
ftd: An Exact Frequency to Time Domain Conversion for

Reduced Order RLC Interconnect Models†

Ying Liu, Lawrence T. Pileggi, Andrzej J. Strojwas
Department of Electrical and Computer Engineering

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213

Abstract
Recursive convolution provides an exact solution for inter-
facing reduced-order frequency domain representations
with discrete time domain models of piecewise linear voltage
waveforms. The state-space method is more efficient, but not
exact, and can sometimes produce large time domain errors.
This paper presents a new algorithm,ftd (frequency totime
domain), for incorporating linear frequency domain macro-
models into time domain simulators.ftd provides accuracy
equivalent to recursive convolution with efficiency that is su-
perior to the state-space methods.

1: Introduction
There are two popular methods for converting a frequency
domain model into a discrete time domain model. The first is
recursive convolution[1], where the input is assumed to be
piece-wise linear and decomposed as different ramps at each
time point. This permits the convolution to be carried out in
a recursive way. The second approach is the state-space
method[2], whereby a numerical integration scheme such as
trapezoidal is applied to the state space realization of the fre-
quency domain model to compute a discrete time domain
model. Among the two, recursive convolution achieves the
best possible accuracy[3], but can be inefficient due to the in-
herent complexity of the algorithm. In contrast, the state-
space method requires fewer floating-point operations at
each time point than recursive convolution, but has inferior
accuracy due to the required numerical integration scheme.
Moreover, both methods are theoretically complicated and,
therefore, somewhat difficult to implement. This difficulty
not only impacts their widespread use, but also makes it dif-
ficult to optimize the software routines, which indirectly im-
pacts the runtime efficiency.

† This work was supported, in part, by the Semiconductor Research Corpo-
ration under Contract DC-068.067 and SGS-Thomson Microelectronics.

In this paper, we propose an efficient and accurate algo-
rithm, calledftd, for converting a frequency domain model
to a discrete time domain model for circuit and timing sim-
ulation. ftd uses an efficient algorithm for direct computa-
tions of the non-zero state response at each time point.ftd
provides accuracy equivalent to that of the recursive convo-
lution but with the same complexity as the state-space
method. Furthermore, due to the algorithmic simplicity of
ftd, empirical results demonstrate that its implementation is
more efficient than the state-space method too.

2: Background
For timing simulation, a linear interconnect subcircuit can
be pre-processed into a reduced-orderY matrix[4]. A two-
port example is written as:

(1)

The first equation in (1) can be expressed as:

(2)

where the general form of anyyij(s) term is:

(3)

Using recursive convolution[1], state space method[2],
or the approach proposed in this paper, the discrete time
domain model of (2) at time pointtk can be written as:

(4)

once a time step is chosen. It follows from (1) that:

(5)

The equivalent circuit realization of (5) is shown in
Fig.1, where each port includes an equivalent conductance,
current source, and VCCS. During the simulation process,
at each time point, these discrete time domain models are
constructed based on a reduced-order frequency domain
approximation. This N-port model is combined with the
models connected to its ports via Modified Nodal Analy-
sis(MNA). The solution of the MNA equations along with

I 1 s( )

I 2 s( )

y11 s( ) y12 s( )

y21 s( ) y22 s( )

V1 s( )

V2 s( )
⋅=

I 1 s( ) y11 s( ) V1 s( )⋅ y12 s( ) V2 s( )⋅+=

y s( )
bq 1– s

q 1– … b1s b0+ + +

s
q

aq 1– s
q 1– …a1s a0+ + +

------------------------------------------------------------------------=

i1 tk( ) g11 tk( )v1 tk( ) g12 tk( )v2 tk( ) I 1eq tk( )+ +=

i1 tk( )

i2 tk( )

g11 tk( ) g12 tk( )

g21 tk( ) g22 tk( )

v1 tk( )

v2 tk( )
⋅

I 1eq tk( )

I 2eq tk( )
+=

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

DAC 98, June 15-19, 1998, San Francisco, CA USA 
ISBN 1-58113-049-x/98/06…$5.00 

 
 469

http://crossmark.crossref.org/dialog/?doi=10.1145%2F277044.277174&domain=pdf&date_stamp=1998-05-01


the non-linear elements will yield the overall circuit solu-
tion.

It can be shown that for all three methods the values of
conductances and VCCS’s depend only on the time step.
Therefore, when the time step is fixed for consecutive time
points, these parameter values are constant. The equivalent
current sources are always updated at each time point,
thereby dominating the runtime for each method. For this
reason we will focus on the updating procedure of the
equivalent current source models when comparing the
algorithmic complexity of the three methods.

In recursive convolution, it is assumed that the input
voltage is piecewise linear(PWL) as multiple incremental
ramps occur at each time point with different slopes. The
overall response can be calculated as the sum of multiple
zero-state ramp responses up to the present time point. By
careful bookkeeping of these variables, the calculation can
be carried out in a recursive and efficient way. A complete
derivation of recursive convolution can be found in [1][7].
Recursive convolution is exact for PWL voltages, however
this accuracy is achieved at the expense of efficiency. For
an N-port with a q-th order approximation, the number of
internal variables that are updated at each time point is

3N2q. The algorithm complexity is estimated as O(7N2q)
at each time point. When the time step is changed, updat-

ing of the parameters requires O(2N2q) exponential evalu-

ations and O(4N2q) floating-point multiplications/
divisions.

In the state-space method, the admittances in the form
of (3) are re-formatted into a controllable canonical state-
space form[5]. Numerical integration such as the trapezoi-
dal method is used to calculate the response. A complete
description of the state-space method can be found in
[2][7]. For the state-space method, the number of variables

that must be updated at each time point is N2q. The com-

plexity of the algorithm is O(3N2q) at each time point.
When the time step changes, updating of the parameters

requires O(q2N2) of floating-point multiplications/divi-
sions. Because a numerical integration scheme is used, no
exponential evaluation is needed. Since it requires fewer
floating-point operations at each time point, the state-
space method is faster than recursive convolution for a
fixed time step. However, since a numerical integration
scheme is used, the state-space method is not as accurate
as recursive convolution.

3: Description of ftd
In ftd, each admittance of the form given by (3) is first de-
composed into a sum of partial fractions. This pre-process-
ing step represents some computational overhead forftd
and recursive convolution. However, most model order re-
duction schemes rely on calculation of the poles and resi-
dues to verify accuracy and stability.

The decomposition can be formulated in matrix nota-
tion as:

(6)

with

Unlike recursive convolution,ftd uses directly theexact
solution of the differential equation (6), which can be writ-
ten as[5]:

Assuming that we know the solution at the time pointtk-1,
then the exact solution at time pointtk can be expressed as
a zero-input response term plus a zero-state response term:

(7)

Since at the time pointtk-1 we don’t know the voltage re-
sponse shape to the time pointtk, the integral in (7) cannot
be computed explicitly. However, as with the recursive
convolution, and as generally assumed in circuit and timing
simulation, for a reasonably small timestep we can assume
that the waveshape is piecewise linear. Thus, the voltage
between the time pointstk-1 andtk is expressed as follows:

(8)

Using the piecewise linear assumption in (8), the inte-
gral in (7) can be evaluated explicitly

This formula appears to be formidable. For a general real-
ization of {A, B, C}, it is quite difficult to carry out the
above matrix operations. But since we expand the admit-
tance terms into a sum of partial fractions, theA matrix is
diagonal and all of the entries inB are equal to one. There-
fore, the matrix operations in the above equation are actu-

+

-

v1(tk)

i1(tk)

v2(tk)

i2(tk)

+

-

FIGURE 1: Discrete time domain model of a two-port.

ẋ t( ) Ax t( ) Bv t( )+=

i t( ) Cx t( )=



x

x1

x2

xq

A,

p1 0 … 0

0 p2 … 0

0 0 … pq

B,

1

1

1

C, k1 … kq= = = =

... ...... ... ......

x t( ) e
A t

x 0( ) e
A t

e
A τ–

Bv τ( ) τd
0
t

∫+⋅=

x tk( ) e
A tk∆

x tk 1–( ) e
A τ

Bv tk τ–( ) τd
0

tk∆
∫+⋅=

v tk τ–( ) v tk( ) τ
v tk( ) v tk 1–( )–

tk∆
--------------------------------------⋅

 
 
 

– for 0 τ tk∆≤ ≤=

x tk( ) e
A tk∆

x tk 1–( ) A 1– e
A tk∆

B
A 2–

tk∆
---------- e

A tk∆
I–( )B–

 
 
 

⋅+=

v tk 1–( ) A 2–

tk∆
---------- e

A tk∆
I–( )B A 1– B–

 
 
 

+ v tk( )

470



ally scalar operations. After some simplification, the
equation can be re-written as:

with the parametersζ, η andθ defined as:

(9)

These parameters depend only on the poles and the time
step. They remain constant when the time step is fixed for
consecutive time points.

The current at the time pointtk can be expressed as:

where the equivalent current source and the equivalent con-
ductance are defined as:

(10)

Once the voltage at time pointtk is known, the states should
be updated to prepare for the next time point calculation.

When there are complex poles in the admittance,ftd
involves the evaluation of complex numbers. Since the
complex numbers cost twice as much in storage, they
should be avoided whenever possible. The discussion of the
complex pole algorithm can be found in [7].

4: Implementation for Multiports
ftd is very simple to implement. Following the 2-port exam-
ple shown in Section 2, the goal is to calculate the discrete
time-domain model of a two-port shown in (5) at each time
point. We use superscripts to distinguish between different
ports and subscripts to distinguish between different poles
and residues for the four admittance terms. Upon choosing
the appropriate time step, the parametersζ, η, θ for each real
pole are calculated based on the formulae in (9).

The number of states to update inftd is 4q, which can be
stored in a single vectorx. At each time point, if the time
step is unchanged, only the equivalent current sources have
to be updated. The equivalent current source updating algo-
rithm can be carried out as shown in Fig.2. Note that all the
floating-point operations involved are SAXPY (y←a⋅x+y)
type of operation. For a modern computer architecture, this
can be carried out with the utmost efficiency.

5: LTE and Complexity of the Algorithms
Following the common assumption of LTE(Local Trunca-
tion Error) estimation, we assume that the exact value of the
state at the time pointtk-1 is known. Furthermore, we assume
that the voltages are perfectly linear between time pointstk
and tk-1. A complete discussion of the LTE of the three
methods can be found in [7]. The results are tabulated in Ta-
ble 1.

We compare the complexity for a fixed time step in
terms of the floating-point operations. The second complex-
ity measure considers the number of floating-point opera-
tions when the time step changes. Details can be found in
[7], but the results are summarized in Table 1.

It is apparent that the recursive convolution requires the
largest amount of floating-point computation for a fixed
time step analysis. At first glance it would appear that the
state-space method andftd have identical complexity when
the time step is fixed, however, for the state-space method
the statex2(tk) cannot be calculated untilx1(tk) is available.
Similarly, x3(tk) cannot be calculated untilx2(tk) is avail-
able, and so on.ftd does not suffer from this dependency,
therefore with modern computers, and pipeline processing,
theftd updates will run much more efficiently.

xi tk( ) ζi tk∆( ) xi tk 1–( )⋅ ηi tk∆( ) v tk 1–( )⋅ θi tk∆( ) v tk( )⋅+ +=

for i 1 2 … q, , ,=

ζi tk∆( ) e
pi tk∆

=

ηi tk∆( )
e

pi tk∆
pi tk∆ 1–( ) 1+

tk∆ pi
2⋅

----------------------------------------------------=

θi tk∆( ) 1
tk∆

-------- 1

pi
2

------
1
pi
----- tk

1

pi
2

------e
pi tk∆

+∆––
 
 
 

=

i t k( ) I eq tk( ) g tk( ) v tk( )⋅+=

g tk( ) ki θi⋅
i 1=

q

∑=

I eq tk( ) ki η⋅
i

i 1=

q

∑
 
 
 

v tk 1–( ) kiζi xi tk 1–( )
i 1=

q

∑+=

Recursive
Convolution

State-Space
Method

ftd
Method

# of variables 3N2q N2q N2q

Complexity1 O(7N2q) O(3N2q) O(3N2q)

Complexity2 exp: O(2N2q)

mul: O(5N2q)

exp: none

mul: O(N2q2)

exp: O(N2q)

mul:O(5N2q)

LTE 0 p∆tk
2(vk-vk-1) 0

TABLE 1: LTE and estimation of complexity for all three methods.

At each time point:

 ◆Calculate intermediate variables, store them in vectorx:

 ◆Calculate the equivalent current sources:

 ◆Stamp equivalent conductances and current sources into
MNA matrix and solve MNA matrix for the voltages.

 ◆Update the state vector for the next time point.

xi
mn( ) ζi

mn( ) x⋅ i
mn( ) ηi

mn( ) vn tk 1–( )⋅+←

I 1eq

I 2eq

ki
11( ) xi

11( )⋅
i 1=

q

∑ ki
12( ) xi

12( )⋅
i 1=

q

∑+

ki
21( ) xi

21( )⋅
i 1=

q

∑ ki
22( ) xi

22( )⋅
i 1=

q

∑+

←

xi
mn( ) xi

mn( ) θi
mn( ) vn tk( )⋅+←

FIGURE 2: Flowchart of equivalent current source
updating scheme.

471



When the time step changes, the state-space method
requires the largest amount of multiplications/divisions, but
avoids exponential evaluations. Moreover, when there are
complex poles, both recursive convolution andftd also
require evaluation of triangular functions. In practice, the
exponential and triangular functions can be stored in a
look-up table. As a result, the recursive convolution andftd
may spend less time in re-calculating the parameters than
the state-space method when the time step is changed.

6: Results
The first example is a clock tree with 64 leaf nodes. Each in-
terconnect segment is modeled as a lumped RC segment
providing a 65-port circuit. AWE[4] is used to calculate a
4th order model for all admittance terms. The resultingY(s)
macromodel is a 65×65 matrix. We compare recursive con-
volution, the state space method, andftd in terms of a Mat-
lab implementation on an IBM RS/6000 43P-140.

We plot the absolute errors as a function of time for one
port node in Fig.2 by comparing to a SPICE simulation
with a 0.1 picosecond timestep. The error plots are shown
for two different timesteps. When the time step is 0.2 pico-
second, the three methods have comparable error. However,
when the time step grows to 1 picosecond, the state-space
error is considerably larger than the other two methods.

Table 2 shows the runtimes for the three methods(with-
out the use of table models for exponential function calls).
As expected,ftd is the most efficient, but these results must
be carefully interpreted. First of all, Matlab is an interpre-
tive language, thus the running time calculation is inaccu-
rate. Secondly, Matlab is optimized to execute vector/
matrix operations, but the optimization relies on skillful
programming. For the recursive convolution implementa-
tion, the complicated updating algorithm was by far the
most difficult to optimize. The state-space method was
more straightforward to implement, however, the serial
dependency discussed in Section 5 does not allow for cer-
tain optimizations and slows down the simulation. We must
emphasize, however, that the authors spent a significant
amount of time in implementing and optimizing all three
methods as much as possible. But as indicated above, the
simplicity of the ftd algorithm can lead to better runtime
efficiency because it is more easily optimized for a wide
variety of computer platforms.

In the second example,ftd was used with TETA(Transis-
tor-level Engine for Timing Analysis)[6] to simulate a sim-
ple coupled RLC line problem with SPICE-like nonlinear
drivers. The loads at the far ends of the lumped transmis-
sion model are linear capacitors, as shown in Fig.3. The
interconnect is a six-port with six identical nonlinear driv-
ers. The reduced-order model of the two-port is calculated
using AWE to obtain a 3rd order approximation. The simu-
lation result is shown in Fig.3 for a timestep of 1 picosec-
ond. The SPICE andftd (using TETA for the nonlinear
elements) plots are indistinguishable.

7: Conclusion
This paper presents a new algorithm for the converting fre-
quency domain macromodels into the discrete time-domain
models for circuit and timing simulation. Both the theoreti-
cal analysis and numerical results indicate thatftd achieves
the highest possible accuracy while requiring the least com-
putational resources. An important feature offtd is that it is
very straight-forward and can be easily implemented with
increased efficiency on most modern hardware platforms.

References
[1]J. E. Bracken, V. Raghavan and R. A. Rohrer, “Interconnect

Simulation with Asymptotic Waveform Evaluation”, IEEE
Trans. on Circuits and Systems, vol. 39, No. 11, Nov. 1992.

[2]S.-Y. Kim, N. Gopal and L. T. Pillage, “Time-Domain Macro-
models for VLSI Interconnect Analysis”, IEEE Trans. on
CAD, vol. 13, No. 10, Oct. 1994.

[3]T. V. Nguyen, “Efficient Simulation of Lossy and Dispersive
Transmission Lines”, IEEE/ACM Proc. DAC, 1994.

[4]L. T. Pillage and R. A. Rohrer, “Asymptotic Waveform Evalua-
tion for Timing Analysis”, IEEE Trans. on CAD, vol. 9, no.
4, Apr. 1990.

[5]C.-T. Chen, “Linear System Theory and Design”, Holt, Rine-
hart and Winston, Inc., 1984.

[6]F. Dartu and L.T. Pileggi, “TETA: Transistor-Level Engine for
Timing Analysis”, IEEE/ACM Proc. DAC, Jun. 1998.

[7]Y. Liu, L.T. Pileggi and A.J. Strojwas, “ftd: A Frequency to
Time Domain Conversion Algorithm for Interconnect Simu-
lation”, submitted to IEEE Tran. CAD.

∆t = 0.2p ∆t = 1p

timetime
0 2 4 6 8 100.00

0.01

0.02

0.03

0 2 4 6 8 10
0.00

0.10

0.20

recursive convolution & ftd

state space method

FIGURE 2: The errors for the three methods using two
different time steps. Note the different plot scales.

Time Step
Recursive
Convolution

State Space
Method

Our
Method

∆t = 0.2p 291.90 sec 274.99 sec 141.49 sec
∆t = 1p  60.98 sec 54.52 sec 30.36 sec

TABLE 2: Simulation time of the three methods.

0 1 20.0

1.0

2.0

3.0

3
Time (ns)

FIGURE 3: Coupled transmission lines example.

Observation node

472


