers six examples. Begin with the Clairaut equa-
tions. They were among the first examples16 in which the difference between singular
and regular solutions was studied [Cla36] (cf. also [Inc44, 2.45] and Appendix D).

Example 2.89. Let F = C(t). Consider the Clairaut equation

P := {u− t · u1 − f(u1) = 0}

with f(u1) =
∑deg(f)

i=0 biu1 ∈ C[u1] of degree at least 2. We study power series solutions
of the form u(t) =

∑∞
i=0 gi

(t−t0)i

i! centered around t0 ∈ C. Claim: The differential
counting polynomial for formal power series solutions is

c(P ) = deg(f) · ∞

at a generic center of expansion. More precisely, for each zeroth Taylor coefficient there
are deg(f) first Taylor coefficients which yield a unique formal (and even convergent)
power series solution. At special centers of expansion, further examined below for small
degrees of f , the differential counting polynomial is smaller.

A Prolongation yields the system

Prolongation(P, 2) =
{
u2 · (t+ f ′(u1)) = 0, g0 − t0 · g1 − f(g1) = 0

}
.

Splitting Prolongation(P, 2) with respect to u2 because of the factorized differential
equation u2 · (t+ f ′(u1)) = 0 yields two systems. The first system

S1 := {u2 = 0, g0 − t · g1 − f(g1) = 0}

has general solutions in the sense of Appendix D, which are lines in this case. It has
differential counting polynomial deg(f) ·∞−deg(f)+1 due to the Euler characteristic
(cf. Corollary 2.16). The second system

S2 :=
{
t+ f ′(u1) = 0, u2 6= 0, g0 − t0 · g1 − f(g1) = 0

}
contains the separant of the differential equation. Hence, the solutions of S2 are singular
solutions in the sense of Appendix D. A prolongation of S2 yields

Prolongation(S2, 2) = { u2 · f ′′(u1) + 1 = 0,

u2 6= 0,

t0 + f ′(g1) = 0,

g0 − t0 · g1 − f(g1) = 0} ,
16The first example was probably [Inc44, Appendix A.5] due to Taylor [Tay, Prop. VIII, Prob. V].



138 CHAPTER 2. DIFFERENTIAL COUNTING POLYNOMIALS

and ρ(u2 · f ′′(u1) + 1) = g2 · f ′′(g1) + 1 = 0 implies f ′′(g1) 6= 0. Furthermore,
g2 6= 0 holds and, in particular, the differential inequation u2 6= 0 is superfluous. So
Prolongation(S2, 2) is equivalent to the system{

u2 · f ′′(u1) + 1 = 0, t0 + f ′(g1) = 0, g0 − t0 · g1 − f(g1) = 0, f ′′(g1) 6= 0
}
.

The initial of ρ(∂i(u2 · f ′′(u1) + 1)), i ≥ 0 is f ′′(g1) and non-zero. Thus, the differential
counting polynomial of this algebraically restricted system of differential equations is
the same as the algebraic counting polynomial of the system Salg := {t0 + f ′(g1) =
0, g0 − t0 · g1 − f(g1) = 0, f ′′(g1) 6= 0} in the indeterminates g1 > g0.

For generic values of t0, the algebraic counting polynomial c(Salg) is deg(f) − 1.
Namely, as the set of solutions is finite, the algebraic counting polynomial is independent
of the ranking (cf. Proposition 2.12). For generic values of t0, the subsystem {t0 +
f ′(g1) = 0, f ′′(g1) 6= 0} ⊂ Salg has deg(f) − 1 possible values for g1 in a solutions.
Then, the equation g0 − t0 · g1 − f(g1) = 0 ensures that each of these solutions yields a
unique value for g0 in a solution. The behavior might be different for certain values of
t0, which depend on the coefficients bi of f .

For deg(f) = 2 a straight forward computation with the algebraic Thomas decom-
position shows that the system always has one solution. For deg(f) = 3 the system
has two or zero solutions. The case of zero solutions appears exactly when trying to
expand the power series around the point t0 =

b22−3b1b3
3b3

. This means that the singular
solution does not have a formal power series centered around this particular point. For
deg(f) = 4 the situation is more complicated: there are either zero, one, or three so-
lutions. First, there are zero solutions at the point t0 =

b33−16b1b24
16b24

if 8b2b4 − 3b23 = 0.
Second, there is one solution at the two zeros of

108b24 · t20 +
(
216b1b

2
4 − 108b2b3b4 + 27b33

)
· t0

+ 108b21b
2
4 + 32b32b4 − 108b1b2b3b4 + 27b1b

3
3 − 9b22b

2
3 = 0

(seen as polynomial in t0) if 8b2b4−3b23 6= 0. In all other cases, there are three solutions.
Examples demonstrate why there are less solutions at certain points.

t

u
u = t

3
2

u = −t
3
2

If f(u1) = − 4
27u

3
1, then there are the two singular solutions

u(t) = −+t
3
2 , neither of which can be expanded into a power

series around their impasse singularity (or cusp) t0 = 0 (cf.
Proposition E.3). This can be seen in the (real) picture
on the right. This special value for t0 arises the following
way. The singular solutions are determined by sep(p) =
t+f ′(u1) = 3b3u

2
1 + 2b2u1 + b1 + t0 = 0. Trying to solve this

equation for u1 results in the discriminant 3b3t0− b22 + 3b1b3
(of this equation w.r.t. u1), which has aforementioned value
for t0 as solution.

An example for the case of zero solutions for deg(f) = 4 is f(u1) = 27
256u

4
1 at the

point t0 = 0. The three singular solutions are u(t) = ζ3t
4
3 , where ζ3 is a (possibly

trivial) third root of unity and have an impasse point at t0 = 0.
An example for the case of one solution for deg(f) = 4 is f(u1) = −1

2u
4
1 + u3

1 − 9
32

at the points are t0 = 0 and t0 = −1. The three singular solutions are

u(t) =
96t2 + (16z + 96)t+ 3z2 + 27

32z
with

z = ζ3

(
256t3 + 272t2 + 128t4 + 144t+ 27 + 64

√
t3(t+ 1)3(1 + 2t)2

)
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and again ζ3 a (possibly trivial) third root of unity. Only the solution with ζ3 = 1
admits a power series solution around t0 = 0 and t0 = −1. The impasse points can
be seen in the following diagram, where the singular solution is displayed in black and
some regular solutions are displayed in light gray.

u(t)

t

u

−1

It is easy to establish convergence of the solutions. All regular solutions are lines.
The singular solutions are all solutions of the simple differential system {t+f ′(u1) = 0}
and, thus, converge by Riquier’s Theorem 1.60. /

In the second example demonstrates that certain formal power series solutions do
not necessarily converge, when they are centered around a non-regular point. This
shows that the hypothesis of Riquier’s Existence Theorem 1.60 cannot be relaxed.

Example 2.90. Let U := {u}, ∆ := {∂t} and F := C(t). Consider the differential
equation p := uu2−u1 + t. Claim: p has a unique formal power series solution centered
around t0 = 0 with zeroth power series coefficient 0, and this formal power series does
not converge.

So consider the algebraically restricted system {p=, g0 = 0} of differential equations.
ρ(p) = g0g2 − g1 = 0 implies g1 = 0. Similarly, ρ(∂tp) = 0 implies g2 = 1. For k ≥ 2

∂kt p = uuk+2 + (ku1 − 1)uk+1 +

k∑
i=2

(
k

i

)
uiuk+2−i .

Applying ρ and using the relations g0 = g1 = 0 results in

gk+1 =

k∑
i=2

(
k

i

)
gigk+2−i .

This shows that there is a unique formal power series solution. Furthermore, this
formula shows by a trivial induction that all coefficients are non-negative real numbers.
We give an estimate for the 2k-th coefficient.

g2k =

2k−1∑
i=2

(
2k − 1

i

)
gig2k+1−i

=
k∑
i=2

(
2k − 1

i

)
gig2k+1−i +

2k−1∑
i=k+1

(
2k − 1

i

)
gig2k+1−i

=
k∑
i=2

((
2k − 1

i

)
+

(
2k − 1

2k + 1− i

))
gig2k+1−i
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Taking only the summand for i = 2 results in the following bound.

≥
((

2k − 1

2

)
+

(
2k − 1

2k − 1

))
g2g2k−1

=
(
2k2 − 3k + 2

)
g2k−1

The same estimation also implies g2k+1 ≥ (2k2−k+ 1)g2k. For proving that the formal
power series does not converge, apply the ratio test.

lim inf
k→∞

∣∣∣∣∣ gk
k!
gk−1

k−1!

∣∣∣∣∣ = lim inf
k→∞

gk
k · gk−1

≥ lim inf
k→∞

2
(
k
2

)2
+O(k)

k
=∞

More generally a straight forward computation using the techniques in this section
yields the differential counting polynomial for {p = 0}. The counting sequence is

` 7→

{
∞2 −∞, ` ≥ 1

∞, ` = 0

around each center t0 ∈ { 1
k | k ∈ Z≥0}, and

` 7→

{
∞2 −∞+ 1, ` ≥ 1

∞, ` = 0

around each center t0 for t0 ∈ C \ { 1
k | k ∈ Z≥0}. /

The third example gives a more formal treatment of the “sphere equation” from
Example 2.5 in the overview section, but lacks the geometric intuition.

Example 2.91. Consider U = {u}, ∆ = {∂t}, F = C(t), and the differential equation
p = u2

1 +u2 +t2−1 = 0. Denote by
∑∞

i=0 gi
(t−t0)i

i! the formal power series for u centered
around t0 ∈ C.

It is clear that adding g2
0 + t20 − 1 6= 0 to {p = 0} yields the enumerable system

{p = 0, g2
0 + t20− 1 6= 0} for t20− 1 6= 0 and {p = 0, g0 6= 0} for t20− 1 = 0. These systems

have the counting sequence

` 7→

{
2∞− 4, ` ≥ 1

∞− 2, ` = 0

and

` 7→

{
2∞− 2, ` ≥ 1

∞− 1, ` = 0
,

respectively.
Adding the complementary constraint g2

0 + t20 − 1 = 0 yields an inconsistent system
for t0 6= 0 and the following system for t0 = 0 after three prolongations.

{ u1u5 + 4u2u4 + 3u2
3 + uu4 + 4u1u3 + 3u2

2 = 0,

g3 = 0,

g2
2 + g0g2 + 1 = 0,

g1 = 0,

g2
0 − 1 = 0 }
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This system is enumerable, as the k-th prolongation of u1u5 + 4u2u4 + 3u2
3 + uu4 +

4u1u3 + 3u2
2 has the highest ranking term ((4 + k)g2 + g0)g4+k after application of the

forgetful map ρ and using the relation g1 = 0. In particular, this relation has a non-zero
initial and is square-free. Thus, for t0 = 0 there are four additional formal power series
solutions.

MAPLE’s dsolve [map] finds no solutions for this differential equation. /

The fourth examples shows that differential counting polynomials can depend on
the order `.

Example 2.92. Consider U = {u, v}, ∆ = {∂t} and F = C with the orderly ranking
with u > v. Let p := vu1 − u and

S := {p = 0} (S)

Claim:

c(S) = c(S)(`) =∞`+2 −∞`+1 + (`+ 1)∞` − `∞`−1

for all ` ≥ 1.
Corollary 1.58 gives a bijection between formal power series solutions and non-

centered solutions independent of the chosen center, because of the constant coefficients
in this example. Thus, make the ansatz u(t) =

∑∞
i=0 ai

ti

i! and v(t) =
∑∞

i=0 bi
ti

i! for
formal power series solutions centered around zero to compute the counting sequence.
We use the forgetful map

ρ : C{U} → C[ai, bi|i ∈ Z≥0] : ui 7→ ai, vi 7→ bi .

It is clear that adding b0 6= 0 to S makes the system

T := {p = 0, b0 6= 0} (T )

enumerable. It has the counting sequence c(T ) : ` 7→ (∞− 1)∞`+1.
The complementary system {p = 0, b0 = 0} prolongs to the system

S1 := { ∂tp = vu2 + (v1 − 1)u1 = 0, (S1)
a0 = 0,

b0 = 0 } ,

which is part of the family

Sk := { ∂kt p = vuk+1 + (kv1 − 1)uk +
∑k

i=2

(
k
i

)
viuk+1−i = 0, (Sk)

a0 = . . . = ak−1 = 0,

b0 = 0,∏k−1
i=1 (ib1 − 1) 6= 0 }

of systems. Consider the initial of the equation ρ(∂kt p). This equation yields (kb1−1)ak
after reduction in Sk and thus has initial (kb1 − 1). Adding (kb1 − 1) 6= 0 to Sk, to
make sure that the initial is non-zero, and prolonging ∂kt p results in the system Sk+1.
Complementary, adding (kb1 − 1) = 0 to Sk and prolonging ∂kt p yields the system

Tk := { ∂k+1
t p = vuk+2 + ((k + 1)v1 − 1)uk+1 +

∑k+1
i=2

(
k+1
i

)
viuk+2−i = 0, (Tk)

a0 = . . . = ak−1 = 0,

b0 = kb1 − 1 = 0 } .
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Note that the inequations from Sk are superfluous in Tk because of the equation kb1−1 =
0. Furthermore, the equation ρ(∂k+1+j

t p) reduces to 1
kak+1+j +

(
k+1+j

2

)
b2ak+j in the

context of Tk for all j ∈ Z≥0. In particular, this reduced form has the leader ak+1+j for
all j ∈ Z≥0 and there is no constraint for ak. This family of systems has the following
counting sequence.

c(Tk) : ` 7→


∞`, ` ≥ k
∞`−1, 1 ≤ ` < k

1, ` = 0

We study the remaining system T∞:=
⋃∞
i=1 Si. The equations ak = 0 for all k ∈

Z≥0 yield the differential equation u = 0 and also make the differential equation p
superfluous. Furthermore, b1 is not allowed to be of the form 1

k for any k ∈ Z≥1. We
denote this informally by writing

∏∞
i=1 kb1 − 1 6= 0, which represents the infinite set of

all inequations kb1 − 1 6= 0 for i ∈ Z≥1. Summing up, the following system describes
these remaining set of solutions.

T∞ := { u = 0, (T∞)
b0 = 0,∏∞

i=1 ib1 − 1 6= 0 }

The following diagram visualizes the splittings. Here, dark orange nodes represent
unfinished systems and light green nodes represent enumerable systems.

S

T

S1 S2

T1

Sk

T2

T∞

Tk

We discuss the counting sequence. For order ` = 0 all special cases are identical
{a0 = b0 = 0} and have algebraic counting polynomial 1. They are disjoint with T ,
which has counting polynomial ∞2 −∞. Thus, the differential counting polynomial is
∞2 −∞+ 1 for ` = 0.

Assume that ` ≥ 1. To get the `-th differential counting polynomial of the union of
the sets of solutions of special case systems T∞ and Tk, k ≥ 1, we apply Lemma 2.25,
where φ≤a0,(0,0)((T∞)≤`) plays the role of T0 and φ≤a0,(0,0)((Tk)≤`) plays the role of Tk,
k ≥ 1. To apply Lemma 2.25 we need to ensure its hypothesis, i.e., check whether several
properties are satisfied. The partition property of Lemma 2.25.(1) is easily verified. The
existence of the algebraic counting polynomials for Lemma 2.25.(4) and the finiteness of
the systems φ≤a0,(0,0)((Tk)≤`) for Lemma 2.25.(2) have already been shown above. For
Lemma 2.25.(3) note that the algebraic counting polynomial is different depending on
whether b1 is in

{
1
k

∣∣k ∈ Z≥0

}
or not; in the first case, the algebraic counting polynomial

is ∞` for ` ≥ k large enough and ∞`−1 for ` < k, and in the second case the algebraic
counting polynomial is ∞`−1 for each value of b1. Thus, Lemma 2.25 can be applied
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and yields

c

(
SolC2`(φ≤a0,(0,0)((T∞)≤`)) ∪

∞⋃
k=1

SolC2`((φ≤a0,(0,0)(Tk)≤`))

)

= (∞− `) · c(φ≤b1,(0,0,b1)(T∞))(`) +
∑̀
j=1

c(φ≤a0,(0,0)(T∞))(`)

= (∞− `) · ∞`−1 +
∑̀
j=1

∞`

= (`+ 1)∞` − `∞`−1 ,

where b1 ∈ C \ { 1
k |k ∈ Z≥0}. As there is only one choice for the solutions of b0 and a0,

c(SolC2`+2((T∞)≤`) ∪
∞⋃
k=1

SolC2`+2((Tk)≤`)) = (`+ 1)∞` − `∞`−1

Add the counting polynomial (∞ − 1)∞`+1 of the generic system T to the com-
bined differential counting polynomial of the special cases. This results in the counting
sequence

c(S) = l 7→

{
∞`+2 −∞`+1 + (`+ 1)∞` − `∞`−1, ` ≥ 1

∞2 −∞+ 1, ` = 0

of S. See Example E.8 for an explanation of this counting sequence using the Vessiot
theory.

Riquier’s Existence Theorem 1.60 implies the convergence for the formal power
series solutions of system T for analytical initial conditions. System T∞ gives the zero
power series for u, which converges, and only restricts the choice for the first two power
series coefficients of v, hence v can be chosen to converge or diverge. The solutions of
the systems Tk can diverge even for analytical initial conditions. Consider for example
system T1 and prescribe b0 = 0, b1 = 1, b2 = 1, bi = 0 for all i ≥ 3. Then, by the ratio
test the radius of convergence of the solution for u is zero:∣∣∣∣ ak+1

(k + 1)ak

∣∣∣∣ =
k − 1

k

∣∣∣∣∣
∑k

i=2

(
k
i

) bi+1

i+1 ak+1−i∑k
i=2

(
k
i

)
biak+1−i

+
k

2
b2

∣∣∣∣∣ =
k − 1

2
−→∞, k →∞

However, by a similar computation, the analytical initial condition b0 = 0, b1 = 1, b2 =
0, bi = i!, for i ≥ 3, implies that the radius of convergence of u is 1.

Compare the set of solutions described here with the one found by MAPLE. There-
fore, consider real (instead of complex) formal and convergent power series solutions
centered around zero. This is no substantial restriction, as real initial conditions lead to
real power series solutions above. MAPLE’s dsolve [map] returns an arbitrary v(t) and

u(t) = c · e
∫ t
0

1
v(h)

dh

for a constant c. This set of solutions depend on `+ 2 (seemingly arbitrary) constants
up to order `, where ` + 1 of those come from v(t). However, the zeroth power series
coefficient of v(t) cannot be zero, as otherwise the integral does not exist and this is not
a formal (or convergent) power series solution; in particular not all of the `+2 constants
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are arbitrary. Thus, MAPLE’s dsolve only finds ∞`+2 −∞`+1 solutions in order `. In
particular, a subset with counting sequence ` 7→ (`+ 1)∞` − `∞`−1 of the solutions is
not found (cf. Theorem 2.34). As seen above, some of these solutions are (convergent)
analytical solutions.

The differential dimension polynomial only shows that there are ` + 2 arbitrary
parameters for a solution, so it can not account for the missing solutions. /

The fifth example demonstrates that there are systems with the following peculiar
behavior. For a power series coefficient of order one any value can be chosen except
for the countable set { 1

k | k ∈ Z≥1}. This countable exceptional set yields ℵ0 in the
differential counting polynomial of the system.

Example 2.93. Consider U = {u, v}, ∆ = {∂t} and F = C(t) with the orderly ranking
with u > v. Let p := vu1 − u+ 1

t and

S := {p = 0, v2 = 0} (S)

S has no solutions centered around 0, so let t0 ∈ C \ {0}. Claim:

c(S) = c(S)(`) =∞3 −∞2 +∞−ℵ0

for all ` ≥ 1, and every of these solutions yields a locally convergent formal power series
solution centered around t0.

The computations in this example are independent of the base point t0 6= 0 and
show that the evaluation ψt0 : E 7→ C[[y1− ζ1, . . . , yn− ζn]]U ∪ {∞} induces a bijection
between the set of non-centered solutions and the set of formal power series solutions
centered around t0. Thus, compute the differential counting polynomial using the formal
power series ansatz u(t) =

∑∞
i=0 ai

(t−t0)i

i! and v(t) =
∑∞

i=0 bi
(t−t0)i

i! and the forgetful
map

ρ : C[t, t−1]{U} → C[ai, bi|i ∈ Z≥0] : ui 7→ ai, vi 7→ bi, t 7→ t0 .

It is clear that adding b0 6= 0 to S results in the enumerable system

T := {p = 0, v2 = 0, b0 6= 0} (T )

with `-th differential counting polynomial c(T )(`) =∞3 −∞2 for every order ` ≥ 1.
The complementary system {p = 0, v2 = 0, b0 = 0} prolongs to the system

S1 := { ∂tp = vu2 + (v1 − 1)u1 −
1

t2
= 0, (S1)

v2 = 0,

a0 −
1

t
= 0,

b0 = 0 } .

It is part of the following family of systems.

Sk := { qk := vuk+1 + (kv1 − 1)uk + (−1)k
k!

tk+1
= 0, (Sk)

v2 = 0,

(ib1 − 1)ai + (−1)i
i!

ti+1
= 0 ∀ 0 ≤ i < k,

b0 = 0,∏k−1
i=1 (ib1 − 1) 6= 0 }
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Here qk results from differential reduction by v2 of ∂kt p. After application of ρ and
reduction with elements in Sk the differential equations qk yield (kb1−1)ak+(−1)k k!

tk+1 .
Adding (kb1− 1) 6= 0 to Sk, to ensure a non-zero initial, and prolonging qk, which after
reduction by v2 results in qk+1, yields the system Sk+1. Complementary, when adding
kb1 − 1 = 0 to Sk the system is inconsistent. This can be seen by reducing ∂tqk by v2,
which again results in qk+1. Then

ρ(qk+1) = b0ak+2 + (kb1 − 1)ak+1 + (−1)k+1 (k + 1)!

tk+2
= 0

yields the contradiction (−1)k+1 (k+1)!
tk+2 = 0 by using the relations b0 = 0 and kb1−1 = 0.

Study the remaining system T∞:=
⋃∞
i=1 Si. The equations (kb1−1)ak+(−1)k k!

tk+1 =
0 for all k ∈ Z≥0 imply p and make it superfluous. Furthermore, b1 is not allowed to
be of the form 1

k for any k ∈ Z≥1. Denote this informally by
∏∞
i=1(kb1 − 1) 6= 0. This

results in the following system.

T∞ := { v2 = 0, (T∞)

(kb1 − 1)ak + (−1)k
k!

tk+1
= 0 ∀ k ∈ Z≥0,

b0 = 0,∏∞
k=1(kb1 − 1) 6= 0 }

The following short diagram visualizes the splittings with dark orange for unfinished
systems, light green for enumerable systems, and dark red systems with a lightning for
inconsistent systems.

S

T

S1 S2

 

Sk

 

T∞

 

For order ` = 0 the system T∞ has one solution {a0 = 1
t0
, b0 = 0} and has differential

counting polynomial 1. It is disjoint with T , which has differential counting polynomial
∞2 −∞. Thus, the zeroth differential counting polynomial is ∞2 −∞ + 1 for ` = 0.
Now assume ` ≥ 1. The only choice in the special case system T∞ is for b1 and it
may be chosen freely in C \

{
1
k

∣∣k ∈ Z≥1

}
. Thus, c(T∞) =∞− ℵ0. Thus, the counting

sequence of S is

c(S) = l 7→

{
∞3 −∞2 +∞−ℵ0, ` ≥ 1

∞2 −∞+ 1, ` = 0 ,

and this is explained in Example E.7 by the Vessiot theory.
All formal power series solutions of this example converge. Riquier’s Existence

Theorem 1.60 implies this for the ones of system T . For system T∞ the solutions of v
are lines and the ratio test shows that the radius of convergence for the formal power
series solutions of u is |t0|:∣∣∣∣ ak+1

(k + 1)ak

∣∣∣∣ =

∣∣∣∣ kb1 − 1

(k + 1)b1 − 1

∣∣∣∣ · ∣∣∣∣ 1

t0

∣∣∣∣ −→ ∣∣∣∣ 1

t0

∣∣∣∣ , k →∞ /
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The sixth example deals with partial differential equations. In contrast to the ordi-
nary examples before, this requires a technical treatment to ensure passivity.

Example 2.94. Consider the system S := {p=, q=} of the differential equations

p := v · ux − y · u q := vy + x · u

for U = {u, v}, ∆ = {∂x, ∂y}, and F = C(x, y). Make the ansatz

u(x, y) =
∑

i,j∈Z≥0

ai,j
(x− x0)i(y − y0)j

i!j!
∈ C[[x− x0, y − y0]]

v(x, y) =
∑

i,j∈Z≥0

bi,j
(x− x0)i(y − y0)j

i!j!
∈ C[[x− x0, y − y0]]

for formal power series solutions of the system S expanded around (x0, y0) ∈ C2 and
determine the differential counting polynomial of this set of solutions. Let (x0, y0) ∈ C2

with the assumption x0 6= 0 or y0 6= 0. Fix the degree-reverse lexicographical ranking,
so the induced ranking on G = {ai,j , bi,j | i, j ∈ Z≥0} begins with b0,0 < a0,0 < b0,1 <
a0,1 < b1,0 < a1,0 < b0,2. The forgetful map ρ : C(x, y){u, v} → C[G] substitutes x, y,
∂ix∂

j
yu, and ∂ix∂

j
yv by x0, y0, ai,j , and bi,j , respectively.

The equation q = vy + x · u is semilinear. Thus, for i, j ∈ Z≥0 the power series
coefficients bi,j+1 are determined by the equations ρ(∂ix∂

j
yq) dependent on the coefficients

of lower order. The highest ranking indeterminate in ρ
(
∂ix∂

j
yp
)
is ai+1,j occurring in

the term b0,0 · ai+1,j , which might vanish for b0,0 = 0. Split the system into a favorable
system with the b0,0 6= 0 and one with b0,0 = 0. In the favorable system

T := { p = v · ux − y · u = 0, (T )
q = vy + x · u = 0,

b0,0 6= 0, } ,

given a0,i ∈ C for i ∈ Z≥0, b0,0 ∈ C \ {0}, and bi,0 ∈ C for i ∈ Z≥1, there is a unique
formal power series solution. Picture this using the following diagram.

a: ∂y

∂x

2

1

1 2

b: ∂y

∂x

2

1

1 2

All power series coefficients marked by gray dots are uniquely determined, once the
lower coefficients are chosen. The one coefficient b0,0, marked by a dashed circle, can
be chosen almost arbitrarily, only constrained by an inequation of degree one. The
other coefficients that are not marked, i.e., a0,i and bi+1,0 for all i ∈ Z≥0, can be
chosen arbitrarily. With this description, one easily defines an allocation map β which
makes T an enumerable system. The corresponding counting sequence for this system
is c(T ) : ` 7→ (∞− 1) · ∞2`+1.

Counting the set of solutions of the system with b0,0 = 0 is harder. The rest of this
example looks for the highest differential variable in a derivative ρ(∂ix∂

j
yp) of p such that
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its initial is not implied zero. Consider

S′ := { p = v · ux − y · u = 0, (S′)
q = vy + x · u = 0,

b0,0 = 0 } .

Then ρ(p) = b0,0a1,0 − y0a0,0 = 0, b0,0 = 0, and y0 6= 0 imply a0,0 = 0. The system

SingleProlongation(S′, p) = { ∂xp = v · uxx
:::::

+ (vx − y) · ux = 0,

∂yp = v · uxy
:::::

+ x · u · ux
:::::::

− y · uy − u: = 0,

q = vy + x · u
::::

= 0,

b0,0 = a0,0 = 0 }

implies a0,i = 0, a1,i = 0, b0,i+1 = 0, and b1,i+1 = 0 for all i ∈ Z≥1 as consequences from
Lemma 2.95, and an algebraic Thomas decomposition of {ρ(q) = 0, ρ(∂xq) = 0, ρ(p) =
0, ρ(∂xp) = 0, ρ(∂x∂yp) = 0, b0,0 = 0} yields x0a

2
1,0 + a1,0 = a1,0(x0a1,0 + 1) = 0 as

a consequence. (The terms that vanish after application of ρ are underwaved, e.g.,
the term v · uxx in SingleProlongation(S′, p) maps to b0,0 · a2,0 and vanishes because of
b0,0 = 0.) Thus, rewrite the system as

S′′ := { ∂xp = v · uxx
:::::

+ (vx − y) · ux = 0 (S′′)

q = vy + x · u
::::

= 0

a0,i = b0,i = a1,i+1 = b1,i+2 = 0, i ≥ 0

a1,0 · (x0a1,0 + 1) = 0 } .

In S′′ all equations of the form ρ(∂iyp) reduce to zero, so one only needs to consider ∂xp
and all its derivatives. Obviously, the two cases a1,0 = 0 and x0a1,0 + 1 = 0 are disjoint.
By Lemma 2.96 the case a1,0 = 0 yields the system

T ′ := { u = 0, (T ′)
vy = 0,

b0,0 = 0 } .

This system has the counting sequence c(T ′) : ` 7→ ∞`. By Lemma 2.97 the case
x0a1,0 + 1 = 0 yields the system

T ′′ := { ∂2
xp = v · uxxx

::::::
+ (2vx − y) · uxx + uxvxx = 0, (T ′′)

∂2
xq = vxxy + x · uxx + 2ux = 0,

a0,i = b0,i = a1,i+1 = b1,i+2 = 0, i ≥ 0,

b1,0 − y0 = 0,

b1,1 − 1 = 0,

x0a1,0 + 1 = 0, } .

Here, ρ(∂i+2
x ∂jyp) and ρ(∂i+2

x ∂jyq) have the leaders ai+2,j and bi+2,j+1 after application
of ρ. The initial of ai+2,j is 1 and the initial of bi+2,j+1 is y0. This system has the
counting sequence c(T ′′) : ` 7→ ∞`−1.
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Next, we count the union of the sets of solutions of the three systems T , T ′, and
T ′′. The system T≤0 is disjoint with both T ′≤0 and T ′′≤0, but the systems T ′≤0 and T ′′≤0

have identical solutions. Thus, c(S)(0) = c(T )(0) + c(T ′)(0) = c(T )(0) + c(T ′′)(0) =
∞2 −∞+ 1. For order ` ≥ 1 these systems are disjoint, and adding the corresponding
polynomials yields

c(S)(`) = c(T ) + c(T ′) + c(T ′′)

= (∞− 1) · ∞2`+1 +∞` +∞`−1

=∞2`+2 −∞2`+1 +∞` +∞`−1 .

In comparison, MAPLE’s pdsolve [map] yields the solution set where u is the zero
function and v is an arbitrary function depending on only x (and not y). This solution
set has the counting sequence ` 7→ ∞`+1, much less than ` 7→ ∞2`+2 −∞2`+1 +∞` +
∞`−1. /

Lemma 2.95. In the context of Example 2.94, the system SingleProlongation(S′, p)
implies the algebraic constraints for power series coefficients a0,i = 0, a1,i = 0, b0,i+1 =
0, and b1,i+1 = 0 for all i ∈ Z≥1 as consequences.

Proof. For i = 1 this follows from an algebraic Thomas decomposition of {b0,0 =
0, ρ(q) = 0, ρ(∂xq) = 0, ρ(∂yq) = 0, ρ(∂x∂yq) = 0, ρ(p) = 0, ρ(∂xp) = 0, ρ(∂yp) =
0, ρ(∂x∂yp) = 0, ρ(∂x∂

2
yp) = 0}.

Assume the claim holds for all j smaller i. Show that it holds for i in four steps.
First, consider ρ applied to ∂iyp =

∑i
j=0

(
i
j

)
vyjuxyi−j
::::::::

− yuyi − uyi−1
::::

. By induction

the ρ(vyj ) and ρ(uyi−1) reduce to zero. Now y0 6= 0 implies a0,i = ρ(uyi) = 0.
Second, consider ρ(∂iyq = vyi+1 + x · uyi). This equation implies b0,i+1 = 0 using the

equation a0,i = 0.
Third, a case distinction shows a1,i = 0. Consider

∂iy∂xp = ∂iy (vuxx + vxux − yux)

=

i∑
j=0

(
i

j

)
vyi−jux2yj +

i∑
j=0

(
i

j

)
vxyi−juxyj − yuxyi − iuxyi−1

=

i∑
j=0

(
i

j

)
vyi−jux2yj
:::::::::

+

i−1∑
j=0

(
i

j

)
vxyi−juxyj
:::::::::

+

(
i

i

)
vxuxyi − yuxyi − iuxyi−1

:::::

.

When applying ρ all terms but b1,0a1,i − y0a1,i = (b1,0 − y0)a1,i vanish. For the initial
b1,0 − y0 6= 0 the claim a1,i = 0 holds. So assume b1,0 = y0. Consider

∂i+1
y ∂xp = ∂i+1

y (vuxx + vxux − yux)

=

i+1∑
j=0

(
i+ 1

j

)
vyi+1−jux2yj +

i+1∑
j=0

(
i+ 1

j

)
vxyi+1−juxyj − yuxyi+1 − (i+ 1)uxyi

Reorganize the sums to see the terms that vanish after an application of ρ.

=
i+1∑
j=0

(
i+ 1

j

)
vyi+1−jux2yj
:::::::::::

+
i−1∑
j=1

(
i+ 1

j

)
vxyi+1−juxyj
:::::::::::

+

(
i+ 1

0

)
vxyi+1ux +

(
i+ 1

i

)
vxyuxyi

+

((
i+ 1

i+ 1

)
vxuxyi+1 − yuxyi+1

)
::::::::::::::::::::::::::::

− (i+ 1)uxyi .
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An application of ρ leaves

(i+ 1)b1,1a1,i − (i+ 1)a1,i + a1,0b1,i+1 = ((i+ 1)b1,1 − (i+ 1))a1,i + a1,0b1,i+1

= −(i+ 1)(x0a1,0 + 1)a1,i + a1,0b1,i+1 .

It has already been shown that a1,0(x0a1,0 + 1) = 0. On the one hand, if a1,0 = 0 the
claim follows directly. On the other hand, a1,0 = − 1

x0
implies b1,i+1 = 0; substituting

this and a0,i = 0 into ρ(∂x∂
i
yq) = ρ(vxyi+1 +uyi +x ·uxyi) = b1,i+1 +x0a1,i+a0,i implies

the claim, as x0 6= 0.
Fourth, if b1,i+1 = 0 is not shown then consider ∂x∂iyq = vxyi+1 + uyi + x · uxyi . As

a0,i = 0 and a1,i = 0 by assumption ρ(∂x∂
i
yq) reduces to b1,i+1 = 0.

Lemma 2.96. In the context of Example 2.94, adding a1,0 = 0 to the system (S′′)
results in the system {u = 0, vy = 0, b0,0 = 0}.

Proof. First observe that b1,1 = 0 follows from reducing ρ(∂xq) by a0,0 = a1,0 = 0.
The statement u = 0 is equivalent to ai,j = 0 for all i, j ∈ Z≥0. Show the latter one

by an induction over i. Note that ai,j = 0 for all j ∈ Z≥0 and 0 ≤ i ≤ 1. Assume that
the claim holds for all values lower than i and consider

∂jy∂
i
xp = ∂jy

(
vuxi+1
:::::

+ (ivx − y)uxi +
i∑

k=2

(
i

k

)
vxkuxi+1−k
:::::::::

)

For k ≥ 2 by the induction hypothesis for all j ≥ 0 both ρ(∂jy(vxkuxi+1−k)) and
ρ(∂jy(vuxi+1) reduce to zero. So it suffices to consider

∂jy ((ivx − y)uxi) = (ivx − y)uxiyj + (ivxy
:::
− 1)uxiyj−1 +

j∑
k=2

(
j

k

)
ivxykuxiyj−k
:::::::::::

.

By b1,k = 0 for all k ≥ 2 the sum vanishes by an application of ρ. If (ib1,0 − y0) 6= 0,
then ai,j = 0 by induction on j. If (ib1,0 − y0) = 0, then ∂j+1

y ∂ixp implies ai,j = 0.
Now, vy = q−x ·u = 0 follows directly from u = 0. This proof “used” all derivatives

of p and q in the sense that all their derivatives reduce to zero after evaluation.

Lemma 2.97. In the context of Example 2.94, adding x0a1,0 + 1 = 0 to the system S′′

yields the system

T ′′ := { ∂2
xp = v · uxxx

::::::
+ (2vx − y) · uxx + uxvxx = 0,

∂2
xq = vxxy + x · uxx + 2ux = 0,

a0,i = b0,i = a1,i+1 = b1,i+2 = 0, i ≥ 0,

b1,0 − y0 = 0,

b1,1 − 1 = 0,

x0a1,0 + 1 = 0 } .

Here, ρ(∂i+2
x ∂jyp) and ρ(∂i+2

x ∂jyq) have leader ai+2,j and bi+2,j+1 after application of ρ.

Proof. The consequences b1,0−y0 = 0 and b1,1−1 = 0 follow from ρ(∂xp) and ρ(∂x∂yp)
and substitution of known relations into them. After that it is clear that all derivatives
of ρ(∂ix∂

j
yp) and ρ(∂ix∂

j
yq) with 0 ≤ i ≤ 1 and j ∈ Z≥0 reduce to zero.
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The claim about leader of derivatives of ρ(∂2
xq) is clear. It remains to be shown for

∂2
xp. The two leading terms of ∂i+2

x ∂jyp are vuxi+3 + ((i + 2)vx − y)uxiyj . The first of
these terms vanishes after application of ρ due to b0,0 = 0. The second term is mapped
to ((i + 2)b1,0 − y0)ai,j by ρ, which is equivalent to (i + 1)y0ai,j , since b1,0 − y0 = 0.
Thus, ai,j has a non-zero initial and the claim is shown.

2.5.5 Counting is not Algorithmic

This subsection gives a short overview over results of Denef and Lipshitz, who have
shown that in general the decision whether a system has formal power series solutions
is undecidable. In particular, this shows that it is impossible to count the number of
formal power series solutions algorithmically in general.

Theorem 2.98 ([DL84, 4.11]). Let n ≥ 9. There does not exist an algorithm to decide
the following: Does a single partial differential equation with variable coefficients for one
unknown function u given as input have a formal power series solution in C[[y1, . . . , yn]].

Proof. Consider u =
∑

i∈Z≥0
ai ·yi11 . . . yinn ∈ C[[y1, . . . , yn]] for solutions of the following

differential equations. For each p ∈ Z[z1, . . . , zn] use the Euler operator to get

p(y1∂1, . . . , yn∂n)u =
∑
i∈Z≥0

p(i1, . . . , in) · ai · yi11 . . . yinn .

Thus, the differential equation

p(y1∂1, . . . , yn∂n)u =
∑
i∈Z≥0

1 · yi11 . . . yinn

has a solution if and only if ai can be chosen as p(i1, . . . , in)−1 for all i ∈ Zn≥0. This is
possible if and only if the Diophantine equation p(i1, . . . , in) has no natural solution
i ∈ Zn≥0. The latter problem is undecidable for n ≥ 9 [Mat77].

Theorem 2.99. There exists a system of linear partial differential equations over
C(y1, . . . , yn){u} having a formal power series solution in Q[[y1, . . . , yn]], but no com-
putable power series solution17.

Again, in the proof (cf. [DL84, 4.12]) the Euler operator p(y1∂1, . . . , yn∂n) is used
to get polynomials in integers as coefficients in power series.

For other solution sets there exist algorithms. For example in [GS91] a set of gen-
eralized formal power series is introduced, i.e. formal power series with real exponents
such that the exponents converge to −∞. It is possible to count the number of these
solutions up to some “order” such that these solutions extend to all orders, using a
Newton polygon method. For systems of ordinary differential equations in Q[t]{U}
there exists an algorithm to decide whether such a system has a formal power series
solution in C[[t]] or R[[t]] [DL84, Theorem 3.1]. However, this algorithm does not seem
to be capable of counting the number of solutions. This is due to showing that any
regular point in an irreducible variety leads to a solution and leaving the question open
for singular points.

17I.e., no formal power series solution u =
∑

i∈Z≥0
ai · yi11 . . . yinn exists such that there is a recursive

function f : Zn≥0 → Q with f(i) = ai.



Appendix A

Differential Elimination

My aim in this is to show that the celestial machine is to be
likened not to a divine organism but rather to a clockwork [. . . ],
insofar as nearly all the manifold movements are carried out by
means of a single, quite simple magnetic force [. . . ].

Johannes Kepler
in a letter to Herwart von Hohenburg, as quoted in

[MAKA09]

I now demonstrate the frame of the System of the World.

Sir Isaac Newton
in Principia (“De mundi systemate”), translation [NM03]

Kepler and Newton represent a critical transition in human
history, the discovery that fairly simple mathematical laws per-
vade all of Nature; that the same rules apply on Earth as in the
skies; and that there is a resonance between the way we think
and the way the world works.

Carl Sagan
in [Sag80]

This appendix treats differential elimination theory and uses the Thomas decom-
position as algorithmic tool. The case of elimination for ordinary differential equations
has been treated first in [Rit50, Chapter V] and was extended to the case of partial
differential equations in [Sei56]. Both these approaches give a characteristic set of the
elimination ideal and are algorithmic in the sense that they give the reduction as de-
cision method whether a polynomial lies in that ideal. By a change of ranking, the
elimination usually can be speeded up [BLMM10]. Elimination has many applications;
among them is system theory, which is sketched below. Other applications lie in au-
tomatic theorem proving (see [Wan95] and the references therein) and in biology and

151
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chemistry (see [BLLM11] and the references therein). This appendix applies the im-
plementation of the Thomas decomposition to elimination. Therefore, it uses results
about elimination ideals from [Rob12]. The disjointness of the Thomas decomposition
allows additional applications than the previously mentioned classical approaches to
elimination.

Let F be a differential field of characteristic zero, ∆ = {∂1, . . . , ∂n} a non-empty
set of derivation operators, and U = {u(1), . . . , u(m)} a non-empty set of differential
indeterminates.

Elimination uses block rankings and elimination rankings (cf. Subsection 1.2.3). Fix
a block ranking B1 � . . . � Bk for a partition U =

⊎k
i=1Bi of the set of differential

indeterminates. If B1, . . . , Bi ⊆ U , write F{B1, . . . , Bi} for the differential polynomial
ring F{

⋃k
i=1Bi}. Let B ⊆ U and I a differential ideal in F{U}. Then I ∩ F{B} is

called the elimination ideal of I with respect to B. The next statements show how
to compute elimination ideals.

Proposition A.1 ([Rob12, 3.1.36]). Let S be a simple differential system over F{U}
with respect to a block ranking B1 � . . .� Bk and 1 ≤ i ≤ k. Then

I(S) ∩ F{B1, . . . , Bi} = IF{B1,...,Bi}

(
S ∩ F{B1, . . . , Bi}{=,6=}

)
.

Corollary A.2 ([Rob12, 3.1.37]). Let S be a (not necessarily simple) differential system
over F{U}, and let S1, . . . , S` be a Thomas decomposition of S with respect to a block
ranking B1 � . . .� Bk. Then for every 1 ≤ i ≤ k

I(S) ∩ F{B1, . . . , Bi} =
⋂̀
j=1

IF{B1,...,Bi}

(
Sj ∩ F{B1, . . . , Bi}{=, 6=}

)
.

Eliminations ideals can also be computed using characteristic set methods or the
Rosenfeld-Gröbner algorithm. The Thomas decomposition sets itself apart since
simple differential system describe the projected solution set and not its Kolchin clo-
sure. Recall the definition of the set E := F [[z1, . . . , zn]]U of non-centered solutions
from Subsection 1.2.4. Denote the restricted non-centered solution set by

E(i) := F [[z1, . . . , zn]]
⋃i
j=1 Bi ,

in particular E(k) = E. For differential systems S in F{B1, . . . , Bi} denote the solution
set in E(i) by SolE(i)(S).

Remark 1.10 implies the property for any simple differential system S over F{U}
with respect to a block ranking. For all 1 ≤ i ≤ j ≤ k

rej,i(SolE(j)(S)) = SolE(i)(S ∩ F{B1, . . . , Bi}) ,

where rej,i denotes the restriction of E(j) to E(i).
As a demonstration, these elimination methods allow a comparison of the laws of

planetary motions from Kepler and Newton. Similar but less detailed computations
in [Wu91] and [Wan95, §5, Example2] show that these laws are generically equivalent.
The Thomas decomposition gives a more detailed description due to its disjointness. In
particular, this example shows that the solutions of Kepler’s laws are a subset of the
solutions of Newton’s laws, and that the complements of the solutions of Kepler’s
laws in the solutions of Newton’s laws consist of parabolas (and complex solutions).

Example A.3. The laws of planetary motion by Kepler are:
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• Each planet describes an ellipse with the sun at one focus.

• The radius vector from the sun to a planet sweeps out equal area in equal time.

Newton derived the following laws:

• The acceleration of any planet is inversely proportional to the square of the dis-
tance from the sun to the planet.

• The acceleration vector of any planet is directed to the sun.

This example considers the motion of a planet around the sun. Assign the coordinates
(0, 0) to the sun. The planet has the coordinates x(t), y(t) in dependence of the time

t. However, the computations are easier in polar coordinates r(t) =
√

(x(t))2 + (y(t))2

and φ(t) = arctan
(
y(t)
x(t)

)
. Note that x(t) = r cos (φ(t)) and y(t) = r sin (φ(t)).

a
?

sun
a · e

•
(x(t), y(t))

r(t)

φ(t)

First we show how to derive differential equations for movement on an ellipse with
eccentricity e, semimajor axis a, and where φ(t) = 0 in the perihelion. The rela-

tion between r and φ is given by r(t) =
a(−e2+1)

1+e cos(φ(t)) . Remark 1.43 and Remark 1.2
allow to model this equation with U = {a, cosphi , e, φ, r, sinphi} with the extra rela-
tions cosphi2 + sinphi2 = 1, ∂tcosphi = −sinphi · ∂tφ, ∂tsinphi = cosphi · ∂tφ, ∂ta = 0,
∂te = 0.

restart;
with(DifferentialThomas):
L:=[

r[0]*(1+e[0]*cosphi[0])-a[0]*(1-e[0]^2),
cosphi[0]^2+sinphi[0]^2-1,
cosphi[1]+sinphi[0]*phi[1],
sinphi[1]-cosphi[0]*phi[1],
a[1],e[1]

]:
For the exclusion of the trivial cases where both celestial bodies are at the same spot we
add r 6= 0, and to prevent that the orbital speed is zero we add ∂tφ 6= 0. The following
two procedures extract the equations and inequations only involving r and φ from a
system.

Projection_r_phi_equations:=proc(system)
return remove(

b->has(b,a) or has(b,cosphi) or has(b,p)
or has(b,e) or has(b,sinphi),

DifferentialSystemEquations(system)
):

end proc:
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Projection_r_phi_inequations:=proc(system)
return remove(

b->has(b,a) or has(b,cosphi) or has(b,p)
or has(b,e) or has(b,sinphi),

DifferentialSystemInequations(system)
):

end proc:
A block ranking with a, e, cosphi , sinphi � r, φ yields the relations between r and φ.

ivar:=[t]:
dvar:=[[a,e,cosphi,sinphi],[r,phi]]:
ComputeRanking(ivar,dvar):

res_K1:=DifferentialThomasDecomposition(L,[r[0],phi[1]]);

res_K1 := [DifferentialSystem,DifferentialSystem]

The second system describes the case when the ellipse is a circle, as restricting to r and
φ yields a constant radius.

K1_2:=Projection_r_phi_equations(res_K1[2]):
K1_2_Ineq:=Projection_r_phi_inequations(res_K1[2]):
[op(map(a->a=0,JetList2Diff(K1_2))),
op(map(a->a<>0,JetList2Diff(K1_2_Ineq)))];

[ ddtr(t) = 0, r(t) 6= 0, ddtφ(t) 6= 0]

The first system descibes the generic case of an ellipse that is not a circle.
K1_1:=Projection_r_phi_equations(res_K1[1]):
K1_1_Ineq:=Projection_r_phi_inequations(res_K1[1]):
res_K1:=[

op(DifferentialThomasDecomposition(K1_1,K1_1_Ineq)),
op(DifferentialThomasDecomposition(K1_2,K1_2_Ineq))];

res_K1 := [DifferentialSystem,DifferentialSystem]

The second law of Kepler yields ∂t
(
r2∂tφ

)
= 0 (cf. [NS92, A.3.3.12]).

K2:=PartialDerivative(r[0]^2*phi[1],t);

K2 := 2 r1φ1r0 + φ2r0
2

Consider Newton’s laws. They imply that the acceleration of the planet is given by√(
∂2
t x
)2

+ (∂ty)2 =
√(

∂2
t (r cosphi)

)2
+
(
∂2
t (r sinphi)

)2 and that multiplication by r2

yields a constant. Thus, r4 ·
(
(∂2
t (rcosphi))2 + (∂2

t (rsinphi))2
)
is constant, as the square

of a constant is again constant. A value is a constant if its derivative is zero, and
this yields ∂2

t

(
r4 ·

(
(∂2
t (rcosphi))2 + (∂2

t (rsinphi))2
))

= 0. Again, eliminate cosphi
and sinphi from this equation and exclude trivial cases where r = 0, ∂tφ = 0 and the
acceleration is zero.

ivar:=[t]:
dvar:=[[cosphi,sinphi],[r,phi]]:
ComputeRanking(ivar,dvar):
L:=[

PartialDerivative(
r[0]^4*(PartialDerivative(r[0]*cosphi[0],t,t)^2
+PartialDerivative(r[0]*sinphi[0],t,t)^2),t),

cosphi[0]^2+sinphi[0]^2-1,
cosphi[1]+sinphi[0]*phi[1],
sinphi[1]-cosphi[0]*phi[1]

]:
res_N1:=DifferentialThomasDecomposition(L,[r[0],phi[1],

PartialDerivative(r[0]*cosphi[0],t,t)^2
+PartialDerivative(r[0]*sinphi[0],t,t)^2]);
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res_N1 := [DifferentialSystem,DifferentialSystem,DifferentialSystem]

This yields three systems for Newton’s first law.
N1_1:=Projection_r_phi_equations(res_N1[1]):
N1_1_Ineq:=Projection_r_phi_inequations(res_N1[1]):
N1_2:=Projection_r_phi_equations(res_N1[2]):
N1_2_Ineq:=Projection_r_phi_inequations(res_N1[2]):
N1_3:=Projection_r_phi_equations(res_N1[3]):
N1_3_Ineq:=Projection_r_phi_inequations(res_N1[3]):

The second law of Newton states that the acceleration orthogonal to the line through
sun and planet is zero, i.e., ∂t (x∂ty − y∂tx) = 0 holds. An easy calculation using the
relation x(t) = r(t) cos (φ(t)) shows that this condition is equivalent to Kepler’s second
law ∂t

(
r2∂tφ

)
= 0.

N2:=K2;

N2 := 2 r1φ1r0 + φ2r0
2

Compute the systems that intersect the sets of solutions of the first and second law of
Kepler

dvar2:=[r,phi]:
ComputeRanking(ivar,dvar2);
res_K:=map(RemoveSuperfluousInequations,

[op(DifferentialThomasDecomposition([op(K1_1),K2],K1_1_Ineq)),
op(DifferentialThomasDecomposition([op(K1_2),K2],K1_2_Ineq))]);

res_K := [DifferentialSystem,DifferentialSystem]

and of the first and second law of Newton.
res_N:=[

op(DifferentialThomasDecomposition([op(N1_1),N2],N1_1_Ineq)),
op(DifferentialThomasDecomposition([op(N1_2),N2],N1_2_Ineq)),
op(DifferentialThomasDecomposition([op(N1_3),N2],N1_3_Ineq))];

res_N := [DifferentialSystem]

The intersection of the solutions of Kepler’s laws and Newton’s laws is equal to
Kepler’s laws.

res_Intersect:=IntersectDecompositions(res_K,res_N);

res_Intersect := [DifferentialSystem,DifferentialSystem]

evalb(
DifferentialSystemEquations(res_K[1])
=DifferentialSystemEquations(res_Intersect[1])),

evalb(
DifferentialSystemInequations(res_K[1])
=DifferentialSystemInequations(res_Intersect[1]));

true, true
evalb(

DifferentialSystemEquations(res_K[2])
=DifferentialSystemEquations(res_Intersect[2])),

evalb(
DifferentialSystemInequations(res_K[2])
=DifferentialSystemInequations(res_Intersect[2]));

true, true

Consider trajectories which are solutions to Newton’s laws and not to Kepler’s laws.
Compute a decomposition of this set of solutions.

ComplementOfDecomposition(res_K):
res_N_minus_K:=IntersectDecompositions(%,res_N);

res_N_minus_K := [DifferentialSystem,DifferentialSystem]
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The second of these systems is physically not feasible, as solving φ(t) for r(t) yields
purely imaginary angles φ(t).

ComputeRanking([t],[[phi],[r]]);
res2:=DifferentialThomasDecomposition(

DifferentialSystemEquations(res_N_minus_K[2]),
DifferentialSystemInequations(res_N_minus_K[2])):

solve(
JetList2Diff(DifferentialSystemEquations(res2[1])[1]),
diff(phi(t),t));

i d
2

dt2
r(t)

d
dt
r(t)

,
−i d

2

dt2
r(t)

d
dt
r(t)

Some numerical solutions of the first systems lead one to belief that its solution set of
the first of these systems consists of parabolas.

lsg:=dsolve(
[op(JetList2Diff(DifferentialSystemEquations(res_N_minus_K[1])))
,phi(0)=0,D(phi)(0)=1,r(0)=1,D(r)(0)=0]
,numeric):

plots[pointplot](
map(a->[sin(a[1])*a[2],cos(a[1])*a[2]],
map(t->[rhs(lsg(t/20)[2]),rhs(lsg(t/20)[4])],[$-100..100])));

All parabolas are characterized by the equation r(t) (1 + cos (φ(t)))− p = 0 for a con-
stant p (cf. [NS92, A.3.2.29]).

L:=[
r[0]*(1+cosphi[0])-p[0],
cosphi[0]^2+sinphi[0]^2-1,
cosphi[1]+sinphi[0]*phi[1],
sinphi[1]-cosphi[0]*phi[1],
p[1]

]:
dvar:=[[cosphi,sinphi,p],[r,phi]]:
ComputeRanking(ivar,dvar):
res_P:=DifferentialThomasDecomposition(L,[phi[1],r[0]]);

res_P := [DifferentialSystem]

P:=Projection_r_phi_equations(res_P[1]):
P_Ineq:=Projection_r_phi_inequations(res_P[1]):

The following system has all solutions from Newton that are parabolas and not solu-
tions from Kepler.

dvar:=[r,phi]:
ComputeRanking(ivar,dvar):
res_P:=map(RemoveSuperfluousInequations,

DifferentialThomasDecomposition(P,P_Ineq)):
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res_P_intersect_N_minus_K
:=IntersectDecompositions(res_P,res_N_minus_K);

res_P_intersect_N_minus_K := [DifferentialSystem]

All physically possible solutions from Newton that were not solutions from Kepler
are parabolas.

evalb(
DifferentialSystemEquations(res_P_intersect_N_minus_K[1])
=DifferentialSystemEquations(res_N_minus_K[1])),

evalb(DifferentialSystemInequations(
res_P_intersect_N_minus_K[1])
=DifferentialSystemInequations(res_N_minus_K[1]));

true, true

This shows that all solutions of the first system of the equations that satisfied Newton’s
laws but not Kepler’s laws are parabolas. Furthermore, none of Kepler’s solutions is
a parabola. This is not clear in advance, as the parabolas might safisfy the differential
equations for ellipses.

IntersectDecompositions(res_K,res_P);

[]

To summarize this example, the equations of Newton imply those of Kepler, but
have the parabolas (and complex solutions) that do not occur in Kepler’s laws. Fur-
thermore, Kepler’s equations also have hyperbolas as solutions, since hyperbolas share
their characterizing differential equations with the ellipses. /

Now, we demonstrate elimination on examples in system theory, in particular how to
determine whether indeterminates are observable or flat output. Therefore, we adapt
well-known concepts of nonlinear control theory to the framework of the differential
Thomas decomposition and demonstrates them on an example. This is joint work
with Daniel Robertz and published in [LHR13].

Differential algebra was first used for control theory in [Fli89] and brought into an
algorithmic form in [Dio91, Dio92]. For a modern treatment, including the notion of
flatness, see [LHR13, Gla90, Dio92, FG93, FLMR95, Pom01] and the references therein.

Assume that a (nonlinear) control system is given by a differential system S over
F{U}. As usual, we make no a priori distinction between input, output, state variables,
etc. Let x ∈ U and Y ⊆ U \{x}. Then x is observable with respect to Y in S if there
exists p ∈ I(S) \ {0} such that p ∈ F{Y }[x] is a polynomial in x (not involving any
proper derivative of x) with coefficients in F{Y } such that neither its leading coefficient
nor ∂p

∂x is contained in I(S). Corollary A.2 implies a method to decide observability for
certain simple differential systems.

Corollary A.4. Let x ∈ U and Y ⊆ U \ {x} and let S be simple with respect to a block
ranking satisfying U \ (Y ∪{x})� {x} � Y . Then x is observable with respect to Y in
S if and only if S= ∩ F{Y }[x] 6= ∅. If these two equivalent statements hold, then the p
from the definition can be taken as the unique p ∈ S= ∩ F{Y }[x] with ld(p) = x.

Let Y ⊆ U . Then Y is called a flat output of S if I(S) ∩ F{Y } = {0}, and every
x ∈ U \ Y is observable with respect to Y . The control system given by S is said to
be flat if a flat output exists. Deciding whether a given nonlinear control system is
flat is a difficult problem in general. However, flatness of a subset of the differential
indeterminates is decidable by Corollary A.2:

Corollary A.5. Let Y ⊆ U , and let S be simple with respect to a block ranking satisfying
(U \Y )� Y . Then Y is a flat output of S if and only if S=∩F{Y } = ∅, and the order
of the leader of each equation in S= is zero.
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More generally, if S is not simple, the computation of a differential Thomas de-
composition of S with respect to a block ranking satisfying U \ Y � Y might allow to
decide whether Y is a flat output. Then Y is a flat output of S if (but not necessarily
“only if”) it is a flat output of every system Si of a Thomas decomposition of S.

Example A.6. Consider the model of a continuous stirred-tank reactor taken from
[KS72]. This model describes a tank with a material, dissolved of concentration c.
Due to stirring, assume this concentration to be constant everywhere in the tank. Two
input feeds with flow rates F1 and F2 feed this material into the tank with constant
concentrations c1 and c2, respectively. There exists an outward flow with a flow rate
proportional to the square root of the volume V of liquid in the tank. The system is
modeled by the following two differential equations for an experimental constant k

V̇ (t) = F1(t) + F2(t)− k
√
V (t)

˙
c(t)V (t) = c1 F1(t) + c2 F2(t)− c(t) k

√
V (t) .

The properties of the system depend on the constants c1 and c2. To allow case
distinctions for these constants use Remark 1.2 and model these constants as functions
c1(t) and c2(t) satisfying ċ1(t) = 0 and ċ2(t) = 0. We introduce a new differential
indeterminate for the square root

√
V (t), and substitute V (t) by

√
V (t)

2
following

Remark 1.43. We assume c1(t) 6= 0, c2(t) 6= 0, and V (t) 6= 0 to exclude trivial cases.
Compute a Thomas decomposition of the system using a ranking with {F1, F2} �
{
√
V , c} � {c1, c2}.
ivar:=[t]:
dvar:=[[F1,F2],[sV,c],[c1,c2]]:
ComputeRanking(ivar,dvar);
L:=[ 2*sV[1]*sV[0]-F1[0]-F2[0]+k*sV[0],

c[1]*sV[0]^2-c2[0]*F2[0]+c[0]*k*sV[0]
-c1[0]*F1[0]+2*c[0]*sV[1]*sV[0],

c1[1], c2[1]]:
res:=DifferentialThomasDecomposition(L,[sV[0],c1[0],c2[0]]);

res := [DifferentialSystem,DifferentialSystem,DifferentialSystem]

The decomposition consists of three simple differential systems. Print the first one.
subs(sV(t)=sqrt(V(t)),PrettyPrintDifferentialSystem(res[1]));[

(c2(t)− c1(t))F1(t) +

(
d

dt
c(t)

)(√
V (t)

)2

+ (c(t)− c2(t))

(
2
d

dt

√
V (t) + k

)√
V (t) = 0, (A.1)

(c1(t)− c2(t))F2(t) +

(
d

dt
c(t)

)(√
V (t)

)2

+ (c(t)− c1(t))

(
2
d

dt

√
V (t) + k

)√
V (t) = 0, (A.2)

d

dt
c1(t) = 0,

d

dt
c2(t) = 0, (A.3)√

V (t) 6= 0, c1(t)− c2(t) 6= 0.

c2(t) 6= 0, c1(t) 6= 0

]
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The equations (A.1) and (A.2) allow to solve for F1(t) and F2(t) given any c(t) and
V (t). Thus, consider c(t) and V (t) a flat output of the system under the additional
condition c1 − c2 6= 0 on the constants. Note that the two equations ċ1(t) = 0 and
ċ2(t) = 0 in (A.3) just model the parameters c1 and c2 as constants.

The other two systems of this decomposition include the condition c1 = c2. This
condition prohibits to control the concentration in the tank as both input feeds are
equivalent. In particular, these systems do not admit c(t) and V (t) as a flat output.

For the observability of
√
V (t) we choose a ranking with {

√
V } � {c, F1, F2} �

{c1, c2}. A Thomas decomposition with this ranking consists of seven systems:
ivar:=[t]:
dvar:=[[sV],[c,F1,F2],[c1,c2]]:
ComputeRanking(ivar,dvar);
res:=DifferentialThomasDecomposition(L,[sV[0],c1[0],c2[0]]);

res := [DifferentialSystem,DifferentialSystem,DifferentialSystem,
DifferentialSystem,DifferentialSystem,DifferentialSystem,DifferentialSystem]

In the first two systems an equation with
√
V (t) as leader appears, and thus

√
V (t)

is observable. For the first system the condition on the parameters for observability is

(c(t)− c1)F1(t) + (c(t)− c2)F2(t) 6= 0.

The second system is not physically feasible as it involves negative input feeds due to
F2(t) 6= 0 and F1(t) = −F2(t).

The other five systems include an equation with d
dt

√
V (t) as leader and thus

√
V (t)

is not observable: In the second system the concentrations c(t), c1, and c2 are equal
and constant. In the third system one input feed is zero and the concentration in the
tank is equal to the concentration in the other input feed. The remaining two systems
are not physically feasible due to negative values. /
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Appendix B

Janet Decomposition of the
Complement

Let ∆ = {∂1, . . . , ∂n} and U = {u(1), . . . , u(m)} be non-empty sets of derivation opera-
tors and differential indeterminates, respectively.

Similar to the Janet decomposition of a set of differential variables closed under
the action of ∆, the complement of such a set allows a decomposition into cones.

Algorithm B.1 (JanetComplement).
Input: A finite set W ⊂ {U}∆ of differential variables, a set ∆′ ⊆ ∆ of the derivations,
and a set V ⊂ {U}∆ satisfying {W}∆′ ⊆ {V }∆′ and {v}∆′ ∩ {v′}∆′ = ∅ for all distinct
v, v′ ∈ V .
Output: A cone decomposition of {V }∆′ \ {W}∆′ .
Algorithm: The algorithm is printed on page 162.

If JanetComplement is applied to (W,∆, U), then it results in a cone decomposition
of {U}∆ \ {W}∆, i.e. the complement of the set {W}∆ in {U}∆.

Proof. The termination of JanetComplement is clear, since each recursive call diminishes
the set of derivations by one.

It is easy to see in lines 3 and 18 that the input of JanetComplement satisfies the
input specifications.

The cone decomposition can be done independently for all cones {v}∆′ , v ∈ V . This
implies correctness of line 3.

The base case of the recursion in line 12 is trivially correct since v ∈W by the input
specification {W}∆′ ⊂ {V }∆′ .

For the correctness of the recursion in line 18 in connection with the replacement
in line 20 show disjointness and that the resulting cones yield {v}∆′ \ {W}∆′ . Assume
inductively that JanetComplement is correct for any input with second argument of
cardinality smaller than |∆′|. The cones in

⋃d
i=0Ci in line 18 are mutually disjoint.

First, they are disjoint in each Ci by induction hypothesis, and second, the apexes of
the cones of different Ci have different order in ∂k and no cone has ∂k as reductive
prolongation. The replacement in line 20 does not change the disjointness of the cones
since only ∂k is added as reductive prolongation to the cones with highest order in ∂k,
i.e. the ones in Cd. At last, the cones in Ci form a partition of

Ci :=
{
∂i−ek v

}
(∆′\{∂k})

\


i⋃

j=e

{
∂i−jk w

∣∣∣w ∈W, ordk w = j
}

(∆′\{∂k})
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Algorithm B.1 (JanetComplement)
1: if |V | > 1 then
2: // Consider base variables in V independently
3: return

⋃
v∈V JanetComplement({w ∈W |w ∈ {v}∆′},∆′, {v})

4: end if
5: if |V | = 0 then
6: return ∅
7: end if
8: Let v be the unique element in V
9: if W = ∅ then

10: return {(v,∆′)} // The complement equals the full cone
11: else if |∆′| = 0 then
12: return ∅ // Base case of the recursion: W = {v}
13: else
14: Let k be the unique element in { i | ∂i ∈ ∆′, i ≥ j ∀∂j ∈ ∆′ }
15: d← max{ordk w |w ∈W}
16: e← ordk v
17: for i = e, . . . , d do

18: Ci ← JanetComplement

 i⋃
j=e

{
∂i−jk w

∣∣∣w ∈W, ordk w = j
}
,

∆′ \ {∂k}, {∂i−ek v}


19: end for
20: Replace each (c,∆′′) ∈ Cd with (c,∆′′ ∪ {∂k})
21: return

⋃d
i=0Ci

22: end if

after line 18 by induction hypothesis. By construction
⋃d
i=eCi is the set ({v}∆′\{W}∆′)

intersected with the set of
{
u

(j)
i ∈ {U}∆

∣∣∣ik ≤ d}. The replacement in line 20 ensures

{v}∆′ \ {W}∆′ =
⋃

(c,∆′′)∈
⋃d
i=e Ci

{c}∆′′

because

({v}∆′ \ {W}∆′) ∩
{
u

(j)
i ∈ {U}∆

∣∣∣ik = l
}

= ∂l−dk

(
({v}∆′ \ {W}∆′) ∩

{
u

(j)
i ∈ {U}∆

∣∣∣ik = d
})

for l > d.



Appendix C

Estimates for the Dimension
Polynomial

Given a system of differential equations, there are some a-priori estimates on the diffe-
rential dimension polynomial. This appendix gives a short overview over the literature.
For a more detailed treatment and open problems see [KLMP99, Sections 5.6, 5.8].

Let F be a differential field of characteristic zero, < an orderly ranking, ∆ =
{∂1, . . . , ∂n} be a non-empty set of derivation operators, and U = {u(1), . . . , u(m)} be a
non-empty set of differential indeterminates.

Proposition C.1 ([Rit32]). Let S = S= be a system of ordinary differential equations
over U = {u(1), . . . , u(m)} such that S does not contain derivatives of u(i) of order greater
than bi for 1 ≤ i ≤ m. Let S′ be simple differential system in a Thomas decomposition
of S with I(S′) prime. If ωI(S′)(`) is constant, then ωI(S′)(`) ≤ b1 + . . .+ bm.

Kolchin generalized Ritt’s result to partial differential equations.

Theorem C.2 ([KLMP99, Theorem 5.6.5]). Let S = S= be a system of differential
equations over U = {u(1), . . . , u(m)}. Let ∂ ∈ ∆ and assume that S does not contain
derivatives of u(i) of order in ∂ greater than bi for 1 ≤ i ≤ m. Let S′ be a simple
differential system in a Thomas decomposition of S with I(S′) prime. If the differential
type of ωI(S′)(`) is m− 1, then the typical dimension does not exceed b1 + . . .+ bm.

The next theorem due to Johnson solves the Janet conjecture (cf. [Jan21]). How-
ever, it is conjectured that this theorem also holds for the nonlinear case.

Theorem C.3 ([Joh78]). Let S = S= be a system of m linear differential equations
over U = {u(1), . . . , u(m)}. Let S′ be the simple differential system of a Thomas decom-
position of S. If the differential type of ωI(S′)(`) is less than m− 1, then ωI(S′)(`) = 0,
and there exists at most one solution of S.

Theorem C.4 ([KLMP99, Theorem 5.6.7]). Let S = S= be a system of linear differen-
tial equations over one differential indeterminate U = {u} and b1 ≥ b2 the two highest
orders of equations in S. If the differential type of ωI(S′)(`) is m − 2, then the typical
dimension does not exceed b1b2.

The Jacobi conjectures generalize Theorem C.2. It is conjectured that they are
true without the extra assumptions.

Theorem C.5 (Weak Jacobi bound, [Jac09]). Let p1, . . . , pm ∈ I, where I is a diffe-
rential prime ideal in F{u(1), . . . , u(m)}. Let ωI(`) =

∑n
i=0 ai

(
`+i
`

)
be the dimension
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polynomial of I and let γi,j be the highest order of u(i) appearing in pj or 0 if u(i) does
not appear in pj, 1 ≤ i, j ≤ m. If an = 0, then

an−1 ≤ max
ρ∈Sn

n∑
i=1

γi,ρ(i) ,

under the extra assumption n = |∆| = 1 and all pi are of main degree one and have
initial 1.

Theorem C.6 (Strong Jacobi bound). Let p1, . . . , pm ∈ I, where I is a differential
prime ideal in F{u(1), . . . , u(m)}. Let ωI(`) =

∑n
i=0 ai

(
`+i
`

)
be the dimension polynomial

of I and let γi,j be the highest order of u(i) appearing in pj or −∞ if u(i) does not appear
in pj, 1 ≤ i, j ≤ m. If an = 0, then

an−1 ≤ max
ρ∈Sn

n∑
i=1

γi,ρ(i) ,

under any one of the extra assumptions:

(1) All pi are linear ([Rit35]).
(2) m = |U | ≤ 2 ([Rit35]).
(3) n = |∆| = 1 and all pi are of order1 1 ([Lan70]).
(4) The pi are independent over I ([KMP08], also for the definition of independent).

For the case of more equations than differential indeterminates see [Tom76], where
the linear case and the case of |U | ≤ 2 are solved.

1Every system is equivalent to a first order one; this equivalence might increase the bound.



Appendix D

Prime Decomposition

[A] process is obtained which, if carried sufficiently far, will ac-
tually produce the irreducible systems. Unfortunately, there is
nothing in this process which informs one, at any point, as to
whether or not the process has had its desired effect.

Ritt
in [Rit32, Introduction]

[The problem] seems to be very far from a solution.

Kolchin
in [Kol73, §IV.9]

The proof of the differential dimension polynomial Section 1.7 includes statements
about prime decompositions of radical algebraic and differential ideals. This appendix
summarizes these results and complements them with some additional statements.

Theorem 1.94 implies that the associated primes of an ideal I(S) associated to a
simple algebraic system S are equidimensional. Corollary 1.100 states that the inde-
terminates that do not show up as leaders of equations are a transcendence basis, and
by Lemma D.3 below this transcendence basis satisfies a minimality condition, which is
induces by the ranking. These results transfer to the differential case by Lemma 1.93.

Proposition 1.68 implies that I(S) =
⋂k
i=1 I(Si) for both an algebraic or a differen-

tial Thomas decomposition S1, . . . , Sk of an algebraic1 resp. differential system S. If
S is simple, then a subset C of a Thomas decomposition realizes this intersection by
Proposition D.1 below. This subset is characterized by the leaders of the equations.

This appendix also summarizes results in the context of the Ritt problem, which is a
famous open problem in differential algebra: computing a minimal prime decomposition.

Let F be a field resp. differential field of characteristic zero and R := F [y1, . . . , yn]
resp. R := F{U} for a non-empty set of derivation operators ∆ = {∂1, . . . , ∂n} and a
non-empty set of differential indeterminates U = {u(1), . . . , u(m)}.

1This result is only cited for the differential case. The source proves it for both cases.
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Proposition D.1. Let S be a simple system and S1, . . . , Sk a Thomas decomposition
of I(S) or Sol(S) resp. SolE(S). Let C := {Si | 1 ≤ i ≤ `, ld(S=

i ) = ld(S=)} and call
the elements of C the constituents of the Thomas decomposition S1, . . . , Sk. Then,

I(S) =
⋂
S′∈C

I(S′) .

Furthermore, the sets of associated primes of the ideals in C are pairwise disjoint, and∏
x∈ld(S=)

degx(Sx) =
∑
S′∈C

∏
x∈ld(S=)

degx((S′)x) .

This proposition implies a sufficient criterion for algebraic and differential prime
ideals: If S is a simple system with mdeg(p=) = 1 for all p= ∈ S=, then I(S) is prime.

The following lemma is used to prove Proposition D.1. It describes the splitting
of one simple algebraic system into two systems and yields the necessary structural
information about splitting an ideal associated to a simple algebraic system into two
such ideals.

Lemma D.2. Let S, S1, S2 be simple algebraic systems in R = F [y1, . . . , yn] with

(i) I(S) = I(S1) ∩ I(S2),

(ii) Sol(S1) ∩Sol(S2) = ∅, and
(iii) X := ld(S=) = ld(S=

1 ) = ld(S=
2 ).

Then there exists an x ∈ X with

(1) degx(Sx) = degx((S1)x) + degx((S2)x) and

(2) degz(Sz) = degz((S1)z) = degz((S2)z) for all z ∈ X \ {x}.

Proof. We prove in two steps that we can without loss of generality assume that X =
{y1, . . . , yn}. First, using Lemma 2.61, we can assume without loss of generality that
{y1, . . . , yn}\X < X, as this process does not change the degrees of equations, the ideals,
and disjointness. Second, we can replace F by the algebraic closure of F ({y1, . . . , yn} \
X) and remove the inequations from the simple algebraic systems. All associated primes
have the set {y1, . . . , yn} \X as transcendence basis (cf. Corollary 1.100), and thus the
images of these ideals in the localization are still associated primes.

This assumption implies that the ideals are zero-dimensional. Thus, the associated
primes are in bijection to the set of solutions of the systems, and Sol(S1) ]Sol(S2) =
Sol(S). Furthermore, the rank of the locally free module F [y1, . . . , yn]/I(S) over
F [y1, . . . , yn−1]/I(S<yn) is the cardinality of the fibers of the projections πn−1 : F

n →
F
n−1 restricted to the set of solutions of S<yn .
There is a smallest ranking variable x = yk ∈ X with degx((S1)x) 6= degx(Sx).

Otherwise, Sol(S) = Sol(S1) by Proposition 2.10.(2), and thus Sol(S2) = ∅, which
contradicts the existence of solutions from Remark 1.10. By our assumption on X,
I((S1)<x) = I(S<x), as for indeterminates ranking lower than x there are equal de-
grees in both simple algebraic systems and thus equal algebraic counting polynomi-
als. Furthermore, also degz((S2)z) = degz(Sz) for all z < x holds, as otherwise
the fibers would not have equal cardinality. Thus, also I((S2)<x) = I(S<x). For
the fibers of the projection F

i → F
i−1 to have the same cardinality, the equality

degx(Sx) = degx((S1)x) + degx((S2)x) is necessary. This proves (1).
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The proof of (2) is elementary. Let a :=
∏k−1
j=1 degyj (Syj ) =

∏k−1
j=1 degyj ((S1)yj ) =∏k−1

j=1 degyj ((S2)yj ), b(`) :=
∏`
j=k+1 degyj (Syj ), b

(`)
i :=

∏`
j=k+1 degyj ((Si)yj ), di :=

degx((Si)x), and d := degx(Sx) = d1 + d2 for all k < ` ≤ n and 1 ≤ i ≤ 2. These
values are all greater zero. Furthermore, b(`) ≥ b

(`)
1 , b

(`)
2 for all k < ` ≤ n, as otherwise

the fibers would not have equal cardinality. Then,

ab
(`)
1 d1 + ab

(`)
2 d2 = ab(`)d

⇒ b
(`)
1 d1 + b

(`)
2 d2 = b(`)(d1 + d2)

⇒ (b(`) − b(`)1 )︸ ︷︷ ︸
≥0

d1︸︷︷︸
>0

+ (b(`) − b(`)2 )︸ ︷︷ ︸
≥0

d2︸︷︷︸
>0

= 0

⇒ b
(`)
1 = b

(`)
2 = b(`) .

In particular, degy(Sy) = degy((S1)y) = degy((S2)y) for all other x < y = y` ∈ X.

The following lemma gives a minimality condition for the transcendence basis in
Corollary 1.100. Consider the following partial order on subsets of cardinality k of the
set of indeterminates induced by the ranking: Replacing an indeterminate by a higher
ranking one makes a set larger.

Lemma D.3. Let S be a simple algebraic system in R := F [y1, . . . , yn]. The tran-
scendence basis {y1, . . . , yn} \ ld(S=) from Corollary 1.100 is smaller (with respect to
preceding partial order) than any transcendence basis consisting of indeterminates.

Proof. Denote the transcendence basis {y1, . . . , yn}\ ld(S=) of R/I(S) by {w1, . . . , wk}
with wi < wj for 1 ≤ i < j ≤ k. Assume that W ′ := {w1, . . . , wi−1, w

′
i, wi+1, . . . , wk}

is a further transcendence basis modulo I(S) for some variable w′i < wi. By Corol-
lary 1.100, the ideal I(S≤wi) has transcendence basis {w1, . . . , wj} for some j < i.
In particular, w′i is algebraically dependent on {w1, . . . , wj} modulo I(S≤wi) and thus
modulo I(S). This contradicts W ′ being a transcendence basis.

Proof of Proposition D.1. Proposition 1.62 implies I(S) =
⋂k
i=1 I(Si). Together, the

equidimensionality of ideals associated to simple algebraic systems (cf. Theorem 1.94)
and the minimality of this transcendence basis (cf. Lemma D.3) imply that all systems
not in C are embedded components in this intersection. The pairwise disjointness of
sets of associated primes follows from the disjointness of a Thomas decomposition, and
the formulas about degrees follows from applying Lemma D.2 iteratively.

For the differential version use that any differential decomposition induces an alge-
braic decomposition of the simple algebraic system S≤` up to order ` associated to S.
And use Proposition 1.66, the differential variant of Proposition 1.62.

Finding a minimal prime decomposition of a radical differential ideal is related to
finding the singular solutions2. Now, we present structure theorems of Ritt about
minimal prime decompositions of one differential equation. Then it formulates the still
unsolved Ritt problem: algorithmically finding a minimal prime decomposition of a
radical differential ideal.

Theorem D.4 (Component Theorem, [Rit45, §6], [Rit50, III.§1], [Kol73, IV.§14]). Let
〈p〉∆ ⊂ F{U} be a differential ideal generated by p ∈ F{U}\F . All prime components of

2Ritt gave the first formalized definition of singular solutions of differential equations (cf. [Rit30],
[Rit32, II.§19], [Rit36], and [Rit50, II.§20]).
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this ideal are given by differential ideals of the form 〈q〉∆ : sep(q)∞ for some q ∈ F{U}.
If p is algebraically irreducible and of order at least one, then there is exactly one prime
component of 〈p〉∆ that does not contain sep(p).

The solutions of the one prime component not containing sep(p) are called general
solutions. The solutions of 〈p〉∆ that vanish on all separants of p are called singular
solutions. The non-singular solutions are a subset of the general solutions; in partic-
ular, there can be general solutions which are singular. Under the assumption of the
Component Theorem, every component contains the general solutions of a single diffe-
rential polynomial. From this, the Low Power Theorem gives a minimal decomposition
of the solution set of a single differential polynomial into its prime components. This
approach is algorithmic [Rit36, Hub99].

Theorem D.5 (Low Power Theorem, [Rit36, §5], [Lev45], [Rit50, III.§2], [Kol73,
IV.§15]). Let p ∈ F{U} \ F , q ∈ F{U}, and I := 〈p〉∆ ⊂ F{U}. Write3 cp = r ∈
F{q}(:= F [Mon(∆)q]) such that neither the coefficients of r nor c are contained in
〈q〉∆ : sep(q)∞. The differential ideal 〈q〉∆ : sep(q)∞ is a prime component of I if and
only if there is a term cλq

λ with cλ ∈ F free of proper derivatives of q having lower
degree (considered as a polynomial in F{q}) than all other terms in r.

For a field of complex meromorphic functions, there are theorems that relate the
analytic behavior of a singular solution of a single algebraically irreducible differential
equation to the relation of its component to the general component. The solutions of the
general component that vanish on at least one separant are approximated as a limit4 of
general solutions that do not vanish on this separant. The singular solutions in separate
components usually show a behavior enveloping the general solutions [Rit41, Rit46]; the
author does not know of a general theorem in this direction.

Example D.6 ([Rit50, II.§4, II.§19]). Let F = C, U = {u} and ∆ = {∂t}. Consider
the differential equations p1 := u2

1 − 4u = 0 and p2 = u2
1 − 4u3 = 0. Both equations

have the solutions of u = 0 as singular solutions. For the first equation p1 the singular
solutions are a separate component apart from the general solution, by the Low Power
Theorem. The general solutions are the solutions of 〈p1〉∆ : u∞ and contain no singular
solutions. For the second equation p2 the decomposition into prime components leads
a single prime component by the Low Power Theorem, and thus the singular solutions
are a subset of the general solutions. In particular, 〈p2〉∆ : u∞ = 〈p2〉∆. In the first
example the singular solutions envelop the non-singular solutions. In contrast, in the
second example the singular solution can be approximated locally by a non-singular
solution. /

Studying singular solutions of systems with more differential equations is involved,
and there is no comprehensive theory about the minimal prime decomposition of a radi-
cal differential ideal. Even though a prime decomposition is possible (cf. [Rit50, IX.§25]
or [GKO08]), there is no known algorithmic way to detect inclusion of prime ideals.
This problem is known as the Ritt problem and has several equivalent formulations.

Theorem D.7 ([GKO08]). Assume that one can factorize univariate polynomials over
the computable differential field F . The following algorithmic problem can be reduced to
each other, i.e., an algorithm solution for one provides an algorithmic solution for all.

3This representation, called preparation congruence, is in general not unique.
4this is made precise by the term “adherence” [Rit50, VI.§2] (cf. also [Rit32, IV.§64] and [Rit38b,

IV])
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Figure D.1: Solutions for p1 (left) and p2 (right) in Example D.6

t

u

t

u

(1) Given a characteristic set of a prime differential ideal, find a set of its generators.
(2) Given the characteristic sets of two prime differential ideals I1 and I2, determine

whether I1 ⊆ I2.
(3) Compute a non-redundant prime decomposition of a radical ideal.
(4) Given a radical differential ideal by a set of generators, decide whether it is prime.
(5) Given a radical differential ideal by a set of generators, compute any prime de-

composition where the components are given by generators.
(6) Given a radical differential ideal by a set of generators, determine whether a po-

lynomial is a zero-divisor modulo that ideal.

Call the minimal bound k with I = 〈I≤k〉∆ the saturation index of the differential
ideal I. If we can compute a saturation index k of a radical differential ideal I given
by a characteristic set or a simple differential system S, then we can solve item (1)
by the following process. Compute all derivatives up to order k of the equations in S
and saturate the ideal generated by these derivatives by their initials and separants. A
generating set of this algebraic ideal is a generating set of the differential ideal. Thus,
it is desirable to compute the saturation index, but in general it seems hard to do so.
We ease the notation and define the saturation index of a simple differential system S
to be the saturation index of I(S).
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Appendix E

Vessiot Theory

One great advantage of geometry lies precisely in the fact that
the senses can come to the assistance of the intellect, and help
to determine the road to be followed, and many minds prefer to
reduce the problems of analysis to geometric form.

Henri Poincaré
in [Poi14]

This appendix is part of joint work with Werner Seiler.
In Chapter 2 we have seen that a promising ansatz for a formal power series solution

might fail to yield a formal power series solution. The goal of this appendix is to sketch
the Vessiot theory, which provides a language and geometric insight why this can hap-
pen. Disregarding this additional geometric insight and taking a purely computational
standpoint, the Vessiot theory is equivalent for finding power series solutions to the
approach in Chapter 2.

The previous chapters used systems of equations and inequations to describe diffe-
rential equations. Now, we exchange this algebraic perspective for a geometric perspec-
tive by using Hilbert’s Nullstellensatz to look at the solutions of these systems in the
affine space of Taylor coefficients (the jet space). This yields a variety, which admits
an important additional structure: the Vessiot distribution.

For example, consider the approach of the differential dimension polynomial. Given
an ideal I ⊆ F{U} associated to a simple differential system, the differential dimension
polynomial is defined by the dimensions of the algebraic ideals I ∩ F{U}≤` for each
` ∈ Z≥0. Looking at these algebraic ideals “throws away” the differential structure, and
thus one is only able to capture the generic behavior of solutions.

The Vessiot theory reconstructs the differential structure on I ∩ F{U}≤` using
the Vessiot distribution on the variety of I ∩ F{U}≤`. This distribution specifies the
“directions” any point on this variety can move tangentially to yield a solution. The
behavior of this distribution at a point provides information on whether this point is
suitable for a formal power series solutions. In particular, the Vessiot distribution
gives an interpretation for the non-existence of certain power series solutions and for
the countably many “holes” in Example 2.93. Thus, understanding and computing these
singularities is the focus of this appendix.

This appendix begins with defining the Vessiot distribution and the types of singu-
lar points. The combination of both the algebraic and the differential Thomas decom-
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position yields an algorithmic approach for detecting and distinguishing the different
kinds of geometric singularities of solutions of a system of differential equations. Then,
we discuss how geometric singularities of solutions behave under prolongations and
thereby allow to recognize points which do not extend to formal power series solutions.
Finally, this is applied to explain unexpected behaviors in the differential counting po-
lynomial from Examples 2.92 and 2.93.

This appendix omits to specify small neighborhoods as domains of definition and
uses a global notation; however, all statements in this appendix are exclusively local.

E.1 Geometric Singularities

We follow the description of the Vessiot theory in [Sei10, Pom78], the historical refer-
ence is [Ves24].

The setup of the Vessiot theory is the affine space with coordinates for both the
center of expansion and the power series coefficients. More formally, the Vessiot theory
considers a jet bundle J`π of finite order `. Its construction starts with E = Cn × Cm,
where the independent variables y1, . . . , yn are an affine coordinate system on the base
space Y = Cn, and the dependent variables U = {u(1), . . . , u(m)} are an affine coordinate
system of the fiber Cm. Denote by π the natural projection on the first factor of E . The
jet bundle J`π of order ` is constructed from E by building the Cartesian product with
the affine space having the differential variables of order 1 to ` as an affine coordinate
system. There are natural projections π``′ : J`π � J`′π for `′ ≤ `. For convenience,
identify E = J0π. In addition, the jet bundle J`π is fibred over the base space Y by the
canonical projection π` : J`π → Y.

In the Vessiot theory, we can introduce equations and inequations for the base
space Y; this is in contrast to differential algebra, which allows invertible “coordinates”
of the base space Y in the differential field F = C(y1, . . . , yn). Our approach, in con-
trast to the standard Vessiot theory, uses complex instead of real coordinates, which
allows an algorithmic treatment and a better comparison with the counting sequence,
as Hilbert’s Nullstellensatz is applicable.

Instead of differential systems or algebraically restricted systems of differential equa-
tions, we consider a geometric equivalent of these systems. A jet variety of order ` is
a subvariety R` of J`π such that π`|R` : R` → Y is dominant. They arise for example
in the following two cases. For a radical differential ideal I in C(y1, . . . , yn){U} define
the jet variety R`(I) associated to I as the vanishing set of I ∩C[y1, . . . , yn]{U}≤`.
For a simple differential system S over C(y1, . . . , yn){U} define the jet variety R`(S)
associated to S as R`(I(S)).

We give the classical definition of solutions in the jet language. This allows to
motivate the Vessiot distribution. Locally, an analytic section σ : Y → E with π ◦
σ = idY can be given as σ(y1, . . . , yn) = (y1, . . . , yn, s(y1, . . . , yn)) with a holomorphic
function s : Cn → Cm. Such a section σ : Y → E can be prolonged, which yields a
section of the jet bundle j`σ : Y → J`π, locally defined by adding all derivatives of the
function s up to order `, i.e.,

j`σ(y1, . . . , yn) = (y1, . . . , yn, si(y1, . . . , yn) | i ∈ Zn≥0, |i| ≤ `) .

A (strong/classical) solution of a jet variety R` ⊆ J`π is an (analytic) section
σ : Y → E such that im j`σ ⊆ R`.

The jet bundle J`π has a differential structure. This structure is captured by the
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contact distribution C`, generated by the following linear independent vector fields1:

C
(`)
i = ∂yi +

∑
i∈Zn≥0

0≤|i|<`

n∑
j=1

u
(j)
i+ei

∂
u

(j)
i

, 1 ≤ i ≤ n

Ci
j = ∂

u
(j)
i

, i ∈ Zn≥0, |i| = `, 1 ≤ j ≤ m

The integral manifolds of the contact distribution are those coming from prolonged
functions, i.e., a section γ : Y → J`π of the `-th jet bundle is of the form γ = j`σ for
a section σ : Y → E , if and only if T (im γ) ⊆ C`, where T denotes the tangent space.
The first n fields C(`)

i are transversal to the fibration of π` : J`π → Y and describe the
“movement” of a function along the base space, and the fields Ci

j span the vertical space
for the fibration π``−1 : J`π � J`−1π.

The contact distribution induces the differential structure on a jet variety. Let
σ : Y → E be a strong solution of a jet variety R` ⊆ J`π. Then, by definition,
im j`σ ⊆ R`; hence Tξ(im j`σ) ⊆ TξR` for any point ξ ∈ im j`σ. Furthermore, for any
prolonged section Tξ(im j`σ) ⊆ C`|ξ. Combine these two restrictions to the Vessiot
space Vξ[R`] of the jet variety R` ⊆ J`π at a point ξ ∈ R`. It is the linear space
Vξ[R`] = TξR` ∩ C`|ξ. The family of all Vessiot spaces is the Vessiot distribution
denoted by V[R`].

In general, the behavior of the Vessiot spaces, including their dimensions, can
change strongly from one point to another. However, there is the following result
about generic uniformity. The points where this generic uniformity does not hold yield
the singular points, which are important for the study of power series solutions. The
constructive part of the classical proof of the generic uniformity is sketched, as it explains
how the Vessiot spaces can be computed at smooth points and thus is the basis for
our algorithmic approach to singularities below.

Proposition E.1. The Vessiot spaces V[R`] define a smooth distribution of constant
rank on a Zariski open subset of a jet variety R`.

Proof. We restrict to smooth points ξ ∈ R` in order to deal with a manifold. Let

v =
n∑
i=1

aiC
(`)
i |ξ +

∑
i∈Zn≥0

|i|=`

m∑
j=1

bjiC
i
j |ξ (E.1)

be an arbitrary vector in Vξ[R`] with coefficients ai, bji ∈ C. Such a vector is tangential
to R`, if and only if it satisfies in addition d(p)|ξ(v) = 0 for all polynomial functions
p : J`π → C having the jet variety R` contained in the zero set. Hence, obtain the
following linear system for the coefficients ai and bαµ of v.

n∑
i=1

C
(`)
i (p)(ξ)ai +

∑
i∈Zn≥0

|i|=`

m∑
j=1

Ci
j |ξ(p)(ξ)b

j
i = 0 (E.2)

The behavior of (E.2) can vary for different ξ ∈ R`. However, the set of solutions of
(E.2) is smooth outside of a Zariski closed set, and, by enlarging this closed set, one
can additionally assume that the dimension remains constant on it.

1Note the difference between the vector field ∂yi and the derivation ∂i ∈ ∆.
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A strong solution σ prolongs to a section j`σ of the jet bundle J`π with image in
R`. We use the property that such a prolongation “moves along” the Vessiot spaces to
define a generalization of solutions. These are sections that allows us to talk about an
“ansatz, that unexpectedly does not yield a power series solution” below. A geometric
solution of the jet variety R` is an n-dimensional submanifold N ⊆ R` such that
TN ⊆ V[R`]|N . Any strong solution σ : Y → E automatically prolongs to the geometric
solution im j`σ. However, a geometric solution does not necessarily project to a strong
solution (cf. Lemma E.5).

A comparison of the behavior of differential equations and jet varieties in higher
order is interesting, as not foreseeable constraints for a power series solution can appear
in higher order and prevent the existence of formal power series solutions. This can be
described by the prolongation and projection relating equations of different orders. Let
R` ⊆ J`π a jet variety. Its (first) prolongation R`+1 ⊆ J`+1π is obtained by adding all
formal derivatives of the equations describing R`. Higher prolongations R`+r ⊆ J`+rπ
with r > 1 are defined by iteration. For small ` and a simple differential system S the
prolongation of R`(S) does not necessarily equal R`+1(S). (However, equality holds if
` is at least the saturation index of I(S) as defined in Appendix D.) The projection
of R` to Jkπ, k ≤ `, is defined as π`k(R`) ⊆ Jkπ.

Usually, prolongations and projections are used to ensure that all differential con-
sequences are included in R`, i.e., to ensure formal integrability of R`. However, a jet
variety R`(I) coming from a differential ideal I is always formally integrable, and thus
we avoid the problem of formal integrability in our setup.

Remark E.2. For the geometric intuition, compare the linear system (E.2) with the
prolongation of a differential equation p= ∈ F{U}{=} of order ord(p) = `. The derivative
∂ip can be expressed using the contact fields as

∂ip = C
(`)
i (p) +

∑
|µ|=`

∑
α

Cµα(p)uαµ+1i ,

where 1i ∈ Zn≥0 is the vector with i-th entry 1 and the other entries are zero. We see
that the linear system (E.2) is a homogenized form of the linear system determining
the Taylor coefficients of order ` + 1. In particular, one expects to find solutions
for the linear system (E.2) which do not yield new Taylor coefficients in order ` + 1

when the coefficient of C(`)
i (p) can only be chosen to be zero (cf. Lemma E.5 for a

formal statement). Geometrically, this means that the Vessiot distribution has no n-
dimensional transversal summand. This observation is the motivation for the following
definition of singular points. /

The different kinds of geometric singularities provide the geometric intuition why a
certain ansatz of a power series solution breaks down at a certain order. We define them
via direct sum decompositions of the Vessiot distribution into a transversal summand
and the symbol space. Let R` ⊆ J`π be a jet variety. The (geometric) symbol space
N`,ξ ⊆ Vξ[R`] of R` at a point ξ ∈ R` consists of all tangent vectors in TξR` which are
vertical for the fibration π``−1. As in the proof of Proposition E.1, the symbol space is
the solution space of a linear system of equations. We call a smooth point ξ ∈ R`

(i) regular if there exists an open neighborhood ξ ∈ U ⊆ R` such that the Ves-
siot distribution V[R`] is of constant dimension on U and can be decomposed as
V[R`] = N` ⊕H with a transversal, n-dimensional distribution H ⊆ TU ;
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(ii) regular singular if there exists an open neighborhood ξ ∈ U ⊆ R` such that the
Vessiot distribution V[R`] has constant dimension on U but at the point ξ no n-
dimensional complement to the symbol N` exists, i.e., dimVξ[R`]−dimN`|ξ < n;

(iii) irregular singular if the Vessiot distribution V[R`] has no constant dimension
on every open neighborhood ξ ∈ U ⊆ R`.

An irregular singularity ξ ∈ R` is called purely irregular if an n-dimensional com-
plement to the symbol N` exists, i.e. dimVξ[R`] − dimN`|ξ = n. We call all singular
points in (ii) and (iii) a geometric singularity. (This definition is independent on the
choice of Euclidian or Zariski topology.)

Jet varieties might have non-geometric singularities, in particular algebraic singu-
larities in the set R` and singular solutions. For the sketchy treatment of the Vessiot
theory in this appendix we can ignore these singularities.

Regular singular points warrant at least a cursory explanation and some geometric
intuition. For one ordinary differential equations of order one in the complex setting
think of them as branch points of the Riemann surface of a germ of a solution. Con-
sider for example the (rescaled) simple fold differential equation 4

9(u′(z))2 − z = 0 (cf.
Example E.4). Its solutions are −+z

3
2 + a for each a ∈ C. Look at z

3
2 and its ana-

lytic continuation −z
3
2 . Their common branch point z = 0 is a regular singular point

in the differential equation. In this case the two branches yield a well-defined limit
for the function value and first derivative in the branch point, however not for higher
derivatives.

Real numbers allow another comprehensible description for regular singular points
of ordinary differential equations. All previous definitions are valid for the real numbers
instead of complex numbers. These behavior described in the following proposition is
plotted in Figure E.1 and Figure E.2 on pages 178 and 180.

Proposition E.3. Let R` be an ordinary2 jet variety over the real numbers such that
everywhere dimV[R`] = 1. If ξ ∈ R` is a regular point, then there exists a unique
strong solution σ with ξ ∈ im j`σ. If ξ ∈ R` is a regular singular point, then one of the
following two possibilities appears. Either two strong solutions σ1, σ2 with ξ ∈ im j`σi
exist (which both either end or start in π`(ξ)); in this case call ξ or π`0(ξ) an impasse
point (or cusp). Or there exists only one strong solution σ such that j`σ passes through
ξ and its (`+ 1)-th derivative blows up at π`0(ξ).

Proof. Any one-dimensional distribution allows integral curves, e.g., by a special case
of the Frobenius theorem. This integral curve is a smooth one-dimensional geometric
solution σ`. Around any regular point this geometric solution projects onto the graph
of a strong solution σ.

Assume that in an open simply connected neighborhood of ξ the Vessiot distribution
V[R`] is generated by a vector field X. If ξ is a regular singular point, then Xξ is vertical
to π`. In particular, its ∂t-component vanishes, where t is the (only) independent
variable. The behavior of the projected geometric solution π`0(σ`) depends on whether
or not the ∂t-component changes its sign at ξ. If the sign changes, then π`0(σ`) has two
branches corresponding to two strong solutions which both either begin or end at π`0(ξ).
Otherwise, the projected geometric solution π`0(σ`) is still the graph of a strong solution
σ, but Remark E.2 implies that the (`+ 1)-th derivative of σ at π`0(ξ) is infinite.

The definition of geometric singularities is rather involved, compared with classical
definitions of singularities of solutions of differential equations. This complication comes

2I.e., |∆| = 1.
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from our more general setup where the “correct dimensions” are only known by a com-
parison with a neighborhood. For systems of finite type3, [KS12] clarifies the “correct
dimension” of V[R`]. For jet varieties associated to a simple differential system S the
constituents from Proposition D.1 describe the generic behavior and yield the “correct
dimension” of V[R`]. This is used in the next section to give an algorithm that detects
geometric singularities.

E.2 Detection of Geometric Singularities

A combination of both the algebraic and differential Thomas decomposition can de-
tect geometric singularities. The differential Thomas decomposition yields differential
simple systems to describe the “correct dimension” of the Vessiot distribution leading
to regular points, and the algebraic Thomas decomposition classifies the points of the
jet variety with respect to these dimensions. For the sake of brevity, we refrain from
giving a formal algorithm and only scetch the approach.

On the polynomial ring F{U}≤` assume the algebraic ranking induced by the orderly
differential ranking on F{U}. For simplicity, let F = C(y1, . . . , yn) with ∂iyj = 1 if i = j
and zero otherwise.

Assume that one is interested in finding the geometric singularities in order ` of a
set of differential equations. By a differential Thomas decomposition, split this set of
differential equations into simple differential systems. Consider each of these systems
S independently. However, instead of a simple differential system S, we work with
the differential ideal I(S) associated to S. This has the minor drawback that the
decomposition is no longer disjoint and a point might appear twice4.

Gröbner basis methods and Lemma 1.93 can compute generators p1 . . . , pk of the
algebraic ideal I(S)≤`. For these5 pi create the corresponding equations for the Vessiot
distribution as in the linear system (E.2) in Proposition E.1. These equations are
homogeneous and linear in new indeterminates ai and bji for 1 ≤ i ≤ n, 1 ≤ j ≤ m, and
i ∈ Zn≥0 with |i| = `. In the following always assume that the bji rank higher than the ai,
which rank higher than the differential variables. Additionally, assume that all involved
polynomials are cleared of denominators involving y1, . . . , yn. Thus, these can also be
considered as algebraic indeterminates; rank the yi lower than all other indeterminates.

Apply the algebraic Thomas decomposition to the union of the generators pi of
I(S)≤` as equations and the equations from the linear system (E.2). This is a potentially
expensive computation over the polynomial ring

(C[y1, . . . , yn]{U}≤`) [a1, . . . , an][bji | 1 ≤ j ≤ m, i ∈ Z
n
≥0, |i| = `] .

The homogeneity of the equations from the linear system (E.2) implies that this decom-
position is disjoint when projected down to C[y1, . . . , yn]{U}≤`, i.e., comprehensive. In
particular, this projection is an algebraic Thomas decomposition6 of the truncated diffe-
rential ideal I(S)≤`, and the results of Proposition D.1 apply. In particular, constituents
(cf. Proposition D.1) among the projected components stand out when looking at the
leaders of their equations. The solutions of all other projected systems are contained

3I.e., the dimension polynomial is finite for all components
4The classification of a point depends on the simple system it is compared to.
5To compute the Vessiot distribution it suffices to consider those pi of highest order `.
6Strictly, this is only true if the yi are invertible again, and all systems involving an equation with

leader yi are thrown away.
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in the Zariski closure of these constituents and these inclusions can be determined by
Gröbner basis methods.

The type of singular point (if any) is now characterized by the fibration of π``−1 in
the following way. In the original (non-projected) systems resulting from the algebraic
Thomas decomposition, all polynomials involving the indeterminates ai and bji are
linear, homogeneous, and equations7. For a system to correspond to regular points,
it is necessary that no equation having leader ai exists, as otherwise in the Vessiot
space any transversal complement of the symbol space has its dimension decreased by
one. This criterion is sufficient if additionally the geometric symbol space has the same
dimension as the geometric symbol space of the constituents8. A system corresponds to
a regular singular point, if the drop in dimension of any transversal part is compensated
by the vertical subspace, i.e., if the number of equations in ai and bji combined is the
same as in the neighboring constituent. The other systems correspond to irregular
singular points; among those, the systems with no constraint on the ai describe purely
irregular singular points.

Example E.4. We demonstrate the algorithm on a conjectured classification of the
local normal forms of scalar first-order ordinary differential equations in [Dar75].

(1) simple fold t = (u′)2

(2) u = 1
2

(
(u′)2 + χt2)

)
with three subcases depending on the value of χ:

(a) folded saddle χ < 0

(b) folded knot 0 < χ < 1
4

(c) folded spiral χ > 1
4

(3) elliptic gather t = (u′)3 − uu′

(4) hyperbolic gather t = (u′)3 + uu′

Study the cases (mainly) in order ` = 1.
For the simple fold (cf. Figure E.1) the above approach yields two systems:

{ −a+ 2ut · b = 0, u2
t − t = 0, t 6= 0 }

{ a = 0, ut = 0, t = 0 }

Choosing real values for t and u yields real values for ut; furthermore, for each of these
possibilities the pair (a, b) can also be chosen to be in R2. The first system describes
regular points and the second system describes regular singular points. For each order
` > 1 there is only one system, whose solutions project down to those of the first of the
above two systems. It is a general phenomenon that regular points prolong to higher
orders and regular singular points do not (cf. Theorem E.6).

The three cases in (2) suffer under using the complex numbers: there is no <-relation
on C to distinguish values of χ. However, the three subcases of folded saddle, knot, and
spiral can actually be treated as one system. The above approach yields the following

7Assume a reasonable algebraic Thomas decomposition, as the one presented in Subsection 1.3.3,
i.e., that no unnecessary splittings are performed.

8This dimension is equal for all of constituents by Proposition D.1 and complementary to the number
of equations a leader bji . In this sense, the constituents describe the “correct dimensions”.
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Figure E.1: These four plots show the simple fold (upper left), folded saddle (χ = −1,
upper right), the folded knot (χ = 1

8 , lower left), and the folded spiral (χ = 1
2 , lower

right). The Vessiot spaces are plotted by thin black dashes and in all four cases the
singular points lie in the u′ = 0-plane, plotted by a brown line. Additionally, geometric
solutions are plotted in blue and purple. Both the singular curve and the geometric
solutions are projected to a plane below the plot. In the latter three plots, the irregular
singular points at t = u = u′ = 0 are marked by a red point.

three cases assuming that χ 6= 0 and χ 6= 1
4 , where p = u2

t + χt2 − 2u.

{ (. . .) · a+ (. . .) · b = 0, p = 0, 2u− χt2 6= 0 }
{ ut = 0, u = 0, t = 0 }
{ a = 0, ut = 0, 2u− χt2 = 0, t 6= 0 }

Again, real choices for lower ranking indeterminates lead to real solutions for higher
ones, and in particular the computation can be interpreted over the real numbers.
The first system is the only regular system. The second system is purely irregular
singular, and for order ` = 2 it prolongs9 to another purely irregular singular system
with u2

tt − utt + χ = 0 and a regular singular system with u2
tt − utt + χ 6= 0. The third

system is regular singular and again does not prolong to higher order.

9We have not formally defined prolongation for systems with inequations. One needs to prolong the
Zariski closure of this system and add the inequations.
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Elliptic (3) and hyperbolic (4) gather show the same behavior up to signs.

{ (. . .) · b+ (. . .) · a = 0, u3
t +− uut − t = 0, 4u3

+− 27t2 6= 0, t 6= 0 }
{ (. . .) · b+ (. . .) · a = 0, u3

t +− uut = 0, u 6= 0, t = 0 }
{ (. . .) · b+ (. . .) · a = 0, uut +− 3t = 0, 4u3

+− 27t2 = 0, t 6= 0 }
{ 2ut +− t = 0, u+ 3 = 0, t2 −+ 4 = 0 }
{ a = 0, ut = 0, u = 0, t = 0 }
{ a = 0, 2uut −+ 3t = 0, 4u3

+− 27t2 = 0, t3 −+ 4t 6= 0 }
{ a = 0, 2uut −+ 3t = 0, u2 − 3u+ 9 = 0, t2 −+ 4 = 0 }

The first three systems are regular, and the first system is a constituent; all these
three systems prolong to regular cases when repeating the computation for order ` = 2,
however they split into more cases. The fourth system is purely irregular singular; it
prolongs to a regular singular system (with the additional restriction 2u2

tt+−utt 6= 0) and
another purely irregular singular system (with the complementary additional restriction
2u2

tt +− utt = 0) in order ` = 2. The last three systems are regular singular, and thus
they do not prolong to order ` = 2. The difference of both cases can be seen at the plots
(cf. Figure E.2). In the case of the elliptic gather the impasse singularities point to the
origin, whereas in the case of the hyperbolic gather the impasse singularities point away
from the origin.

The computations performed in this example seem infeasible in order ` = 3. /

Naive numerical methods fail when integrating over impasse point or points where
a derivative blows up. The plots of the curves in the previous example are constructed
by integration in the jet space, where no singularity exists at regular singular points.
Then the solution curve can be projected down to the t-u-plane.

E.3 Singularities and Counting Polynomials

This section describes the phenomena appearing in the counting sequence and the diffe-
rential counting polynomial using geometric singularities. It first gives an intuitive
overview on how the different kinds of singular points affect the existence of power se-
ries solutions. Then it casts the geometric intuition into formal statements and gives
proofs. This allows to discuss the surprising examples of counting sequences and diffe-
rential counting polynomials.

This informal discussion assumes that the jet varieties R` are given by a differential
ideal I and that ` is large, i.e., at least the saturation index10 of I, which is defined as
the minimal bound k with I = 〈I≤k〉∆ (cf. Theorem D.7 and the text after the theorem).

A formal power series solution coming from a point ξ` ∈ R` exists if (π``+1)−1({ξ`})
is non-empty, one of the elements in this fiber has a non-empty fiber under π`+1

`+2, and
so on. Thus, the fibrations given by the π``+1 are important. We say that ξ`+1 ∈ R`+1

lies above ξ` ∈ R` and that ξ`+1 restricts to ξ` if π``+1(ξ`+1) = ξ`. A jet variety R`+1

lies above another jet variety R′` if each point of R`+1 lies above a point in R′`; in this
case we also say that R`+1 restricts to R′`.

In a prolongation there is a point lying above a regular point, and all of these
are again regular (cf. Theorem E.6). In particular, any regular point admits a formal

10 The saturation index seems hard to compute due to the Ritt problem. Thus, the assumption
that ` is above the saturation index of I is not easily verified.
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Figure E.2: This figure shows the elliptic gather in the two left plots and hyperbolic
gather in the two right plots. In the two upper plots, the Vessiot spaces are plotted
by black lines, the singularities are given by a curve plotted in brown, two geometric
solutions are plotted in blue and purple, everything is projected down to the u-t-plane,
and irregular singular points are given by a red point, as in Figure E.1. The two lower
plots show the projections to the t-u-axis of the geometric solutions through the point
(t, u, ut) = (0, 0, 0); here the second derivative is infinite.

t

u

1

1

t

u

1

1

power series solution. The regular formal power series solutions (cf. Theorem 1.52)
are examples of such regular points and it should be no surprise that the solutions
with analytical initial conditions admit a positive radius of convergence (cf. Riquier’s
Existence Theorem 1.60).

There are no points lying above a regular singular point and, thus, they do not yield a
formal power series solution (cf. Lemma E.5). For ordinary jet varieties there is a descent
understanding of geometric solutions at regular singular points (cf. Proposition E.3).

With these two cases of regular points and regular singular points under control,
we turn to the interesting case of irregular singular points, which show a multitude of
behavior. The behavior in the fiber over an irregular singular point is not determined by
the irregular singular point11. The following gives an overview about possible behaviors,
but cannot give an algorithm to distinguish these cases. Purely irregular singular points
are the main interest, as these are the only singular points where formal power series
solution exist (cf. Lemma E.5). Above the saturation index, all points lying above a

11Note that the proof of Theorem 2.98 shows the algorithmic undecidability of existence of formal
power series solutions at an irregular singular point.
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purely irregular singular point are singular and all singular points lie above a purely
irregular singular point. Usually, most singular points that lie above a purely irregular
singular point are regular singular, and only few are purely irregular; in particular, one
expects few formal power series solutions at singular points.

For simplification we restrict to the case of a jet variety R`(S) associated to a simple
differential system S; the results hold in general. For small ` and a simple differential
system S the prolongation of R`(S) does not necessarily equal R`+1(S). However,
equality holds for all ` at least the saturation index of I(S). In that case, the simple
differential system does not result in a new equation in order ` + 1 which is not a
derivative of an equation in order `. This allows to predict the behavior of a jet variety
in the next higher order12.

Lemma E.5. Let R`(S) ⊆ J`π be a jet variety associated to a simple differential system
S such that I(S) = 〈I(S)≤`〉∆ (i.e., ` is at least the saturation index of S), and let
ξ ∈ R`(S) be an arbitrary point. The prolonged equation R`+1(S) contains points lying
above ξ if and only if the Vessiot distribution V[R`(S)] contains an n-dimensional
subdistribution transversal with respect to π`+1

` . For the “only if ” part the assumption
the ` is at least the saturation index is superfluous.

Proof. The proof follows by a comparison of the equations for the prolongation and
the Vessiot distribution. Let R`(S) be described by the polynomial equations p1 =
0, . . . , pt = 0. Due to the assumption on the saturation index, the prolonged equation
R`+1(S) can be described by augmenting the original system with the nt equations

C
(`)
i (pk) +

∑
i∈Zn≥0

|i|=`

m∑
j=1

u
(j)
i+ei

Ci
j(pk) = 0 , 1 ≤ k ≤ t , 1 ≤ i ≤ n . (E.3)

This is the same formula as ansatz (E.1), with ai replaced by 1 and bji replaced by u(j)
i+i.

Thus, (E.3) has a solution if (E.1) has a solution with all ai arbitrary. This is the case
if the Vessiot space at ξ contains an n-dimensional transversal subdistribution.

It follows that such an n-dimensional transversal subdistribution exists in only two
cases: at regular points and at purely irregular singular points. In particular, the only
singular points that can admit formal power series solutions are purely irregular.

Now, discuss the relationship between regular and singular points of a jet variety
R` and of its prolongation R`+1.

Theorem E.6. Let R`(S) ⊆ J`π be a jet variety associated to a simple differential
system S such that I(S) = 〈I(S)≤`〉∆ (i.e., ` is at least the saturation index of S). Let
ξ`+1 ∈ R`+1(S) and ξ` := π`+1

` (ξ`+1) ∈ R`(S). Then ξ`+1 is singular if and only if ξ`
is purely irregular singular, and ξ`+1 is regular if and only if ξ` is regular.

Proof. Singular points are points where the vertical subspace of the Vessiot space have
a higher dimension than neighboring points. The vertical subspace of the Vessiot space
is characterized by linear equations; more specifically by the Jacobian of the equations
of the jet variety with respect to the `-th order differential variables. The Jacobian
of a derivative of an equation with respect to the (`+ 1)-th order differential variables

12The behavior can be different for ` smaller than the saturation index of S. Then, due to new
equations, singular points can appear above regular points, e.g., no singular points exist in order zero,
but they may exist in order one for ordinary differential equations of order one.
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has the same entries by an easy calculation. (No additional equations appear due to
the assumption on the saturation index. In the case of ordinary differential equations
the matrices are identical, in the partial case the entries appear multiple times.) In
particular, a drop of the rank appears for order ` + 1 exactly at the points where it
appears for order `.

If ξ` is singular, then Lemma E.5 implies that ξ` is purely irregular singular.

Example E.7. Continue Example 2.93, the example with differential counting polyno-
mial ∞3 −∞2 +∞− ℵ0. The goal is to throw some light on this differential counting
polynomial using the Vessiot theory. Hence, consider U = {u, v}, ∆ = {∂t} and
F = C(t). Let p := vu1 − u + 1

t and S := {p = 0, v2 = 0}. A differential Thomas
decomposition results in the following two simple differential systems.

S′ := { p = 0, v2 = 0, v 6= 0 } and
{ u− 1

t = 0, v = 0 }

For our consideration the second system is superfluous, as it only has one solution. Thus,
perform a decomposition of the first system in the sense of Section E.2 for different orders
`. All computations are parallel to Example 2.93 and hence omitted.

Each order ` ≥ 1 gives a regular system which is the prolongation of the regular
system of the lower order. These systems have the same set of solutions as system T in
Example 2.93, and consist of the differential equations of S, their derivatives, and the
inequations v 6= 0 and t 6= 0.

In addition, for each order ` ≥ 1 there are three singular systems, Sirreg,`, Sreg1,`, and
Sreg2,`. The set of solutions of these three singular systems restricts to those of system
Sirreg,`−1 (if ` ≥ 2). The system Sirreg,` describes purely irregular singular points:

Sirreg,` := { tk+1(kv1 − 1)uk + (−1)k+1k! = 0, 1 ≤ k ≤ `,
v = u− 1

t = vk = 0, 2 ≤ k ≤ `,∏`
k=1 (kv1 − 1) 6= 0,

t 6= 0 }

This system describes the same solutions as the systems Sk in Example 2.93. (Here,
t 6= 0 is included in the system instead of being assumed beforehand.) The other two
of these systems describe regular singular points:

Sreg1,` := { t`+1(`v1 − 1)u` + (−1)`+1`! 6= 0,

tk+1(kv1 − 1)uk + (−1)k+1k! = 0, 1 ≤ k < `,

u− 1
t = v = vk = 0, 2 ≤ k ≤ `,∏`

k=1 (kv1 − 1) 6= 0,

t 6= 0 }

Sreg2,` := { tk+1(k − `)uk + (−1)k+1` · k! = 0, 1 ≤ k ≤ `,
vk = 0, 2 ≤ k ≤ `,

`v1 − 1 = u− 1
t = v = 0,

t 6= 0 }

In particular, these two systems do not have formal power series solutions. Thus, the
only formal power series solutions of S are the ones in the regular system and the
solutions in the intersection of all purely irregular singular points.
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We schematically picture the behavior of these singular points over a non-zero value
for t. The irregular singular points in any order ` are a one-fold cover of the v1-line
except for the finite set {1

` ,
1
`−1 , . . . ,

1
2 ,

1
1}. All singular points in order `+1 lie above one

of these irregular singular points. The fiber of π``+1 over the irregular singular points
with v1 = 1

`+1 consists of one regular singular point, found in the system Sreg2,`+1; in
particular, over this singular point no formal power series solution exists. The fiber of
all other irregular singular points consists of one irregular singular point from system
Sirreg,`+1 and a one-parametric family of regular singular points from system Sreg1,`+1.
When restricting to the real picture, one can check that all regular singular points are
impasse points and do not yield `-times differentiable solutions (cf. Proposition E.3).

Sirreg,`

Sirreg,`+1

1
`+2

1
`+1

1
`

1
`−1

1
`−2

Sreg2,`+1

Sreg1,`+1 Sreg1,`+1 Sreg1,`+1 Sreg1,`+1 Sreg1,`+1

π``+1

/

Example E.8. This is an explanation of the differential equation p := vu1 − u with
differential counting polynomial ∞`+2 −∞`+1 + (` + 1)∞` − `∞`−1. Hence, consider
U = {u, v}, ∆ = {∂t} and F = C. All computations are parallel to Example 2.92
and thus omitted. The decomposition of the system {p = 0} with respect to geometric
singularities, as explained in Section E.2, yields a linear relation between the number
of systems and the order.

For each order ` ≥ 1 a decomposition as in Section E.2 yields 2`+ 2 systems.
Call the first of these systems A1. It consists of regular points, which lie above

those of the system A1 in order `− 1. (When talking about projections tacitly assume
` ≥ 2.) It corresponds to system T from Example 2.92 and has counting sequence
` 7→ (∞− 1)∞`+1. This system has all other systems in its closure.

Call the second system A2. It is regular singular and includes the inequation∏`
i=1(`v1 − 1) 6= 0. The third and fourth system, called A3 and A4, are both purely ir-

regular singular and lie in the closure of A2. Both of these systems lie above the system
A3 from lower order ` − 1. The system A3 includes the inequation

∏`
i=1(`v1 − 1) 6= 0

and A4 includes the equation `v1 − 1 = 0.
The remaining 2`−2 systems appear in pairs (Bk, Ck) and both include the equation

kv1− 1 = 0, for all 1 ≤ k ≤ `− 1. The system Bk is regular singular. The system Ck is
purely irregular singular, lies in the closure of Bk, corresponds to the system Tk from
Example 2.92, and has the differential counting polynomial ∞`. The systems Bk and
Ck for 1 ≤ k ≤ ` − 2 lie above the system to Ck from lower order ` − 1; the systems
B`−1 and C`−1 lie above the system A4 from lower order `− 1.

The relation of the singular systems can be seen in the following schematic diagram.
The purely irregular singular systems A3, A4, and Ck are colored in black, the regular
singular systems A2 and Bk are colored in gray. Contrary to the diagram, A2 only
contains A3 and A4 in its closure, but its closure intersects all systems Bk and Ck. The
fibers of the projection to the v1-axis are not necessarily one-dimensional.
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v1

A2

B`−1 B`−2 B2 B1

A3

A4

1
`

C`−1

1
`−1

C`−2

1
`−2

C2

1
2

C1

1
1

projection
to v1-
coordinate

Look at the purely irregular systems to explain the coefficient ` of the “singular
part” of the differential counting polynomial. This coefficient stems from the fact that
the algebraic counting polynomials of the fibers of the projection to v1 have different
algebraic counting polynomials. The algebraic counting polynomial is ∞` in case of a
fiber given by a system Ck or A4. The algebraic counting polynomial is ∞`−1 in case
of a fiber given by the system A3. The number of the systems Ck increases with the
order `, and thus the coefficient of ∞` in the algebraic counting polynomial increases,
and the coefficient of ∞`−1 decreases. In summary, up to order ` there are

(∞− `)︸ ︷︷ ︸
# fibers A3

· ∞`−1︸ ︷︷ ︸
fiber A3

+ 1︸︷︷︸
# fibers A4

· ∞`︸︷︷︸
fiber A4

+ (`− 1)︸ ︷︷ ︸
# fibers Ck

· ∞`︸︷︷︸
fiber Ck

= (`+ 1)∞` − `∞`−1

distinguishable formal power series solutions stemming from singular points. /
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