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Abstract. We propose a simple, general, randomized technique to reduce certain geo-
metric optimization problems to their corresponding decision problems. These reductions
increase the expected time complexity by only a constant factor and eliminate extra log-
arithmic factors in previous, often more complicated, deterministic approaches (such as
parametric searching). Faster algorithms are thus obtained for a variety of problems in
computational geometry: finding minimialpoint subsets, matching point sets under trans-
lation, computing rectilineap-centers and discrete 1-centers, and solving linear programs
with k violations.

1. Introduction

Consider the classic randomized algorithm for finding the minimunn efumbers
min{A[1], ..., A[r]}:

Algorithm RAND-MIN

1. randomly pick a permutatiofiy, ...,i;) of (1,...,r)
2.1 <« o0

3. fork=1,...,rdo
4 if Alix] <t then
5 t < Alik]

6. returnt

By a well-known fact [27], [44], the expected number of times that step 5 is executed is
given by the harmonic numbeHl% +---4+1/r <lInr 4+ 1. Imagine that the numbers

* A preliminary version of this work appearedioc. 14h ACM SympComput Geom, 1998.
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A[1], ..., Alr] are not precomputed but are evaluated only “on demand.” If a decision
Ali] < t can be made i time for a givert but an evaluation oA[i] takesE time, then
Algorithm RAND-MIN runs inO(Dr + E logr) expected time, which is an improvement
over the obviouD (Er) worst-case bound wheb « E.

This simple observation suggests a general strategy to solve a given optimization
problem: express the solution as a minimum of the solutions of several subproblems
and apply the above algorithm to find the minimum. If the decision versions of the
subproblems are easier to solve than the subproblems themselves, then a faster algorithm
for the optimization problem may be obtained with randomization.

In the next section we formulate the idea more precisely and propose a recursive
version of the algorithm in which we use a constant nunmbef subproblems at each
node of the recursion. This recursive algorithm may be regarded as a generalization of
prune-and-search. Assuming that the size of the subproblems is reduced by a constant
factor at each level, we show that the optimization problem can be solved within the
same asymptotic expected time bound as the decision problem. Previous reduction of
the optimization problem to the decision problem is usually obtained by some kind of
binary or parametric search, which increases the running time by a polylogarithmic factor.

1.1. New Results

This simple technique is applicable to a surprisingly diverse range of geometric opti-
mization problems. Besides easily rederiving some old results on closest-pair-type and
ray-shooting problems (Section 3), we are able to prove a number of new ones (Sections 4
and 5), including the following:

e The minimumL -diameterk-point subset of a planar-point set can be found
in O(nlogn) expected time for any Z k < n. The best previous algorithm for
generak was by Eppstein and Erickson [35] and tookn log? n) time.

e The minimumL ,.-Hausdorff distance between two plamgpoint sets under trans-
lations can be found i©(n?logn) expected time. This problem was studied by
Chew and Kedem [20], who gave &1(n?log? n)-time algorithm.

e The two-dimensional rectilinear 5-center problem can be solve@ (nmlogn)
expected time. Recent works [46], [62], [66] gave@¢n log? n) time bound.

e The two-dimensional linear programming problem wkthiolated constraints can
be solved inO(nlogn) expected time in the feasible case for anyk0Ok < n.

(If kis not too large, the time bound is actually linear.) This type of problem was
considered by Mata€k [51] and Roos and Widmayer [60]; the previous time
bound for this version for arbitrafywasO(n log? n).

e Givenaninfeasible two-dimensional linear program wittonstraints, the smallest
numbelk of violations that make it feasible can be founddrink) expected time.
This speeds up an algorithm of Everett et al. [36] by alkddactor.

e The three-dimensional Euclidean discrete 1-center problem can be solved in
O(nlogn) expected time. Deterministic techniques yield@m polylogn) run-
ning time only.

The above list of problems is not meant to be exhaustive. Rather, itis used to illustrate the
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various ways in which the technique can be applied. We expect that more applications
will follow.

When is the technique applicable? The first prerequisite is an efficient algorithm for
the decision version of the problem at hand (is the optimal value srialiger than
a given number?). Secondly, we should be able to “decompose” the problem into a
constant number of subproblems of the same type but with a fraction of the size. This
usually means that the number of variables (degrees of freedom) in the optimization
must be a constant. It also implies that the problem is somehow “self-reducible.” In
many cases, we are thus forced to consider a generalized form of the original problem
with added special constraints. (Rectilinear applications are often more amenable, but
certain nonrectilinear ones currently pose technical difficulties.) Note that unlike in
traditional prune-and-search methods (e.g., [31], [55], and [56]), we do not need an
oracle to identify which subproblem contains the actual solution and requires recursion;
our randomized technique will guide us to the right subproblem quickly, with the aid of
the decision algorithm.

1.2. Previous Approaches

One of the most general approaches for reducing geometric optimization problems to
their decision problems jgarametric searchinvented by Megiddo [54] (see [1], [4], [7],

[12], [15], [17], [26], [34], [53], [59], [61], and [64] for just a partial list of examples).
The basic idea is to simulate the decision algorithm—compare the optimurri-with

with the parameterbeing the unknown optimum itself. In most instances, the branching
points of the simulation require testing the signs of low-degree polynomi&jsihich
reduces to comparingwith the roots of these polynomials. These comparisons can be
resolved by making ordinary calls to the decision algorithm. In order to lower the number
of such calls, we need an efficient parallelization of the simulated decision algorithm,
so that comparisons can be “batched.” Running time typically increases by logarithmic
factors, even when an improvement by Cole [25] is applicable. As many researchers
have commented, the resulting algorithms tend to be complicated and impractical; see
the survey by Agarwal and Sharir [3]. In contrast, our randomized reductions use the
decision algorithms purely as “black boxes,” avoid the extra logarithmic factors in the
running time, and are easier to implement.

A number of alternatives to parametric search have been proposed in the geometry
literature [3]. First, if the search space has linear size, then an ordinary binary search is
sufficient. For many rectilinear problems, the search space formatax with sorted
rows/columns and one can use Frederickson and Johnson’s selection algorithm [37]
to carry out the binary search [20], [39], [66]; that algorithm relies heavily on re-
peated weighted-median computations. In other instances, one can employ nontrivial
explicit constructions oéxpander graphée.g., [45]) following a technique of Katz and
Sharir [42], [43]. Without additional ideas, all of these techniques increase the running
time by at least a logarithmic factor.

Randomized techniques have also been suggested as an alternative in several isolated
cases [2],[10], [13], [15],[29], [34], [47], [50]. Unfortunately, since these techniques are
not unified and as straightforward to apply as parametric search, potential applications are
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sometimes missed. (One important exception though is the clagstypeoptimization
problems [65], where general randomized linear-time solutions have been developed;
most of the problems considered in this paper do not fit into this class.) We hope that our
randomized technique will partially rectify this shortcoming.

One other alternative to parametric searching that has been noted in the literature [11]
involves the application afeometric cuttingools. Some of these tools (in a very elemen-
tary form) will be of use in several of our own randomized reductions for nonrectilinear
problems.

In Section 6 we discuss the limitation of our technique and some issues regarding
possible derandomization.

2. The Technique

We describe our technique in a general settingILetpresent thproblem spaceGiven
a problemP € I1, letw(P) € R be itssolution Denote thesizeof P by |P| (a positive
integer). We assume that the solution of a problem of constant size can be computed in
constant time. The simple lemma below states in exact terms the technique in its entirety.

Lemma?2.1l. Leta < 1,¢ > 0,andr be constantsand let D(-) be a function such that
D(n)/n? is monotone increasing in.1Given any problem R I, suppose that within
D(|P)) time

(i) we can decide whether(P) < t for any given te R, and
(ii) we can constructr subproblems,P. ., P, € I1, each of size at mo$tt| P|], so
that

w(P) = minfw(Py), ..., w(P)}.

Then for any problem R I1, we can compute the solutian P) in O(D(|P|)) expected
time

Proof. We computeu(P) by applying AlgorithmRAND-MIN to the (unknown) numbers
w(Py), ..., w(R). Decidingw(P) < t takesD(| P |) time. Evaluatingw(P,) is done
recursively, unlesgP, | drops below a certain constant. Note that this procedure not only
computeaw(P) but identifies a constant-size subproblem attaining the minimum.

For the analysis, let (P) be the random variable corresponding to the time needed
to computew(P) by this procedure. LaXl (P) be a 0-1 random variable, having value 1
if and only if w(P) is evaluated. We have

r
T(P)=) N(P)T(R)+ OrD(P).
i=1
As noted earlier, the expected number of evaluations by AlgoriHARD-MIN is
E[>_; N(P)] <Inr +1.
DefineT (n) = maxp|<n E[T (P)]. SinceN(PR,) andT (R,) are independent, we have

Y EIN(P)] E[T(P)] + O D(|P]))
i=1
(nr +1) T([«[P[1) + O D(IP]),

E[T(P)]

IA
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implying a “textbook” recurrence [27]:
T(n) = (nr + 1) T(fan]) + O(D(n)).
If we assume
(Inr + 1o <1, ()

then by induction one can easily show tfi@h) < C- D(n) for an appropriate consta@t
(depending o, r, ande).

To enforce condition (1), we compreskevels of the recursion into one before apply-
ing Algorithm RAND-MIN, where? is a sufficiently large constant. Therincreases to*
anda decreases t@‘. To finish the proof, just note that lim . (Inr® + 1)« = 0. O

Note The above lemma still holds if (i) and (ii) requig(|P|) expected time (rather
than worst-case time). In all of our applications, the cost of (ii) is subsumed by the cost
of (i), so D(-) really stands for the complexity of the decision problem.

Forr = 1, randomization is not required: our recursive algorithm reduces to the
standard prune-and-search algorithm. For a larger constahe worst-case running
time is at leasf2 (n'°9'/1091/2)) ' So the efficiency of a deterministic algorithm depends
crucially on the values of the constantsandr. In contrast, by Lemma 2.1, these
constants are unimportant in bounding the randomized complexity; we can thus afford a
crude scheme to divide a problem into subproblems. Such a scheme is easily obtainable
for certain classes of problems, as we point out in the next section; however, it may be
less apparent for others.

3. Easy Applications

We now illustrate our technigue in its simplest form on some abstract closest-pair and
ray-shooting problems. Although no specific new results are obtained, the applications
are instructive.

3.1. Closest Pairs

LetU be a collection of objects. Givendistance function dU x U — R, theclosest-
pair problemis to computew(P) = min, 4ep d(p, q) for a given setP C U of sizen.

Theclosest-pair decision probleis to determine whethan(P) < t for a givenP and
teR.

Theorem 3.1. Ifthe closest-pair decision problem can be solved imlime then the
closest-pair problem can be solved in@(n)) expected timeassuming that n)/n is
monotone increasing
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Proof.  Arbitrarily partition P into three subsetB;, P,, P; of roughly equal size. Then
w(P) = minfw(Py U Py), w(Py U Ps), w(P, U P3)}.

This divides the problem into three subproblems, each of size rougi8: Rlow apply
Lemma 2.1 (withr = 3 ando = 2). O

Note The above theorem easily extends to finding clobdsiples, for any constant
integerb.

Rabin [58] was historically the first to apply randomized techniques to the standard
closest-pair problem, whekg is a fixed-dimensional space add, -) is the Euclidean
metric. Clarkson and Shor in their seminal work [24] used randomization on one geomet-
ric optimization problem, th&uclidean diameter probleim three dimensions, where
U = R®andd(., -) is the negated Euclidean distance (the objective is to find the farthest
pair of a point set). Agarwal and Sharir [2] considered a certain closest-pair problem
that arises in finding the width of a point setR? and in other problems; here, the
elements ofJ are bichromatic lines ifR® under a particular distance function (where
d(p, q) = oo when p andg have the same color). In all three papers, randomized al-
gorithms are obtained by modifying certain implicit decision algorithms. (Incidentally,
Clarkson and Shor’s approach, which was later adopted by Agarwal and Sharir, may be
regarded as some kind of randomized prune-and-search.) Our technique gives alternative
randomized algorithms that unify these previous results in a simple way and separate
the decision component more clearly.

3.2. Ray Shooting

Let U be a collection of objects and I&t be a collection of rays. Let: U x V — R

be anordering function wheret(p1, q) < t(p2, q) means that ray hits objectp;
before p,. The ray-shooting problenis to preprocess a given st C U of sizen
into a data structure that answers queries of the following type: gjver\/, compute
w(P, q) = minyep (P, ). (The objectp that attains this minimum represents the first
object hit by the query rag.) In theray-shooting decision problera query has the type:
given anyq € V andt € R, determine whether (P, q) < t.

Theorem 3.2. If the ray-shooting decision problem can be solved wiitm)Rprepro-
cessing and [n) query timethen the ray-shooting problem can be solved wittP(n))
preprocessing and @ (n)) expected query timassuming that fn)/n'*¢ and D(n)/n¢
are monotone increasing for some constant 0.

Proof. In the preprocessing, partitidd into two subset®;, P, of roughly equal size,
build the decision data structures frandP,, and recursively preproceBgsandP.. The
new preprocessing time’(n) satisfies the recurrence

P'(n) = 2P’(n/2) + O(P(n)),
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which solves toP’'(n) = O(P(n)) if P(n)/n'*¢ is monotone increasing. To compute
w(P, q) foragivenq € V, we can divide the problem into two subproblems, each of size
roughlyn/2: w(P, q) = minfw(Py, q), w(P>, q)}. Now we can apply Lemma2.1. O

Note if we only assume thalP(n)/n is monotone increasing in the above theorem,
then the preprocessing timefs(n) = O(P(n) logn).

Previously, Agarwal and Mataek [1] described a general deterministic reduction
of the above ray-shooting problem to the decision problem (which they csaigrent
emptinesp The reduction uses parametric search and is not likely to be practical, besides
increasing the query time by a polylogarithmic factor and requiring a parallel version of
the decision algorithm.

Inan earlier paper [13], the author gave arandomized reduction of linear-programming
gueries to halfspace range reporting. This reduction, when specialized to ray shooting,
yields a different approach in which the preprocessing algorithm employs random sam-
pling. (Arya and Mount [8] noted a similar reduction in the context of nearest neighbor
searching.) In contrast, in the proof of Theorem 3.2, randomization is used in the query
algorithm but not the preprocessing. The random sampling approach, however, achieves
high-probability bounds in many instances and is more susceptible to derandomiza-
tion.

Schomer and Thiel [61] investigated a certain collision-detection problem that also
fits into the above framework. Randomization can again be used in place of parametric
search.

4. Rectilinear Applications

For many geometric problems, the process of dividing a problem into subproblems
is usually more involved than the simple applications from the previous section. We
take a number of specific problems in the rectilinear plane and demonstrate how this
division can be accomplished in each case. In what follows, all squares and rectangles
are implicitly assumed to be axis-parallel. Given two rectaneR,, we letR; v R,

denote the smallest rectangle enclosing their union.

4.1. Minimal k-Point Subsets

Motivated by applications in clustering and statistical analysis, a number of researchers
[6], [10], [28], [33], [35], [50] have looked at problems of the type: givenrapoint

setP, compute a “minimal’k-point subset. We illustrate our technique on one specific
case, where the point sgtis planar, and the measure of minimality is thg -diameter
(another case is examined in Section 6.2). This particular problem is identical to:

Problem. Given 2 < k < n and ann-point setP c R?, find the smallest square
enclosing at least points of P.
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Eppstein and Erickson [35] observed that the decision version of the problem can be
solved inO(nlogn) time by a straightforward plane-sweep algorithm. (The decision
problem reduces to computing tepthof an arrangement of squares.) Using the search
technique of Frederickson and Johnson [37], they then solved the optimization problem
in O(nlog? n) time.

Using asimple grid scheme, Datta et al. [28] described a general process of dividing the
problem intoO(n/ k) subproblems each of sif&(k), so that the solution is the minimum
of the solutions of these subproblems; this division taRéslog n) time. Immediately,
the O(nlog? n) time bound reduces slightly ©(nlogn+ (k log? k) (n/k)). If we apply
Algorithm RAND-MIN to find the minimum, we get a randomized time bogh logn—+
(klogk)(n/k) + (k log? k) log(n/ k)); this bound was recently observed by Bhattacharya
and EIGindy [10], using a more cumbersome derivation. The randomized bound matches
theO(nlogn) decision time bound whdn= O(n/(lognloglogn)). We give a different
algorithm that runs irD(nlogn) expected time foall values ofk.

Theorem 4.1. The smallestaxis-aligned square containing k of n given planar points
can be computed in @ logn) expected time

Proof. Before applying Lemma 2.1, we find it necessary to extend the problem (and
its decision problem) slightly: given ampoint setP ¢ R? and a rectangI®, we will
computew(P, R, k), the side length of the smallest squéethat contains at least
k points of P and, in addition, contain®. The decision algorithm by Eppstein and
Erickson [35] can be modified for this extended problem. Alternatively, we can directly
reduce the extended problem to the original problem, sind®, R, k) = w(P’, 8,k +
4n), if we let P’ be the union ofP with n copies of the four corner vertices Bf

Our division process is as follows. First, draw vertical lines at[tné]th smallest
and[n/5]th largestx-coordinates of the points iR. Similarly, draw horizontal lines at
the[n/5]th smallest andin/5]th largesty-coordinates. LeR, be the rectangle bounded
by these four lines. Writ&, as an intersection of four halfplanglk, ..., Hs; see Fig. 1.
The optimal squar&* must belong to one of two cases:

Casel: S* contains B. Thenw(P, R, k) = w(P, RV Ry, K) = w(P\Ry, RV Ry, k —
[P N Rol).

} n/5 points
; ~ H,
Ry
, o,
n/5 points
A RS
n/5 points H H n/5 points

Fig. 1. The rectangldRy and the halfplanebls, ..., Hg.
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Case2: S* C H; forsomeie {1,...,4}. Thenw(P, R, k) = w(P N H;, R, k).
In any case, one can check the identity:

w(P, R, k) = minfw(P\Ry, RV Ry, k — [P N Ry|),
w(PNH, R K),...,w(PNH R, K)}.

Each of the five subproblen®\ Ry, P N Hy, ..., P N Hy has size at most[4/5]. The
theorem follows. O

For k not too large, the above result is probably optimal in view of the known
Q(nlog(n/k)) lower bound for the so-calledk*equal problem” [67]. Fok very close
to n, the time bound can be further reduceda + (n — k) log n); we leave the proof
as an easy exercise. The technique can be extended to higher dimensions [35] or to
the problem of finding the smallest homothet of a fixed convex polygon enclésing
points [33].

4.2. Matching Point Sets

Inspired by pattern recognition applications such as in computer vision, numerous pa-
pers in computational geometry (e.g., [18]-[20], and [41]) have studied the problem
of matching point sets under a class of transformations by minimizing the Hausdorff
distance. We investigate a specialized case where the point sets are two-dimensional, the
allowable transformations are translations, and the mettic s

Problem. Given twon-point setsA, B ¢ R?, find vectorv € R? minimizing the
directed Hausdorff distance

H(A+ v, B) = maxmin|a+ v — b|.
acA beB

(Our algorithm can be easily modified if instead thedirected Hausdorff distance
min{H (A + v, B), H(B, A+ v)} is minimized.)

Chew and Kedem [20] showed that the decision version of the above problem can
be solved inO(n?logn) time. Frederickson and Johnson’s search technique then yields
an O(n?log? n) time bound for the optimization problem. We show how to remove the
extra logn factor.

Theorem 4.2. The translation that minimizes the directed,{Hausdorff distance be-
tween two planar n-point sets can be found icn®logn) expected time

Proof. Consider the sé® = B — Aof N = O(n?) points. Assign colors to each point
of P so that two points have the same color if and only if they belonB te a for a
commona € A. Letc(p) denote the color of a poirt and letc(P) = {c(p): p € P}.
Our problem reduces to the following if we det= n:
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Given a seP of N colored points irR?, find the smallest squat® that contains
k different colors, i.e.jc(P N S| > k.

Chew and Kedem'’s algorithm solves the decision problem (findingdhar-depthof
an arrangement of squares)@(N log N) time [20]. (Their algorithm proceeds by first
partitioning the union of the squares in each color class into disjoint rectangles and then
computing the depth of the arrangement of all such rectangles by a straightforward plane
sweep.) We show how to solve the optimization probler®ifN log N) expected time
by Lemma 2.1.

We need to extend the problem: we will compui€P, R, k), the side length of
the smallest squarg* such thatc(P N S*)| > k and, in addition, contain®. In the
same manner as in the previous proof, we can modify the decision algorithm or directly
eliminate the extra constraint aboRt

Construct the rectangl®, and its four bounding halfplangds, ..., Hs as in the
previous proof. As before, the optimal squ&'ebelongs to one of two cases:

Casel: S* contains B. Thenw(P, R, k) = w(P, RV Ry, k) = w(Py, RV Ry, ko),
where we let

Po={pe P\Ro: c(p) € c(PN Ry} and ko=k—|c(PN Ry

Case2: S* ¢ H; forsomeic {1,...,4}. Thenw(P, R, k) = w(P N H;, R, k).
In any case, one can prove the identity:
w(P, R, k) = minfw(Py, RV Ry, ko), w(P N Hy, R K),...,w(PNHg R K.

Each of these five subproblems has size at mpisit/5]. O

Chew et al. [18] discussed the extension of the problem to higher dimensions. Our
technigue again improves their running time by a logarithmic factor.

4.3. Rectilinear p-Centers

A class of facility location problems known gscenter probleméas received much
attention in the computational geometry literature (e.g., see [5], [30], [34], [64], and
[66]), due to applications in various areas such as operations research and clustering. We
consider the case wheeis a constant, the dimension is two, and the metric s

Problem. Given ann-point setP c R?, find p congruent squares of the smallest size
coveringP.

The decision problem reduces toegtangular p-piercing problengiven a set oh
rectangles in the plane, determine whether there exists a sepoints that intersects
every rectangle. Sharir and Welzl [66] described efficient algorithms for this piercing
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problem forp < 5. As they noted, reduction from thg-center problem to thep-
piercing problem can be accomplished by Frederickson and Johnson’s technique [37],
which increases the running time by a factor of togVe show:

Theorem 4.3. Ifthe rectangular p-piercing problem can be solved ip(B) time, then
the rectilinear p-center problem can be solved i@ (n)) expected timewhere the
hidden constant depends on p

Proof. We again need to consider a generalized problem (which incidentally includes
the rectilineamp-center problem with “additive weights”):

Given a sefR of n rectangles ifR?, find p congruent squaresy, ..., §; of the
smallest size such that, for eaBhe R, there exists ai§* that containR.

Let w(R) denote the side length of the optimal squares. Observe that the decision
w(R) < t reduces to the above-piercing problem.

The division process is a little more involved than in the previous two proofs. First list
the 2 x-coordinates ofR and draw a vertical line at tHén/5p| smallesix-coordinate
fori = 1,...,10p. Similarly, list the 21 y-coordinates and draw a horizontal line at
the j|n/5p| smallesty-coordinate forj = 1, ..., 10p. Call the aboveD(p) vertical
and horizontal linegrid linesand call a rectangle bounded by four grid linegra
rectangle Clearly, there ar® (p*) possible grid rectangles.

A rectangle is said to b&densdf it contains at leasén rectangles ofR. We prove:

Claim. One of the optimal squares 8ontains a(1/(5p))-dense grid rectangle R

The claim can be seen from the following argument. Since every rectangk isf
contained in§" for somei € {1, ..., p}, there exists aig* that is(1/p)-dense by the
pigeonhole principle. Now, take the largest grid rectari@leinside §, as shown in
Fig. 2. A rectangle oR that is contained ir§* but not in Ry must have a vertex inside
S\ Ro; by our construction of the grid, there are at mast@&p) such rectangles 6®.
Thus,Ry is (1/(5p))-dense.

From the claim, we can easily show the identity

w(R) = mRinw(RU {Ro}) = mRLn w({ReR: RZ Ro} U{Ro}),

57 } 5"—p points
Ry
} % points
e ad S——
% points 5"—p points

Fig. 2. Grid lines and the grid rectangig.
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where the minimum is taken over a&ll(p*) of the (1/(5p))-dense grid rectangleR,.
The size of each subproblem is bounded roughlyby 1/(5p))n, so we can apply
Lemma 2.1. |

We get one particular new result for the case- 5: Sharir and Welzl [66] showed
thatDs(n) = O(nlog*n). Their O(nlog® n) bound for the rectilinear 5-center problem
can therefore be reduced @&(nlog* n) with randomization. Recently, Segal [62] (see
also [46]) improved the bound for rectangular 5-piercindiin) = O(nlogn). This
implies anO(nlogn) randomized algorithm for rectilinear 5-centers. (According to
Sharir and Welzl [66], there is @ (nlogn) deterministic lower bound.)

5. Nonrectilinear Applications

As we have seen in the previous section, the division of a problem into subproblems
can usually be accomplished by elementary means for rectilinear applications. For non-
rectilinear problems, we often need to resort to tools for geometric divide-and-conquer
known ascuttings

Given a collectionH of n hyperplanes irRY, a §-cutting of size g$s a partition of
space inte (possibly unbounded) simplicéda, ..., Ag} such that the interior of each
simplex A; intersects at mostn of the hyperplanes oH. We need a (rather weak)
lemma on cuttings:

Lemma 5.1. Givenn hyperplanesiR¢ for a sufficiently large pas-cutting of constant
size can be constructed in(®) time for some constait< 1.

The earliest proof of the lemma fdr= 2 can be traced back to papers by Dyer [31]
and Megiddo [55]; they design prune-and-search algorithms for three-dimensional linear
programming using construction of(é)-cutting of size 4. The construction has been
extended to higher dimensions (with worse constants) [56]. A much simpler random-
ized method was suggested by Clarkson [21]: take a random sd®pleH of size
0((1/8) log(1/8)) and canonically triangulate the arrangemenRoDerandomization
of this method and refinements on the constants are discussed in several papers [16],
[40], [48], [52]. (For a variant known ashallow cuttinggd49], better bounds are still
possible.) Since the size of the cutting is not important when applying Lemma 2.1 (as
long as it is bounded by a constant), the original method of Dyer and Megiddo or the
randomized method of Clarkson is sufficient for our purposes.

5.1. Linear Programming with Violationd=easible Case

As a first example, we consider a natural variant of the linear programming problem in
which a prescribed numbé&rof violated constraints is allowed [51], [60]. We start with
the simplest nontrivial version of this problem, where the dimension is two and a feasible
solution with no violation exists (without loss of generality, say thgais feasible and

the objective is to minimizg):
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Problem. Given0< k < nand aseH of n closed halfplanes iR? wherevy € (| H,
find the lowest point in the closed region

Lx(H) = {q € R% q violates at mosk halfplanes ofH}.

(A point g violatesa halfplaneh if g ¢ h.) SetLy(H) = @ if k < 0. Note that,
for k = 0, this reduces to a standard linear program (which has well-known linear-time
methods [22], [31], [55], [63]). The difficulty for the general ckse Oliesinthe factthat
Lk(H) (the so-called< k)-level) need not be convex and may have several local minima.
As Matowsek [51] and Roos and Widmayer [60] independently observed, an
O(nlog? n)-time solution to the problem can be obtained by parametric search or by
using an algorithm for slope selection [11], [26], [29], [42], [47]. (Roos and Widmayer
also claimed an improved bound 6f(nlogn + klog?k), but the validity of their ar-
gument is questionable.) A different approach of Mawu[51] solves the problem in
O(nlogn + k?log? n) time, which is efficient only whek is roughly smaller thag/n.
The O(nlogn) term can be improved t® (nlogk) by a technique of the author [14].
We derive here the expected time boub¢h logn) for all values ofk. Surprisingly,
if kK = O(n/log? n) for a constanp > 1, our bound strengthens ©@(n), matching
the complexity of the standard linear programming problem. The precise time bound is
given in the theorem below:

Theorem 5.2. Given a set H of n halfplanes with a nonempty intersectioa lowest
pointin Lx(H) can be computed in @+ k(n/k)¢ logn) expected time for any constant
e > 0.

Proof. To avoid some (minor) technical complications, we assume that the given half-
planes are in general position. Consider the slightly generalized problem of computing
w(H, A, k), the smallesty-coordinate inside_x(H) N A for a given triangleA. We
first show how to decide whether(H, A, k) < t for a givent € R. The decision
w(H, A, k) <t can be made by a modification of the procedure below.

Let A’ be the intersection of\ with the halfplaney < t. We havew(H, A, k) <
t if and only if Lx(H) intersectsA’. As vy € (| H, Lx(H) is a connected region
containinguvg. Thus, the test holds if and only if, € A’ or Lx(H) intersects one of
the (at most four) edges af’. Deciding whethelL(H) intersects a line segment is
equivalent to the following one-dimensional problem:

Let | be a collection ofi half-infinite intervals. Givera, b, decide whether there
exists a point in4, b] that is contained in all but at moktof the intervals off .

This one-dimensional problem can be solved as follows. Write= {[a;, c0)} U
{(—o0, bj]}, wherea; > a > --- andb; < b, < --.. One can verify that the an-
swer is yes if and only if there exists soiine {0, ..., k} such that

max{a, a1} < min{b, bx_j1}.

The condition can be checked (k) time, once we have computed, ..., a and
bs, ..., bx. This computation requires sorting tkesmallestlargest elements in a list
and take<O(n + klogn) time (for instance, by a modified heapsort).



560 T. M. Chan

Having solved the decision problem@xn + k logn) time, we now proceed to solve
the optimization problem. First computeSecutting of then bounding lines ofH by
Lemma5.1. Intersect the cutting triangles witland triangulate to form a new collection
of triangles{A;}. For eacha;, let H; be the set of halfplanes éf whose bounding lines
intersectA; and letk; be the number of halfplanes &f not intersectingh;. Then

w(H, A, K) =minw(H, Aj, K) = minw(H;, Aj, k— k).
I |

This divides the problem into a constant number of subproblems each of size roughly
sn. We can now apply Lemma 2.1 with the upper bouhgh) = O(n + k(n/k)? logn).

(Note that we cannot directly s&(n) = n + klogn, becauseD(n)/n® needs to be
monotone increasing in.) O

We leave as an open question whether the optimization problem can be solved in
O(n + klogn) expected time. Extending the technique to higher dimensions is also
possible, but it is unclear at the moment how much is gained by examining the decision
problem.

5.2. Linear Programming with Violationdnfeasible Case
In the case thgt) H = @, our technique can be applied to solve a different problem:

Problem. Given aseH of n halfplanes ifR?, find the smallest such that there exists
a pointinLg(H).

In other words, we want to find a maximal consistent subset of halfplanes (of size
n—Kk) [32], [51]. The dual is equivalent to the following line classification problem [36],
[51], with motivation from statistics: given points inR? each colored red or blue, find

a line¢ that minimizes the total numbé&rof red points abové and blue points below.

The problem is also related to finding certain line transversals [36].

An O(n?)-time algorithm is immediate after constructing the arrangement ofi the
bounding lines. Everett et al. [36] gave a “quality-sensitive” algorithm for this problem
that runs inO(nlogn + nklogk) time. The algorithm first solves the decision problem
(givenk, isLk(H) empty?) inO(nlogn+nk) time, and then uses a binary search to find
the optimalk. The theorem below improves thé&x(nlogn + nklogk) running time to
O(nlogn + nk), answering one of their open problems. We note that whisnsmall
(roughly less thar/n), a different algorithm of Matosgk [51], with a refinement by the
author [14], yields a better running time @f(nlogk + k®log?n). It is open what the
optimal time bound should be for the entire rangé.of

Theorem 5.3. Suppose that we can decide whethg(H) # ¢ in Dk (n) time for
any collection H of n halfplanes and k K. Then we can find the smallestk K
with Lx(H) # @ in O(Dgk (n)) expected timeassuming that R(n)/n® is monotone
increasing in n for some constant> 0.



Geometric Applications of a Randomized Optimization Technique 561

Proof. Givenatriangle\, letw(H, A, K) be the smalledt < K suchthat ((H)NA
is nonempty (useoc if no suchk exists). We can eliminat& as follows:w(H, A, K) =
w(H’, R?, K), whereH' is the union ofH with n 4 1 copies of the defining halfplanes
of A. By assumption, we can decide whetheH, R?, K) < t for a given integet in
Dk (n) time (if t exceedK, the question reduces to deciding whetherH) # 7).

To computew(H, A, K), construct a-cutting of constant size. Define the triangu-
lation {Aj} of A and the corresponding sets of halfplafikls} and numbergk;} as in
the previous proof. Then

w(H, A, K) =minw(H, Aj, K) = min(w(H;, Ai, K — k) + k).

Modifying the problem format to account for the additive term, we can apply
Lemma 2.1. O

To use the theorem to find the optimal we still need an upper bound. This
can be obtained by a standard trick of “guessikgtith an increasing sequence. For
instance, with Everett et al.’s bouridk (n) = O(nlogn + nK), we can apply our
algorithm onK = [logn], 2[logn], 4[logn], ... until K > k. The total cost remains
O(nlogn + nk). Of course, we can remove tt@(nlogn) term here by switching to
the method of Matasgk for small values df.

5.3. Discretel-Centers

As a final example that uses cuttings, we examine another instance of facility location,
namely, thediscretel-center problenin three dimensions under the Euclidean metric:

Problem. Given ann-point setP ¢ R3, find the smallest ball enclosing whose
center belongs t®.

It is a variant of the standard Euclidean 1-center problem, which asks for the smallest
enclosing ball with no restriction on the center. (The standard version is an LP-type
problem and has linear-time solutions in any fixed dimension [22], [55], [56], [66].)
Recently, the discrete 2-center problem in the plane was studied by Agarwal et al. [5].
As they noted, the discrete 1-center problem in the plane is solvab@rriogn)
time by constructing the farthest-point Voronoi diagram. However, for points in three
dimensions, the size of the Voronoi diagram carch@?) in the worst case. A better
approach iR3 is first to solve the decision problem, which involves the construction of
an intersection of congruent balls. This intersection®@&s) size and can be computed
in O(nlogn) time by a randomized incremental method of Clarkson and Shor [24] or its
derandomization [7], [12]. Like the Euclidean diameter problem, the discrete 1-center
problem inR?3 can then be solved by parametric searc®im polylogn) time [7], [12],
[17], [53], [59].
We now show how parametric search can be replaced by a randomized search, solv-
ing the three-dimensional discrete 1-center probler®{nlogn) expected time. The
randomized reduction to the decision problem is more involved than for the diameter
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problem (Section 3.1). In particular, we need to borrow a certain prune-and-search idea
that was used previously by Megiddo [55] for the standard 1-center problem.

We have learned just recently of a randomized algorithm by Clarkson [23] that solves
the same problem without using Megiddo-style prune-and-search; its expected running
time is, however, slightly slower—more precise@y(nlognloglogn).

Theorem 5.4. The discretel-center problem ifR® can be solved in @logn) ex-
pected time

Proof. Given anm-point setP and ann-point setQ in R3, we solve a “min-max”
problem: compute

w(P, Q) = minmaxd(p, q),
peP qeQ

whered(-, -) is the Euclidean metric. The radius of the optimal ball for the discrete
1-center problem isv(P, P). (Note that the “max-max” problem corresponds to the
diameter problem.)

To decide whethew (P, Q) < t, we compute the intersection of the balls centered at
the points ofQ with radiust. If there exists a point o in the interior of this intersection,
then we return yes. By the algorithm of Clarkson and Shor [24], the decision can be made
in O((n + m)logn) time.

Now, we apply Lemma 2.1 to solve the optimization problem. First, it is easy to
reduce the size dP by a constant factor: arbitrarily partitiop into two subset$;, P,
of roughly sizem/2, and observe that

w(P, Q) = minfw(Py, Q), w(P2, Q)}. 2

To reduce the size of by a constant factor, we arbitrarily pair points @f and
construct the bisector (a plane) for each of thg2| pairs. By Lemma 5.1, construct a
§-cutting{A;} of these|n/2] bisectors.

For each tetrahedron;, we build a point se;. Initially, Q; is set toQ. Examine
all pairs(qgz, g2) whose bisectors avoid the interior &f. Sayq; lies on the same side
of the bisector ad\;. Then any point imj; is closer tog; thang,. Removeg; from Q;.
As approximately(1 — §)n/2 points are pruned, ead; has size bounded by roughly
(14 8)n/2. Furthermore, maxg d(p, 4) = Maxseq, d(p, q) for any p € A;. Hence,

w(P, Q)=miinw(PﬂAi,Q):miinw(PﬂAi,Qi). (€))

By applying (2) and (3) alternately, we can reduce botlndn by a constant factor
using a constant number of subproblems. The result follows. O

Clearly, the same reduction extends to the discrete 1-center problem in any fixed
dimension. The reduction also works for “max-min” problems, such as the computation
of the Hausdorff distance of two point sets; unfortunately, in this case, the decision
problem does not seem to be any easier to solve.

An Q(nlogn) lower bound for the diameter problem is known even in the two-
dimensional case [57]. Similar arguments imply the same lower bound for the discrete
1-center problem (by a reduction from the “set equality problem” [9]).
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6. Discussions

We have obtained improved expected time bounds (in some cases, matching known
worst-case lower bounds) for several geometric optimization problems using a common
randomized technique. The technique reduces these problems to their corresponding
decision problems with only a constant-factor increase in the running time. The constants
are quite large though (especially for the rectilingacenter problem), and it is of
practical interest to lower them.

Take for example the closest-pair application (Section 3.1). The reduction in the proof
of Theorem 3.1 partitions the given set into three subsets and as a result reduces the
problem intor = 3 subproblems of a fractian = % of the original size. When applying
Lemma 2.1, we need to compre&ss= 5 levels of the recursion, in effect, raising the
number of subproblems t@3A better approach is to modify the reduction directly by
partitioning the given set intb subsets for a constabt> 3. Then we can creat@)
subproblems of 2b times the size. By choosirg= 10, we avoid the compression and
have only 45 subproblems. A similar approach can be taken to optimize the constants in
some of our other applications.

We see two more directions for further research. The first is to find more geomet-
ric applications (or perhaps nongeometric ones). The second is to find deterministic
algorithms matching the performance of our randomized algorithms.

6.1. Limitation

Regarding the first direction, we note two requirements in the application of our tech-
nigue, as shown by many of our examples: (i) a sufficiently “robust” decision algorithm
that can handle an appropriate extension of the problem, and (ii) a way to divide a
problem so as to reduce the problem size by a constant factor.

Requirement (ii) needs more technical consideration but actually can be dealt with
in a fairly general way using existing tools on geometric cuttings. For an illustration,
take the well-studieglanar Euclidear2-center problem—find two congruent balls of
the smallest size coveringgiven points inR>—where there is a® (nlogn) solution
for the decision problem and @b (nlog? n) randomized solution for the optimization
problem from the recent work of Sharir [64] and Eppstein [34] (see also [15]); parametric
search was used here in one case. We can transform the problem into one involving an
arrangement afi surfaces in five dimensions (using four variables for the coordinates of
the two centers and one variable for the radius). Constructing a cutting for this collection
of piecewise-algebraic surfaces establishes (ii). However, we need to solve an extension
of the decision problem where the solution is constrained to lie inside a given Tarski cellin
the transformed five-dimensional space. Unfortunately, the cu@émtogn) decision
algorithm does not work for this extended problem, so requirement (i) is not satisfied.

There are a number of other problems for which parametric search is applicable
but our randomized technique is currently not (including problems with a nonconstant
number of variables). It is hard to make a clear comparison of the power of the two
different techniques, though. The decomposability requirement (ii) of our technique (see
Lemma 2.1) indeed implies a special (tree-like) form of a parallel decision algorithm,
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much more restrictive than in parametric search. On the other hand, the processor bound
of this parallel algorithm is not important in our technique, but is in parametric search. It

is intriguing to explore further frameworks to widen the applicability of randomization

in geometric (and nongeometric) optimization.

6.2. Derandomizatiofl

Regarding the second direction, we point out that derandomization of our generic recur-
sive algorithm (Section 2) is probably hard, if at all possible. We cannot even achieve
good high-probability bounds. The problem lies in the fact that Algori#amp-mIN is
applied to a constant number of elements.

Consider one special case where we want to find the minitfusmamin{A[1], ...,
Alr]}, knowing that* belongs to a given search space of §izsay{l, ..., U}. Suppose
that a decisiorA[i] < t takesD time. Then evaluating aA[i] takesO(D logU) time
by binary search, and AlgorithRAND-MIN runs in O(Dr + D logU logr) expected
time.

Here is a simple deterministic algorithm that beats the obviogBr logU) time
bound for small values df :

Algorithm DET-MIN

1.i <1

2. whilei <r do

3. ifAli]>Utheni <i+1lelseU < U -1
4. returnU

The correctness of the algorithm is easily seen from the invarian{ Afip, ...,
Ali — 1]} > U. The running time of the algorithm is clear(D(r + U)).

For larger values df) > r, the process can be sped up as follows. Apply Algorithm
DET-MIN to find tg = min; [ A[i] - (r/U)]. Astp liesin{1,...,r}, it can be found in
O(Dr) time. Now, the minimunt* lies betweernyU/r and (to + 1)U /r, so we just
need to solve the problem recursively on a search space ofJgizeThe depth of the
recursion iSO([log, U7), so the minimum can be found i (Dr [log, U 7).

The deterministic complexity of this minimization problem is therefore the same
as the randomized complexity—name@y(Dr)—if the size of the search spatkis
polynomial inr. For still largerU, one can apply a more complicated procedure due to
Gao et al. [38].

We are only able to find one application of this deterministic approach, a variant of a
problem studied in Section 4.1:

Problem. Given 2< k < n and am-point setP c R?, find ak-point subset with the
minimum Euclidean diameter.

For k close to a fraction of, the best algorithm for this problem is due to Eppstein
and Erickson [35] and runs i®(n®log? n) time. We improve their time bound by a
logarithmic factor.
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Theorem 6.1. The minimum-diameter k-point subset of a given planar n-point set can
be found in @n®logn) time deterministically

Proof. Eppstein and Erickson’s approach [35] actually breaks the problem istib-
problems. The decision version of each subproblem is solved(if logn) time by
a dynamic matching algorithm, so that the decision version of the overall problem is
solved inO(n®logn) time.

To be precise, leB(p, t) denote the ball centered atof radiust and define the
following predicate giverp € P andt € R:

LUNE-TEST(P, t) is true if and only if there exists a poigtof distance to p such
that thelune B(p,t) N B(q,t) contains &-point subset ofP with diameter at
mostt.

Eppstein and Erickson showed that this predicate can be evaluaf&ghitogn) time.

Say P = {pi,..., pn}. For eachi, let Ai] be the smallest such thatLuNE-
TEST(p;, t) is true. The minimum diametét over allk-point subsets oP is precisely
min{A[1], ..., A[n]}, because the minimal subset must be contained in some lune of

radiust*. AdecisionA[i] < t reduces to a predicate evaluation because of monotonicity:
if t; < ty, thenLUNE-TEST(p, t1) implieSLUNE-TEST(P, t2).

The search space is the set of all interpoint distances, enumerab{aitog n) time.
In the above setting, we have here= n, D = O(n?logn), andU = O(n?). We can
thus findt* in O(Dr [log, U]) = O(n®logn) worst-case time. O

For small values ok, one can combine the above result with known techniques of
Eppstein and Erickson [35] or Datta et al. [28] to improve the previous deterministic
time bound ofO(nlogn + nk?log? k) to O(nlogn + nk?logk) for this particular prob-
lem. The corresponding randomized result was recently discovered by Bhattacharya and
ElGindy [10].
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