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Abstract

This paper discusses algorithms for labeling sets of points in
the plane, where labels are not restricted to some finite num-
ber of positions, We show that continuously sliding labels
allows more points to be labeled both in theory and in prac-
tice, We define six different models of labeling, and analyze
how much better—more points get a label—one model can
be than another, Maximizing the number of labeled points
is NP-hard, but we show that all models have a polynomial-
time approximation scheme, and all models have a simple
and efficient factor-:zl- approximation algorithm. Finally, we
give experimental results based on the factor-% approxima-
tion algorithm to compare the models in practice.

1 Introduction

Annotating sets of points is a common task to be performed
in Geographic Information Systems. Cities on small-scale
maps are shown as points with the city’s name attached (Fig-
ure 1 shows names as rectangles), points of altitude usually
are small “+"-signs with a value, and in point pattern ana-
lysis [2], points in a plot are labeled with a sequence num-
ber, In (spatial) statistics [15], point sets are also common in
data postings of field measurements, scatterplots of principal
component analysis, and variograms, for instance.

Generally it is assumed that a point label can be seen as
an axis-parallel rectangle, the bounding box of the text (see
Figure 1), Several algorithms for point feature labeling have
been deseribed in the automated cartography literature and in
computational geometry (far too many to list; for bibliogra-
phies see [8, 22]). The more general problem of map labeling
includes line feature labeling (roads, rivers) and area labeling
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Figure 1: Rectangular labels of cities of the U.S.A.

(countries) as well.

A good label placement for the points of a given set has
two basic requirements. A label should be placed with the
point to which it belongs, and two labels should not over-
lap each other. For high quality cartographic label place-
ment, more requirements can be formulated such as unam-
biguity [14, 23]. Given these basic requirements, an algo-
rithm can try to either label as many points as possible, or
find the largest possible font such that all points can be la-
beled. Labeling as many points as possible already give rise
to a computationally intractable problem under the two basic
conditions [9, 10, 16].

Nearly all of the existing algorithms for point annotation
limit the placement of a label with respect to its point to a
finite number of possible positions. Algorithms described
before usually allow four label positions (the point is at one
of the four corners) [9, 21, 20], eight (many papers in the au-
tomated cartography literature), or any constant number [1].
We call restrictions of the allowed label positions the model
that is used by the algorithm. Models that allow a finite num-
ber of positions per label are fixed-position models.

In this paper we drop the restriction that a label can only
be placed at a finite number of positions. Instead, we al-
low any position on the edges of the rectangle to coincide
with the point, see Figure 1. Such a model is called a slider
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model. We will study how many more labels can be placed
with slider models than with fixed-position models, and to
what extent slider models require more difficult algorithms.
We generally assume that labels have equal height but not
necessarily the same width, This is a natural assumption if
labels contain text or numbers of a fixed font size. We con-
sider the rectangle that represents a label to be closed, which
implies that labels are not allowed to touch.

Slider models have been used in two previous papers. In
Hirsch’s paper [11], repelling forces are defined for overlap-
ping labels and computes translation vectors for them. Afier
translation, this process is repeated and hopefully, a labeling
with few overlaps appears after a number of iterations. This
is completely different from our approach, which is combi-
natorial. The paper by Doddi et al. [7] contains a couple
of labeling problems and algorithms, each using a different
labeling model. One of the problems is solved in a slider
model, where each label is allowed to rotate about the point
to be labeled. The labels must be equal-size squares (or other
regular polygons). In that paper, the objective is to maximize
the label size.

This paper is structured as follows. Section 2 introduces
the six models—three fixed-position and three slider—that
are compared in this paper. YWe analyze how many more
labels can be placed in one model than another, in theory.
In Section 3, we show that the slider models allow a sim-
ple factor-§ approximation algorithm that uses O(n) space
and O(nlogn) time. This was already known for the fixed-
position models. In Section 4, a polynomial time approxima-
tion scheme is given, showing that for any constant ¢ > 0,
there is a polynomial time algorithm that labels a fraction of
at least 1 — ¢ of the optimal number of labels that can be
placed. Again, this result was already known for the fixed-
position models but not for the slider models. We remark that
our algorithms can be adapted for labels of varying height,
but the approximation factors don’t hold any more.

Section 5 contains a comparison of the six different mod-
¢ls in practice. For these models, the factor—% approximation
algorithms have been implemented and tested on real world
data. We used three different data sets. One contains 1000
cities of the U.S.A., another contains a data posting with 236
mieasurements, and the third contains 75 points in a scatter-
plot near a regression line. Here the labels are the sequence
numbers of the points. We give tables showing how many
points are labeled in each model. It appears that the slider
medels produce about 10-15% more labels than the fixed-
position models. This improvement is significant, because
more labels are placed in the difficult areas.

2 Comparing label models

This paper considers three fixed-position models and three
slider madels for point feature label placement. These are
shown in Figure 2. It is obvious that a maximum labeling
of a set P of points in the 4-slider model must have as least
as many labels as in any of the other models. Similarly, the
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1-slider 2-slider 4-slider

Figure 2: Fixed-position and slider models.

1-slider model is at least as good as the 2-position model.
The partial order representing the generality of the models,
shown in Figure 3, presents itself immediately. It is clear that

o,
O
o,
e,

Figure 3: Partial order on the models.

there are point sets where all points can be labeled in any of
the models. It is more difficult to answer the question “How
many more points can be labeled in one model than another,
for some point set?”. This section deals with this question.
For simplicity, all labels in this section are squares of unit
size.

Let P be a set of  points in the plane. Let A and M be
two models for labeling P, and let optyy, (P) and opt,, (P)
be the maximum number of points of P that receive a label
in the models M and Mj, respectively. Then the (A, My)-
ratio is the supremum of the ratio opt,s, (P)/opt,y, (P) for
n — oo and maximized over all point sets P with n points.
Figure 4 shows, for instance, that the 2-position model can
be twice as good as the 1-position model, which is not really
surprising. We can also show that the ratio of 2 is tight. Con-
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2-position

I-position
Figure 4: Optimal labeling of P in two models.

sider an maximum labeling of % points from a point set P
with n points, using the 2-position model. Move the labels
of these [ points into the position allowed in the 1-position
model, Either [£/2] of the labels were already in this po-
sition, and they form a nonintersecting set, or [k/2] of the
labels were in the other position and have been flipped. Since
these squares were nonintersecting before flipping, they must
also be nonintersecting after flipping, which proves that the
ratio of 2 is tight, The same simple idea gives a ratio of 2
between the 1-slider and 2-slider models, and the 2-position
and 4-position models, To analyze the ratios between other
models, more complicated variations of this idea are needed.

To analyze the ratios between other models M; and Mo,
we use the following strategy. We want to bound the ratio p
by which more labels can be placed in the model with more
degrees of freedom, say M;. We assume an optimal label
placement in Mj. Then we canonically re-label the labeled
points by moving every label into a position which is valid in
the more restrictive model M». This may cause some labels
to intersect. We determine the maximum number fjeq, of Ma-
labels that intersect the leftmost Mz-label I. Then we put [
into a set S, remove [ and all its conflict partners from the
instance and repeat until no labels remain. At the end of
the process, S contains at least optyy, (P)/(ier + 1) non-
intersecting Ma-labels, where opty,, (P) is the size of the
assumed optimal M;-placement. The size of S is a lower
bound for the size of an optimal Mpy-placement, thus Jeq + 1
is an upper bound for the (M, Mz)-ratio.

To prove a lower bound for the ratio of two models, we
need to give an example of arbitrary size for which any M-
placement is worse by this ratio.

Lemma 1 Given two labeling models My and M> such that
the labels in My can be slid into some position of My using
only horizontal sliding or only vertical sliding (not both). Let
p be the (M, Mp)-ratio. Then p < 3.

Proof: Again we consider an optimal };-labeling of an
arbitrary instance, Assume that we can slide M;- into M,-
label positions vertically (for instance, M; is the 4-slider
model and M is the 2-slider model). We canonically slide
all Mj-labels that are not yet in an Ma-label position up-
wards, until they arrive in an Ms-label position. We show
that the leftmost Mas-label I; can then intersect at most two
other Mp-labels. This yields the upper bound of 3 for p.

L.y
)

2 A2

A

Figure 5: If M; can be slid into M> then the leftmost Mo-
label Iy cannot intersect more than two Ms-labels.

Mp-labels intersecting l» can only lie within area 45 in
Figure 5 since [ is leftmost. The corresponding Af;-labels
are restricted to area A;. Every label in A; must contain
one of the three gridpoints in the interior of 4; (marked by
crosses in Figure 5). Thus A; can contain only three non-
intersecting A3 -labels including the M;-counterpart of l,.
1t follows that /5 cannot intersect more than two As-labels,
and that p < 3. m

A simple example gives a lower bound of 2 for the ratio
of, for instance, the 2-slider model and the 4-slider model.
Consider the set of n points {(0, ¢) |0 < 7 < n — 1}. Then
the 2-slider model can label at best every other point, giv-
ing [n/2] labels. The 4-slider model can label the point at
the origin right and below, and every next point with a label
shifted 1 4+ 1/(n — 1) upwards with respect to the label be-
low. This example makes explicit use of the assumption that
squares be closed, but this is not necessary: use two columns
of points at z-distance %, and use 1— € as y-distance between
the points.

In the full paper [19], we show the upper and lower bounds
on the ratios between two models given in Figure 6. The
lower bound 2% stems from an example, where the 1-posi-
tion model gives a 9-cycle of intersecting squares, but the
1-slider mode] allows a non-intersecting placement.

Finally, we wish to note that slider models can be 3/2
times as good as any finite approximation of that slider model.
For example, consider the 1-slider model and a model that
allows a fixed set of one hundred different positions where
the bottom edge of the square coincides with the point to be
labeled. Then we take three points (0,0), (z,0), (1 + ¢,0),
choose € > 0 to be very small, and choose z such that none
of the one hundred allowed positions fits between the outer
two points. This is always possible. The 1-slider model can
label all three points regardless of the choice of ¢ and . By
copying these three points n/3 times we get the ratio 3/2.

3 Greedy approximation algorithms

In the following sections we consider algorithms for point
feature labeling in the slider models. Labeling the maxi-
mum number of points is intractable in the fixed-position
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Figure 6: Upper and lower bounds for the ratios of two
models.

models [9, 10, 16]. In the full version [19] we show this
result for the slider models, so we have to be content with
approximation algorithms. In this section we describe an
O(n logn) time algorithm for the slider models which ap-
proximates an optimal solution in the following sense. If ihe
maximum number of labels that can be placed is K, then our
algorithm places at least K /2 labels: a factor—% approxima-
tion algorithm. For most data sets, however, we expect to
come much closer to the optimum.

For the fixed position models, simple O(nlogn) tirae,
factor-% approximation algorithms were described recently
by Agarwal et al. [1]. We obtain the same result for the
slider models. We’ll only describe the most general 4-slider
algorithm; it is an extension of the 1-slider and 2-slider al-
gorithms. It is based on a greedy strategy. For convenience
we’ll do as if labels were allowed to touch, unlike in the pre-
vious section. In the full paper we show that simple adapta-
tions can be made to obtain non-touching labels.

Given a set of points with labels that have already been
placed, and a set of points that don’t have a label yet, define
the leftmost label to be the label whose right edge is leftmost
among all possible label positions of unlabeled points. So
by definition, the leftmost label doesn’t intersect any label
that has been placed. The strategy is the same as for fixed
position labels [1] but the algorithm is quite different. The
proof of the following lemma is given in the full paper.

Lemma 2 Given labels of fived height and any of the slider
models, the greedy strategy of repeatedly choosing the left-

most label finds a labeling of at least half the number of
points labeled in an optimal solution.

A brute-force algorithm for this simple strategy would
need O(n®) steps. In order to achieve an O(nlogn) time
bound, we must use some common geometric data struc-
tures.

Let {p1,...,pn} be the set of points that has to be la-
beled. The label of p; is denoted by I;, and the reference
point of a label is its lower left vertex. The possible posi-
tions of the reference point of a point p; are represented by
four line segments. Two are horizontal, hy;—; and hs;, and
two are vertical, va;—; and vo;. Their position is exactly the
position of the edges of the label /; if it were placed left and
below p;. The width of /; is denoted w;, and the height is
always 1 (we can normalize to this situation).

If a label [; has been placed, then no reference point posi-
tion inside /; is possible. The same holds for reference points
inside the rectangle I} precisely one unit below /; (since any
label extends one unit above its reference point), Further-
more, since labels are placed from left to right, no reference
point positions to the left of I; and I} will still be accepted
by the algorithm. Suppose a subset of the points has already
received labels by the algorithm. The right envelope of all

Figure 7: Frontier of the placed labels (dark grey) and their
lowered copies (light grey).

labels [ and their copies !’ outlines all reference point po-
sitions that are impossible, or cannot occur any more, sec
Figure 7. We call this right envelope the frontier and denote
it by F.

To determine the next leftmost label, we only have to
consider the frontier F and the segments o1, hog, V241,
and vy; of the points p; to the right of F that don’t have a
label yet. Given a horizontal segment £ and the fronticr F,
there are three possibilities: (i) h lies completely left of F.
Then h can be discarded; a point on it cannot be a reference
point for a Iabel that doesn’t overlap another label. (ii) / lies
completely right of F. Then the leftmost point on } is a can-
didate for the next leftmost label. (iii) & intersects F', Then a
point just right of the intersection point is the candidate. For
a vertical segment v, a similar situation occurs, If v lies left
of F, it can be discarded; if v lies right of F, any point on v
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Figure 8: The sets Hyght, Him, and Viprighe. The dashed lines in the middle picture separate the segments of Hjg, that are in

different red-black trees 7;.

can be chosen; and if v and F intersect, then any point on v
right of I/ can be chosen as a candidate.

Let H be the set of all horizontal segments that represent
reference points of the labels. Similarly, let V' be the set of
the corresponding vertical segments. Let Hygne C H be the
subset of all horizontal segments that lie completely right of
I, See Bigure 8, Let Hy,, € H be the subset of all horizontal
segments that intersect F. Let Hyn C H be the subset of
all horizontal segments that lie completely left of F' (these
cannot give a valid label any more). Let Vigge C V be
the subset of all vertical segments that contain at least some
point right of I

'To maintain the frontier and the candidates for the best
reference point we’ll use a few data structures. Some of the
data structures are used to find the next leftmost label; other
data structures are only used to update the former ones ef-
ficiently, The data structures are red-black trees 7", heaps
‘H, and priority search trees P [17]. These are described in
standard textbooks on algorithms [5] and computational ge-
ometry [6], We use three data structures to find the leftmost
label position among the ones represented by Hine, Hright, and

Vit sighte
Leftmost label query structures.

1. For each segment in Hygny we store the z-coordinate of
its right endpoint, This corresponds to the right edge of
a label whose reference point is the left endpoint of the
segment, These values are stored in a heap, where the
root stores the minimum,

1

The subset Hjy, is stored as follows. For each verti-
cal segment f; of F, we maintain a red-black tree 7;
with the segments in Hjp, that intersect f; (see the mid-
dle picture of Figure 8). These are stored in the leaves
sorted on y-coordinate. With each leaf we also store
the width of the corresponding label. We augment each
red-black tree by storing at each internal node the min-
imum width label in the subtree of that node [5]. We

use a heap Hjy, to have fast access to the segment in Hig,
that allows the leftmost label placement. H;y, stores for
each 7; the sum of the z-coordinate of f; and the min-
imum width of the segments in 7;. Thus the root of
Hine corresponds to the leftmost label among the labels
represented by Hiy.

3. For the vertical segments in V, we don’t maintain the
set Viot,sighe but some set V'’ for which Vg g € V! C
V. The z-coordinate of each segment of V' is stored
in a heap. The heap may return as the minimum some
segment that lies completely left of F', so it may also
contain labels that cannot be placed. After extracting
the minimum from the heap, we test if it is in Viasghe.
If not, we discard it and extract the next minimum from
the heap, until we find one in Vip,sgpt.

We query the three heaps described above. Among their
answers, one corresponds to the leftmost label. This is the
label we place. Then we must update the frontier F and
several of the data structures described above. This is not
so easy. We’ll use some more data structures that help to do
the updating after the frontier has changed. Let fy.., be the
union of the right edges of the newly placed label ! and its
copy I'. faew is a vertical line segment of length 2. The new
frontier F is the right envelope of the old frontier and fiew,
see Figure 9.

Update assistance structures.

1a. To determine which segments move from Hygp t0 Hin
or Hy when the frontier changes, we use a priority
search tree P on the left endpoints of segments in
Higne. After placing a label, we query Ppg with the
region left of fyy, (grey in Figure 9) to locate the left
endpoints of all segments that are no longer in Hge.
We delete these endpoints from Py.q, and we delete the
corresponding segments from the heap for Hygne. For
each deleted segment we test whether its right endpoint
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search trees are done.

is right of the frontier. If so, that segment is in Hjy, and
we insert it in the data structures for Hiy. If not, the
scgment is in Hy.; and can be discarded.

To determine which segments move from Hjy to0 Hieq
when the frontier changes, we use a priority search tree
Prigm on the right endpoints of segments in Hin. After
placing a label, we query Prg with the region left of
Suew (grey in Figure 9) to locate all right endpoints of
segments that have moved from Hj,, to Hyq. Then we
delete the entries corresponding to these segments from
the trees 7;, from the heap Hiy, and from Pgp, itself.

When the frontier changes, we must also reorganize the
red-black trees and H;y, as a whole. Recall that we use
a red-black tree 7; for each vertical segment of F'. At
most three new vertical segments can arise when the
frontier changes, but many more vertical segments may
cease to exist. We use the trees of the destroyed verti-
cal segments of F' to construct the new red-black trees.
This is done by the operations SPLIT and CONCATE-
NATE, which are standard for red-black trees. In Fig-
ure 9 the trees T3, 73, Ts, and Tg are reorganized to the
new trees 7o, T10, and 7T13. The heap H;y, is updated by
removing the value of each destroyed tree, and inserting
the value of each new tree.

We don’t need any additional data structures to update
the heap on the vertical segments. However, we need
to decide whether an extracted minimum from the heap
really is in Vip rigne. We use an augmented red-black tree
for this test. The leaves of this tree store the vertical seg-
ments of the frontier sorted from bottom to top. Each
leaf also stores the z-coordinate of its segment. Each
internal node is augmented with a value that represents
the minimum z-coordinate in its subtree. For each y-
interval, the augmented red-black tree reports the mini-
mum z-coordinate of the frontier in this y-interval.

The algorithm is given below. Due to lack of space, details
have been omitted.

Algorithm.

While there are still segments in any of the heaps for V7,
Hijope, or Hiy, do the following steps:

1. Let v be the vertical segment that corresponds to the
minimum of the heap for V. Search in the augmented
red-black tree on F' with v to see if v has some point
right of F. If not, remove v from the heap and repeat
this step.

2. Determine the smallest among the minima of the three
heaps for V', Hggn, and Hjy. Remove this minimum
from its heap. Let [; be the label position of point p;
corresponding to this minimum. Choose [; as the next
label to be placed.

3. Determine fp.y, the right edge of I; extended one unit
downwards. Update the frontier F' with fi.,, Update
the augmented red-black tree from 3a with fey. Search
with the region horizontally left of fu. (grey in Fig-
ure 9) in the priority search trees of 1a and 2a and up-
date the structures of 1, 1a, 2, and 2a accordingly.

Analysis.

The basic structures used by the algorithm are heaps, red-

black trees, augmented red-black trees, and priority search

trees. All of these structures require O(n) space for a set

of size n. Also, these structures can be updated in Q(logn)

time per insertion or deletion, or extract-min for heaps. Red-

black trees allow SPLIT and CONCATENATE in Q(log n) time,
The queries on the red-black trees take O(logn) time, and

the queries on the priority search trees take O(k + logn)

time, where % is the number of points found in the query

range.
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The efficiency of the algorithm is established by the fol-
lowing observations, Any vertical segment fiy, creates one
vertical edge in the frontier F, and changes at most two of
them, It follows that throughout the whole algorithm, at
most 3n — 2 different vertical edges appear in F'. There-
fore at most 3n — 2 vertical edges have to be destroyed. This
bounds the total number of red-black trees from 2 that can
appear, the total number of SPLIT operations, and the total
number of CONCATENATE operations to O(n). Since SPLIT
and CONCATENATE operations take O(log n) time each, at
most O(nlogn) time is spent on splitting and concatenat-
ing, The augmented red-black tree of 3a can be maintained
in O(n logn) time for the same reasons.

For each new label placed, one query is done on each of
the two priority search trees, Such a query takes O(k-+logn)
time, where  is the number of points in the range. These
points are always deleted from the priority search tree, so
later on, the algorithm doesn’t spend time on reporting them
again, The priority search trees are initialized with one point
for each horizontal segment, and we never add more points
to them, So in total, at most O(nlogn) time is spent for
querying and updating the priority search trees.

We conclude:

Theorem 1 Given n points in the plane, and for each point
a rectangular label with fixed height and some given width.
Then for each of the fixed-position and slider models, there is
an O(nlogn) time and linear space algorithm which places
at least half the maximum number of labels.

Remark 1, For the 1-slider and 2-slider models, we can omit
the data structures listed under 3 and 3a.

Remark 2. For fixed position models, the algorithm can
be implemented using only one priority search tree and one
heap, We initialize the priority search tree with the refer-
ence points of all labes that may still be placed. In the heap,
we store the sum of z-coordinate and label width for each
reference point, When the label corresponding to the heap’s
minimum is chosen, we query in the priority search tree with
the appropriate range to find the reference points that are no
Jonger valid, We remove these from heap and priority search
tree, and repeat by selecting the minimum from the heap.

4 Polynomial time approximation scheme

A polynomial time approximation scheme for a labeling prob-
lem means that for any constant ¢ > 0, there is an algorithm

that runs in O(n®) time and places at least a fraction of 1 — ¢

of the number of labels in an optimal placement. Here ¢ is

a constant that may depend on ¢, Polynomial time approx-

imation schemes (PTAS) have been developed for problems

that are NP-hard, so all known algorithms producing an op-

timal solution require exponential time. A good survey of
approximation algorithms for NP-hard geometric problems

is by Bern and Eppstein [3].

For a set of unit squares, Hunt et al. [13] gave a PTAS
to find the largest size subset of squares that don’t intersect.
This implies that there is a PTAS for labeling as many points
as possible in any fixed-position model. This result was ex-
tended by Agarwal et al. {1] to labels with unit height but
arbitrary width. In this section we show that the same result
holds for the slider models. The algorithm is mainly of the-
oretical interest, so we sketch the ideas only briefly. First we
outline the approach for the 1-position model and unit height
labels [1]. Then we extend to the 1-slider model and other
models.

Let P be a set of n points and assume the 1-position
model. We begin by stabbing the set of n possible labels
by horizontal lines at distance greater than 1, and such that
each label is stabbed by some horizontal line. Let these lines
bely,..., Iy from top to bottom, and let P, ..., Py, be the
subsets such that P; contains the points with labels intersect-
ing l;. The idea is to discard every ¢-th subset and solve the
problem for Py, ..., P;—; optimally, then solve the problem
for Piy.1, ..., Pa;_y optimally, and so on. These optimal so-
lutions to subproblems can simply be joined to an optimal
solution for Py, ..., Pi—1, Pit1,- -+, Pat—1,.- - since no la-
bel of a pointin Py, ..., P;_; can intersect a label of a point
in Peyq,...,Poy. For the whole set P, these joined op-
timal solutions to subsets form a suboptimal solution. The
labeling problem for £ — 1 consecutive subsets can be solved
optimally by dynamic programming in time polynomial in
but exponential in ¢.

Then we apply the Shifting Lemma idea {12] and dis-
card the subsets F;—1, Pot—1, P3—1,.-., and compute an
optimal solution for the remaining subset. Next we discard
Py 5, Pyt_s, Pst.s,..., and so on. One of the ¢ solutions
that we find is a %-approximation of the optimal solution
for the whole set by the pigeon hole principle. For any con-
stant £ we have a polynomial time algorithm, so we obtain a
polynomial time approximation scheme.

Now assume the 1-slider model. The idea of stabbing
the labels by horizontal lines still works. So does the idea of
combining the solutions of P, ..., Pi—1,0f Pry1,.. ., P2s—y
and so on. But we don’t know how to solve the problem
for P,...,B—, optimally in time polynomial in . So the
idea is to approximate the optimal solution for Pi, ..., P;—1.
Roughly, we set k =  to be another constant, and determine
the leftmost labeling of any % points of Py, ..., P;—3 by brute
force as follows. Since £ is constant, we can test every sub-
set of k points and label them leftmost. If we cannot label
the k points of some subset without intersection, we discard
the subset. We choose the subset that gives the labeling that
is leftmost among all subsets without intersections.

Let! be the leftmost vertical line that has the interiors of
the k chosen labels to its left. We discard all label positions
that intersect ! or lie left of it. Then we repeat to find the
next k leftmost labels. The observation is that the optimal
solution cannot have a line left of our leftmost line with &
labels to its left. So from the optimal solution, we discard
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at most one label from each of the ¢ — 1 subsets in our ap-
proximation. For the subsets Py, ..., P;_1, we approximate
the optimal solution with a factor of ;zi—. The Shifting
Lemma idea of discarding every ¢-th subset approximates
e optiraal solution with a factor of ’—‘t—l So the approxi-
mation factor for the wlg’ole algorithm is the product of the
twor by 151 = ol 2 = ol By increasing
the value of ¢ we get an approximation factor that is arbitrar-
ily close to 1.

Assume that Py, ..., P;—; together contain n' points. To
find the leftmost % labels we try every (’,") subsets of &
points. We label these from left to right, and leftmost. This
is casy in O(%?) time.

In the 4-slider model, we take the same approach, but
it takes more time to find the leftmost labeling of % poinis.
For each such subset, we test all possibilities of taking the
top, bottom, left, or right slider for each label. This gives 4F
possibilitics for one subset. Top and bottom sliders are put
leftraost: left and right sliders are put bottommost. We must
also try each of the %! insertion orders of the k labels. So
festing one subset can be done in O(4F - k! - £?) time.

Theorem 2 For each of the slider models and for any con-
stant € > 0, there is a polynomial time algorithm which la-
bels at least (1 — €) times the maximum number of input
points that can be labeled.

5 Implementation and test resuits

In this section we compare experimentally how many labels
are placed by the greedy algorithms of Section 3 in each of
the six models. We implemented the algorithms in C++ and
used some data structures of LEDA, the Library of Efficient
Data types and Algorithms [18]. Since LEDA doesn’t have
priority search trees, we used orthogonal range trees instead.
Our implementation is simpler than the one described here
in two respects. Firstly, the red-black trees 7; of 2 can be
enpected to contain only a few horizontal segments of Hp,
at any moment. So we replaced them by lists. Secondly,
the augmented red-black tree doesn’t profit much from the
augmentation in practice. When searching for the minimum
s-coordinate of F in a y-interval, we simply scan all leaves
of the red-black tree in that interval. One can expect to visit
ondy a few leaves, since the y-interval is only twice the unit
height.

The first of the three data sets contains 1000 cities of the
U.S.A. that must be labeled with their name. We used several
ditferent font sizes, and labeled the cities with the bound-
ing boxes of their names. The results are shown in Table 1.
The codes 1P, 2P, and 4P are shorthand for the 1-, 2-, and
<-position models. The codes 1S, 28, and 4S are shorthand
tor the slider models. The values in the second table show
the percentages with respect to the 4-position labeling.

The second data set contains the 236 points of a data
posting. The labels are measurement values and come from a

No. of labels placed
tont 1P 2P 4P 15 25 EE]
K] 851 | 950 | 971 } 990 | 993 | 94y

6 || 777 | 910 | 952 | 967 | 982 | 936

7 || 705 | 852 | 901 | 932 | 964 | 92

8 || 686 | 845 | 896 | 918 | 952 | 958

9 | 607 | 758 | 817 | 836 | 890 [ 902
10 |} 554 { 704 | 769 | 787 | 853 | 872
11 || 520 | 657 | 721 | 735 | 805 | 831
12 || 500 | 637 | 709 | 719 | 796 | 813
13 || 448 | 570 | 638 | 649 | 716 | 734
14 j| 433 | 557 | 624 | 637 | 695 | 712
15 {| 382 | 494 | 550 | 556 | 627 | 645

Percentape w.r.t. 4-position model
font 1P | 2P 4P 18 28 45
5 87 | 97 | 100 | 101 w02 | 102
64 8 95| 100 | 101 { 103 | 103
7
8

78 | 94 | 100 | 103 | 106 | 107
76 | 94 | 100 } 102 | 106 | 106

9 |f 74| 92| 100 | 102 | 108 | 110
10 |} 72 | 91 | 100 | 102 | 110 | 113
7291|100 101 | 111 |} 115
12 1] 70 | 89 | 100 | 101 | 112 | 114
13 ]| 70 | 89 100 | 101 | 112 | 115
14 4 69 | 8 § 100 | 102 | 111 | 14
15 §) 69 | 89 | 100 | 101 | 114 | 117

Table 1: 1000 cities on a large map.

book on geostatistics [15]. Figure 10 shows the labeled data
set and the number of labels placed in each model.

The third data set contains the 75 points of a regression
analysis. Here the points are clustered near a regression line,
and the labels are simply identification numbers. Figure 11
shows the labeling.

The bottom tables of Figures 10 and 11 show that the
4-slider model sometimes places 10~15% more labels than
the 4-position model. This improvement is significant, since
it is always caused by a better labeling of the areas that are
difficult to label. We also created artificial, pseudo-random
data sets where all areas are difficult to label, Here we indeed
found higher improvements: up to 92%.

Efficiency was not the main motivation for these exper-
iments. Still it appeared that the label placement was com-
puted in a few seconds for all data sets we tried, up to 2500
points. A plot shown on a computer screen seldom contains
more than 1000 Iabeled points.

6 Conclusions and extensions

‘We have compared six different models for labeling a set of
points with rectangular labels of fixed height. New in our pa-
per (except for the work of Hirsch [11] and Doddi et al. [7])
is that we don’t restrict the placement of labels to a finite
number of positions, but only require that labels touch the
point they belong to. All previous papers either limited the
number of possible positions for a label to a constant, didn’t
give any time bounds, or had worse (if any) approximation
factors. Some had the objective to maximize the label size
rather than the number of labeled points, or used a model that
allows an arbitrary orientation of the labels.

We proved that slider models for label placement are con-
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7 85 95 | 100 | 102 | 102 | 102

8 85 95 | 100 | 102 | 102 | 102

9 || 84 94 ] 100 | 107 | 108 | 108

10 |} 84 93 | 100 | 107 | 111 | 111
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12 )| 87 94 ] 100 | 106 | 110 | 112

13 89 95 | 100 | 107 | 112 | 112

14 || 89 95 | 100 | 107 | 112 | 112

15 89 96 { 100 | 109 | 113 | 115

Figure 10; Labeling of the data posting in 9pt font using the 4-slider model (scaled to fit), and tables with the performance.

siderably better than fixed-position models in theory. Sec-
ondly, we showed that for each of the slider models, there
is a simple factor-% approximation algorithm that requires
O(nlogn) time and linear space. Thirdly, we sketched a
polynomial time approximation scheme for each of the slider
models, Finally, we compared the six different models on
various data sets experimentally, using the factor-% approx-
imation algorithms. We observed, for instance, that on real-
world data, the algorithm for the 4-slider model can place
10-15% more labels than the corresponding algorithm for
the 4-position model, Improvements are higher for pseudo-
random data.

The simple approximation algorithms we gave only ap-
ply to labels of the same height. We also have variations of
our algorithms that work for labels of varying heights; these
are described in the full paper [19].

We haven’t compared our results with the extensive tests
of Christensen et al, [4], since our main objective was to mu-
tually compare the different models. Still it would be inter-
esting to see how the 4-slider model performs compared to
the various algorithms tested by Christensen et al. [4]. Since
we don’t have an exact algorithm to compute an optimal la-

beling, we don’tknow how much better the greedy algorithm
performs than its approximation guarantee of % suggests,

Another extension of our work would be to produce label
placements that have high quality according to other criteria
as well, like avoiding ambiguity, and giving preference to
certain label positions over others.
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