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Abstract 

This paper discusses algorithms for labeling sets of points in 
the plane, where labels are not restricted to some finite num- 
ber of positions. We show that continuously sliding labels 
allows more points to be labeled both in theory and in prac- 
tice, WC define six different models of labeling, and analyze 
how much better-more points get a label-ne model can 
be than another. Maximizing the number of labeled points 
is N&hard, but we show that all models have a polynomial- 
limo approximation scheme, and all models have a simple 
and eflicient factor-4 approximation algorithm. Finally, we 
give experimental results based on the factor-i approxima- 
tion algorithm to compare the models in practice. 

1 Introduction 

Annotating sets of points is a common task to be performed 
in Geographic Information Systems. Cities on small-scale 
maps are shown as points with the city’s name attached (Fig- 
urc 1 shows names as rectangles), points of altitude usually 
arc small “+I’-signs with a value, and in point pattern ana- 
lysis [2], points in a plot are labeled with a sequence num- 
ber, In (spatial) statistics [15], point sets are also common in 
data postings of field measurements, scatter-plots of principal 
component analysis, and variograms, for instance. 

Generally it is assumed that a point label can be seen as 
an axis-parallel rectangle, the bounding box of the text (see 
Figure l), Several algorithms for point feature labeling have 
been described in the automated cartography literature and in 
computational geometry (far too many to list; for bibliogra- 
phies see [8,22]). The more general problem of map labeling 
includes line feature labeling (roads, rivers) and area labeling 
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Figure 1: Rectangular labels of cities of the U.S.A. 

(countries) as well. 
A good label placement for the points of a given set has 

two basic requirements. A label should be placed with the 
point to which it belongs, and two labels should not over- 
lap each other. For high quality cartographic label place- 
ment, more requirements can be formulated such as unam- 
big&y [14,23]. Given these basic requirements, an algo- 
rithm can try to either label as many points as possible, or 
find the largest possible font such that all points can be la- 
beled. Labeling as many points as possible already give rise 
to a computationally intractable problem under the two basic 
conditions [9,10,16]. 

Nearly all of the existing algorithms for point annotation 
limit the placement of a label with respect to its point to a 
finite number of possible positions. Algorithms described 
before usually allow four label positions (the point is at one 
of the four comers) [9,21,20], eight (many papers in the au- 
tomated cartography literature), or any constant number [l]. 
We call restrictions of the allowed label positions the model 
that is used by the algorithm. Models that allow a finite num- 
ber of positions per label arefixed-position models. 

In this paper we drop the restriction that a label can only 
be placed at a finite number of positions. Instead, we al- 
low any position on the edges of the rectangIe to coincide 
with the point, see Figure 1. Such a model is called a slider 
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model. We will study how many more labels can be placed 
with slider models than with fixed-position models, and to 
what extent slider models require more difficult algorithms. 
We generally assume that labels have equal height but not 
necessarily the same width. This is a natural assumption if 
labels contain text or numbers of a fixed font size. We con- 
sider the rectangle that represents a label to be closed, which 
implies that labels are not allowed to touch. 

Slider models have been used in two previous papers. In 
Hirsch’s paper [ 1 I], repelling forces are defined for overlap- 
ping labels and computes translation vectors for them. After 
translation, this process is repeated and hopefully, a labeling 
with few overlaps appears after a number of iterations. This 
is completely different from our approach, which is combi- 
natorial. The paper by Doddi et al. [7] contains a couple 
of labeling problems and algorithms, each using a different 
labeling model. One of the problems is solved in a slider 
model, where each label is allowed to rotate about the point 
to be labeled. The labels must be equal-size squares (or other 
regular polygons). In that paper, the objective is to maximize 
the label size. 

This paper is structured as follows. Section 2 introduces 
the six models-three fixed-position and three slider-that 
are compared in this paper. We analyze how many more 
labels can be placed in one model than another, in theory. 
In Section 3, we show that the slider models allow a sim- 
ple factor-h approsimation algorithm that uses O(n) space 
and O(n.logn.) time. This was already known for the fised- 
position models. In Section 4, a polynomial time approxima- 
tion scheme is given, showing that for any constant E > 0, 
there is a polynomial time algorithm that labels a fraction of 
at least 1 - c of the optimal number of labels that can be 
placed. Again, this result was already known for the fixed- 
position models but not for the slider models. We remark that 
our algorithms can be adapted for labels of varying height, 
but the approsimation factors don’t hold any more. 

Section 5 contains a comparison of the six different mod- 
els in practice. For these models, the factor-$ approximation 
algorithms have been implemented and tested on real world 
data. We used three different data sets. One contains 1000 
cities of the U.S.A., another contains a data posting with 236 
measurements, and the third contains 75 points in a scatter- 
plot near a regression line. Here the labels are the sequence 
numbers of the points. We give tables showing how many 
points are labeled in each model. It appears that the slider 
models produce about IO-15% more labels than the fised- 
position models. This improvement is significant, because 
more labels are placed in the difficult areas. 

2 Comparing label models 

This paper considers three fised-position models and three 
slider models for point feature label placement. These are 
shown in Figure 2. It is obvious that a maximum labeling 
of a set P of points in the Cslider model must have as least 
as many labels as in any of the other models. Similarly, the 
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Figure 2: Fixed-position and slider models. 

l-slider model is at least as good as the 2-position model. 
The partial order representing the generality of the models, 
shown in Figure 3, presents itself immediately. It is clear that 
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Figure 3: Partial order on the models. 

there are point sets where all points can be labeled in any of 
the models. It is more difficult to answer the question “How 
many more points can be labeled in one model than another, 
for some point set?“. This section deals with this question. 
For simplicity, all labels in this section are squares of unit 
size. 

Let P be a set of n points in the plane. Let M’r and Ma be 
two models for labeling P, and let opthG (P) and optnr, (P) 
be the maximum number of points of P that receive a label 
in the models Ml and Mz, respectively. Then the (Ml, J&J)- 
ratio is the supremum of the ratio opthi (P)/optn13 (P) for 
n + 00 and maximized over all point sets P with n points. 
Figure 4 shows, for instance, that the l-position model can 
be twice as good as the l-position model, which is not really 
surprising. We can also show that the ratio of 2 is tight. Con- 
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Figure 4: Optimal labeling of P in two models. 

sider an maximum labeling of k points from a point set P 
with n points, using the 2-position model. Move the labels 
of these k points into the position allowed in the l-position 
model, Either rk/2] of the labels were already in this po- 
sition, and they form a nonintersecting set, or [lc/2] of the 
labels were in the other position and have beenj@ped. Since 
these squares were nonintersecting before flipping, they must 
also be nonintersecting after flipping, which proves that the 
ratio of 2 is tight. The same simple idea gives a ratio of 2 
between the l-slider and 2-slider models, and the 2-position 
and 4-position models. To analyze the ratios between other 
models, more complicated variations of this idea are needed. 

To analyze the ratios between other models Ml and Ms, 
we use the following strategy. We want to bound the ratio p 
by which more labels can be placed in the model with more 
dcgrecs of freedom, say Ml. We assume an optimal label 
placement in Ml. Then we canonically re-label the labeled 
points by moving every label into a position which is valid in 
the more restrictive model Ms. This may cause some labels 
to intersect. We determine the maximumnumber &a of Ma- 
labels that intersect the leftmost Ms-label 1. Then we put I 
into a set S, remove 1 and all its conflict partners from the 
instance and repeat until no labels remain. At the end of 
the process, S contains at least optM, (P)/(&ft + 1) non- 
intersecting Ms-labels, where opt,,(P) is the size of the 
assumed optimal Ml-placement. The size of S is a lower 
bound for the size of an optimal Ms-placement, thus &a + 1 
is an upper bound for the (Ml, M&ratio. 

To prove a lower bound for the ratio of two models, we 
need to give an example of arbitrary size for which any Mz- 
placement is worse by this ratio. 

Lcmmn 1 Given two labeling models Ml and MZ such that 
the labels in MI can be slid into some position of Mz using 
only horizontal sliding or only vertical sliding (not both). Let 
p be the (Ml, M&ratio. Then p < 3. 

Proof: Again we consider an optimal Ml-labeling of an 
arbitrary instance. Assume that we can slide Ml- into Mz- 
label positions vertically (for instance, MI is the Cslider 
model and M2 is the 2-slider model). We canonically slide 
all Ml-labels that are not yet in an Ms-label position up- 
wards, until they arrive in an Ms-label position. We show 
that the leftmost MS-label Zs can then intersect at most two 
other MS-labels. This yields the upper bound of 3 for p. 

Figure5: If MI can be slid into M2 then the leftmost Ma- 
label 12 cannot intersect more than two Ms-labels. 

Ma-labels intersecting a2 can only lie within area A2 in 
Figure 5 since la is leftmost. The corresponding Ml-labels 
are restricted to area Al. Every label in A1 must contain 
one of the three gridpoints in the interior of At (marked by 
crosses in Figure 5). Thus AI can contain only three non- 
intersecting Ml-labels including the Ml-counterpart of bs. 
It follows that 2s cannot intersect more than hvo Ms-labels, 
andthatp53. a 

A simple example gives a lower bound of 2 for the ratio 
of, for instance, the Zslider model and the L&slider model. 
Consider the set of n points ((0, i) IO 5 i 5 n - 1). Then 
the 2-slider model can label at best every other point, giv- 
ing [n/2] labels. The llslider model can label the point at 
the origin right and below, and every next point with a label 
shii?ed 1+ l/(n - 1) upwards with respect to the label be- 
low. This example makes explicit use of the assumption that 
squares be closed, but this is not necessary: use two columns 
of points at x-distance $, and use 1 - E as y-distance between 
the points. 

In the full paper [ 191, we show the upper and lower bounds 
on the ratios between hvo models given in Figure 6. The 
lower bound 29 stems from an example, where the l-posi- 
tion model gives a g-cycle of intersecting squares, but the 
l-slider model allows a non-intersecting placement. 

Finally, we wish to note that slider models can be 3/2 
times as good as anyjnite approximation of that slidermodel. 
For example, consider the l-slider model and a model that 
allows a fixed set of one hundred different positions where 
the bottom edge of the square coincides with the point to be 
labeled. Then we take three points (0, 0), (x, 0), (1 -l- E, 01, 
choose E > 0 to be very small, and choose x such that none 
of the one hundred allowed positions fits between the outer 
two points. This is always possible. The l-slider model can 
label all three points regardless of the choice of E and x. By 
copying these three points n/3 times we get the ratio 3/2. 

3 Greedy approximation algorithms 

In the following sections we consider algorithms for point 
feature labeling in the slider models. Labeling the maxi- 
mum number of points is intractable in the fixed-position 
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Figure 6: Upper and lower bounds for the ratios of two 
models. 

models [9, 10, 161. In the full version [19] we show this 
result for the slider models, so we have to be content with 
approximation algorithms. In this section we describe an 
O(n log;) time algorithm for the slider models which ap- 
prosimates an optimal solution in the following sense. If the 
mdsimum number of labels that can be placed is K, then our 
algorithm places at least K/2 labels: a factor-i approlrima- 
tion algorithm. For most data sets, however, we expect to 
come much closer to the optimum. 

For the fixed position models, simple O(nlogn) time, 
factor-: approximation algorithms were described recently 
by Agarwal et al. [l]. We obtain the same result for the 
slider models. We’ll only describe the most general 4-slider 
algorithm; it is an extension of the l-slider and 2-slider al- 
gorithms. It is based on a greedy strategy. For convenience 
we’ll do as if labels were allowed to touch, unlike in the pre- 
vious section. In the full paper we show that simple adapta- 
tions can be made to obtain non-touching labels. 

Given a set of points with labels that have already been 
placed, and a set of points that don’t have a label yet, define 
the lefmost label to be the label whose right edge is leftmost 
among all possible label positions of unlabeled points. So 
by definition, the leftmost label doesn’t intersect any label 
that has been placed. The strategy is the same as for fixed 
position labels [l] but the algorithm is quite different. The 
proof of the following lemma is given in the full paper. 

Lemma 2 Given labels offiwd height and any of the slider 
models, the greedy strategy of repeatedly choosing the left- 

most label Jinds a labeling of at least half the number of 
points labeled in an optimal solution. 

A brute-force algorithm for this simple strategy would 
need O(n3) steps. In order to achieve an O(n.log,n) time 
bound, we must use some common geometric data struc- 
tures. 

Let {PI , . . . ,pn} be the set of points that has to be la- 
beled. The label of pi is denoted by Zi, and the rcfcrence 
point of a label is its lower left vertex. The possible posi- 
tions of the reference point of a point pi are represented by 
four line segments. Two are horizontal, hsi-r and hzi, and 
hvo are vertical, ‘usi- and wsi. Their position is esactly the 
position of the edges of the label Zi if it were pIaced Ieft and 
below pi. The width of Zi is denoted wi, and the height is 
always 1 (we can normalize to this situation). 

If a label Zi has been placed, then no reference point posi- 
tion inside Zi is possible. The same holds for reference points 
inside the rectangle Z$ precisely one unit below Zi (since any 
label extends one unit above its reference point). Further- 
more, since labels are placed from left to right, no reference 
point positions to the left of Zi and Z: will still be accepted 
by the algorithm. Suppose a subset of the points has already 
received labels by the algorithm. The right envelope of all 

Figure 7: Frontier of the placed labels (dark grey) and their 
lowered copies (light grey). 

labels I and their copies 1’ outlines all reference point po- 
sitions that are impossible, or cannot occur any more, see 
Figure 7. We call this right envelope thefrontier and denote 
it by F. 

To determine the next leftmost label, we only have to 
consider the frontier F and the segments h2i-1, hai, va+1, 
and vsi of the points pi to the right of F that don’t have a 
label yet. Given a horizontal segment h and the frontier F, 
there are three possibilities: (i) h lies completely left of F. 
Then h can be discarded; a point on it cannot be a reference 
point for a label that doesn’t overlap another lahel. (ii) h lies 
completely right of F. Then the leftmost point on h is a can- 
didate for the next leftmost label. (iii) h intersects F. Then a 
point just right of the intersection point is the candidate. For 
a vertical segment 21, a similar situation occurs. If v lies left 
of F, it can be discarded; if v lies right of F, any point on u 

340 



Figure 8: The sets H,QJ~, Hint, and l&r,,.rghr. The dashed lines in the middle picture separate the segments of flint that are in 
different red-black trees x. 

cun be chosen; and if 21 and F intersect, then any point on ZI 
right of F can be chosen as a candidate. 

Let H be the set of all horizontal segments that represent 
reference points of the labels. Similarly, let V be the set of 
the corresponding vertical segments. Let He&t 2 H be the 
subset of all horizontal segments that lie completely right of 
P, Set Figure 8. Let Hint 2 H be the subset of all horizontal 
segments that intersect F. Let Hl,a C H be the subset of 
all horizontal segments that lie completely left of F (these 
cannot give a valid label any more). Let I&tight s V be 
the subset of all vertical segments that contain at least some 
point right of F. 

To maintain the frontier and the candidates for the best 
reference point we’ll use a few data structures. Some of the 
data structures are used to find the next leftmost label; other 
data structures are only used to update the former ones ef- 
ficiently, The data structures are red-black trees 7, heaps 
$Y, and priority search trees P [ 171. These are described in 
standard textbooks on algorithms [5] and computational ge- 
ometry [G], We use three data structures to find the leftmost 
label position among the ones represented by Hint, H,.ight, and 
v”t,light* 

Leftmost label query structures. 

1. J?or each segment in H+J,~ we store the z-coordinate of 
its right endpoint. This corresponds to the right edge of 
a label whose reference point is the left endpoint of the 
segment. These values are stored in a heap, where the 
root stores the minimum. 

2. The subset Hint is stored as follows. For each verti- 
cal segment ft of F, we maintain a red-black tree 7j 
with the segments in Hint that intersect fi (see the xnid- 
dle picture of Figure 8). These are stored in the leaves 
sorted on p-coordinate. With each leaf we also store 
the width of the corresponding label. We augment each 
red-black tree by storing at each internal node the min- 
imum width label in the subtree of that node [5]. \Ve 

3. 

use a heap ‘flint to have fast access to the segment in Hint 
that allows the leftmost label placement. ‘I&r stores for 
each 5 the sum of the z-coordinate of j; and the min- 
imum width of the segments in x. Thus the root of 
?fflinr corresponds to the leftmost label among the labels 
represented by Hint. 

For the vertical segments in V, we don’t maintain the 
set l&,~ght but some set V’ for which &r,@,r C V’ C 
V. The z-coordinate of each segment of V’ is stored 
in a heap. The heap may return as the minimum some 
segment that lies completely left of F, so it may also 
contain labels that cannot be placed. After extracting 
the minimum from the heap, we test if it is in I$nt,dsr,ht. 
If not, we discard it and extract the next minimum from 
the heap, until we find one in I&tight. 

IVe query the three heaps described above. Among their 
answers, one corresponds to the leftmost label. This is the 
label we place. Then we must update the frontier F and 
several of the data structures described above. This is not 
so easy. We’ll use some more data structures that help to do 
the updating after the frontier has changed. Let fne,., be the 
union of the right edges of the newly placed label I and its 
copy I’. fngv, is a vertical line segment of length 2. The new 
frontier F is the right envelope of the old frontier and fn2,.,, 
see Figure 9. 

Update assistance structures. 

la. To determine which segments move from Htieht to Hint 
or I& when the frontier changes, we use a priority 
search tree Pr,ft on the left endpoints of segments in 
H fight. After placing a label, we query ‘&a with the 
region left of &, (grey in Figure 9) to locate the left 
endpoints of all segments that are no longer in HG$~. 
We delete these endpoints from ‘Pr,n, and we delete the 
corresponding segments from the heap for &jshr. For 
each deleted segment we test whether its right endpoint 
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search trees are done. 

2a. 

is right of the frontier. If so, that segment is in Hint, and 
we insert it in the data structures for Hint. If not, the 
segment is in Hreft and can be discarded. 

To determine which segments move from Hint to Hr,r, 
when the frontier changes, me use a priority search tree 
prji’;hl on the right endpoints of Segments in Hint. After 
placing a label, me query P,jsht with the region left of 
fnc,$, (grey in Figure 9) to locate all right endpoints of 
segments that have moved from Hint to Hr,a. Then we 
delete the entries corresponding to these segments from 
the trees 5, from the heap 7-& and from Pgat itself. 

When the frontier changes, we must also reorganize the 
red-black trees and T&t as a whole. Recall that we use 
a red-black tree x for each vertical segment of F. At 
most three new vertical segments can arise when the 
frontier changes, but many more vertical segments may 
cease to exist. We use the trees of the destroyed verti- 
cal segments of F to construct the new red-black trees. 
This is done by the operations SPLIT and CONCATE- 
NATE, which are standard for red-black trees. In Fig- 
ure 9 the trees Ts,Td, 75, and 76 are reorganized to the 
new trees 79,710, and 711. The heap 3lrnt is updated by 
removing the value of each destroyed tree, and inserting 
the value of each new tree. 

3a. We don’t need any additional data structures to update 
the heap on the vertical segments. However, we need 
to decide whether an extracted minimum from the heap 
really is in I$,r,fisJ,r. We use an augmented red-black tree 
for this test. The leaves of this tree store the vertical seg- 
ments of the frontier sorted from bottom to top. Each 
leaf also stores the z-coordinate of its segment. Each 
internal node is augmented with a value that represents 
the minimum z-coordinate in its subtree. For each g- 
interval, the augmented red-black tree reports the mini- 
mum s-coordinate of the frontier in this y-interval. 

The algorithm is given below. Due to lack of space, details 
have been omitted. 

Algorithm. 

While there are still segments in any of the heaps for V”, 
H fight, or Hint, do the following steps: 

1. 

2. 

3. 

Let w be the vertical segment that corresponds to the 
minimum of the heap for 17’. Search in the augmented 
red-black tree on F with w to see if v has some point 
right of F. If not, remove o from the heap and repeat 
this step. 

Determine the smallest among the minima of the three 
heaps for V’, &rsht, and Hint. Remove this minimum 
from its heap. Let Zi be the label position of point pi 
corresponding to this minimum. Choose It as the nest 
label to be placed. 

Determine fnew, the right edge of li extended one unit 
downwards. Update the frontier F with &,. Update 
the augmented red-black tree from 3a with fnew. Search 
with the region horizontally left of fnew (grey in Fig- 
ure 9) in the priority search trees of la and 23 and up- 
date the structures of 1, la, 2, and 2a accordingly. 

Analysis. 

The basic structures used by the algorithm are heaps, red- 
black trees, augmented red-black trees, and priority search 
trees. All of these structures require O(n) space for a set 
of size n. Also, these structures can be updated in O(log n,) 
time per insertion or deletion, or extract-min for heaps. Red- 
black trees allow SPLIT and CONCATENATE in O(log n,) time. 
The queries on the red-black trees take O(logn) time, and 
the queries on the priority search trees take O@ -I- logn) 
time, where Jz is the number of points found in the query 
range. 
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The efficiency of the algorithm is established by the fol- 
lowing observations, Any vertical segment fney, creates one 
vertical edge in the frontier F, and changes at most two of 
them. It follows that throughout the whole algorithm, at 
most 3n - 2 different vertical edges appear in F. There- 
fore at most 3n - 2 vertical edges have to be destroyed. This 
bounds the total number of red-black trees from 2 that can 
appear, the total number of SPLIT operations, and the total 
number of CONCATENATE operations to O(n). Since SPLIT 
and CONCATENATE operations take O(log n) time each, at 
most O(n log n) time is spent on splitting and concatenat- 
ing, The augmented red-black tree of 3a can be maintained 
in O(n log n) time for the same reasons. 

For each new label placed, one query is done on each of 
the two priority search trees, Such a query takes O(k+log n) 
time, where k is the number of points in the range. These 
points are always deleted from the priority search tree, so 
later on, the algorithm doesn’t spend time on reporting them 
again, The priority search trees are initialized with one point 
for each horizontal segment, and we never add more points 
to them. So in total, at most O(nlogn) time is spent for 
querying and updating the priority search trees. 

We conclude: 

Thcorcm 1 Given n points in the plane, andfor each point 
a rectangular label withfixed height and some given width. 
Then for each of thejxed-position and slider models, there is 
an O(n log n) time and linear space algorithm which places 
at least half the maximum number of labels. 

Remark 1. For the l-slider and 2-slider models, we can omit 
the data structures Iisted under 3 and 3a. 

Remark 2. For fixed position models, the algorithm can 
be implemented using onIy one priority search tree and one 
heap, We initialize the priority search tree with the refer- 
ence points of all labels that may still be placed. In the heap, 
we store the sum of o-coordinate and label width for each 
reference point. When the label corresponding to the heap’s 
minimum is chosen, we query in the priority search tree with 
the appropriate range to find the reference points that are no 
longer valid. We remove these from heap and priority search 
tree, and repeat by selecting the minimum from the heap. 

4 Polynomial time approximation scheme 

A polynomial time approximation scheme for a labelingprob- 
lem means that for any constant e > 0, there is an algorithm 
that runs in O(nc) time and places at least a fraction of 1 - e 
of the number of labels in an optimal placement. Here c is 
a constant that may depend on e. Polynomial time approx- 
imation schemes (PTAS) have been developed for problems 
that are NP-hard, so all known algorithms producing an op- 
timal solution require exponential time. A good survey of 
approximation algorithms for NP-hard geometric problems 
is by Bern and Eppstein [3]. 

For a set of unit squares, Hunt et al. [13] gave a PTAS 
to find the largest size subset of squares that don’t intersect. 
This implies that there is a PIAS for labeling as many points 
as possible in any fixed-position model. This result was ex- 
tended by Aganval et al. El] to labels with unit height but 
arbitrary width. In this section we show that the same result 
holds for the slider models. The algorithm is mainly of the- 
oretical interest, so we sketch the ideas only briefly. First we 
outline the approach for the l-position model and unit height 
labels [l]. Then we extend to the l-slider model and other 
models. 

Let P be a set of n points and assume the l-position 
model. We begin by stabbing the set of n possible labels 
by horizontal lines at distance greater than 1, and such that 
each label is stabbed by some horizontal line. Let these lines 
be1 I,..., Z,tiomtoptobottom,andletPr ,..., P,bethe 
subsets such that Pi contains the points with labels intersect- 
ing Zi. The idea is to discard every 5th subset and solve the 
problem for & , . . . , P&l optimally, then solve the problem 
forPt+r,..., Pat-1 optimally, and so on. These optimal so- 
lutions to subproblems can simply be joined to an optimal 
solution for Pr , . . . , Pt-1, Pt+l , . . . , P&-l, . . ., since no la- 
bel of a point in PI, . . . , Pt-1 can intersect a label of a point 
in fi+l, . . . . Pzt-1. For the whole set P, these joined op- 
timal solutions to subsets form a suboptimal solution. The 
labeling problem fort - 1 consecutive subsets can be solved 
optimally by dynamic programming in time polynomial in n 
but exponential in t. 

Then we apply the Shifting Lemma idea [12] and dis- 
card the subsets Pt-I, P2t--1, P3t--1,. . ., and compute an 
optimal solution for the remaining subset. Next we discard 
pt-2, P2t-2, P3t-2, *. *, and so on. One of the t solutions 
that we find is a y-approximation of the optimal sohrtion 
for the whole set by the pigeon hole principle. For any con- 
stant t we have a polynomial time algorithm, so we obtain a 
polynomial time approximation scheme. 

Now assume the l-slider model. The idea of stabbing 
the labels by horizontal lines still works. So does the idea of 
combining the sohrtions of 5, . . . , Pt-1, of Pt+l, . . . , P,+1 
and so on. But we don’t know how to solve the problem 
for P 1,. . . , Pt-1 optimally in time polynomial in n. So the 
idea is to approximate the optimal solution for PI,. . . , Pt-1. 
Roughly, we set k = t2 to be another constant, and determine 
the lefhnost labeling of any k points of PI2 . . . , Pt,1 by brute 
force as fohows. Since k is constant, we can test every sub- 
set of k points and label them leftmost. If we cannot label 
the k points of some subset without intersection, we discard 
the subset. We choose the subset that gives the labeling that 
is leftmost among all subsets without intersections. 

Let 1 be the leftmost vertical line that has the interiors of 
the k chosen labels to its left. We discard all label positions 
that intersect I or lie left of it. Then we repeat to find the 
next k leftmost labels. The observation is that the optimal 
solution cannot have a line left of our leftmost line with k 
labels to its left. So from the optimal solution, we discard 
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at most one label from each of the t - 1 subsets in our ap- 
prosimation. For the subsets Pr , . . . , Pt-1, we approximate 
the optimal solution with a factor of &. The Shifting 
Lemma idea of discarding every t-th subset approximates 
the optimal solution with a factor of y. So the approxi- 
mation factor for the whole algorithm is the product of the 

P t-1 _ t~.,Q’ - * - t” t-1 
* k-i-t-1 t -t”+l-l’t = t2_t. By increasing t”+t-1 

the value oft we get an approximation factor that is arbitrar- 
ily close to 1. 

Assume that P 1, . . . , &-r together contain n’ points. To 
find the leftmost 1; labels we try every (2) subsets of k 
points. We Label these from left to right., and leftmost. This 
is easy in O(k”) time. 

In the 4-slider model, me take the same approach, but 
it takes more time to find the leftmost labeling of b points. 
For each such subset, we test all possibilities of taking the 
top, bottom, left, or right slider for each label. This gives @ 
possibilities for one subset. Top and bottom sliders are put 
Icftmost: left and right sliders are put bottommost. We must 
also try each of the I:! insertion orders of the 1; labels. So 
testing one subset can be done in O(4” - k! - k”) time. 

Theorem 2 For each qf the slider models and for any con- 
Statlt E ;* 0, there is a polyomial time algorithm which la- 
bfds at least (1 - C) times the maximum number of input 
pxktv that can be labeled. 

5 Implementation and test results 

In this section we compare esperimentally how many labels 
arc placed by the greedy algorithms of Section 3 in each of 
the six models. We implemented the algorithms in C++ and 
wed some data structures of LED& the Library of Efficient 
Data types and Algorithms [ 1 S]. Since LEDA doesn’t have 
priority search trees, we used orthogonal range trees instead. 
Our implementation is simpler than the one described here 
in two respects. Firstly, the red-black trees 5 of 2 can be 
chpectcd to contain only a fern horizontal segments of IS,,, 
at any moment. So we replaced them by lists. Secondly, 
the augmented red-black tree doesn’t profit much from the 
augmentation in practice. When searching for the minimum 
s-coordinate of F in a y-interval, we simply scan all leaves 
of the red-black tree in that interval. One can expect to visit 
only a few leaves, since the y-interval is only twice the unit 
hckht. c 

The first of the three data sets contains 1000 cities of the 
U.S.A. that must be labeled with their name. We used several 
difkrent font sizes, and labeled the cities with the bound- 
ing boxes of their names. The results are shown in Table 1. 
The codes IP, 2P, and 4P are shorthand for the l-, 2-, and 
&position models. The codes l§, 2§, and 4s are shorthand 
for the slider models. The values in the second table show 
the percentages with respect to the 4-position labeling. 

The second data set contains the 236 points of a data 
posting. The labels are measurement values and come from a 

font 
5 
6 
I 
s 

No. of lab& plnccd 
1P 2P 4P 1s 2s 4s 

651 950 971 YYU YY3 WJ 

111 910 952 961 982 9Sb 
705 S52 901 932 964 912 
656 S45 S96 918 952 9% 

1; 607 554 75s 704 769 811 781 536 890 653 902 672 
11 520 651 721 135 60.5 831 

:i 500 44S 631 570 709 63s 719 649 116 796 913 134 

1: 433 3S.2 494 551 624 550 631 556 695 621 712 MS 

font 

i 
7 

t 

= 

10 
11 
12 
13 
14 
15 

iF 
Fi 
Sl 
7s 
76 
74 
12 
72 
10 

ii 
69 - 

* 
4P 

100 
100 

;: 
100 

iii 
100 
100 
100 
100 - 

WCL 

1s 

101 
101 
103 
102 
102 
102 
101 
101 
101 
102 
101 - 

lasitil 
7 w 
iE- 
103 
106 
106 
10s 
110 
111 
112 
112 
111 
114 - 

mode 
4s 
101 
103 
107 

Ki 
113 
11s 
114 
11s 
114 
117 - 

Table 1: 1000 cities on a large map. 

book on geostatistics [15]. Figure 10 shows the labeled data 
set and the number of labels placed in each model. 

The third data set contains the 75 points of a regression 
analysis. Here the points are clustered near a regression line, 
and the labels are simply identification numbers. Figure 11 
shows the labeling. 

The bottom tables of Figures 10 and 11 show that the 
4-slider model sometimes places lO-15% more labels than 
the 4-position model. This improvement is significant, since 
it is always caused by a better labeling of the areas that are 
difficult to label. We also created artificial, pseudo-random 
data sets where all areas are difficult to label. Here we indeed 
found higher improvements: up to 92%. 

Efficiency was not the main motivation for these exper- 
iments. Still it appeared that the label placement was com- 
puted in a few seconds for all data sets we tried, up to 2500 
points. A plot shown on a computer screen seldom contains 
more than 1000 labeled points. 

6 Conclusions and extensions 

We have compared six different models for labeling a set of 
points with rectangular labels of fixed height. New in our pa- 
per (except for the work of Hirsch [ 1 l] and Doddi et al. 171) 
is that we don’t restrict the placement of labels to a finite 
number of positions, but only require that labels touch the 
point they belong to. All previous papers either limited the 
number of possible positions for a label to a constant, didn’t 
give any time bounds, or had worse (if any) approsimation 
factors. Some had the objective to maximize the label size 
rather than the number of labeled points, or used a model that 
allows an arbitrary orientation of the labels. 

We proved that slider models for label placement are con- 
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a 

dsce4 

4s 

m 

z: 
236 
236 
230 
224 
224 
212 
212 
203 - 

No 
1s 
236 
Zd 
E 
E 
213 
203 
203 
192 - 

Iabe! 
-3r 
236 
236 
236 
236 
236 

z: 

ifi 
212 
200 - 

enq 
4p 
100 
100 
1CQ 
100 
100 

1: 
100 
100 
100 
100 - 

ositic 
-ET 
Loo 
100 
102 
102 
10s 
111 
110 
110 
112 
112 
113 - 

mode 
4s 
xii 
100 
102 
102 
10s 
111 
112 
112 
112 
112 
115 - 

I.r.L 1 
-is- 
im- 
100 
102 
102 
107 

:z 
106 
107 
107 
109 - 

2p 
T?x 
2; 
219 
205 
193 
189 
189 
180 
180 
170 - 

font 
-3 

7” 
; 

10 
11 
12 

t : 
15 - 

-iF 
zr 
216 
197 

1; 
175 
174 
174 
169 
169 
157 - 

4p 
m- 
235 
230 

ii: 

%I 
200 
188 
188 
176 - 

xiii 
5 

7” 
i 

10 
11 

:3’ 
14 
15 - 

Agure 10: Labeling of the data posting in 9pt font using the bslider model (scaled to fit), and tables witb the performance. 

siderabl .y better than fixed-position models in theory. Sec- 
ondly, we showed that for each of the slider models, there 
is a 6imple factor-L z approximation algorithm that requires 
O(nlogn) time and linear space. Thiidly, we sketched a 
polynomial time approximation scheme for each of the slider 
models, Finally, we compared the six different models on 
various data sets experimentally, using the factor-3 approx- 
imation algorithms. We observed, for instance, that on real- 
world data, the algorithm for the 4-slider model can place 
lo-15% more labels than the corresponding algorithm for 
the 4-position model. Improvements are higher for pseudo- 
random data. 

beling, we don’t know how much better the greedy algorithm 
performs than its approximation guarantee of + suggests. 

Another extension of our work would be to produce label 
placements that have high quality according to other criteria 
as well, like avoiding ambiguity, and giving preference to 
certaiu label positions over others. 
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