
Using Complementation And Resequencing To Minimize Transitions

Rajeev Murgai, Masahiro F ujita Arlindo Oliv eira
Fujitsu Laboratories of America, Inc. Cadence European Labs./IST-INESC

Abstract

Recently, in [3], the following problem was addressed: Given a set
of data words or messages to be transmitted over a bus such that
the sequence (order) in which they are transmitted is irrelevant,
determine the optimum sequence that minimizes the total num-
ber of transitions on the bus. In 1994, Stan and Burleson [5]
presented the bus-invert method as a means of encoding words for
reducing I/O power, in which a word may be inverted and then
transmitted if doing so reduces the number of transitions. In this

paper, we combine the two paradigms into one { that of sequencing
words under the bus-invert scheme for the minimum transitions,
i.e., words can be complemented, reordered and then transmitted.

We prove that this problem DOPI { Data Ordering Problem with
Inversion { is NP-complete. We present a polynomial-time ap-

proximation algorithm to solve DOPI that comes within a factor
of 1.5 from the optimum. Experimental results show that, on aver-

age, the solutions generated by our algorithm were within 4.4% of
the optimum, and that resequencing along with complementation
leads to 34.4% reduction in switching activity.

1 Motivation

In several applications such as microprocessors and DSPs, switch-

ing activity on high-capacitance buses account for almost 30-40%
of the power consumption [1]. Thus for reducing power dissipation,

the problem of minimizing switching activity (i.e., the number of
transitions) on a bus assumes great importance. In this context,

consider the following problem. Given a set of n data words or
messages, each of length k, to be transmitted over a bus (k-bit
wide) such that the sequence in which they are transmitted is ir-

relevant, determine the optimumsequence that minimizes the total
number of transitions on the bus. We call this theData Ordering

Problem (DOP).

De�nition 1.1 If word wr is transmitted, immediately followed
by ws, the total number of transitions is given by the number of bits

that change. This is d(wr ;ws) =
Pk

j=1
wrj �wsj, also known as

the Hamming distance between wr and ws. Here, wrj denotes the
jth bit of wr , and � denotes the EX-OR operation. For instance,
d(1001;1110) = 3.

Word reordering can change the number of transitions signif-
icantly. For instance, let n = 3, w1 = 00011;w2 = 10110,

and w3 = 01011. So k = 5. If words are transmitted in
the order w1; w2; w3, the total number of transitions on the
bus is d(w1;w2) + d(w2; w3) = 3 + 4 = 7. If transmitted in

the order w1; w3; w2, the number of bus transitions would be
d(w1; w3) + d(w3; w2) = 1 + 4 = 5, 28% fewer.

The data ordering problem was addressed in [3]. It was shown
that this problem arises in a wide variety of design tasks when
power dissipation is the main concern: instruction scheduling, die
testing, sequencing of test patterns in built-in self test (BIST)

systems, cache write-back, and scheduling in high-level synthesis.
It was shown in [3] that DOP is NP-complete. Three approxi-
mation schemes were proposed: Double Spanning Tree (DST) {
which provably comes within a factor of two of the optimum so-
lution,Minimum Spanning Tree Maximum Matching (ST-MM) {
which comes within 1.5 (plus a small additive term) of the opti-
mum, and greedy { which was empirically found to be the best.

In [5], Stan and Burleson presented the bus-invert method to
reduce the number of transitions. It works as follows. An extra bus

line, called invert, is used. The method looks at two consecutive
data words on the bus. If the Hamming distance between the next
word and the current transmitted word is at most k=2, the next

word is sent as it is, with invert set to 0. Otherwise, each bit
of the next word is complemented (inverted) and invert is set to

1, indicating that the word has been complemented. This scheme
reduces the number of transitions on the bus. Let wi denote the

complement of wi. E.g., 10110 = 01001. In the last example, if we
transmitw1, w3, and thenw2, it results in d(w1;w3)+d(w3;w2) =

1 + 1 = 2 transitions, 3 less than the uncomplemented case. If we
count the extra transition on the invert signal, the total number
of transitions is 3, still 2 less than 5.

In this paper, we combine the two paradigms into one: that
of sequencing words under the bus-invert scheme, i.e., words can

be complemented (if it helps), reordered and then transmitted.
Given n data words w1;w2; : : : ;wn, the problem then is to deter-

mine i) for each word wi, if it should be complemented or left
uncomplemented (i.e., its phase assignment), and ii) the order

in which words should be transmitted, so as to minimize the tran-
sitions on the bus. We call this problemDOPI {Data Ordering
Problem with Inversion. The next section discusses the rele-

vant background graph-theoretic material. We prove in Section 3
that DOPI is NP-complete. In Section 4, we devise approxima-

tion schemes for DOPI that guarantee bounds from the optimum
solution. Experimental results are presented in Section 5.

2 Preliminaries

A spanning tree of a graph G = (V;E) is a subgraph of G that

is a tree and spans all the vertices of G. If the edges have weights,
it makes sense to talk of the minimum-weight spanning tree

(MST) of G, where the weight of a tree is the sum of the weights
of the edges in the tree. It turns out that a simple, greedy algo-
rithm that starts from an empty tree and repeatedly selects the
minimum-weight edge, adding it to the partially generated tree if
the tree still remains acyclic generates an MST. For the weighted
graph of Figure 1 (A), the minimum-weight spanning tree is shown
in Figure 1 (B). A Hamiltonian tour of a graph G = (V;E) is a
walk (simple path) with the same beginning and end points that
visits each vertex of V exactly once. A Hamiltonian path of G

is a walk with di�erent beginning and end points that visits each
vertex of V exactly once. For instance, 1, 2, 3, 4, 6, 5, 7, 1 is a

Hamiltonian tour of the graph of Figure 1 (A), whereas 1, 2, 3,
4, 6, 5, 7 is a Hamiltonian path. If the edges have weights, we

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA
694

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F277044.277219&domain=pdf&date_stamp=1998-05-01

1 2

3

4

5

6

7

3
5

7

8

10

20

4

7

11

7

4

3

1 2

3

4

5

6

7

3
5

10
4

4

3

(A) (B)

1 2

3

4

5

6

7

s

s

s

oo o

(C)

u

u u

u

u

c c

Figure 1: An example graph and its spanning tree

have the problems of �nding a minimum-weight Hamiltonian tour
(better known as the traveling salesman problem tour or TSP-
tour) and minimum-weight Hamiltonian path (TSP-path). Both
of these are known to be NP-complete, even for complete graphs.

A graphG = (V;E) in which there is more than one edge joining
a pair of nodes is called a multigraph. An Eulerean cycle of a
multigraph is a walk with the same beginning and end points that
contains each edge of the graph exactly once. E.g., in Figure 1(A),

the tour 1, 2, 3, 4, 6, 3, 5, 6, 7, 5, 2, 7, 1 is an Eulerean cycle. It
is well-known that a multigraph G contains an Eulerean cycle if
and only if each node of G is of even degree. The following simple

procedure �nds an Eulerean cycle in such a multigraphG.
Procedure 2.1 (Finding an Eulerean cycle) Start at any ver-

tex v of G. Traverse any edge (v; w) whose removal does not dis-
connect the remaining (untraversed) graph. Delete (v; w). Repeat

the procedure from w. Terminate when no more edges remain in
G. This can happen only when at v. The order in which the edges

are traversed yields the Eulerean cycle.
Given a complete graph G and a spanning tree T = (V;E0) of

G, the following procedure �nds a Hamiltonian tour on G.

Procedure 2.2 (Constructing a Hamiltonian tour) Con-

struct the multigraph bG from T by duplicating each edge e 2 E0.

Since each node of bG is of even degree, bG contains an Eulerean

cycle U . Construct U using Procedure 2.1. Delete all the node
repetitions from U except for the �nal return to the �rst node.

The resulting node sequence HT is a Hamiltonian tour on G.
If we are interested in a minimum-weight Hamiltonian tour, we

will start from an MST T and use Procedure 2.2.
Let each edge (vi; vj) of the graph have a non-negative weight

d(vi; vj). The weight d(S) of a tour (path, tree) S is the sum of the
weights of the edges in S. If the edge weights d satisfy triangle
inequality (i.e., d(v1; v2)+ d(v2; v3) � d(v1; v3) for all v1; v2; v3),

it is easy to see that d(HT)� d(U). Since d(U) = 2d(T), we get

d(HT)� 2d(T) (1)

Amatching in a graphG = (V;E) is a subsetE0 � E such that
no two edges of E0 are incident to each other. A perfect match-

ing is a matching that is incident to each vertex in V . Clearly, jV j
must be even for a perfect matching to exist.

3 DOPI is NP-complete

The Data Ordering Problem with Inversion (DOPI) stated as a

decision problem is:
INSTANCE: A set of n k-bit data words, w1; w2; : : : ; wn, each
wi 2 f0;1g

k { k a positive integer, and a positive integerM .
QUESTION: Are there phase assignment � and permutation � of
w1;w2; : : : ;wn, such that

n�1X
i=1

d(�(w�(i)); �(w�(i+1))) �M? (2)

where �(wi) = wi or �(wi) = wi.
Since we know that DOP is hard { it was shown to be NP-

complete in [4], it seems intuitive that DOPI, which has an extra
degree of freedom of word-inversion, should be at least as hard.
The following theorem shows that that is indeed the case.

Theorem 3.1 DOPI is NP-complete.

Sketch of Proof DOPI is easily seen to be in NP. To show NP-
hardness of DOPI, we transform DOP to DOPI. DOP stated as a
decision problem is:
INSTANCE: A set of N K-bit data words, W1;W2; : : : ;WN , each
Wi 2 f0;1g

K { K a positive integer, and a positive integer L.
QUESTION: Is there a permutation � of W1;W2; : : : ;WN , i.e. a
1-1 function � : f1; : : : ;Ng ! f1; : : : ; Ng such that

N�1X
i=1

d(W�(i);W�(i+1)) � L? (3)

Given an instance of DOP, we generate the following instance of
DOPI. Let n = N and M = L. For each i, form wi by con-
catenating KN zeros after Wi, i.e., wi = Wi000 : : : 0 (KN zeros).
So, k = K + KN . It is easy to see that the transformation is

polynomial-time. It can be shown that there exists a permutation
� of Wis such that (3) holds if and only if there exist � and � of

wis such that (2) holds. Details can be found in [4].

4 Solving DOPI

First, let us take care of the technicality of invert signal. It makes

a transition when two successive words are in opposite phase. We
should count also these transitions. This is easily handled in our
formulation by appending a zero bit at the end of each word wi.

If the word is sent uncomplemented, the bit remains 0. Otherwise,
this bit is set to 1. So, from now on, we will work on wis augmented

with the invert bit, but would still call them wis.
There are 2n possibilities, corresponding to two possible phase

assignments � for each of the n words { for each word wi, �(wi) =
wi or wi. Each phase assignment generates di�erent words, which
results in di�erent edge weights and hence a di�erent instance of

DOP. One way to solve DOPI then is to generate these 2n instances
of DOP, solve them one by one (with DST, ST-MM, or greedy

algorithm), and pick the best solution. Although feasible for small
n, this scheme will clearly run out of steam for large n.

It turns out that it is not necessary to explicitly generate and
solve 2n instances of DOP. Due to special properties of the Ham-
ming distance, it is possible to come up with polynomial-time ap-

proximation algorithms (DST, ST-MM) for DOPI that guarantee
the same performance bounds from optimality as the corresponding
DOP algorithms and also have the same time complexity.

4.1 DST Algorithm for DOPI

In the double spanning tree algorithm for DOP, the key idea for
guaranteeing the upper bound was generating a minimum-weight
spanning tree [3]. It turns out that the corresponding key con-
cept in solving DOPI is generating a minimum-weight spanning
tree over all phase assignments. Given n data words, create a
multigraphG on n vertices { one vertex for each word. There are
exactly two edges between each pair of vertices vi and vj, one la-

beled SAME (s) and the other OPPOSITE (o). The edge (vi; vj)
labeled SAME corresponds to the case when the corresponding

words wi and wj are either both complemented or both uncomple-
mented. The label OPPOSITE corresponds to when exactly one
of wi and wj is complemented. These edges are assigned weights
ds and do respectively, as follows:

695

ds(vi; vj) = ds(wi; wj) = d(wi;wj) = d(wi; wj)
do(vi; vj) = do(wi;wj) = d(wi; wj) = d(wi;wj)

Consider w1 = 1000 and w2 = 1111. Then, ds(w1; w2) =
d(w1; w2) = 3, whereas do(w1; w2) = d(w1;w2) = 1.

Construct aminimumspanning treeT of G. Some edges of T will
be labeled s and the rest, o. To determine the phase in which each
data word should be transmitted,we assign a label ` to each vertex.
The label `(vi) of a vertex vi is either COMPLEMENTED (c)
or UNCOMPLEMENTED (u), implying that the corresponding
data word wi should be complemented and then sent or just sent
uncomplemented respectively.

De�nition 4.1 Given a graph with all edges labeled s or o (edge
labeling) and all vertices labeled c or u (vertex labeling `). The
vertex labeling ` is consistent with the edge labeling if for each
edge (vi; vj) labeled s, `(vi) = `(vj) (either both c or both u), and
for each edge (vi; vj) labeled o, exactly one of vi & vj is labeled u.

Proposition 4.1 Given a spanning tree T with an edge labeling,
there exists a vertex labeling consistent with the edge labeling.

Proof The following procedure assigns labels to all the vertices of
G (or T). Hang the tree T on any vertex, say v. So T becomes a

rooted tree with root v. Let `(v) = u (arbitrarily).1 Assign vertex
labels from the root to the leaves of T . For an edge (w; x) 2 T ,
where w is x's parent, we can assume that w has already been

labeled. If (w;x) is labeled s, assign `(x) = `(w). Otherwise,
(w; x) is labeled o, and assign `(x) 6= `(w), i.e., if `(w) = c, assign

`(x) = u, and vice-versa. It is easy to see that this procedure labels
vertices consistent with the edge labeling.

Consider the tree T of Figure 1 (B). Assume edge-labels as in

Figure 1 (C). To see that a vertex labeling consistent with this
edge labeling exists, hang T on (arbitrarily chosen) vertex 6. `(6)

= u. Since edge (6, 7) is labeled s, `(7) = `(6) = u. This implies
`(1) = c, which implies `(2) = c. Both 5 and 3 are assigned phases
opposite to that of 2. So `(5) = `(3) = u. Finally, `(4) = u.

Thus, from T and its edge labeling, a consistent vertex labeling

is determined, from which the codes � that will be transmitted are
computed. If `(vi) = c, �(wi) = wi. Otherwise, �(wi) = wi. The

complete DST algorithm is as follows:

1. Form the multigraph G as explained above, with edges la-
beled s and o appropriately.

2. Find an MST T of G. Using the edge labels in T , determine
vertex labels ` (c or u) { as in Proposition 4.1. From these
labels, determine the phase assignment �.

3. Apply Procedure 2.2 to �nd a Hamiltonian tour HT . This
procedure �rst duplicates each edge of T , �nds an Eulerean
cycle U using Procedure 2.1, and then constructs HT from
U . Care must be taken while constructing HT from U . For

instance, if (v4; v1) and (v1; v6) are being replaced by (v4; v6),
appropriate edge (v4; v6) must be added, since there are two
edges between v4 and v6. The edge consistent with the labels
`(v4) and `(v6) should be added. For instance, if `(v4) =
`(v6) = c, add the edge labeled SAME.

4. Delete the longest edge e in HT to get a Hamiltonian path
HP . The sequence of vertices in this path corresponds to the
desired permutation.

Theorem 4.2 DST algorithm for DOPI yields a Hamilto-
nian path HP and phase assignment � such that d(HP�) �
2(n�1)

n
d(HP �

��
), where HP �

��
is the optimum solution to DOPI.

1For `(v) = c, another labeling will be obtained.

Sketch of Proof The key observation is that T is in fact the
MST over all possible phase assignments, i.e., if we generate 2n

graphs each corresponding to a di�erent phase assignment (and
hence di�erent edge weights), then determine the MST for each
assignment, and pick from all these trees the one with theminimum
weight, it will have the same weight as T .

Consider the (complete) graph G� corresponding to the phase
assignment ��. Let a minimum-weight spanning tree in G� be
T �

��
. Then, d(HP �

��
) � d(T �

��
) � d(T) � 0:5d(HT�). The last

inequality is from (1). The factor n
n�1

comes from deleting the

longest edge in HT while obtaining HP .

Modi�ed DST It turns out that to �nd T , it is not necessary

to form a multigraphG. It su�ces to have a simple graph eG that
has only one edge between any vertex pair. This edge is the one
that has lower weight among the two edges labeled s and o in
the multigraph G. This is because the minimum spanning tree
algorithmwill always select the lower-weight edge. It can be shown

that the edge weights of eG satisfy triangle inequality [4]. Then

DST can be modi�ed as follows. Find MST T in eG. Use T to
�nd a Hamiltonian tour HT . Delete the longest edge e in HT to

get a Hamiltonian path HP . HP has labels s and o on the edges.
Obtain phase assignment for all the vertices from Proposition 4.1,

since HP is a spanning tree. This algorithm also comes within

2
(n�1)

n
of the optimum [4].

4.2 ST-MM Algorithm

ST-MM is a theoretical improvementover DST, since it guarantees
a bound within a factor of 1.5 from the optimum solution (plus an

additive term). The algorithm is as follows. Find MST T in eG.
Identify the set O of vertices in the tree T with odd degrees (jOj
must be even). Find a minimum-weight perfect matching M on

G(O) = (O;E(O)), the subgraph of G induced on O.2 Consider
the graph T[M . Since each edge ofM connects two di�erent odd-

degree vertices of T , T [M is a connected graph with all vertices
having even degrees. Then, there exists an Eulerean cycle U in

T [M { construct U using Procedure 2.1. From U , construct a
Hamiltonian tour HT by Procedure 2.2. Delete the longest edge e
in this tour to get a Hamiltonian path HP . The phase assignment

� is determined exactly as in the modi�ed DST.

Theorem 4.3 Let HP �

��
be the optimum solution for DOPI.

Then, d(HP�) �
n�1
n

[3
2
d(HP �

��)+
k
2
], where k is the word size and

HP� is the Hamiltonian path produced by the ST-MM algorithm.

Although T and M may correspond to di�erent phase assign-
ments, it does not matter since the �nal phase assignment is de-
cided at the very end { on HP .

4.3 Greedy Heuristic

It works on eG and selects the minimum-weight edge, say (i; j), ofeG. The path P after this step is (i; j). Next, the minimum-weight
edge incident on an end-point of P (i.e., on i or j) is selected.
Let it be (i; k). Thus P becomes (k; i; j). Thus, at each step, it
greedily selects the minimum-weight edge incident on an end-point
of P that is not incident on an internal vertex of P . The heuristic
terminates when all the vertices of eG are in P , in which case a
Hamiltonian path has been constructed. The phase assignment �

is determined as in modi�ed DST.

2G(O) is a subgraph of G on the vertices O and has exactly
those edges of G that have both their end-points in O.

696

5 Experimental Results

We generated a set of uniformly distributed n k-bit data words,
for di�erent values of n and k. Then we applied the following
schemes: random, greedy, DST, and ST-MM. A subset of results
is shown in Table 1 { for the complete set, please see [4]. In DOP,
only resequencing is allowed. In DOPI, both complementation and
resequencing are done. Each entry in the table denotes the total
number of transitions for transmitting the n words. In random

(rand in the table), words are transmitted in the same order as
they were generated (which was random). This scheme models
no resequencing. In DOPI random, a word is complemented if it
reduces the number of transitions with respect to the last word
sent. Other schemes were discussed in Section 4. We also provide
a lower bound on the optimum solution (column `-bnd) { which is
the weight of the MST.

First we compare columns DOPI greedy { grdy in the table
(which gives the best results) with DOPI `-bnd to check how close
our algorithms come to the optimum. On average, the greedy

heuristic is within 4.4% of the `-bnd, and hence the optimum.
The standard deviation of the di�erence between greedy and the

`-bnd is merely 4.6%. Thus, most of the time, the greedy solution
is very close to the optimum.

How much do we bene�t by resequencingand complementation?
For that, we compare columns DOP random and DOPI greedy.

DOP random represents the case when the data words are trans-
mitted uncomplemented and without resequencing. The average
percentage reduction in transitions is 34.4%. The maximum re-

duction was as high as 80% (for n = 40; k = 5).

How useful is complementation alone? We make two compar-

isons. In the absence of resequencing: comparing columns random
under DOP and DOPI (random models no resequencing), we see

that complementation yields, on average, an 11.3% reduction in
transitions, a signi�cant number. With resequencing: on compar-

ing resequencingwith resequencingand complementation (columns
greedy under DOP and DOPI), we �nd that complementation and
resequencing yield, on average, an improvement of 3.9% over rese-

quencing. The best improvement is 33%. Also, as k or n increase,
the e�ectiveness of bus-invert decreases. This indicates that al-

though complementation by itself is good, when combined with
resequencing its impact is signi�cant only for small values of n

and k. This is still �ne, since in most applications such as instruc-
tion sequencing, high-level scheduling, cache write-back, etc., n is
not so large and k is at most 64 (machine's word-length).

Finally, we see that the greedy scheme is the best. DST results
are omitted for lack of space; they were almost always inferior to

greedy and ST-MM. DST and ST-MM are important nevertheless,
since they guarantee bounds with respect to the optimum.

Cache Write-back ApplicationIn Table 1, we also present re-
sults for a real cache write-back application. Consider a computer
system with a main memory and a cache. On a context switch,
often the cache is \ushed," i.e., the dirty data lines in the cache
are written back to main memory. The order in which lines are

written back is often irrelevant. So we can use our data order-
ing and/or complementationmethods to reduce transitions on the

data and address buses. For these experiments, the data on cache
ushes was obtained from code that performs LU-decomposition of
a 30x30 matrix. This code was compiled using gcc and its execu-
tion was simulated in a system with the following characteristics:
Harvard architecture with separate address and instruction buses,
cache block size of 4 bytes, and write policy of write-back and
write-allocate. For simulation, we used a modi�ed version of the
DineroIII cache simulator [2] and dlxsim, a simulator for the DLX
processor. Three experiments were conducted, with uni�ed caches
of sizes 1024, 4096, and 65536 bytes, respectively. We assumed that
a process switch took place every 2:5� 105 instructions, causing

n k DOP DOPI

rand grdy `-bnd rand grdy ST-MM

5 5 12 8 7 10 7 7

5 16 30 27 27 28 27 27
5 32 64 58 55 60 55 55

20 3 29 7 7 23 7 8

20 8 70 34 28 61 32 35
20 16 146 97 83 126 92 93

40 5 99 21 19 83 20 24
40 40 784 567 523 690 543 555

100 10 496 174 141 423 172 189
100 80 4019 3049 2896 3621 2987 3101

200 20 1998 957 848 1702 922 1011
200 150 15001 12407 11522 14115 11771 12182

400 100 20116 15419 13943 18517 14377 15090
400 200 39846 33392 31378 37811 32014 32999

Results for cache write-back: k = 32

n cache DOP DOPI

size rand grdy `-bnd rand grdy ST-MM

4 1024 1 1 1 1 1 1
18 1024 191 148 137 184 143 153

10 1024 113 89 80 110 89 85
10 1024 66 27 25 61 25 25

617 4096 7851 3582 3260 7745 3582 3915

348 4096 4205 2076 1887 4168 2076 2254
373 4096 4699 2370 2163 4617 2358 2553
138 4096 1712 991 914 1679 979 1043

965 65536 11854 5270 4749 11676 5273 5679
756 65536 9329 4218 3827 9232 4218 4610
560 65536 7066 3394 3062 6960 3384 3678

181 65536 2222 1248 1136 2194 1243 1305

Table 1: E�ect of Data Resequencing and Inversion on

Number of transitions

a cache ush of all dirty blocks. Table 1 shows that resequencing
and complementation reduce the number of transitions by 42.7%.
We also note that using both complementation and resequencing

does not buy us much over using resequencing alone.
In the future, we would like to study resequencing in conjunc-

tion with encoding schemes other than complementation. It would
also be interesting to study the interaction among resequencing,

encoding, and compression. This has interesting applications in
network and satellite communication.

References

[1] Experienced Motorola Designer. Personal comm., Apr. 95.
[2] J. L. Hennessy and D. A Patterson. Computer Architecture:

A Quantitative Approach. Morgan Kaufmann, 96.
[3] R. Murgai, M. Fujita, and S. C. Krishnan. Data Sequencing

For Minimum-transition Transmission. In VLSI'97, Brazil.
[4] R. Murgai, M. Fujita, and A. Oliveira. Using Complementa-

tion And Resequencing To Minimize Transitions. In Internal
Report, Fujitsu Labs of America, Inc., Nov. 97.

[5] M. R. Stan and W. P. Burleson. Limited-weight Codes for
Low-power I/O. In Int. Work. on Low Power Design, Apr. 94.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 98, June 15-19, 1998, San Francisco, CA USA
ISBN 1-58113-049-x/98/06…$5.00

697

