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Abstract. We propose a simple, general, randomized technique to reduce certain geo-
metric optimization problems to their corresponding decision problems. These reductions
increase the expected time complexity by only a constant factor and eliminate extra log-
arithmic factors in previous, often more complicated, deterministic approaches (such as
parametric searching). Faster algorithms are thus obtained for a variety of problems in
computational geometry: finding minimalk-point subsets, matching point sets under trans-
lation, computing rectilinearp-centers and discrete 1-centers, and solving linear programs
with k violations.

1. Introduction

Consider the classic randomized algorithm for finding the minimum ofr numbers
min{A[1], . . . , A[r ]}:

Algorithm RAND-MIN

1. randomly pick a permutation〈i1, . . . , i r 〉 of 〈1, . . . , r 〉
2. t ←∞
3. for k = 1, . . . , r do
4. if A[i k] < t then
5. t ← A[i k]
6. returnt

By a well-known fact [27], [44], the expected number of times that step 5 is executed is
given by the harmonic number 1+ 1

2 + · · · + 1/r ≤ ln r + 1. Imagine that the numbers
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A[1], . . . , A[r ] are not precomputed but are evaluated only “on demand.” If a decision
A[i ] < t can be made inD time for a givent but an evaluation ofA[i ] takesE time, then
Algorithm RAND-MIN runs inO(Dr + E logr ) expected time, which is an improvement
over the obviousO(Er) worst-case bound whenD ¿ E.

This simple observation suggests a general strategy to solve a given optimization
problem: express the solution as a minimum of the solutions of several subproblems
and apply the above algorithm to find the minimum. If the decision versions of the
subproblems are easier to solve than the subproblems themselves, then a faster algorithm
for the optimization problem may be obtained with randomization.

In the next section we formulate the idea more precisely and propose a recursive
version of the algorithm in which we use a constant numberr of subproblems at each
node of the recursion. This recursive algorithm may be regarded as a generalization of
prune-and-search. Assuming that the size of the subproblems is reduced by a constant
factor at each level, we show that the optimization problem can be solved within the
same asymptotic expected time bound as the decision problem. Previous reduction of
the optimization problem to the decision problem is usually obtained by some kind of
binary or parametric search, which increases the running time by a polylogarithmic factor.

1.1. New Results

This simple technique is applicable to a surprisingly diverse range of geometric opti-
mization problems. Besides easily rederiving some old results on closest-pair-type and
ray-shooting problems (Section 3), we are able to prove a number of new ones (Sections 4
and 5), including the following:

• The minimumL∞-diameterk-point subset of a planarn-point set can be found
in O(n logn) expected time for any 2≤ k ≤ n. The best previous algorithm for
generalk was by Eppstein and Erickson [35] and tookO(n log2 n) time.
• The minimumL∞-Hausdorff distance between two planarn-point sets under trans-

lations can be found inO(n2 logn) expected time. This problem was studied by
Chew and Kedem [20], who gave anO(n2 log2 n)-time algorithm.
• The two-dimensional rectilinear 5-center problem can be solved inO(n logn)

expected time. Recent works [46], [62], [66] gave anO(n log2 n) time bound.
• The two-dimensional linear programming problem withk violated constraints can

be solved inO(n logn) expected time in the feasible case for any 0≤ k ≤ n.
(If k is not too large, the time bound is actually linear.) This type of problem was
considered by Matouˇsek [51] and Roos and Widmayer [60]; the previous time
bound for this version for arbitraryk wasO(n log2 n).
• Given an infeasible two-dimensional linear program withn constraints, the smallest

numberk of violations that make it feasible can be found inO(nk) expected time.
This speeds up an algorithm of Everett et al. [36] by a logk factor.
• The three-dimensional Euclidean discrete 1-center problem can be solved in

O(n logn) expected time. Deterministic techniques yield anO(n polylogn) run-
ning time only.

The above list of problems is not meant to be exhaustive. Rather, it is used to illustrate the
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various ways in which the technique can be applied. We expect that more applications
will follow.

When is the technique applicable? The first prerequisite is an efficient algorithm for
the decision version of the problem at hand (is the optimal value smaller/larger than
a given number?). Secondly, we should be able to “decompose” the problem into a
constant number of subproblems of the same type but with a fraction of the size. This
usually means that the number of variables (degrees of freedom) in the optimization
must be a constant. It also implies that the problem is somehow “self-reducible.” In
many cases, we are thus forced to consider a generalized form of the original problem
with added special constraints. (Rectilinear applications are often more amenable, but
certain nonrectilinear ones currently pose technical difficulties.) Note that unlike in
traditional prune-and-search methods (e.g., [31], [55], and [56]), we do not need an
oracle to identify which subproblem contains the actual solution and requires recursion;
our randomized technique will guide us to the right subproblem quickly, with the aid of
the decision algorithm.

1.2. Previous Approaches

One of the most general approaches for reducing geometric optimization problems to
their decision problems isparametric search, invented by Megiddo [54] (see [1], [4], [7],
[12], [15], [17], [26], [34], [53], [59], [61], and [64] for just a partial list of examples).
The basic idea is to simulate the decision algorithm—compare the optimum witht—
with the parametert being the unknown optimum itself. In most instances, the branching
points of the simulation require testing the signs of low-degree polynomials int , which
reduces to comparingt with the roots of these polynomials. These comparisons can be
resolved by making ordinary calls to the decision algorithm. In order to lower the number
of such calls, we need an efficient parallelization of the simulated decision algorithm,
so that comparisons can be “batched.” Running time typically increases by logarithmic
factors, even when an improvement by Cole [25] is applicable. As many researchers
have commented, the resulting algorithms tend to be complicated and impractical; see
the survey by Agarwal and Sharir [3]. In contrast, our randomized reductions use the
decision algorithms purely as “black boxes,” avoid the extra logarithmic factors in the
running time, and are easier to implement.

A number of alternatives to parametric search have been proposed in the geometry
literature [3]. First, if the search space has linear size, then an ordinary binary search is
sufficient. For many rectilinear problems, the search space forms amatrix with sorted
rows/columns, and one can use Frederickson and Johnson’s selection algorithm [37]
to carry out the binary search [20], [39], [66]; that algorithm relies heavily on re-
peated weighted-median computations. In other instances, one can employ nontrivial
explicit constructions ofexpander graphs(e.g., [45]) following a technique of Katz and
Sharir [42], [43]. Without additional ideas, all of these techniques increase the running
time by at least a logarithmic factor.

Randomized techniques have also been suggested as an alternative in several isolated
cases [2], [10], [13], [15], [29], [34], [47], [50]. Unfortunately, since these techniques are
not unified and as straightforward to apply as parametric search, potential applications are
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sometimes missed. (One important exception though is the class ofLP-typeoptimization
problems [65], where general randomized linear-time solutions have been developed;
most of the problems considered in this paper do not fit into this class.) We hope that our
randomized technique will partially rectify this shortcoming.

One other alternative to parametric searching that has been noted in the literature [11]
involves the application ofgeometric cuttingtools. Some of these tools (in a very elemen-
tary form) will be of use in several of our own randomized reductions for nonrectilinear
problems.

In Section 6 we discuss the limitation of our technique and some issues regarding
possible derandomization.

2. The Technique

We describe our technique in a general setting. Let5 represent theproblem space. Given
a problemP ∈ 5, letw(P) ∈ R be itssolution. Denote thesizeof P by |P| (a positive
integer). We assume that the solution of a problem of constant size can be computed in
constant time. The simple lemma below states in exact terms the technique in its entirety.

Lemma 2.1. Letα < 1,ε > 0,and r be constants, and let D(·) be a function such that
D(n)/nε is monotone increasing in n. Given any problem P∈ 5, suppose that within
D(|P|) time,

(i) we can decide whetherw(P) < t for any given t∈ R, and
(ii) we can construct r subproblems P1, . . . , Pr ∈ 5, each of size at mostdα|P|e, so

that

w(P) = min{w(P1), . . . , w(Pr )}.
Then for any problem P∈ 5, we can compute the solutionw(P) in O(D(|P|)) expected
time.

Proof. We computew(P)by applying AlgorithmRAND-MIN to the (unknown) numbers
w(P1), . . . , w(Pr ). Decidingw(Pi ) < t takesD(|Pi |) time. Evaluatingw(Pi ) is done
recursively, unless|Pi | drops below a certain constant. Note that this procedure not only
computesw(P) but identifies a constant-size subproblem attaining the minimum.

For the analysis, letT(P) be the random variable corresponding to the time needed
to computew(P) by this procedure. LetN(Pi ) be a 0-1 random variable, having value 1
if and only ifw(Pi ) is evaluated. We have

T(P) =
r∑

i=1

N(Pi )T(Pi )+ O(r D(|P|)).

As noted earlier, the expected number of evaluations by AlgorithmRAND-MIN is
E[
∑r

i=1 N(Pi )] ≤ ln r + 1.
DefineT(n) = max|P|≤n E[T(P)]. SinceN(Pi ) andT(Pi ) are independent, we have

E[T(P)] =
r∑

i=1

E[N(Pi )] E[T(Pi )] + O(r D(|P|))

≤ (ln r + 1) T(dα|P|e)+ O(r D(|P|)),
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implying a “textbook” recurrence [27]:

T(n) = (ln r + 1) T(dαne)+ O(D(n)).

If we assume

(ln r + 1) αε < 1, (1)

then by induction one can easily show thatT(n) ≤ C ·D(n) for an appropriate constantC
(depending onα, r , andε).

To enforce condition (1), we compress` levels of the recursion into one before apply-
ing AlgorithmRAND-MIN, wherè is a sufficiently large constant. Thenr increases tor `

andα decreases toα`. To finish the proof, just note that lim̀→∞(ln r ` + 1) α`ε = 0.

Note. The above lemma still holds if (i) and (ii) requireD(|P|) expected time (rather
than worst-case time). In all of our applications, the cost of (ii) is subsumed by the cost
of (i), so D(·) really stands for the complexity of the decision problem.

For r = 1, randomization is not required: our recursive algorithm reduces to the
standard prune-and-search algorithm. For a larger constantr , the worst-case running
time is at leastÄ(nlogr/ log(1/α)). So the efficiency of a deterministic algorithm depends
crucially on the values of the constantsα and r . In contrast, by Lemma 2.1, these
constants are unimportant in bounding the randomized complexity; we can thus afford a
crude scheme to divide a problem into subproblems. Such a scheme is easily obtainable
for certain classes of problems, as we point out in the next section; however, it may be
less apparent for others.

3. Easy Applications

We now illustrate our technique in its simplest form on some abstract closest-pair and
ray-shooting problems. Although no specific new results are obtained, the applications
are instructive.

3.1. Closest Pairs

Let U be a collection of objects. Given adistance function d: U ×U → R, theclosest-
pair problemis to computew(P) = minp,q∈P d(p,q) for a given setP ⊂ U of sizen.
Theclosest-pair decision problemis to determine whetherw(P) < t for a givenP and
t ∈ R.

Theorem 3.1. If the closest-pair decision problem can be solved in D(n) time, then the
closest-pair problem can be solved in O(D(n)) expected time, assuming that D(n)/n is
monotone increasing.
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Proof. Arbitrarily partition P into three subsetsP1, P2, P3 of roughly equal size. Then

w(P) = min{w(P1 ∪ P2), w(P1 ∪ P3), w(P2 ∪ P3)}.

This divides the problem into three subproblems, each of size roughly 2n/3. Now apply
Lemma 2.1 (withr = 3 andα = 2

3).

Note. The above theorem easily extends to finding closestb-tuples, for any constant
integerb.

Rabin [58] was historically the first to apply randomized techniques to the standard
closest-pair problem, whereU is a fixed-dimensional space andd(·, ·) is the Euclidean
metric. Clarkson and Shor in their seminal work [24] used randomization on one geomet-
ric optimization problem, theEuclidean diameter problemin three dimensions, where
U = R3 andd(·, ·) is the negated Euclidean distance (the objective is to find the farthest
pair of a point set). Agarwal and Sharir [2] considered a certain closest-pair problem
that arises in finding the width of a point set inR3 and in other problems; here, the
elements ofU are bichromatic lines inR3 under a particular distance function (where
d(p,q) = ∞ when p andq have the same color). In all three papers, randomized al-
gorithms are obtained by modifying certain implicit decision algorithms. (Incidentally,
Clarkson and Shor’s approach, which was later adopted by Agarwal and Sharir, may be
regarded as some kind of randomized prune-and-search.) Our technique gives alternative
randomized algorithms that unify these previous results in a simple way and separate
the decision component more clearly.

3.2. Ray Shooting

Let U be a collection of objects and letV be a collection of rays. Letτ : U × V → R
be anordering function, whereτ(p1,q) < τ(p2,q) means that rayq hits objectp1

before p2. The ray-shooting problemis to preprocess a given setP ⊂ U of size n
into a data structure that answers queries of the following type: givenq ∈ V , compute
w(P,q) = minp∈P τ(p,q). (The objectp that attains this minimum represents the first
object hit by the query rayq.) In theray-shooting decision problem, a query has the type:
given anyq ∈ V andt ∈ R, determine whetherw(P,q) < t .

Theorem 3.2. If the ray-shooting decision problem can be solved with P(n) prepro-
cessing and D(n) query time, then the ray-shooting problem can be solved with O(P(n))
preprocessing and O(D(n))expected query time,assuming that P(n)/n1+ε and D(n)/nε

are monotone increasing for some constantε > 0.

Proof. In the preprocessing, partitionP into two subsetsP1, P2 of roughly equal size,
build the decision data structures forP1 andP2, and recursively preprocessP1 andP2. The
new preprocessing timeP′(n) satisfies the recurrence

P′(n) = 2P′(n/2)+ O(P(n)),
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which solves toP′(n) = O(P(n)) if P(n)/n1+ε is monotone increasing. To compute
w(P,q) for a givenq ∈ V , we can divide the problem into two subproblems, each of size
roughlyn/2:w(P,q) = min{w(P1,q), w(P2,q)}. Now we can apply Lemma 2.1.

Note. if we only assume thatP(n)/n is monotone increasing in the above theorem,
then the preprocessing time isP′(n) = O(P(n) logn).

Previously, Agarwal and Matouˇsek [1] described a general deterministic reduction
of the above ray-shooting problem to the decision problem (which they calledsegment
emptiness). The reduction uses parametric search and is not likely to be practical, besides
increasing the query time by a polylogarithmic factor and requiring a parallel version of
the decision algorithm.

In an earlier paper [13], the author gave a randomized reduction of linear-programming
queries to halfspace range reporting. This reduction, when specialized to ray shooting,
yields a different approach in which the preprocessing algorithm employs random sam-
pling. (Arya and Mount [8] noted a similar reduction in the context of nearest neighbor
searching.) In contrast, in the proof of Theorem 3.2, randomization is used in the query
algorithm but not the preprocessing. The random sampling approach, however, achieves
high-probability bounds in many instances and is more susceptible to derandomiza-
tion.

Schömer and Thiel [61] investigated a certain collision-detection problem that also
fits into the above framework. Randomization can again be used in place of parametric
search.

4. Rectilinear Applications

For many geometric problems, the process of dividing a problem into subproblems
is usually more involved than the simple applications from the previous section. We
take a number of specific problems in the rectilinear plane and demonstrate how this
division can be accomplished in each case. In what follows, all squares and rectangles
are implicitly assumed to be axis-parallel. Given two rectanglesR1, R2, we letR1 ∨ R2

denote the smallest rectangle enclosing their union.

4.1. Minimal k-Point Subsets

Motivated by applications in clustering and statistical analysis, a number of researchers
[6], [10], [28], [33], [35], [50] have looked at problems of the type: given ann-point
setP, compute a “minimal”k-point subset. We illustrate our technique on one specific
case, where the point setS is planar, and the measure of minimality is theL∞-diameter
(another case is examined in Section 6.2). This particular problem is identical to:

Problem. Given 2 ≤ k ≤ n and ann-point setP ⊂ R2, find the smallest square
enclosing at leastk points ofP.
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Eppstein and Erickson [35] observed that the decision version of the problem can be
solved inO(n logn) time by a straightforward plane-sweep algorithm. (The decision
problem reduces to computing thedepthof an arrangement of squares.) Using the search
technique of Frederickson and Johnson [37], they then solved the optimization problem
in O(n log2 n) time.

Using a simple grid scheme, Datta et al. [28] described a general process of dividing the
problem intoO(n/k) subproblems each of sizeO(k), so that the solution is the minimum
of the solutions of these subproblems; this division takesO(n logn) time. Immediately,
theO(n log2 n) time bound reduces slightly toO(n logn+ (k log2 k)(n/k)). If we apply
AlgorithmRAND-MIN to find the minimum, we get a randomized time boundO(n logn+
(k logk)(n/k)+(k log2 k) log(n/k)); this bound was recently observed by Bhattacharya
and ElGindy [10], using a more cumbersome derivation. The randomized bound matches
theO(n logn)decision time bound whenk = O(n/(logn log logn)). We give a different
algorithm that runs inO(n logn) expected time forall values ofk.

Theorem 4.1. The smallest(axis-aligned) square containing k of n given planar points
can be computed in O(n logn) expected time.

Proof. Before applying Lemma 2.1, we find it necessary to extend the problem (and
its decision problem) slightly: given ann-point setP ⊂ R2 and a rectangleR, we will
computew(P, R, k), the side length of the smallest squareS∗ that contains at least
k points of P and, in addition, containsR. The decision algorithm by Eppstein and
Erickson [35] can be modified for this extended problem. Alternatively, we can directly
reduce the extended problem to the original problem, sincew(P, R, k) = w(P′,∅, k+
4n), if we let P′ be the union ofP with n copies of the four corner vertices ofR.

Our division process is as follows. First, draw vertical lines at thedn/5eth smallest
anddn/5eth largestx-coordinates of the points inP. Similarly, draw horizontal lines at
thedn/5eth smallest anddn/5eth largesty-coordinates. LetR0 be the rectangle bounded
by these four lines. WriteR0 as an intersection of four halfplanesH1, . . . , H4; see Fig. 1.
The optimal squareS∗ must belong to one of two cases:

Case1: S∗ contains R0. Thenw(P, R, k) = w(P, R∨ R0, k) = w(P\R0, R∨ R0, k−
|P ∩ R0|).

Fig. 1. The rectangleR0 and the halfplanesH1, . . . , H4.
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Case2: S∗ ⊂ Hi for some i∈ {1, . . . ,4}. Thenw(P, R, k) = w(P ∩ Hi , R, k).

In any case, one can check the identity:

w(P, R, k) = min{w(P\R0, R∨ R0, k− |P ∩ R0|),
w(P ∩ H1, R, k), . . . , w(P ∩ H4, R, k)}.

Each of the five subproblemsP\R0, P ∩ H1, . . . , P ∩ H4 has size at most 4dn/5e. The
theorem follows.

For k not too large, the above result is probably optimal in view of the known
Ä(n log(n/k)) lower bound for the so-called “k-equal problem” [67]. Fork very close
to n, the time bound can be further reduced toO(n+ (n− k) logn); we leave the proof
as an easy exercise. The technique can be extended to higher dimensions [35] or to
the problem of finding the smallest homothet of a fixed convex polygon enclosingk
points [33].

4.2. Matching Point Sets

Inspired by pattern recognition applications such as in computer vision, numerous pa-
pers in computational geometry (e.g., [18]–[20], and [41]) have studied the problem
of matching point sets under a class of transformations by minimizing the Hausdorff
distance. We investigate a specialized case where the point sets are two-dimensional, the
allowable transformations are translations, and the metric isL∞:

Problem. Given two n-point setsA, B ⊂ R2, find vectorv ∈ R2 minimizing the
directed Hausdorff distance

H(A+ v, B) = max
a∈A

min
b∈B
‖a+ v − b‖∞.

(Our algorithm can be easily modified if instead theundirected Hausdorff distance
min{H(A+ v, B), H(B, A+ v)} is minimized.)

Chew and Kedem [20] showed that the decision version of the above problem can
be solved inO(n2 logn) time. Frederickson and Johnson’s search technique then yields
an O(n2 log2 n) time bound for the optimization problem. We show how to remove the
extra logn factor.

Theorem 4.2. The translation that minimizes the directed L∞-Hausdorff distance be-
tween two planar n-point sets can be found in O(n2 logn) expected time.

Proof. Consider the setP = B− A of N = O(n2) points. Assign colors to each point
of P so that two points have the same color if and only if they belong toB − a for a
commona ∈ A. Let c(p) denote the color of a pointp and letc(P) = {c(p): p ∈ P}.
Our problem reduces to the following if we setk = n:
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Given a setP of N colored points inR2, find the smallest squareS∗ that contains
k different colors, i.e.,|c(P ∩ S∗)| ≥ k.

Chew and Kedem’s algorithm solves the decision problem (finding thecolor-depthof
an arrangement of squares) inO(N log N) time [20]. (Their algorithm proceeds by first
partitioning the union of the squares in each color class into disjoint rectangles and then
computing the depth of the arrangement of all such rectangles by a straightforward plane
sweep.) We show how to solve the optimization problem inO(N log N) expected time
by Lemma 2.1.

We need to extend the problem: we will computew(P, R, k), the side length of
the smallest squareS∗ such that|c(P ∩ S∗)| ≥ k and, in addition, containsR. In the
same manner as in the previous proof, we can modify the decision algorithm or directly
eliminate the extra constraint aboutR.

Construct the rectangleR0 and its four bounding halfplanesH1, . . . , H4 as in the
previous proof. As before, the optimal squareS∗ belongs to one of two cases:

Case1: S∗ contains R0. Thenw(P, R, k) = w(P, R∨ R0, k) = w(P0, R∨ R0, k0),
where we let

P0 = {p ∈ P\R0: c(p) 6∈ c(P ∩ R0)} and k0 = k− |c(P ∩ R0)|.

Case2: S∗ ⊂ Hi for some i∈ {1, . . . ,4}. Thenw(P, R, k) = w(P ∩ Hi , R, k).

In any case, one can prove the identity:

w(P, R, k) = min{w(P0, R∨ R0, k0), w(P ∩ H1, R, k), . . . , w(P ∩ H4, R, k)}.

Each of these five subproblems has size at most 4dN/5e.

Chew et al. [18] discussed the extension of the problem to higher dimensions. Our
technique again improves their running time by a logarithmic factor.

4.3. Rectilinear p-Centers

A class of facility location problems known asp-center problemshas received much
attention in the computational geometry literature (e.g., see [5], [30], [34], [64], and
[66]), due to applications in various areas such as operations research and clustering. We
consider the case wherep is a constant, the dimension is two, and the metric isL∞:

Problem. Given ann-point setP ⊂ R2, find p congruent squares of the smallest size
coveringP.

The decision problem reduces to arectangular p-piercing problem: given a set ofn
rectangles in the plane, determine whether there exists a set ofp points that intersects
every rectangle. Sharir and Welzl [66] described efficient algorithms for this piercing
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problem for p ≤ 5. As they noted, reduction from thep-center problem to thep-
piercing problem can be accomplished by Frederickson and Johnson’s technique [37],
which increases the running time by a factor of logn. We show:

Theorem 4.3. If the rectangular p-piercing problem can be solved in Dp(n) time, then
the rectilinear p-center problem can be solved in O(Dp(n)) expected time, where the
hidden constant depends on p.

Proof. We again need to consider a generalized problem (which incidentally includes
the rectilinearp-center problem with “additive weights”):

Given a setR of n rectangles inR2, find p congruent squaresS∗1, . . . , S∗p of the
smallest size such that, for eachR ∈ R, there exists anS∗i that containsR.

Let w(R) denote the side length of the optimal squares. Observe that the decision
w(R) < t reduces to the abovep-piercing problem.

The division process is a little more involved than in the previous two proofs. First list
the 2n x-coordinates ofR and draw a vertical line at thei bn/5pc smallestx-coordinate
for i = 1, . . . ,10p. Similarly, list the 2n y-coordinates and draw a horizontal line at
the j bn/5pc smallesty-coordinate forj = 1, . . . ,10p. Call the aboveO(p) vertical
and horizontal linesgrid lines and call a rectangle bounded by four grid lines agrid
rectangle. Clearly, there areO(p4) possible grid rectangles.

A rectangle is said to beδ-denseif it contains at leastδn rectangles ofR. We prove:

Claim. One of the optimal squares S∗i contains a(1/(5p))-dense grid rectangle R0.

The claim can be seen from the following argument. Since every rectangle ofR is
contained inS∗i for somei ∈ {1, . . . , p}, there exists anS∗i that is(1/p)-dense by the
pigeonhole principle. Now, take the largest grid rectangleR0 inside S∗i , as shown in
Fig. 2. A rectangle ofR that is contained inS∗i but not inR0 must have a vertex inside
S∗i \R0; by our construction of the grid, there are at most 4n/(5p) such rectangles ofR.
Thus,R0 is (1/(5p))-dense.

From the claim, we can easily show the identity

w(R) = min
R0

w(R ∪ {R0}) = min
R0

w({R ∈ R: R 6⊆ R0} ∪ {R0}),

Fig. 2. Grid lines and the grid rectangleR0.
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where the minimum is taken over allO(p4) of the (1/(5p))-dense grid rectanglesR0.
The size of each subproblem is bounded roughly by(1− 1/(5p))n, so we can apply
Lemma 2.1.

We get one particular new result for the casep = 5: Sharir and Welzl [66] showed
that D5(n) = O(n log4 n). Their O(n log5 n) bound for the rectilinear 5-center problem
can therefore be reduced toO(n log4 n) with randomization. Recently, Segal [62] (see
also [46]) improved the bound for rectangular 5-piercing toD5(n) = O(n logn). This
implies anO(n logn) randomized algorithm for rectilinear 5-centers. (According to
Sharir and Welzl [66], there is anÄ(n logn) deterministic lower bound.)

5. Nonrectilinear Applications

As we have seen in the previous section, the division of a problem into subproblems
can usually be accomplished by elementary means for rectilinear applications. For non-
rectilinear problems, we often need to resort to tools for geometric divide-and-conquer
known ascuttings.

Given a collectionH of n hyperplanes inRd, a δ-cutting of size sis a partition of
space intos (possibly unbounded) simplices{11, . . . , 1s} such that the interior of each
simplex1i intersects at mostδn of the hyperplanes ofH . We need a (rather weak)
lemma on cuttings:

Lemma 5.1. Given n hyperplanes inRd for a sufficiently large n,aδ-cutting of constant
size can be constructed in O(n) time for some constantδ < 1.

The earliest proof of the lemma ford = 2 can be traced back to papers by Dyer [31]
and Megiddo [55]; they design prune-and-search algorithms for three-dimensional linear
programming using construction of a( 7

8)-cutting of size 4. The construction has been
extended to higher dimensions (with worse constants) [56]. A much simpler random-
ized method was suggested by Clarkson [21]: take a random sampleR ⊂ H of size
O((1/δ) log(1/δ)) and canonically triangulate the arrangement ofR. Derandomization
of this method and refinements on the constants are discussed in several papers [16],
[40], [48], [52]. (For a variant known asshallow cuttings[49], better bounds are still
possible.) Since the size of the cutting is not important when applying Lemma 2.1 (as
long as it is bounded by a constant), the original method of Dyer and Megiddo or the
randomized method of Clarkson is sufficient for our purposes.

5.1. Linear Programming with Violations: Feasible Case

As a first example, we consider a natural variant of the linear programming problem in
which a prescribed numberk of violated constraints is allowed [51], [60]. We start with
the simplest nontrivial version of this problem, where the dimension is two and a feasible
solution with no violation exists (without loss of generality, say thatv0 is feasible and
the objective is to minimizey):
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Problem. Given 0≤ k ≤ n and a setH of n closed halfplanes inR2 wherev0 ∈
⋂

H ,
find the lowest point in the closed region

Lk(H) = {q ∈ R2: q violates at mostk halfplanes ofH}.

(A point q violatesa halfplaneh if q 6∈ h.) Set Lk(H) = ∅ if k < 0. Note that,
for k = 0, this reduces to a standard linear program (which has well-known linear-time
methods [22], [31], [55], [63]). The difficulty for the general casek > 0 lies in the fact that
Lk(H) (the so-called(≤ k)-level) need not be convex and may have several local minima.

As Matoušek [51] and Roos and Widmayer [60] independently observed, an
O(n log2 n)-time solution to the problem can be obtained by parametric search or by
using an algorithm for slope selection [11], [26], [29], [42], [47]. (Roos and Widmayer
also claimed an improved bound ofO(n logn + k log2 k), but the validity of their ar-
gument is questionable.) A different approach of Matouˇsek [51] solves the problem in
O(n logn+ k2 log2 n) time, which is efficient only whenk is roughly smaller than

√
n.

The O(n logn) term can be improved toO(n logk) by a technique of the author [14].
We derive here the expected time boundO(n logn) for all values ofk. Surprisingly,

if k = O(n/ logβ n) for a constantβ > 1, our bound strengthens toO(n), matching
the complexity of the standard linear programming problem. The precise time bound is
given in the theorem below:

Theorem 5.2. Given a set H of n halfplanes with a nonempty intersection, the lowest
point in Lk(H) can be computed in O(n+k(n/k)ε logn) expected time for any constant
ε > 0.

Proof. To avoid some (minor) technical complications, we assume that the given half-
planes are in general position. Consider the slightly generalized problem of computing
w(H,1, k), the smallesty-coordinate insideLk(H) ∩ 1 for a given triangle1. We
first show how to decide whetherw(H,1, k) ≤ t for a given t ∈ R. The decision
w(H,1, k) < t can be made by a modification of the procedure below.

Let 1′ be the intersection of1 with the halfplaney ≤ t . We havew(H,1, k) ≤
t if and only if Lk(H) intersects1′. As v0 ∈

⋂
H , Lk(H) is a connected region

containingv0. Thus, the test holds if and only ifv0 ∈ 1′ or Lk(H) intersects one of
the (at most four) edges of1′. Deciding whetherLk(H) intersects a line segment is
equivalent to the following one-dimensional problem:

Let I be a collection ofn half-infinite intervals. Givena,b, decide whether there
exists a point in [a,b] that is contained in all but at mostk of the intervals ofI .

This one-dimensional problem can be solved as follows. WriteI = {[ai ,∞)} ∪
{(−∞,bj ]}, wherea1 ≥ a2 ≥ · · · and b1 ≤ b2 ≤ · · ·. One can verify that the an-
swer is yes if and only if there exists somei ∈ {0, . . . , k} such that

max{a,ai+1} ≤ min{b,bk−i+1}.
The condition can be checked inO(k) time, once we have computeda1, . . . ,ak and
b1, . . . ,bk. This computation requires sorting thek smallest/largest elements in a list
and takesO(n+ k logn) time (for instance, by a modified heapsort).
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Having solved the decision problem inO(n+ k logn) time, we now proceed to solve
the optimization problem. First compute aδ-cutting of then bounding lines ofH by
Lemma 5.1. Intersect the cutting triangles with1and triangulate to form a new collection
of triangles{1i }. For each1i , let Hi be the set of halfplanes ofH whose bounding lines
intersect1i and letki be the number of halfplanes ofH not intersecting1i . Then

w(H,1, k) = min
i
w(H,1i , k) = min

i
w(Hi ,1i , k− ki ).

This divides the problem into a constant number of subproblems each of size roughly
δn. We can now apply Lemma 2.1 with the upper boundD(n) = O(n+ k(n/k)ε logn).
(Note that we cannot directly setD(n) = n + k logn, becauseD(n)/nε needs to be
monotone increasing inn.)

We leave as an open question whether the optimization problem can be solved in
O(n + k logn) expected time. Extending the technique to higher dimensions is also
possible, but it is unclear at the moment how much is gained by examining the decision
problem.

5.2. Linear Programming with Violations: Infeasible Case

In the case that
⋂

H = ∅, our technique can be applied to solve a different problem:

Problem. Given a setH of n halfplanes inR2, find the smallestk such that there exists
a point inLk(H).

In other words, we want to find a maximal consistent subset of halfplanes (of size
n−k) [32], [51]. The dual is equivalent to the following line classification problem [36],
[51], with motivation from statistics: givenn points inR2 each colored red or blue, find
a line` that minimizes the total numberk of red points abovè and blue points beloẁ.
The problem is also related to finding certain line transversals [36].

An O(n2)-time algorithm is immediate after constructing the arrangement of then
bounding lines. Everett et al. [36] gave a “quality-sensitive” algorithm for this problem
that runs inO(n logn+ nk logk) time. The algorithm first solves the decision problem
(givenk, is Lk(H) empty?) inO(n logn+nk) time, and then uses a binary search to find
the optimalk. The theorem below improves theirO(n logn+ nk logk) running time to
O(n logn + nk), answering one of their open problems. We note that whenk is small
(roughly less than

√
n), a different algorithm of Matouˇsek [51], with a refinement by the

author [14], yields a better running time ofO(n logk + k3 log2 n). It is open what the
optimal time bound should be for the entire range ofk.

Theorem 5.3. Suppose that we can decide whether Lk(H) 6= ∅ in DK (n) time for
any collection H of n halfplanes and k≤ K . Then we can find the smallest k≤ K
with Lk(H) 6= ∅ in O(DK (n)) expected time, assuming that DK (n)/nε is monotone
increasing in n for some constantε > 0.
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Proof. Given a triangle1, letw(H,1, K ) be the smallestk ≤ K such thatLk(H)∩1
is nonempty (use∞ if no suchk exists). We can eliminate1 as follows:w(H,1, K ) =
w(H ′,R2, K ), whereH ′ is the union ofH with n+ 1 copies of the defining halfplanes
of 1. By assumption, we can decide whetherw(H,R2, K ) < t for a given integert in
DK (n) time (if t exceedsK , the question reduces to deciding whetherL K (H) 6= ∅).

To computew(H,1, K ), construct aδ-cutting of constant size. Define the triangu-
lation {1i } of 1 and the corresponding sets of halfplanes{Hi } and numbers{ki } as in
the previous proof. Then

w(H,1, K ) = min
i
w(H,1i , K ) = min

i
(w(Hi ,1i , K − ki )+ ki ).

Modifying the problem format to account for the additive term, we can apply
Lemma 2.1.

To use the theorem to find the optimalk, we still need an upper boundK . This
can be obtained by a standard trick of “guessing”k with an increasing sequence. For
instance, with Everett et al.’s boundDK (n) = O(n logn + nK), we can apply our
algorithm onK = dlogne,2dlogne,4dlogne, . . . until K ≥ k. The total cost remains
O(n logn + nk). Of course, we can remove theO(n logn) term here by switching to
the method of Matouˇsek for small values ofk.

5.3. Discrete1-Centers

As a final example that uses cuttings, we examine another instance of facility location,
namely, thediscrete1-center problemin three dimensions under the Euclidean metric:

Problem. Given ann-point setP ⊂ R3, find the smallest ball enclosingP whose
center belongs toP.

It is a variant of the standard Euclidean 1-center problem, which asks for the smallest
enclosing ball with no restriction on the center. (The standard version is an LP-type
problem and has linear-time solutions in any fixed dimension [22], [55], [56], [66].)

Recently, the discrete 2-center problem in the plane was studied by Agarwal et al. [5].
As they noted, the discrete 1-center problem in the plane is solvable inO(n logn)
time by constructing the farthest-point Voronoi diagram. However, for points in three
dimensions, the size of the Voronoi diagram can beÄ(n2) in the worst case. A better
approach inR3 is first to solve the decision problem, which involves the construction of
an intersection of congruent balls. This intersection hasO(n) size and can be computed
in O(n logn) time by a randomized incremental method of Clarkson and Shor [24] or its
derandomization [7], [12]. Like the Euclidean diameter problem, the discrete 1-center
problem inR3 can then be solved by parametric search inO(n polylogn) time [7], [12],
[17], [53], [59].

We now show how parametric search can be replaced by a randomized search, solv-
ing the three-dimensional discrete 1-center problem inO(n logn) expected time. The
randomized reduction to the decision problem is more involved than for the diameter



562 T. M. Chan

problem (Section 3.1). In particular, we need to borrow a certain prune-and-search idea
that was used previously by Megiddo [55] for the standard 1-center problem.

We have learned just recently of a randomized algorithm by Clarkson [23] that solves
the same problem without using Megiddo-style prune-and-search; its expected running
time is, however, slightly slower—more precisely,O(n logn log logn).

Theorem 5.4. The discrete1-center problem inR3 can be solved in O(n logn) ex-
pected time.

Proof. Given anm-point setP and ann-point setQ in R3, we solve a “min-max”
problem: compute

w(P, Q) = min
p∈P

max
q∈Q

d(p,q),

whered(·, ·) is the Euclidean metric. The radius of the optimal ball for the discrete
1-center problem isw(P, P). (Note that the “max-max” problem corresponds to the
diameter problem.)

To decide whetherw(P, Q) < t , we compute the intersection of the balls centered at
the points ofQ with radiust . If there exists a point ofP in the interior of this intersection,
then we return yes. By the algorithm of Clarkson and Shor [24], the decision can be made
in O((n+m) logn) time.

Now, we apply Lemma 2.1 to solve the optimization problem. First, it is easy to
reduce the size ofP by a constant factor: arbitrarily partitionP into two subsetsP1, P2

of roughly sizem/2, and observe that

w(P, Q) = min{w(P1, Q), w(P2, Q)}. (2)

To reduce the size ofQ by a constant factor, we arbitrarily pair points ofQ and
construct the bisector (a plane) for each of thebn/2c pairs. By Lemma 5.1, construct a
δ-cutting{1i } of thesebn/2c bisectors.

For each tetrahedron1i , we build a point setQi . Initially, Qi is set toQ. Examine
all pairs(q1,q2) whose bisectors avoid the interior of1i . Sayq1 lies on the same side
of the bisector as1i . Then any point in1i is closer toq1 thanq2. Removeq1 from Qi .
As approximately(1− δ)n/2 points are pruned, eachQi has size bounded by roughly
(1+ δ)n/2. Furthermore, maxq∈Q d(p,q) = maxq∈Qi d(p,q) for any p ∈ 1i . Hence,

w(P, Q) = min
i
w(P ∩1i , Q) = min

i
w(P ∩1i , Qi ). (3)

By applying (2) and (3) alternately, we can reduce bothm andn by a constant factor
using a constant number of subproblems. The result follows.

Clearly, the same reduction extends to the discrete 1-center problem in any fixed
dimension. The reduction also works for “max-min” problems, such as the computation
of the Hausdorff distance of two point sets; unfortunately, in this case, the decision
problem does not seem to be any easier to solve.

An Ä(n logn) lower bound for the diameter problem is known even in the two-
dimensional case [57]. Similar arguments imply the same lower bound for the discrete
1-center problem (by a reduction from the “set equality problem” [9]).
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6. Discussions

We have obtained improved expected time bounds (in some cases, matching known
worst-case lower bounds) for several geometric optimization problems using a common
randomized technique. The technique reduces these problems to their corresponding
decision problems with only a constant-factor increase in the running time. The constants
are quite large though (especially for the rectilinearp-center problem), and it is of
practical interest to lower them.

Take for example the closest-pair application (Section 3.1). The reduction in the proof
of Theorem 3.1 partitions the given set into three subsets and as a result reduces the
problem intor = 3 subproblems of a fractionα = 2

3 of the original size. When applying
Lemma 2.1, we need to compress` = 5 levels of the recursion, in effect, raising the
number of subproblems to 35. A better approach is to modify the reduction directly by
partitioning the given set intob subsets for a constantb > 3. Then we can create

(b
2

)
subproblems of 2/b times the size. By choosingb = 10, we avoid the compression and
have only 45 subproblems. A similar approach can be taken to optimize the constants in
some of our other applications.

We see two more directions for further research. The first is to find more geomet-
ric applications (or perhaps nongeometric ones). The second is to find deterministic
algorithms matching the performance of our randomized algorithms.

6.1. Limitation

Regarding the first direction, we note two requirements in the application of our tech-
nique, as shown by many of our examples: (i) a sufficiently “robust” decision algorithm
that can handle an appropriate extension of the problem, and (ii) a way to divide a
problem so as to reduce the problem size by a constant factor.

Requirement (ii) needs more technical consideration but actually can be dealt with
in a fairly general way using existing tools on geometric cuttings. For an illustration,
take the well-studiedplanar Euclidean2-center problem—find two congruent balls of
the smallest size coveringn given points inR2—where there is anO(n logn) solution
for the decision problem and anO(n log2 n) randomized solution for the optimization
problem from the recent work of Sharir [64] and Eppstein [34] (see also [15]); parametric
search was used here in one case. We can transform the problem into one involving an
arrangement ofn surfaces in five dimensions (using four variables for the coordinates of
the two centers and one variable for the radius). Constructing a cutting for this collection
of piecewise-algebraic surfaces establishes (ii). However, we need to solve an extension
of the decision problem where the solution is constrained to lie inside a given Tarski cell in
the transformed five-dimensional space. Unfortunately, the currentO(n logn) decision
algorithm does not work for this extended problem, so requirement (i) is not satisfied.

There are a number of other problems for which parametric search is applicable
but our randomized technique is currently not (including problems with a nonconstant
number of variables). It is hard to make a clear comparison of the power of the two
different techniques, though. The decomposability requirement (ii) of our technique (see
Lemma 2.1) indeed implies a special (tree-like) form of a parallel decision algorithm,
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much more restrictive than in parametric search. On the other hand, the processor bound
of this parallel algorithm is not important in our technique, but is in parametric search. It
is intriguing to explore further frameworks to widen the applicability of randomization
in geometric (and nongeometric) optimization.

6.2. Derandomization?

Regarding the second direction, we point out that derandomization of our generic recur-
sive algorithm (Section 2) is probably hard, if at all possible. We cannot even achieve
good high-probability bounds. The problem lies in the fact that AlgorithmRAND-MIN is
applied to a constant number of elements.

Consider one special case where we want to find the minimumt∗ = min{A[1], . . . ,
A[r ]}, knowing thatt∗ belongs to a given search space of sizeU , say{1, . . . ,U }. Suppose
that a decisionA[i ] < t takesD time. Then evaluating anA[i ] takesO(D logU ) time
by binary search, and AlgorithmRAND-MIN runs in O(Dr + D logU logr ) expected
time.

Here is a simple deterministic algorithm that beats the obviousO(Dr logU ) time
bound for small values ofU :

Algorithm DET-MIN

1. i ← 1
2. while i ≤ r do
3. if A[i ] ≥ U theni ← i + 1 elseU ← U − 1
4. returnU

The correctness of the algorithm is easily seen from the invariant min{A[1], . . . ,
A[i − 1]} ≥ U . The running time of the algorithm is clearlyO(D(r +U )).

For larger values ofU > r , the process can be sped up as follows. Apply Algorithm
DET-MIN to find t0 = mini bA[i ] · (r/U )c. As t0 lies in {1, . . . , r }, it can be found in
O(Dr ) time. Now, the minimumt∗ lies betweent0U/r and (t0 + 1)U/r , so we just
need to solve the problem recursively on a search space of sizeU/r . The depth of the
recursion isO(dlogr Ue), so the minimum can be found inO(Dr dlogr Ue).

The deterministic complexity of this minimization problem is therefore the same
as the randomized complexity—namely,O(Dr )—if the size of the search spaceU is
polynomial inr . For still largerU , one can apply a more complicated procedure due to
Gao et al. [38].

We are only able to find one application of this deterministic approach, a variant of a
problem studied in Section 4.1:

Problem. Given 2≤ k ≤ n and ann-point setP ⊂ R2, find ak-point subset with the
minimum Euclidean diameter.

For k close to a fraction ofn, the best algorithm for this problem is due to Eppstein
and Erickson [35] and runs inO(n3 log2 n) time. We improve their time bound by a
logarithmic factor.
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Theorem 6.1. The minimum-diameter k-point subset of a given planar n-point set can
be found in O(n3 logn) time deterministically.

Proof. Eppstein and Erickson’s approach [35] actually breaks the problem inton sub-
problems. The decision version of each subproblem is solved inO(n2 logn) time by
a dynamic matching algorithm, so that the decision version of the overall problem is
solved inO(n3 logn) time.

To be precise, letB(p, t) denote the ball centered atp of radiust and define the
following predicate givenp ∈ P andt ∈ R:

LUNE-TEST(p, t) is true if and only if there exists a pointq of distancet to p such
that thelune B(p, t) ∩ B(q, t) contains ak-point subset ofP with diameter at
mostt .

Eppstein and Erickson showed that this predicate can be evaluated inO(n2 logn) time.
Say P = {p1, . . . , pn}. For eachi , let A[i ] be the smallestt such thatLUNE-

TEST(pi , t) is true. The minimum diametert∗ over allk-point subsets ofP is precisely
min{A[1], . . . , A[n]}, because the minimal subset must be contained in some lune of
radiust∗. A decisionA[i ] < t reduces to a predicate evaluation because of monotonicity:
if t1 ≤ t2, thenLUNE-TEST(p, t1) impliesLUNE-TEST(p, t2).

The search space is the set of all interpoint distances, enumerable inO(n2 logn) time.
In the above setting, we have herer = n, D = O(n2 logn), andU = O(n2). We can
thus findt∗ in O(Dr dlogr Ue) = O(n3 logn) worst-case time.

For small values ofk, one can combine the above result with known techniques of
Eppstein and Erickson [35] or Datta et al. [28] to improve the previous deterministic
time bound ofO(n logn+nk2 log2 k) to O(n logn+nk2 logk) for this particular prob-
lem. The corresponding randomized result was recently discovered by Bhattacharya and
ElGindy [10].
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