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Abstract

Transactional memory is a concurrency control mechanism that dynamically determines when threads may

safely execute critical sections of code. It does so by tracking memory accesses performed within a trans-

actional region, or critical section, and detecting when memory operations conflict with other threads.

Transactional memory provides the performance of fine-grained locking mechanisms with the simplicity

of coarse-grained locking mechanisms.

Parallel Discrete Event Simulation is a problem space that has been studied for many years, but still

suffers from significant lock contention on SMP platforms. The pending event set is a crucial element to

PDES, and its management is critical to simulation performance. This is especially true for optimistically

synchronized PDES, such as those implementing the Time Warp protocol. Rather than prevent causality

errors, events are aggressively scheduled and executed until a causality error is detected.

This thesis explores the use of transactional memory as an alternative to conventional synchronization

mechanisms for managing the pending event set in a time warp synchronized parallel simulator. In particular,

this thesis examines the use of Intel’s hardware transactional memory, TSX, to manage shared access to the

pending event set by the simulation threads. In conjunction with transactional memory, other solutions to

contention are explored such as the use of multiple queues to hold the pending event set and the dynamic

binding of threads to these multiple queues. For each configuration a comparison between conventional

locking mechanisms and transactional memory access is performed to evaluate each within the WARPED

parallel simulation kernel. In this testing, evaluation of both forms of transactional memory (HLE and

RTM) implemented in the Haswell architecture were performed. The results show that RTM generally

outperforms conventional locking mechanisms and that HLE provides consistently better performance than

conventional locking mechanisms, up to as much as 27%.
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Chapter 1

Introduction

The advent of multi-core processors introduced a new avenue for increased software performance and scal-

ability through multi-threaded programming. However, this avenue came with a toll: the need for syn-

chronization mechanisms between multiple threads of execution, especially during the execution of critical

sections. By definition, a critical section is a segment of code accessing a shared resource that can only

be executed by one thread at any given time [22]. For example, consider a multi-threaded application that

is designed to operate on a shared two-dimensional array. For the sake of simplicity, the programmer uses

coarse-grained locking mechanisms to control access to the critical section, e.g., a single atomic lock for

the entire structure. The critical section reads a single element, performs a calculation, and updates the

element of the array. Once a thread enters the critical section, it locks all other threads out of the entire

array until it has completed its task, thus forcing the collection of threads to essentially execute sequentially

through the critical section even when they are accessing completely independent parts of the array. This

results in lock contention, and consequently negatively impacts performance, as threads must now wait for

the currently executing thread to relinquish access to the shared resource. Programmers can employ more

fine-grained locking mechanisms to expose concurrency, such as locking individual rows or even individual

elements in the previous example. However, this approach is vastly more complicated and error prone [20];

this approach requires the programmer to define and maintain a separate lock for each row or each element.

Unfortunately, programmers are limited to using static information to decide when threads must execute a

critical section regardless of whether coarse-grained or fine-grained locking is used.
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CHAPTER 1. INTRODUCTION

In the previous example, a scenario arises where one thread will access one element of the two dimen-

sional array, while another thread will access a element in an entirely different row. The programmer only

knows that any thread can access any given element at any given time, and thus locks all elements when one

thread is executing the critical section. Untapped concurrency can be exposed if the decision to execute a

critical section made dynamically [1].

Transactional memory (TM) is a concurrency control mechanism that attempts to eliminate the static

sequential execution of a critical section by dynamically determining when accesses to shared resources can

be executed concurrently [20]. In the previous example, instead of using locks, the programmer identifies

the critical section as a transactional region (hereafter, the terms critical region and transaction will be

used interchangeably). As the threads enter the transactional region, they attempt to “atomically” execute

the critical section. The TM system records memory accesses as the transactions execute and finds that

the transactions operate on independent regions of the data structure, i.e., there are no conflicting memory

accesses. Instead of being forced to execute sequentially by the conventional locking mechanisms, the

threads are allowed to safely execute the critical section concurrently. Transactional memory is analogous

to traffic roundabouts whereas conventional synchronization mechanisms are analogous to conventional

traffic lights [17].

Transactional memory operates on the same principles as database transactions [12]. The processor

atomically commits all memory operations of a successful transaction or discards all memory operations if

the transaction should fail (a collision to the updates by the multiple threads occurs). In order for a transac-

tion to execute successfully, it must be executed in isolation, i.e., without conflicting with other transaction-

s/threads memory operations. This is the key principle that allows transactional memory to expose untapped

concurrency in multi-threaded applications.

One problem space that could benefit from transactional memory is that of Parallel Discrete Event Sim-

ulation (PDES). In Discrete Event Simulation (DES) applications, a physical system is modeled as a col-

lection of Logical Processes (LPs) representing the physical processes of the system. The system being

modeled can only change state at discrete points in simulated time and only changes state upon execution

of an event [9]. Large simulations, such as those in economics, engineering, and military tactics, require

enormous resources and computational time, making it infeasible to execute them on sequential machines.
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The necessity to perform such large simulations has sparked considerable interest in the parallelization of

these simulations. In PDES, the events of the LPs are executed concurrently. To further exploit concurrency,

optimistic PDES aggressively schedules events instead of strictly enforcing causal ordering of event execu-

tion [8, 9]. This means that events will continue to be scheduled without strict enforcement of their causal

order until a causal violation is detected. More importantly, the events must be retrieved from a global (and

shared) pending event set by one of multiple execution threads, resulting in non-trivial contention for this

structure. A key challenge area in PDES is the need for contention-free pending event set management solu-

tions [7]; this will be the primary focus of this research. Transactional memory can help alleviate contention

for this shared structure and expose untapped concurrency in the simulation’s execution.

Researchers at the University of Cincinnati have developed a PDES kernel called WARPED, that imple-

ments the optimistic Time Warp synchronization protocol [9, 13]. In WARPED, events to be scheduled are

sorted into a global Least-Time-Stamp-First (LTSF) queue. When a worker thread schedules an event, it

locks the LTSF queue and retrieves the event from the head of the queue. Thus, the LTSF becomes the

primary source of contention in the WARPED kernel.

1.1 Research Statement

The goal of this thesis is to explore the use of transactional memory in a parallel discrete event simulator. In

particular, experiments with transactional memory to manage access to the pending event set data structures

of the WARPED parallel discrete event simulation engine are examined.

The primary objective of this research is to modify the WARPED pending event set locking mechanisms

to utilize the underlying hardware support for transactional memory on Intel’s Hardware Transactional

Memory (HTM) supported Haswell platform. The principal hypothesis is that making the aforementioned

modifications will exposed untapped concurrency during simulation execution, thereby improving the per-

formance of WARPED on the Haswell platform.

Due to the wide availability of Intel’s HTM supported platforms, it was selected as the focus of this

research. Intel’s HTM implementation is aptly named Transactional Synchronization Extensions (TSX).

This naming will be used to refer to Intel’s HTM implementation for the remainder of this study.

While WARPED uses many shared data structures, the focus of this thesis is on the pending event set. It

3
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is the primary bottleneck in PDES applications, and hence the primary motivation for this study.

1.2 Thesis Overview

The remainder of this thesis is organized as follows:

Chapter 2 provides a general overview of transactional memory. It gives some examples of other TM

implementations and discusses why they do not work as well as TSX. It provides examples of related studies.

Finally, it provides an overview of how TSX works and how it is implemented in software.

Chapter 3 discusses practical considerations for the programmer when programming TSX enabled multi-

threaded applications. It discusses optimizations to ensure TSX performs optimally, as well as physical

limitations of the hardware.

Chapter 4 provides a background of the PDES problem space. It introduces WARPED and some of the

implementation details relevant to this study. Previous studies with the WARPED pending event set are also

briefly discussed.

Chapter 5 discusses how TSX is implemented in WARPED. It also provides a brief overview of the

critical sections utilizing TSX and why TSX will be beneficial.

Chapter 6 provides and discusses the experimental results of this research for several different simulation

configurations.

Chapter 7 discusses the accomplishments of this research. It also briefly discusses some areas of future

research.

4



Chapter 2

Background

This section provides a high level explanation of how transactional memory operates. It then introduces

other implementations, as well as reasons why they were not explored in this study. Next, it provides some

examples of related studies with transactional memory, specifically the implementation used in this study.

Finally, it provides an overview of Intel’s implementation, Transactional Synchronization Extensions (TSX)

and how the programmer can develop TSX enabled multi-threaded applications.

2.1 Transactional Memory Overview

Transactional memory (TM) is a concurrency control mechanism that dynamically determines when two

or more threads can safely execute a critical section [20]. The programmer identifies a transactional re-

gion, typically a critical section, for monitoring. When the transaction executes, the TM system, whether

it is implemented in hardware or software, tracks memory operations performed within the transactional

region to determine whether or not two or more transactions conflict with one another, i.e., if any memory

accesses conflict with one another. If the threads do not conflict with one another, the transactions can be

safely and concurrently executed. If they do conflict, the process must abort the transaction and execute

the critical section non-transactionally, i.e., by serializing execution of the critical section with conventional

synchronization mechanisms.

As a transaction is executed, the memory operations performed within the transaction are buffered,

specifically write operations. Write operations will only be fully committed when the transaction is complete

5



CHAPTER 2. BACKGROUND 2.1. TRANSACTIONAL MEMORY OVERVIEW

and safe access has been determined. Safe access is determined by comparing the set of addresses each

transaction reads from (called the read-set and the set of addresses each transaction writes to (called the

write-set). Each transaction builds its own read-set and write-set as it executes. While a thread is executing

transactionally, any memory operation performed by any other thread is checked against the read-set and

write-set of the transactionally executing thread to determine if any memory operations conflict. The other

threads can be executing either non-transactionally or transactionally. If the transaction completes execution

and the TM system has not detected any conflicting memory operations, the transaction atomically commits

all of the buffered memory operations, henceforth referred to simply as a commit.

Whenever safe access does not occur, the transaction cannot safely continue execution. This is referred

to as a data conflict and only occurs if: (i) one transaction attempts to read a location that is part of another

transaction’s write-set, or (ii) a transaction attempts to write a location that is part of another transaction’s

read-set or write-set [1]. Once a memory location is written to by a transaction, it cannot be accessed in

any way by any other transaction; any access by any other transaction results in a race condition. If such a

situation arises, all concurrently executing transactions will abort execution, henceforth referred to simply

as an abort.

Revisiting the example from Chapter 1, assume that a programmer uses transactional memory syn-

chronization mechanisms to access a shared two dimensional array. Recall that any thread can access any

element at any given time. One thread enters the transactional region and begins transactional execution. It

adds the element’s memory location to its read-set. At the same time, another thread enters the transactional

region; however, it accesses a different element. As the first thread continues execution, it adds the element’s

memory location to its write-set. The second thread adds its element’s memory location to its read-set at

the same time. However, because the memory location is not part of the first thread’s read-set, the threads

continue executing concurrently. No memory conflicts are detected in this case and the transactions execute

successfully and commit.

Now, assume that another thread enters the transactional region. It begins its read operation on a specific

element and adds the element memory address to the read-set. However, another thread is is already writing

to that memory location. Because the memory address is tracked in the second transaction’s write-set, a

data conflict occurs. The two threads cannot execute concurrently and be guaranteed to produce the correct

6
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output. Therefore, the transactions must abort. Typically, the threads will retry execution with explicit

synchronization. Although, as will be shown later, various retry options are possible.

By definition, a transaction is a series of actions that appears instantaneous and indivisible possessing

four key attributes: (1) atomicity, (2) consistency, (3) isolation, and (4) durability [12]. TM operates on the

principles of database transactions. The two key attributes for TM are atomicity and isolation; consistency

and durability must hold for all multi-threaded operations in multi-threaded applications. Atomicity is

guaranteed if: (1) all memory operations performed within the transaction are completed successfully, or

(2) it appears as if the performed memory operations were never attempted [12]. Isolation is guaranteed by

tracking memory operations as the transactions execute and aborting if any memory operations conflict. If

both atomicity and isolation can be guaranteed for all memory operations performed within a critical section,

that “critical section” can be executed concurrently [20].

In the case of a commit, the transaction has ensured that its memory operations are executed in isolation

from other threads and that all of its memory operations are committed, thus satisfying the isolation and

atomicity principles. Note that only at this time will the memory operations performed within the transaction

become visible to other threads, thus satisfying the appearance of instantaneousness. In the case of an abort

due to a data conflict, it is clear that the isolation principle has been violated. It should be noted that

transactions can abort for a variety of reasons depending on the implementation [2,5], but the primary cause

is data conflicts. Upon abort, all memory operations are discarded to maintain atomicity.

2.2 Related Studies

There have been many implementations of TM systems since its conception mostly in software [3–6,10,26,

29]. As the name suggests, Software Transactional Memory (STM) systems implement the memory track-

ing, conflict detection, write buffering and so on in software. Most systems are implementation specific, but

memory tracking is typically done through some form of logging. While this allows transactional memory

enabled applications to be executed on a variety of platforms, performance usually suffers. Gajinov et al

performed a study with STM by developing a parallel version of the Quake multi-player game server from

the ground up using OpenMP parallelizations pragmas and atomic blocks [10]. Their results showed that the

logging overhead required for STM resulted in execution times that were 4 to 6 times longer than the sequen-

7



CHAPTER 2. BACKGROUND 2.3. TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (TSX)

tial version of the server. In general, STM has been found to result in significant slowdown [3]. Although

STM is more widely available than HTM, its use in this this study was dismissed due to the significant

performance penalty.

Hardware Transactional Memory (HTM) provides the physical resources necessary to implement trans-

actional memory effectively. Many chip manufacturers have added, or at least sought to add, support for

HTM in recent years. IBM released one of the first commercially available HTM systems in their Blue

Gene/Q machine [26]. Even though they found that this implementation was an improvement over STM,

it still incurred significant overhead. AMD’s Advanced Synchronization Facility and Sun’s Rock processor

included support for HTM [5, 6]. However, AMD has not released any HTM enabled processors and Sun’s

Rock processor was canceled after Sun was acquired by Oracle.

With the release of Intel’s Haswell generation processors, Intel’s Transactional Synchronization Exten-

sions (TSX) is the currently the only widely available commercial HTM-enabled system. Numerous studies

have already been performed with TSX, primarily evaluating its performance capabilities. Chitters et al

modified Google’s write optimized persistent key-value store, LevelDB, to use TSX based synchronization

instead of a global mutex. Their implementation shows 20-25% increased throughput for write-only work-

loads and increased throughput for 50% read / 50% write workloads [4]. Wang et al studied the performance

scalability of a concurrent skip-list using TSX Restricted Transactional Memory (RTM). They compared the

TSX implementation to a fine-grain locking implementation and a lock-free implementation. They found

that the performance was comparable to the lock-free implementation without the added complexity [28].

Yoo et al evaluated the performance of TSX using high-performance computing (HPC) workloads, as well

as in a user-level TCP/IP stack. They measured an average speed up of 1.41x and 1.31x respectively [29].

The decision to use Intel’s TSX for this research was based on its wide availability and the performance

improvements observed in other studies.

2.3 Transactional Synchronization Extensions (TSX)

Intel’s Transactional Synchronization Extensions (TSX) is an extension to the x86 instruction set architec-

ture that adds support for HTM. TSX operates in the L1 cache using the cache coherence protocol [2]. It

is a best effort implementation, meaning it does not guarantee transactions will commit [1]. TSX has two

8



CHAPTER 2. BACKGROUND 2.3. TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (TSX)

interfaces: (1) Hardware Lock Elision (HLE), and (2) Restricted Transactional Memory (RTM). While both

operate on the same principles of transactional memory, they have subtle differences. This section discusses

some of the implementation details of TSX as well as how the programmer utilizes TSX.

2.3.1 Hardware Lock Elision (HLE)

The Hardware Lock Elision (HLE) interface is a legacy-compatible interface introducing two instruction

prefixes, namely:

1. XACQUIRE and

2. XRELEASE.

The XACQUIRE prefix is placed before a locking instruction to mark the beginning of a transaction. XRELEASE

is placed before an unlocking instruction to mark the end of a transaction.

These prefixes tell the processor to elide the write operation to the lock variable during lock acquisi-

tion/release. When the processor encounters an XACQUIRE prefixed lock instruction, it transitions to trans-

actional execution. Specifically, it adds the lock variable to the transaction’s read-set instead of issuing any

write requests to the lock [1]. To other threads, the lock will appear to be free, thus allowing those threads to

enter the critical section and execute concurrently. All transactions can execute concurrently as long as no

transactions abort and explicitly write to the lock variable. If that were to happen, a data conflict technically

occurs — one transaction writes to a memory location (the lock) that is part of another transaction’s read-set.

The XRELEASE prefix is placed before the instruction used to release the lock. It also attempts to elide

the write associated with the lock release instruction. If the lock release instruction attempts to restore the

lock to the value it had prior to the XACQUIRE prefixed locking instruction, the write operation on the lock

is elided [1]. It is at this time that the processor attempts to commit the transaction.

However, if the transaction aborts for any reason, the region will be re-executed non-transactionally.

If the processor encounters an abort condition, it will discard all memory operations performed within the

transaction, return to the locking instruction, and resume execution without lock elision, i.e., the write oper-

ation will be performed on the lock variable. If any other thread is executing the same transactional region,

those transactions will also abort. The aborted transaction thread performs an explicit write on the lock,

9
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/* Acquire lock */
/* Loop until the returned val indicates the lock was free */
while(__atomic_exchange_n(&lock, 1, __ATOMIC_ACQUIRE)):

/* Begin executing critical section */
...
/* End critical section */

/* Free lock */
__atomic_store_n(&lock, 0,__ATOMIC_RELEASE);

Figure 2.1: Standard Atomic Lock Implementation

resulting in a data conflict for any other transaction as the lock variable is part of the other transaction’s

read-set. The re-execution of the critical section using conventional synchronization is necessary to guaran-

tee forward progress [1].

An example of a standard locked critical section using the x86 atomic exchange instruction is shown in

Figure 2.1 (as a reference for the TSX HLE interfaces shown below). The atomic exchange n(type

*ptr, type val, int memmodel intrinsic implements the atomic exchange operation as the name

suggests. It writes val into ptr and returns the previous contents of ptr. The most important parameter is

memmodel; it specifies synchronization requirements between threads. For instance, the ATOMIC ACQUIRE

memory model synchronizes the local thread with a release semantic store from another thread [24]. Essen-

tially, when another thread executes a lock release, the local thread will execute the lock acquire. The while

loop further ensures the lock is free before it is acquired (the while loop repeats the atomic exchange n

operation until the lock is acquired).

To enable HLE synchronization, the programmer merely adds the HLE memory models to the existing

locking intrinsics (Figure 2.2). The ATOMIC HLE ACQUIRE tells the thread to execute an XACQUIRE

prefixed lock acquire instruction when another thread releases the lock. The combination of memory mod-

els, ATOMIC HLE ACQUIRE| ATOMIC HLE ACQUIRE) allows for the locking instructions to be exe-

cuted with or without elision. The local thread can be synchronized to a XRELEASE prefixed lock release

instruction or a standard lock release instruction.

HLE is legacy compatible. Code utilizing the HLE interface can be executed on legacy hardware, but

the HLE prefixes will be ignored [1] and the processor will always perform the write operation on the
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/* Acquire lock with lock elision if possible */
/* Loop until the returned val indicates the lock was free */
while(__atomic_exchange_n(&lock, 1, __ATOMIC_HLE_ACQUIRE|__ATOMIC_ACQUIRE)):

/* Begin executing critical section/transactional region */
...
/* End critical section/transactional region */

/* Free lock with lock elision if possible */
__atomic_store_n(&lock, 0, __ATOMIC_HLE_RELEASE|__ATOMIC_RELEASE);

Figure 2.2: Generic HLE Software Implementation

locking variable and execute the critical section non-transactionally. While this interface does nothing for

multi-threaded applications on legacy hardware, it does allow for easier cross-platform code deployment.

2.3.2 Restricted Transactional Memory (RTM)

The Restricted Transactional Memory (RTM) interface for HTM introduces four new instructions, namely:

1. XBEGIN,

2. XEND,

3. XABORT, and

4. XTEST.

The XBEGIN instruction marks the start of a transaction, while the XEND instruction makes the end of a

transaction. The XABORT instruction is used by the programmer to manually abort a transaction. Finally,

the XTEST instruction can be used to test if the processor is executing transactionally or non-transactionally.

The XBEGIN instruction transitions the processor into transactional execution [1]. Note that the XBEGIN

instruction does not elide the locking variable as HLE does. Therefore, the programmer should manually

add the locking variable to the transaction’s read-set by checking if the lock is free at the start of the trans-

action. If it is free, the transaction can execute safely. Once execution reaches the XEND instruction, the

processor will attempt to commit the transaction.

As previously mentioned, the transaction can abort for many reasons. One case specific to RTM occurs

when the lock is not free upon entering the transaction. In this case, the programmer uses the XABORT
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instruction to explicitly abort the transaction. But no matter the reason for the abort, execution jumps to the

fallback instruction address [1]. This address is specified as an operand of the XBEGIN instruction.

It is this fallback path that makes RTM a much more flexible interface than HLE because it is entirely

at the discretion of the programmer to determine precisely what happens on failure of a transaction. Even

so, the programmer must still provide an abort path that guarantees forward progress [1]. Therefore, the

abort path should use explicit synchronization, e.g., acquire the lock, to ensure forward progress. However,

the programmer can use this abort path to tune the performance of RTM enabled applications. For instance,

a retry routine can be used to specify how many times the processor should attempt to enter transactional

execution before using explicit synchronization. Furthermore, the EAX register reports information about

the condition of an abort [1], such as whether or not the abort was caused by the XABORT instruction, a data

conflict, and so on. The programmer can use this information to make more informed decisions regarding

reattempting transactional execution.

The RTM implementation is more involved because it uses entirely new instructions. The general algo-

if (_xbegin() == _XBEGIN_STARTED) {
/* Add lock to read-set */
if (lock is not free) {

/* Abort if lock is already acquired */
_xabort(_ABORT_LOCK_BUSY);

}
} else {

/* Abort path */
acquire lock

}

/* Begin critical section/transactional region */
...
/* End critical section/transactional region */

if (lock is free) {
/* End transaction and commit results*/
_xend();

} else {
release lock

}

Figure 2.3: Generic RTM Software Implementation

12
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rithm for the RTM software interface is shown in Figure 2.3. The programmer moves the existing locking

mechanism inside an else clause of the XBEGIN if statement, which will determine if the processor tran-

sitions to transactional execution or takes the abort path. As previously mentioned, the processor will also

return to this point should the transaction abort in the middle of execution. Moving the locking mechanism

into the RTM abort path ensures that the abort path ultimately uses explicit synchronization and guarantees

forward progress. GCC 4.8 and above includes support for the xbegin, xabort, and xend intrinsics

to implement the associated instructions [24].

While RTM is a much more flexible interface than HLE, it can only be used on supported Haswell

platforms. If a legacy device attempts to execute one of the RTM instructions, it will throw a General

Protection Fault. It should be noted that execution of the XEND instruction outside of a transaction will

result in a General Protection Fault as well [2].

13



Chapter 3

Practical Programming with TSX

Before implementing TSX in the WARPED simulation kernel, a more in depth evaluation of its capabilities

needed to be performed. One of the disadvantages of HTM is the physical limitations of the hardware.

This section evaluates practical programming techniques to consider when using TSX to ensure optimal

performance. Custom benchmarks were developed to evaluate these various constraints. All benchmarks

were run on a system with an Intel i7-4770 running at 3.4GHz with 32 GB RAM. Each core has a 32KB

8-way, set associative L1 cache and a 256 L2 cache. Each cache line is 64 bytes. This information was

verified using common Unix commands. All measurements were performed ten times and averaged. This

discussion of this chapter is directly related to the Intel Haswell i7-4770 processor implementation of HTM.

Generalization of these results and the corresponding discussion to other processor implementations of HTM

should not be made.

3.1 Memory Organization

TSX maintains a read-set and a write-set with the granularity of a cache line [1]. During transactional

execution, TSX constructs a record of memory addresses read from and a record of memory addresses

written to. A data conflict occurs if another thread attempts to (i) read an address in the write-set or (ii) write

an address in the read-set. This definition can be expanded to state that a data conflict occurs if:

1. another thread attempts to read a memory address that occupies the same cache line as a memory
address to be written, or
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2. another thread attempts to write a memory address that occupies the same cache line as a memory
address that has been read from or written to.

Therefore, aborts can be caused by data occupying the same cache line, essentially reporting a false conflict

on the shared data [2]. To mitigate the effects of shared cache line data conflicts, the programmer must

be conscientious of how data is organized in memory. For instance, the data in the previously discussed

benchmarks is optimally organized by allocating individual elements to 64 bytes, i.e., a single cache line.

Furthermore, data elements should be aligned to cache line boundaries to ensure that each element is

limited to exactly one cache line. If a data element crosses a cache line boundary, the probability of shared

cache line data conflicts increases as the data access now has to check against two cache lines.

3.2 Transaction Size

TSX maintains a transaction read-set and write-set in the L1 cache [2]. The size of these memory sets is

therefore limited by the size of the L1 cache. Hyper-threading further restricts the size of the transaction

data sets because the L1 cache is shared between two threads on the same core [2]. Based on granularity of

the read-set and write-set stated above, the transaction size is defined as the number of cache lines accessed

within a transaction.

The first two benchmarks evaluate the size restrictions of a transaction’s read-set and write-set, i.e., how

many cache lines can a transaction track in each set during transactional execution. The benchmarks access

a shared array of custom structures. Each structure is allocated to occupy an entire cache line and aligned

to the nearest cache line boundary using the GCC align attribute. This ensures that memory is optimally

organized as previously discussed.

The objective of the first benchmark is to evaluate the read and write-set sizes for a transaction being

executed by a single thread on a single core. Furthermore, only one thread is used to avoid data conflicts.

The critical section performs a certain number of strictly read or strictly write operations in the body of

a loop. The loop increments an array index to a limit specified by the transaction size being tested, and

the body of the loop accesses every single element in that range. This is repeated one hundred times. The

number of elements, or cache lines, accessed during the critical section is doubled with every iteration of

the main test loop. Figure 3.1 shows the abort rate, (# aborts / 100 operations), as the number of cache lines
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Figure 3.1: TSX RTM abort rate versus cache lines accessed for a single thread on one core

accessed within the transaction is increased. The read-set data points represent strictly read operations while

the write-set data points represent strictly write operations.

It is clear that transactions abort 100% of the time once the thread tries to write to 512 or more cache

lines within the transaction. This is consistent with the size of the L1 cache, 32KB of 64 bytes caches

lines equates to 512 cache lines; it is unrealistic to expect that no other process will use the cache while the

transaction is executing and thus the transaction cannot occupy the cache in its entirety. Note that the cache

is split into 64 8-way sets; if memory is not organized properly, the total write-set size will be reduced.

It is evident that the same size limitations do not hold for the read-set size. While eviction of a cache line

containing a write-set address will always cause a transactional abort, eviction of a cache line containing

a read-set address may not cause an immediate transactional abort; these cache lines may be tracked by a

second-level structure in the L2 cache [2].

The objective of the second benchmark is to evaluate the read and write-set sizes for a transaction being

executed by a single thread on a shared core, i.e., a hyper-threaded core. This benchmark uses the same

procedure as above, but with two threads bound to the same core. Each thread accesses the same number of

cache lines, but at different memory locations to prevent any data conflicts. Figure 3.2 shows the abort rate

for one of the threads as the number of cache lines accessed within each transaction increases.

It is evident that the write-set is strictly limited to half of the L1 cache. However, the probability of an
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Figure 3.2: TSX RTM abort rate versus cache line accesses for two threads on hyper-threaded core.

abort is non-trivial for any write-set size between 32 and 128 cache lines. It is also evident that the read-set

size is limited to a similar size as the write-set on a hyper-threaded core.

3.3 Transaction Duration

Transaction aborts can be caused by a number of run-time events [1], including but not limited to: interrupts,

page faults, I/O operations, context switches, illegal instructions, etc. This is due to the inability of the

processor to save the transactional state information [18].

The objective of the third benchmark is to evaluate the running time restrictions for a transaction, i.e.,

how long can a transaction safely execute without failing. The duration of each transaction is increased

by increasing the number of operations performed within the transaction. The critical section performs a

certain number of increment operations on a single data element in the body of loop. The loop increments to

a limit specified by the duration being tested. The operation count or duration is increased logarithmically

from 1000 to 1000000 every iteration of the main test loop. Figure 3.3 shows the transaction abort rate as

the duration of the transaction is increased.

It is clear that the longer a transaction executes, the higher the probability is that it will abort. Practical

applications will perform a varying number of operations that take varying amounts of time. This benchmark
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Figure 3.3: TSX RTM abort rate versus number of operations performed during transaction.

simply demonstrates there is a limit to how long a transaction can be executed. Shorter transactions are more

likely to succeed than longer transactions.

3.4 Synchronization Latency

Conventional synchronization mechanisms have varying latencies, therefore TSX most likely also has vary-

ing latencies. While it is incredibly difficult to obtain accurate measurements, the objective of this bench-

mark is to compare the TSX latencies to conventional synchronization mechanism latencies. This bench-

mark merely demonstrates how long TSX synchronization mechanisms take to enter a transactional region

relative to how long conventional synchronization mechanisms take to enter a critical section.

Each synchronization mechanism is used to perform a simple increment operation. The thread calls the

locking function, increments the data, and calls the release function 100000 times. The execution time of the

entire loop is measured using the gettimeofday functionality in Linux. The locking/release functions

use one of the following depending on the configuration:

1. no synchronization,

2. an atomic compare and exchange lock,

3. a mutex lock,
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Figure 3.4: Synchronization Latency

4. HLE, and

5. RTM.

The results are shown in Figure 3.4. Clearly the HLE and RTM mechanisms take longer to actually com-

plete the synchronization process. This can most likely be attributed to the extra actions performed by the

hardware to initiate transactional execution.

3.5 Nesting Transactions

When developing larger TSX enabled multi-threaded applications, it is possible for critical sections to be

nested within one another. TSX supports nested transactions for both HLE and RTM regions, as well as a

combination of the two. When the processor encounters an XACQUIRE instruction prefix or an XBEGIN

instruction, it increments a nesting count. Note that the processor transitions to transactional execution when

the nesting count goes from 0 to 1 [1]. When the processor encounters an XRELEASE instruction prefix or

an XEND instruction, the nesting count is decremented. Once the nesting count returns to 0, the processor

attempts to commit the transactions as one monolithic transaction [1].
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The total nesting depth is still limited by the physical resources of the hardware. If the nesting count

exceeds this implementation specific limit, the transaction may abort. Upon abort, the processor transitions

to non-transactional execution as if the first lock instruction was executed without elision [1].

Scenarios may arise where different locks may be nested within the same critical section. For instance,

one critical section may reside within a separate critical section. While this is not a concern for RTM

regions, it can become a concern for HLE regions, as the processor can only track a fixed number of HLE

prefixed locks. However, any HLE prefixed locks executed after this implementation specific limit has been

reached will simply execute without elision; consequently, the secondary lock variable will be added to the

transaction’s write-set [1].
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Chapter 4

PDES and WARPED

4.1 Background

Discrete Event Simulation (DES) models a system’s state changes at discrete points in time. In a DES

model, physical processes are represented by Logical Processes (LPs) [15]. For example, in an epidemic

simulation, LPs represent geographical locations containing a subset of the total population. The LP’s state

represents the diffusion of the disease within the location and the status of the occupants at that location.

Executed Events in this simulation represent the arrival or departure of individuals to or from that location,

the progression of a disease within an individual at that location, the diffusion of a disease throughout that

location, etc [19]. To effectively model epidemics, a significant population size and number of locations

needs to be simulated.

In general, DES simulators consist of the following data structures [9]:

• Pending Event Set: contains events that have been scheduled, but not processed. Events are retrieved
from this structure to be executed.

• Clock: denotes how far the simulation has progressed.

• State: describes the state of the system.

The state of the simulation can only change upon execution of an event. During the execution of an event,

the simulation:

1. retrieves the least time-stamped event from the pending event set,
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2. processes the event,

3. updates the LP’s state, and

4. if necessary, inserts generated events into the pending event set.

The need for large simulation models has energized research in Parallel Discrete Event Simulation

(PDES). Events from separate LPs are executed concurrently by one of N threads. Each LPs’ events ex-

ecute in chronological order to ensure local causality constraints are met [9]. However, PDES is susceptible

to other causality errors. Optimistically synchronized simulators are the most susceptible to these causality

errors. While conservatively synchronized simulators do not execute events until the system has determined

it is safe to do so [9], optimistic approaches, such as the Time Warp protocol, detect rather than prevent

causal errors. The advantage of optimistic approaches is increased concurrency as events are continually

executed until a causal error is detected.

One of the most well-known optimistic protocols is the Time Warp mechanism [9]. In addition to the

standard DES data structures, each LP in a simulation implementing the Time Warp protocol consists of the

following data structures:

• Unprocessed Queue: contains events that have been scheduled, but have yet to be executed. This
structure acts as the pending event set for the LP.

• Processed Queue: records previously executed events.

• Output Queue: contains event messages sent to other LPs.

In Time Warp, a causality error occurs if an event message is received containing an event time-stamp

smaller than the time-stamp of the previously executed event. Such an event is known as a straggler event.

When a straggler event is received by an LP, that LP must undo all effects of all events executed with a

time-stamp greater than that of the straggler event, henceforth referred to as a rollback. During a rollback,

prematurely executed events are removed from the processed queue and reinserted into the unprocessed

queue after the straggler event. For every event message in the output queue with an event time-stamp greater

than that of the straggler event, an anti-message is generated. Anti-messages are sent to the associated LP

of that event and remove the prematurely generated event from the remote LP’s queue. Figure 4.1 shows the

scheduling state of the LP as a straggler event is received. Figure 4.2 shows the scheduling state of the LP

after the rollback is processed [7].
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Figure 4.1: LP at the time of a straggler event is received

While rollbacks are a problem in themselves, rollbacks represent another issue relevant to this study; the

need to access the pending event set. When a rollback modifies an LP’s local pending event set, the global

pending event set must be updated as well. Any access to the global pending event set is a possible point of

contention as only one thread can access this structure at a time. The implementation and management of

the pending event set is crucial to the overall performance of PDES [21].

Figure 4.2: LP after a rollback is processed
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4.2 The WARPED Pending Event Set

WARPED is a publicly available Discrete Event Simulation (DES) kernel implementing the Time Warp pro-

tocol [9, 14]. It was recently redesigned for parallel execution on multi-core processing nodes [16]. It has

many configuration options and utilizes many different algorithms of the Time Warp protocol [9].

The pending event set is maintained as a two-level structure in WARPED (Figure4.3) [7]. Each LP

maintains its own event set as a time-stamp ordered queue. As previously mentioned, each LP maintains

an unprocessed queue for scheduled events yet to be executed and a processed queue to store previously

executed events. A common Least Time-Stamped First queue is populated with the least time stamped

event from each LP’s unprocessed queue. As the name suggests, the LTSF queue is automatically sorted in

increasing time-stamp order so that worker threads can simply retrieve an event from he head of the queue.

This guarantees the worker thread retrieves the least time-stamped event without having to search through

the queue. The LTSF queue is also referred to as the schedule queue in WARPED; these terms will be used

interchangeably.

4.2.1 Pending Event Set Data Structures

The implementation of the pending event set is a key factor in the performance of the simulation [21]. The

WARPED simulation kernel has two functional implementations: (1) the C++ Standard Template Library

(STL) multi-set data structure, and (2) the splay tree data structure. While a preliminary ladder queue [25]

implementation for the pending event set is currently under development, it is was not ready at the time

of this study and is therefore not included in this analysis. The way in which these data structures are

Figure 4.3: Pending Event Set Scheduling
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accessed and, more importantly, self-adjust will be relevant to how effectively TSX can be used to access

these structures.

STL Multi-set The STL multi-set data structure , specifically the sorted STL multi-set data structure, is an

abstract data structure implemented as a self-balancing, red-black binary search tree [11]. Look-up, inser-

tion, and deletion operations performed in a red-black tree with n elements are performed in average O(log

n) time. When insertion or deletion operations are performed, the tree is re-balanced by a tree rearrangement

algorithm and a “painting” algorithm taking average O(1) and O(log n) time respectively.

The STL multi-set is a self sorting data structure. The lowest value element will always be the left most

child node of the tree. To access the least time-stamped event at the head of the LTSF queue, multi-set

red-black tree must be traversed to the left most child node. Any insertion or removal of events requires that

the red-black tree re-balance itself.

Splay Tree The splay tree is a self-adjusting binary search tree in which recently accessed elements are

moved to the root of the tree for quicker access [23]. Look-up, insertion, and deletion operations performed

in a splay tee with n elements are performed in average O(log n) time. When an element is inserted or looked

up, a splaying operation is to move that element to the root of the tree.

When an event is inserted into the LTSF queue, it becomes the root of the splay tree. While this is

advantageous if it is known that the root of the tree is the next least time-stamped event, the tree will have

to be most searched most of the time. If it is known that the next event to be scheduled is the located at the

root of the tree, the worker thread scheduling the event can simply retrieve the node at the root of the tree

without performing any searching operations. This will rarely be the case, however. Because the splay tree

puts the any most recently accessed element at the root of the tree, there is no guarantee this node is the

least time-stamped event. The tree will have to be searched when an event is retrieved to ensure the least

time-stamped event is being retrieved.

4.2.2 Worker Thread Event Execution

A manager thread initiates n worker threads at the beginning of the simulation. It can also suspend inactive

worker threads if they run out of useful work. When a worker thread is created, or resumes execution after
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being suspended by the manager thread, it attempts to lock the LTSF queue and dequeue the least time-

stamped event. If the worker thread successfully retrieved an event, it executes that event as specified by the

simulation model. It then attempts to lock the unprocessed queue for the LP associated with the executed

event, and dequeue the next least time-stamped event. The dequeued event is inserted into the LTSF queue,

which resorts itself based on the event time-stamps. An abstract event processing algorithm is shown in

Figure 4.4 [7]. Note that the worker threads perform many other functions as well.

4.2.3 Contention

Only one worker thread can access the LTSF queue at a time. This creates a clear point of contention during

event scheduling as each thread must first retrieve an event from the LTSF queue. The LTSF queue must also

be updated when events are inserted into any of the LP pending event sets. This occurs when new events are

generated or the simulation encounters a causality error and must rollback.

worker_thread()

lock LTSF queue
dequeue smallest event from LTSF
unlock LTSF queue

while !done loop

process event (assume from LPi)

lock LPi queue

dequeue smallest event from LPi

lock LTSF queue

insert event from LPi
dequeue smallest event from LTSF

unlock LTSF queue
unlock LPi queue

end loop

Figure 4.4: Generalized event execution loop for the worker threads. Many details have been omitted
for clarity.

26



CHAPTER 4. PDES AND WARPED 4.3. PREVIOUS SOLUTIONS TO CONTENTION

 60

 80

 100

 120

 140

 160

 180

 200

 220

 1  2  3  4  5  6  7

S
im

u
la

ti
o
n
 T

im
e
 (

s)

Number of Worker Threads

Figure 4.5: WARPED Simulation Time versus Worker Thread Count for Epidemic Model

Contention increases with the number of worker threads used to perform the simulation. The initial

WARPED implementation execution time was measured and analyze using 1 to 7 worker threads. These

results can be seen in Figure 4.5. It is evident that performance begins to flatten once the number of worker

threads used surpasses four. This is attributed to the increased contention for the LTSF queue; with more

threads, each thread has to wait longer for access to the LTSF queue. The multi-core processor trend will

continue to increase the number of simultaneous execution threads available, consequently increasing the

contention problem.

4.3 Previous Solutions to Contention

Dickman et al explored the explored the use of various data structures in WARPED pending event set im-

plementation, specifically, the STL multi-set, splay tree, and ladder queue data structures [7]. A secondary

focus of this study will expand upon the use of splay tree versus STL multi-set data structures; at the time

of this work, the ladder queue implementation was being heavily modified and could not be included in this

study.

Another focus of the Dickman et al study was the utilization of multiple LTSF queues [7]. Multiple

LTSF queues are created at the beginning of the simulation. Each LP is assigned to a specific LTSF queue as
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Figure 4.6: Pending Event Set Scheduling with Multiple LTSF Queues

shown in Figure 4.6. In a simulation configured with four LPs, two worker threads, and two LTSF queues,

two LPs and one thread are assigned to each queue. This significantly reduced contention as each thread

could access separate LTSF queues concurrently. The initial implementation statically assigned LPs to

LTSF queues. This resulted in an unbalanced load distribution, leading to an increased number of rollbacks

and reduced simulation performance. This was corrected using a load balancing algorithm to dynamically

reassign LPs to LTSF queues [7]. This study expands the previous multiple LTSF queue to evaluate if

contention can be reduced even further with TSX.

4.4 Thread Migration

Another potential solution to contention is to distribute worker threads that try to simultaneously access the

same LTSF queue to different LTSF queues. In the original scheduling scheme, worker threads are assigned

to a specific LTSF queue. The worker thread would insert the next event into the same LTSF it had just

scheduled from as seen in Figure 4.4. In this implementation, the worker thread inserts the next event into

a different LTSF queue, based on a circularly incremented counter. This approach dynamically reassigns

worker threads LTSF queues by migrating the threads to new LTSF queues. It also implicitly balances the

load between the all the LTSF queues. The number of LTSF queues is specified in a configuration file, and

has no restrictions as in the static assignment.

In a separate (unpublished) study, UC researcher discovered that this implementation resulted in poor

performance on Non-uniform Memory Access (NUMA) architectures. Jingjing Wang et al also noticed
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similar performance degradation, which they attributed to poor memory locality due to the movement of

LPs to different threads [27]. To offset these performance hits, a migration count was implemented in this

scheme. Instead of continuous migration, threads are reassigned to their original LTSF queue after executing

a certain number of events. The threads will continue to schedule events from their original LTSF queue for

the remainder of the simulation.

worker_thread()

i = fetch-and-add LTSF queue index
lock LTSF[i]
dequeue smallest event from LTSF[i]
unlock LTSF[i]

while !done loop

process event (assume from LPi)

lock LPi queue

dequeue smallest event from LPi

i = fetch-and-add LTSF queue index

lock LTSF[i]

insert event from LPi into LTSF[i]
dequeue smallest event from LTSF[i]

unlock LTSF queue
unlock LPi queue

end loop

Figure 4.7: Generalized event execution loop for migrating worker threads. Many details have been
omitted for clarity.
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Chapter 5

WARPED with TSX

This section analyzes the various critical sections of WARPED that use the TSX mechanism for this study.

As previously mentioned, the primary focus of this study is the shared LTSF queue. The LP unprocessed

and processed queues also also modified to use the TSX mechanism. In this study, experiments with both

the RTM and HLE mechanisms are explored.

5.1 WARPED Critical Sections

First, it is important to understand the operations performed in a critical section. If a critical section always

writes to the entire shared data structure, TSX will most likely not be useful. Functions are only explained

in terms of the operations pertaining to the specific data structure they operate on for the sake of clarity.

5.1.1 Relevant LTSF Queue Functions

The following functions require synchronization to access the LTSF queue:

• insert(): copy the least time-stamped event from a specific LP’s unprocessed queue into the LTSF
queue.

• updatedScheduleQueueAfterExecute(): find the source LP of the previously executed
event, and copy the least time-stamped event from that LP’s unprocessed queue into the LTSF queue
using the insert() function above.

• nextEventToBeScheduledTime(): return the time of the event at the beginning of the LTSF
queue.
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• clearScheduleQueue(): clear the LTSF queue.

• setLowestObjectPosition(): update the lowest object position array.

• peek(): dequeues the next event for execution from the head of the LTSF queue.

• peekEvent(): if a simulation object is not specified, call peek().

Most of these critical sections involve write operations, typically through queuing and dequeuing events.

Queuing and dequeuing requires the multi-set and splay tree data structures to readjust themselves thus

adding more memory locations to the transaction’s read-set and write-set. nextEventToBeScheduleTime()

is the only critical section that performs strictly read operations. Furthermore, many of these critical sections

overlap with critical sections from the unprocessed and processed queues, which are described below.

5.1.2 Unprocessed Queue Functions

The following functions require synchronization to access a specific LPs unprocessed queue:

• insert(): insert an event into a specific LP’s unprocessed queue.

• updatedScheduleQueueAfterExecute(): refer to updateScheduleQueueAfterExecute()
in section 5.1.1.

• getEvent(): dequeue the least time-stamped event in the unprocessed queue; insert event into
processed queue.

• getEventIfStraggler(): same as getEvent(), except the event is not inserted into the
processed queue.

• getEventWhileRollback(): same as getEvent(), except the unprocessed queue is already
locked.

• peekEvent(): return a reference to the next event in the LP’s unprocessed queue when a simulation
object is specified; may not release lock

• peekEventCoastForward(): same as peekEvent(); may not release lock.

• peekEventLockUnprocessed(): same as peekEvent(); may not release lock.

• handleAntiMessage(): delete an event in a specific LP’s unprocessed queue for which the LP
received an anti-message.

• ofcPurge(): remove all events from the unprocessed queue; used for optimistic fossil collection
[30], which is beyond the scope of this study.

• getMinEventTime(): get the time-stamp of the first event in a specific LP’s unprocessed queue.
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Just as the LTSF queue, many of the unprocessed queue critical sections involve queuing and dequeuing

events. Since the unprocessed queue is implemented as a multi-set, queuing and dequeuing require the data

structure to readjust itself, thus adding a larger portion of the data structure to the transaction’s read-set and

write-set. Other critical sections involve deleting events matching a specific criteria, but the same readjusting

occurs. As previously mentioned, some unprocessed queue critical sections are executed in the middle of an

LTSF queue critical section, or vice versa.

5.1.3 Processed Queue Functions

The following functions require synchronization to access a specific LP’s processed queue:

• getEvent(): insert the dequeued event from a specific LP’s unprocessed queue into that LP’s
processed queue.

• getEventWhileRollback(): insert an event into the LP’s processed queue.

• rollback(): traverse a specific LP’s entire processed queue and remove any events with a time-
stamp greater than or equal to the rollback time; the removed events are placed in the LP’s unprocessed
queue.

• fossilCollect(): remove events satisfying a certain criteria from a specific LP’s processed
queue.

• ofcPurge(): same as the ofcPurge() function for the unprocessed queue.

The processed queue is also implemented as a multi-set data structure. Any insertion or deletion of

events requires the data structure to readjust. All of the processed queue critical sections modify the data

structure in some way, with the exception of rollback() and fossilCollect(); there is a chance

that no events in the queue match the criteria, therefore, no events need to be removed.

5.2 WARPED Transactional Regions

The functions described above perform a variety of memory operations and any thread can execute any

critical section at any time. Based on static analysis, there’s no way of knowing which threads will access

what structure in what way, hence the need for synchronization. However with TSX, functions that do

not interfere can execute concurrently. TSX tracks read and write memory operations separately in the
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transaction’s read-set and write-set respectively. Transactions only interfere if a data conflict occurs, i.e., a

thread attempts to write to a memory location in another transaction’s read-set, or a thread attempts to read

a memory location in another transaction’s write-set.

For example, one worker thread calls nextEventToBeScheduleTime to get the time-stamp of the

event at the head of the LTSF queue. There is a possibility that a different worker thread is currently updating

the LTSF queue or will attempt to update the LTSF queue with the first worker thread is in the middle of exe-

cuting nextEventToBeScheduleTime. This scenario necessitates synchronization. However, instead

of the second worker thread writing to the LTSF queue, it also calls nextEventToBeScheduleTime.

Both are read operations and do not interfere with each other. TSX recognizes this scenario and allows the

worker threads to execute concurrently, whereas locks force one worker thread to wait until the other is done

with the LTSF queue.

Several similar scenarios can arise during simulation execution. While there are too many possible

scenarios to identify specifically where TSX can be beneficial, the potential to expose concurrency through

dynamic synchronization is too great to be dismissed. Note, there is also no guarantee that TSX will work

100% of the time; there are several run-time events that can cause transactions to abort, as well as physical

limitations.

The process of scheduling requires a significant amount of write operations to the queues listed above.

As long as executing threads do not write to an entire queue, there is a good chance that the write oper-

ations will not interfere. TSX dynamically determines if the write operations are performed on different

memory locations and allows the threads to execute concurrently. The data structures used to implement the

respective queues is a significant factor in determining if two or more threads perform conflicting memory

operations on the same structure. Not only is the performance of simulation dependent on the pending event

set implementation, but the performance of TSX is also dependent on the data structures implementing the

pending event set.

For example, a worker thread is scheduling the next least time-stamped event from the LTSF queue and

needs to remove that event from the queue. The LTSF class maintains a lowest event position pointer to

keep track of the head of the LTSF queue, i.e., the least time-stamped event in the underlying red-black

tree. The node is removed and the lowest event position pointer is updated. The STL multi-set must go
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through the process of re-balancing itself before the transaction ends. Before the multi-set can complete

the re-balancing process, another worker thread attempts to schedule the next least time-stamped event. It

uses the lowest event position pointer to access the next least time-stamped event, i.e., the parent node of

the previously removed event. This involves a write operation to the parent node of the first event. But the

node was already added to the first transaction’s read-set during the re-balancing procedure. A data conflict

results and both transactions must abort.

In the splay tree schedule queue implementation, the next least time-stamped event is already the root

of the splay tree, either because it was just peeked at or inserted. A worker thread enters the transaction

to schedule the event and remove it from the queue. To verify that the root of the splay tree is the least

time-stamped event, the tree must be partially traversed. If the root node has no left sub-tree, representing

any events with time-stamps smaller than that of the root node, the root node is in fact the least time-stamped

event. It is removed and the right sub-tree root node becomes the new root node of the entire splay tree.

The reassignment of the right sub-tree root node to the splay tree root node adds that memory location to

the transaction read-set. Before the first transaction completes, another thread looks at the head of the to

schedule the next least time-stamped event. It attempts to remove the node, resulting in a data conflict with

the first transaction. Furthermore, traversing the tree to verify the least time-stamped event is at the root

node of the tree adds a larger portion of the data structure to the transaction’s read-set. This increases the

likelihood of a data conflict.

Both of these data structures are some form of binary tree. It is possible for very few nodes to be

accessed during certain operations, especially the multi-set red-black tree. This is advantageous for TSX

as fewer memory locations will not be added to the transaction read-sets thus making it less likely for data

conflicts to occur.

It is possible, though highly unlikely, that either implementation could take the form of a single linked

list, depending on what order events are inserted in. For instance, events inserted into the multi-set red-black

tree in increasing chronological order create a singly linked list. This situation poses a threat to TSX if the

entire list is traversed in a transaction. Not only because access to any element becomes a possible data

conflict, but also because of size limitations. If the LTSF queue contains too many events, TSX might not

be able to track all the memory locations involved in the queue, thus resulting in aborts.
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static inline int _xacquire(int *lockOwner, const unsigned int *threadNumber)
{

unsigned char ret;
asm volatile("mov $0xFFFF, %%eax\n"

_XACQUIRE_PREFIX "lock cmpxchg %2, %1\n"
"sete %0"
: "=q"(ret), "=m"(*lockOwner)
: "r"(*threadNumber)
: "memory", "%eax");

return (int) ret;
}

Figure 5.1: HLE xacquire Inline Assembly Function

5.3 TSX Implementation

This section discusses how both TSX interfaces were implemented in WARPED.

5.3.1 Hardware Lock Elision (HLE)

The generic algorithm presented in Figure 2.2 in Section 2.3.1 only works for locks with a binary value,

i.e., the lock is free or it is not free. The WARPED locking mechanism assigns the thread number to the lock

value to indicate which thread currently holds the lock. To comply with this implementation, custom HLE

lock acquire and lock release functions were implemented. GCC inline assembly functions were developed

appending the appropriate HLE prefixes to the CMPXCHG lock instruction.

These functions are shown in Figures 5.1 and 5.2. The xacquire() function loads the value 0xFFFF

(the value indicating the lock is free) into a specific register, then compares the lockOwner variable with

the the previously loaded value to determine if the lock is free. If the values are the same, the CMPXCHG

instruction will write the value of the threadNumber variable into the lockOwner variable and return the

result. The xrelease() function loads the value of the lockOwner variable into a specific register, then

compares the threadNumber variable with the previously loaded value. If the lockOwner value is the same

as the thread number, the cmpxchg writes the value 0xFFFF into the lockOwner variable to indicate the

lock is free. Of course, if the processor successfully transitions into transactional execution with the HLE

prefixes, the write operations technically never occur. They only appear to occur to the local thread. Any

other thread still sees the lock as free.
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static inline int _xrelease(int *lockOwner, const unsigned int *threadNumber)
{

unsigned char ret;
asm volatile("mov %2, %%eax\n"

_XRELEASE_PREFIX "lock cmpxchg %3, %1\n"
"sete %0"
: "=q"(ret), "=m"(*lockOwner)
: "r"(*threadNumber), "r"(0xFFFF)
: "memory", "%eax");

return (int) ret;
}

Figure 5.2: HLE xrelease Inline Assembly Function

5.3.2 Restricted Transactional Memory (RTM)

As previously explained in Section 2.3.2, RTM allows the programmer to specify an abort path to be ex-

ecuted upon a transactional abort. This allows better tuning of RTM performance. The RTM algorithm

implemented in WARPED includes a retry algorithm described below in Figure 5.3. Instead of immediately

retrying transactional execution, the algorithm decides when and if the transaction should be retried based

on the condition of the abort. If the transaction was explicitly aborted for reasons other than another thread

owning the lock, do not retry transactional execution. The programmer used the xabort() function to

explicitly abort the transaction. If the lock was not free upon entering the transaction, wait until it is free to

retry transactional execution. If a data conflict occurred, wait an arbitrary amount of time before retrying.

This offsets the execution of the conflicting threads in hopes that the conflicting memory operations will be

performed at different times on the next retry.

The RTM retry limit is specified at compile time. Each data structure maintains its own retry limit

initially set to the global limit. A back-off algorithm is used to reduce the retry limit for a specific data

structure. If the transactions for this data structure abort more often than not, the retry limit is reduced. If

the transaction commit rate increases, the retry limit increases up to the initial limit specified at compile

time. This ideally reduces the number of transaction attempts for an extended period of time. The retry limit

increases if the commit rate passes the abort to commit rate ratio threshold.

Furthermore, if transactions for the data structure consistently abort for an extended period of time with

no successful commits, transactional execution is not attempted for the remainder of the simulation.
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while retry count is less than retry limit
status = _xbegin()

if status == XBEGIN
if lock is free

execute transactional region
else

_xabort

update abort stats

if transaction will not succeed on retry or
_xabort was called due to reasons other than the lock not being free

break

else if _xabort was used because the lock was not free

wait until the lock becomes free to retry

else if a data conflict occurred

wait an arbitrary amount of time before retrying

increment retry count
end loop

acquire lock

execute critical section

Figure 5.3: RTM Retry Algorithm
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Experimental Analysis

This study compares the performance of the WARPED simulation kernel using conventional synchronization

mechanisms, Hardware Lock Elision, and Restricted Transactional memory. All simulations were per-

formed on a system with an Intel i7-4770 running at 3.4 GHz with 32GB of RAM. The average execution

time and standard deviation were calculated from a set of 10 trials for each simulation configuration. When

comparing synchronization mechanisms, the simulation execution times are compared for the same LTSF

queue and worker thread configurations. When comparing the LTSF queue configurations, the multiple

LTSF queue configuration execution time is compared with the execution time of the same configuration

with 1 LTSF queue.

The simulation model used to obtain the following results is an epidemic model. It consists of 110998

geographically distributed people in 119 separate locations requiring a total of 119 LPs. The epidemic is

modeled by reaction processes to model progression of the disease within an individual entity, and diffusion

processes to model transmission of the disease among individual entities.

6.1 The Default Multi-set Schedule Queue

The default implementation of the LTSF queue is the STL multi-set data structure. It is a self-adjusting

binary search tree which keeps the least time-stamped event in the left most leaf node of the tree.
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6.1.1 Static Thread Assignment

In the original WARPED thread scheduling scheme, threads are statically assigned to an LTSF queue. Con-

tention will clearly be a problem if the simulation only schedules from one LTSF queue as every worker

thread is assigned to that queue.

The first part of this study compares the performance of the WARPED pending event set static thread

scheduling implementation using one LTSF queue synchronized with:

1. atomic locks,

2. HLE,

3. RTM with 1 retry,

4. RTM with 9 retries, and

5. RTM with 19 retries.

These results are shown in Figure 6.1. It is clear that using HLE improves simulation performance, but still

suffers from the same rise in contention as the number of worker threads is increased. The performance

using RTM for any retry count used is worse than the standard locking mechanism initially. As the number

of worker threads is increased, the performance using RTM is slightly better than the standard locking

mechanism, but only by about 2 or 3%.

It is evident from Figure 6.1 that contention is increasing as the number of worker threads increases,

regardless of the synchronization mechanism used. This is somewhat expected as contention is still high for

the single LTSF queue. Transactional memory exposes concurrency where it can, but some critical sections

simply cannot be executed concurrently. It should be noted that the performance of HLE does not flatten

quite as much as the other synchronization mechanisms.

The initial solution to alleviate contention for the LTSF queue is the utilization of multiple LTSF queues.

The data for different numbers of schedule queues is limited by the necessity to have a number of LTSF

queues evenly divisible by the number of worker threads. This is because of the way threads are assigned

to LTSF queues; if the numbers are not evenly divisible, the simulation becomes unbalanced. LPs assigned

to a certain LTSF queue can get far ahead or behind of other LPs on different LTSF queues resulting in

significant rollbacks and thus performance degradation.
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Figure 6.1: Performance of a Single Multi-set LTSF Queue

Figure 6.2 shows the simulation results for varying worker thread configurations using 2 LTSF queues.

The load balancing restrictions discussed above restrict the available data for these results.

Each synchronization configuration yields roughly the same increasing performance trend. RTM per-

formance seems to be worse with more retries with a lower worker thread count, but eventually converges

with the single retry scheme. On the other hand, HLE synchronized simulations consistently outperform
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Figure 6.2: Performance of Multiple Worker Threads, 2 LTSF Queues
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# LTSF Queues Lock HLE RTM-1retry RTM-9retry RTM-
19retry

1 121.2255 105.0569 119.6892 131.3282 141.6453
2 118.1558 101.1242 114.1276 128.93 144.2886

Table 6.1: Performance of Multiple Multi-set LTSF Queues, 2 Statically Assigned Worker Threads

# LTSF Queues Lock HLE RTM-1retry RTM-9retry RTM-
19retry

1 91.68472 73.58687 87.36819 87.34794 87.38973
3 89.50474 70.24289 84.21861 94.00537 104.4246

Table 6.2: Performance of Multiple Multi-set LTSF Queues, 3 Statically Assigned Worker Threads

simulations using the standard synchronization.

The LTSF queue count configuration per worker thread configuration results are shown in Tables 6.1,

6.2, 6.3, and Figures 6.3 and 6.4.

Using 2 LTSF queues with 2 statically assigned worker threads appears to alleviate contention. Using

HLE, simulation execution time was reduced by 13-14% regardless of the number of LTSF queues used.

RTM improved performance using only 1 retry, but only by about 1-3%. Using any more retries resulted in

worse performance. Using the standard locking mechanisms, simulation execution time reduced by about

2.5% increasing the LTSF queue count from 1 to 2. With TSX, simulation execution time reduced by about

4% when increasing the LTSF queue count from 1 to 2. While only a small difference, TSX managed to

reduce contention a bit more in conjunction with multiple LTSF queues.

Configuring the simulation with 3 LTSF queues and 3 statically assigned worker threads appears to alle-

viate contention as well. Using HLE, simulation execution time was reduced by about 20% regardless of the

number of LTSF queues used. RTM improved performance using only 1 retry, but only by about 5%. Using

any more retries resulted in worse performance for 3 LTSF queues, while execution time remained constant

for the number of retries using one LTSF queue. Increasing the LTSF queue count from 1 to 3 reduced

simulation execution time by about 2.5% using the standard locking mechanisms. TSX synchronization

reduced simulation execution time by about 4% with multiple LTSF queues. While still small, TSX still

demonstrates a further reduction in contention in conjunction with multiple LTSF queues.

While TSX substantially improved simulation performance, as much 22%, simulation execution time

increased as the number of LTSF queues used was increased in other configurations. It was noted that these
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Figure 6.3: Performance of Multiple Multi-set LTSF Queues, 4 Statically Assigned Worker Threads

# LTSF Queues Lock HLE RTM-1retry RTM-9retry RTM-
19retry

1 69.62144 54.59489 67.10837 67.34648 67.61373
5 93.21429 76.85048 89.62641 76.4832 72.18505

Table 6.3: Performance of Multiple Multi-set LTSF Queues, 5 Statically Assigned Worker Threads
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Figure 6.4: Performance of Multiple Multi-set LTSF Queues, 6 Statically Assigned Worker Threads
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# LTSF Queues Lock HLE RTM-1retry RTM-9retry RTM-
19retry

1 121.4532 105.2221 118.95 131.0166 139.4046
2 122.5693 105.7831 118.8288 130.422 141.834

Table 6.4: Performance of Multiple Multi-set LTSF Queues, 2 Dynamically Assigned Worker Threads

simulations resulted in significantly higher rollbacks, the most likely cause of the increased execution time.

These poor performance results could be attributed to the lack of a proper load balancing procedure, which

is addressed with dynamic thread assignment.

6.1.2 Dynamic Thread Assignment

Another solution to contention is to distribute worker threads that try to simultaneously access the same

LTSF queue to different LTSF queues. Worker threads are dynamically assigned to LTSF queues rather than

statically.

Continuous Thread Migration

The first solution continuously migrates the worker threads to the next LTSF. That is, the worker thread

processes an event from LTSFi and then LTSF(i+1)modn where n is the number of LTSF queues. As the

worker thread moves among the LTSF queues, the worker thread also moves the next event from the just

processed LP to the next LTSF queue. This also helps distribute the critical path of events in the LPs around

the LTSF queues. This solution implicitly balances the work load between LTSF queues. Therefore, any

number of LTSF queues can be used with any number of worker threads.

Figure 6.5 shows the simulation results for 2 LTSF queues using the continuous migration scheme as

the number of worker threads is varied.

Similarly to the static scheduling scheme, the simulations for each synchronization mechanism seem to

follow almost the same trends. The more retries the RTM algorithm attempted, the worse performance was

for 2 and 3 worker threads. However, the number of retries did not affect the RTM performance for 4 or

more worker threads.

The simulation results for the varying LTSF queue configuration per each worker thread configuration

are shown in Table 6.4 and Figures 6.6 through 6.10.
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Figure 6.5: Performance of Multiple Dynamically Assigned Worker Threads, 2 LTSF Queues
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Figure 6.6: Performance of Multiple Multi-set LTSF Queues, 3 Dynamically Assigned Worker Threads
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Figure 6.7: Performance of Multiple Multi-set LTSF Queues, 4 Dynamically Assigned Worker Threads

With 2 or 3 worker threads, the continuous migration scheme did not yield the anticipated results. Sim-

ulation execution time actually slightly increased with additional LTSF queues. However, HLE and RTM

with 1 retry still reduced simulation execution time when compared to standard locking mechanisms, HLE

more so than RTM.

Simulation execution time decreased slightly by increasing the number of LTSF queue with 4 worker

threads. Each multiple LTSF configuration reduced simulation execution time by 2-3% when compared to

the single LTSF queue configuration. The only exception to this trend is the 4 LTSF queue configuration with

HLE; it reduced simulation execution time slightly less than standard locking mechanisms, but the difference

seems trivial. While RTM performed well for lower LTSF queue counts, the increased retry counts resulted

in worse performance for greater LTSF queue counts. In any configuration, HLE still reduces execution

time by about 18%, while RTM generally generally reduces execution time by about 3-4% when comparing

the two to standard locking mechanisms.

Configuring the simulation with 5 worker threads and 1 to 5 LTSF queues appears to reduce contention

even more so. Using standard locking mechanisms, simulation execution time reduced 2% to 4% as the

number of LTSF queues was increased. Using HLE, the execution time was reduced by the same amount as

standard locking mechanisms as the number of LTSF queues was increased; however, HLE still outperforms

the standard locking mechanisms by 20% to begin with. Contention was still reduced, but not because
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Figure 6.8: Performance of Multiple Multi-set LTSF Queues, 5 Dynamically Assigned Worker Threads

multiple LTSF queues were used. When using RTM with 9 retries, execution time reduced from 4% to 7%

as the number of LTSF queues was increased. In this configuration, RTM generally outperformed standard

locking mechanisms by about 5%.

Using standard locking mechanisms with 6 worker threads and 1 to 6 LTSF queues reduced simulation

from 4% to 6% as the number of LTSF queues is increased. However, HLE still outperforms standard lock-
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Figure 6.9: Performance of Multiple Multi-set LTSF Queues, 6 Dynamically Assigned Worker Threads
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Figure 6.10: Performance of Multiple Multi-set LTSF Queues, 7 Dynamically Assigned Worker
Threads

ing by as much as 23% using 4 LTSF queues. While RTM generally only outperforms standard locking by

about 5%, it reduces simulation execution time from 6% to 9% as the number of LTSF queues is increased.

The final simulation configuration uses 7 worker threads with 1 to 7 LTSF queues. Using standard

locking mechanisms with multiple LTSF queues reduces execution time from 6% to 9% as the number of

LTSF queues is increased. Surprisingly, HLE only reduces execution time from 3% to 5%. But again,

HLE still well outperforms the standard locking mechanisms by as much as 27%. RTM only outperforms

standard locking mechanisms by about 5%. However, it becomes much more effective with more LTSF

queues. Execution time improvements increased from 9% to almost 14% when using RTM with increasing

LTSF queues counts.

Event Limited Thread Migration

As previously discussed, the continuous thread migration approach does not work well for NUMA architec-

tures due to memory locality issues. The thread migration scheme was modified to migrate threads between

LTSF queues for the first 50 events a thread executes. In the first implementation of this scheme, after a

thread executes 50 events, it is no longer reassigned to a different LTSF queue. It continues to schedule

from the same LTSF queue as it did for the 50th event for the remainder of the simulation.
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# LTSF Queues Lock HLE RTM-1retry RTM-9retry RTM-
19retry

1 121.2448 105.6107 124.1983 123.6149 123.0078
2 117.6654 102.0753 121.0667 137.9824 154.3929

Table 6.5: Simulation Times for 2 Worker Threads with X LTSF Queues

# LTSF Queues Lock HLE RTM-1retry RTM-9retry RTM-
19retry

1 92.36592 74.22306 93.23531 92.67724 92.6402
3 88.91337 70.67712 89.53974 107.369 126.557

Table 6.6: Simulation Times for 3 Worker Threads with X LTSF Queues

While the continuous migration scheme is not problematic for the system under test, the comparison

was made to thoroughly evaluate TSX using this scheme as a viable solution to contention. TSX may also

one day become available on NUMA architectures. Further testing would need to be performed, but at least

it will be known if this solution has any significant impact on contention.

These results are shown in Tables 6.5, 6.6, and 6.7, and Figures 6.11 and 6.12.

It is evident that any static thread to LTSF queue assignment suffers from the same problems. Except for

the 2 worker thread, 2 LTSF queue and 3 worker thread, 3 LTSF queue configurations, performance suffers

as the number of LTSF queues is increased. Load balancing becomes an issue with this migration scheme
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Figure 6.11: Simulation Time versus Number of STL Multi-set LTSF Queues for 4 Worker Threads
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# LTSF Queues Lock HLE RTM-1retry RTM-9retry RTM-
19retry

1 69.30301 54.40232 70.85832 70.46488 70.4784
5 95.31338 77.55966 93.71796 85.63724 76.2384

Table 6.7: Simulation Times for 5 Worker Threads with X LTSF Queues

because worker threads can become unevenly divided among the LTSF queues leading.

The second implementation attempts to address the load balancing issue by reassigning worker threads

to their original LTSF queues after successfully executing the specified number of events. After a thread is

reassigned to its original LTSF queue, it continues to schedule events from that queue for the remainder of

the simulation.

Unfortunately, the simulation results were incredibly inconsistent using this scheduling scheme. A sig-

nificant portion of the simulations did not complete execution in the allotted time. The longer running

simulations experienced significantly higher rollbacks. When the simulation does appear to run normally,

it executes slightly faster than the strictly static thread assignment scheme. However, the instability of this

migration scheme made it infeasible to obtain data.
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Figure 6.12: Simulation Time versus Number of STL Multi-set LTSF Queues for 6 Worker Threads
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Figure 6.13: Comparison of Migration Schemes for 4 Worker Threads with X LTSF Queues

Migration Scheme Comparison

The migration scheme makes a significant difference in contention and load balancing. Figures 6.13 through

6.16 show the comparison of the migration schemes used. The first implementation of the event limited

migration scheme is shown below since the second implementation performance could not be adequately

measured.
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Figure 6.14: Comparison of Migration Schemes for 5 Worker Threads with X LTSF Queues
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Figure 6.15: Comparison of Migration Schemes for 6 Worker Threads with X LTSF Queues
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Figure 6.16: Comparison of Migration Schemes for 7 Worker Threads with X LTSF Queues

6.2 The Splay Tree Implementation

The secondary focus of this study explores how the data structures used to implement the pending event

set affects performance. Because the continuous thread migration scheme already demonstrated significant

reductions in contention and implicit load balancing, this thread migration scheme is used to compare the

LTSF queue data structure implementations.

The data structure used to implement the LTSF queue will also impact how TSX performs. These results

are shown in Figures 6.17 through 6.21 for simulations using HLE synchronization. The standard locking

based simulations are shown in the same figures for reference.

It is clear that the simulations using the splay tree LTSF queue consistently execute in slightly less time

than the same simulations using the multi-set LTSF queue. However, it appears that the use of HLE does

not alter the performance trends, meaning the implementation of the LTSF queue has little to no effect on

the effectiveness of HLE. It is evident that the performance of the splay tree LTSF queue converges on the

performance of the multi-set LTSF queue for configurations using an odd number of LTSF queues with an

odd number of worker threads. In contrast, the splay tree LTSF queue performance seems to slightly diverge

from the multi-set LTSF queue performance for configurations using an even number of LTSF queues with

an even number of worker threads.
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Figure 6.17: Multi-Set VS Splay Tree LTSF Queues for HLE using 3 Worker Threads
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Figure 6.18: Multi-Set VS Splay Tree LTSF Queues for HLE using 4 Worker Threads
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Figure 6.19: Multi-Set VS Splay Tree LTSF Queues for HLE using 5 Worker Threads
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Figure 6.20: Multi-Set VS Splay Tree LTSF Queues for HLE using 6 Worker Threads
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Figure 6.21: Multi-Set VS Splay Tree LTSF Queues for HLE using 7 Worker Threads

The same comparison is made for the various RTM retry configurations. These results are shown in Fig-

ures 6.22 through 6.26. The standard locking based simulations are shown in the same figures for reference.

It is evident that using the splay tree implementation with TSX decreased execution time slightly more

than using the splay tree implementation with standard locking mechanisms. While the difference is small,

a 1.5% improvement versus a 0.5% improvement, this observation implies that the data structure accessed
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Figure 6.22: Multi-Set VS Splay Tree LTSF Queues for RTM with 1 Retry using 3 Worker Threads
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Figure 6.23: Multi-Set VS Splay Tree LTSF Queues for RTM with 1 Retry using 4 Worker Threads
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Figure 6.24: Multi-Set VS Splay Tree LTSF Queues for RTM with 1 Retry using 5 Worker Threads
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Figure 6.25: Multi-Set VS Splay Tree LTSF Queues for RTM with 1 Retry using 6 Worker Threads
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Figure 6.26: Multi-Set VS Splay Tree LTSF Queues for RTM with 1 Retry using 7 Worker Threads
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within critical sections is a factor in the overall effectiveness of transactional memory. The difference

between the performance improvements is fairly consistent.
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Chapter 7

Discussion

This thesis explored the use of Intel’s transactional memory implementation, Transactional Synchronization

Extensions (TSX) in the multi-threaded WARPED PDES kernel to alleviate contention for the pending event

set. The WARPED pending event set consists of a global Least Time-Stamped First (LTSF) queue and local

event set queues for each LP. The LTSF queue, the processed queues, and unprocessed queues were modified

to use standard and TSX synchronization mechanisms.

7.1 Conclusions

Based on the results above, it clear that TSX improved the performance of WARPED. HLE consistently

shows speedup over conventional synchronization mechanisms. It even slightly reduces execution time

when the simulation only uses one LTSF queue. In other configurations, HLE reduces execution time by as

much as 27% and consistently reduces execution time by 20%.

While HLE is the superior synchronization mechanism, RTM still showed increases in performance,

generally by about 5%. It also works with multiple LTSF queues better than HLE. This is most likely

attributed to the retry algorithm. HLE transactions only have one chance to execute a transaction. If con-

tention is high at certain times, the transaction will most likely abort. The RTM retry algorithm uses abort

information to decide when to retry transactional execution, rather than immediately aborting the transac-

tion or using conventional synchronization mechanisms. RTM might not perform as well as HLE due to the

overhead associated with RTM. The retry algorithm requires abort statistics to be calculated and maintained

59



CHAPTER 7. DISCUSSION 7.2. FUTURE WORK

which adds a bit more overhead to RTM.

TSX is not likely to allow simultaneous access to the same LTSF queue when the structure is being

written to. TSX synchronization mechanisms also appear to be more expensive as seen in Figure 3.4. The

performance increases seen with TSX are most likely result from the concurrent execution of critical sections

involving only read operations. Furthermore, some critical sections bypassed their write operations under

certain conditions. For example, a check was performed within a critical section to ensure the LTSF queue

was not empty. If the queue was empty, the critical section ended without performing any operations. With

standard synchronization, this critical section would still suffer from the locking overhead, even though it

wasn’t necessary. With TSX synchronization, the check could potentially execute concurrently with another

thread. The same scenarios apply to each LP’s processed and unprocessed queue. Overall, TSX reduced

unnecessary contention.

The splay tree data structure performs better than the multi-set regardless of synchronization. When

synchronized with TSX, the splay tree implementation seemed to reduce execution time a bit more. The

way in which data structures are accessed is a factor in how effectively transactional memory operates.

In conclusion, TSX significantly improves simulation performance for the WARPED PDES kernel. While

other solutions to contention showed improvements in performance, they were not nearly as significant as

TSX, especially HLE. TSX only showed slight improvements in its own performance when combined with

these other solutions. Regardless, TSX is powerful solution to contention.

7.2 Future Work

7.2.1 LTSF Queue Implementation

The LTSF queue was only implemented with two different data structures in this study. The ladder queue

implementation was still being developed at the time of this writing. The ladder queue performs faster

insertions and deletions, as well as provides new opportunities for alternative synchronization methods.
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7.2.2 Transactionally Designed Critical Sections

WARPED was not designed with transactional memory in mind. The critical sections described above were

designed based on the notion that they would be protected by locks and executed sequentially by worker

threads. Programming with concurrency in mind could allow transactional memory to perform more effec-

tively.

7.2.3 More Models

At the time of this study, only the epidemic simulation model was working well enough to be tested. Sev-

eral other models have been developed for WARPED, such as a RAID model and several circuit simulation

models, but are going through rigorous development. Future studies should explore other models as the very

nature of the model could impact the performance of TSX in any configuration described above.
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