
Watermarking Techniques for Intellectual Property Protection�

A. B. Kahng, J. Lach†, W. H. Mangione-Smith†, S. Mantik, I. L. Markov,
M. Potkonjak, P. Tucker‡, H. Wang and G. Wolfe

UCLA Computer Science Dept., Los Angeles, CA 90095-1596
(†) UCLA Electrical Engineering Dept., Los Angeles, CA 90095-1594

(‡) UCSD Computer Science & Engineering Dept., La Jolla, CA 92093-0114

Abstract

Digital system designs are the product of valuable effort and know-
how. Their embodiments, from software and HDL program down
to device-level netlist and mask data, represent carefully guarded
intellectual property (IP). Hence, design methodologies based on
IP reuse require new mechanisms to protect the rights of IP produc-
ers and owners. This paper establishes principles ofwatermarking-
based IP protection, where awatermark is a mechanism for identi-
fication that is (i) nearly invisible to human and machine inspection,
(ii) difficult to remove, and (iii) permanently embedded as an inte-
gral part of the design. We survey related work in cryptography
and design methodology, then develop desiderata, metrics and ex-
ample approaches – centering onconstraint-based techniques – for
watermarking at various stages of the VLSI design process.

1 Introduction

The advance of processing technology has led to a rapid increase
in IC design complexity. The economic drivers are compelling:
only by putting more integration and more function on a single die,
and by achieving more revenue per wafer, can multi-billion dollar
foundries be amortized over their useful lifespan. At the same time,
market forces have led to more design starts, shorter design cycle
times and greater time-to-market pressures. Industry organizations
have documented a compounding “design productivity shortfall”
[26], which demands ever-larger design teams with each successive
process generation just to maintain a given level of design compet-
itiveness.1 Finally, system design costs are increasingly impacted
by software, which accounts for up to 70% of total development
cost in recent design projects.

In response to these trends,reuse-based design methodologies
for both hardware and software have been embraced as a means
of achieving design productivity on par with the underlying silicon
technology. The reuse-based vision is predicated on easily acces-
sible, easily integrable “virtual components”. Pure IP companies,
third-party ASIC libraries, tools for IP integration, and industry or-

� Work by M. Potkonjak and G. Wolfe supported in part by DARPA under grant
N66001-97-2-8901. Work by W. H. Mangione-Smith and J. Lach supported by the
Defense Advanced Research Projects Agency of the United States of America, un-
der contract DAB763-95-C-0102 and subcontract QS5200 from Sanders, a Lockheed
Martin company. Work by A. B. Kahng, S. Mantik, I. L. Markov, P. Tucker and H.
Wang supported by a grant from Cadence Design Systems, Inc.

1According to [26], the available transistor density has increased by 58%/year over
the last 20 years; designer efficiency (measured in transistors designed per staff-month)
has increased by only 21%/year over the same period.

ganizations such as the VSI Alliance [33] have created high ex-
pectations for the value and reusability of design IP. Nonetheless,
a recognized obstacle to reuse-based methodologies is the lack of
mechanisms to protect the rights of IP creators and owners.2

From both the research and implementation points of view,in-
tellectual property protection (IPP) poses a unique set of new re-
quirements that must be addressed by mathematically sound, yet
practical, techniques. In this work, we establish principles for
development of newwatermarking-based IPP procedures. These
principles, which are centered around the use ofconstraints to
“sign” the output of a given design synthesis or optimization, are
compatible with current IP development tools infrastructure. Fur-
thermore, our principles apply to the protection of both hardware
and software (e.g., Verilog or C++ code) IP.

A Motivating Example: 3SAT

We illustrate key ideas behind watermarking-based IPP using the
satisfiability (SAT) problem [10]:

SAT (U;C)

Instance: A finite set of variablesU and a collectionC =
fc1;c2; : : : ;cmg of clauses overU .

Question: Is there a truth assignment forU that satisfies all the
clauses inC?

For example,U = fu1;u2g andC = ffu1;u2g;fū1g;fū1; ū2gg is a
SAT instance for which the answer is positive (a satisfying truth
assignment ist(u1) = F and t(u2) = T ). On the other hand, if
we have collectionC0 = ffū1;u2g;fū1; ū2g;fu1gg, the answer is
negative. SAT is well-known as the first problem shown to be NP-
complete, and the starting point for establishing the known body
of NP-completeness results [10]. Problems from many application
domains have been modeled as SAT instances. In VLSI CAD, SAT
formulations have been used in testing [4, 8, 11, 20], logic synthesis
and physical design [8].

We now illustrate theconstraint-based watermarking of a SAT
solution. For convenience, we assume the 3SAT restriction of the
problem where each clause has exactly three variables. Consider
the following 3SAT instance:

U = fu1;u2; : : : ;u14g

C = ffū1ū2u9g;fū1ū3ū4g;fū1u2ū5g;fu1ū2u10g;fū1ū3u8g;fū1ū3u7g;

fu1ū5u7g;fū1ū6ū12g;fū1u10u12g;fū1u6u9g;fū2ū3ū10g;fu2ū5ū14g;

fū2u7u8g;fu2ū8u9g;fu3u4u8g;fu3u5ū7g;fū3u8u13g;fu3ū9ū11g;

fu3u10ū12g;fū4ū7ū8g;fū5ū8ū12g;fu4ū7u13g;fū5ū9ū11g;fū5u7u9g;

fu6u10u11g;fu6ū8ū12g;fu7u9ū12g;fu7u9ū13g;fu9u11ū14g;fu10u11ū12gg

Our goal is to alter the given 3SAT instance such that (i) any sat-
isfying assignment (“solution”) to the modified instance is a solu-
tion to the original instance, and (ii) both the modified instance and
the solution contain information (i.e., a “signature”) that uniquely
identifies the author of the solution.

2For example, the Virtual Socket Interface (VSI) Alliance has identified six key
technologies that must be in place to enable industrial-strength virtual component-
based synthesis. In addition to system verification, mixed-signal design integration,
on-chip bus, manufacturing-related test, and system-level design, intellectual property
protection is considered to be a crucial enabling technology [29].



Enumeration of the solution space indicates that the given 3SAT
instance has 556 different satisfying assignments. We impose ad-
ditional constraints in the form of extra 3-literal clauses, using
the simple (case-insensitive) encodingA� u1;B� ū1;C� u2;D�
ū2; : : : ;Y � u13;Z � ū13;space� u14 to encode a signature.3 We
choose the signature “Watermarking Techniques for Intellectual
Property Protection University of California at Los Angeles VLSI
CAD LAB”, which adds 38 new clauses to the instance. After
adding these constraints to the initial instance, the number of satis-
fying assignments decreases to 2. We claim that any satisfying as-
signment for this augmented 3SAT instance contains our signature,
and that the likelihood of someone else generating such a solution
by chance is 2 in 556, or 0.00496. In this example, the addition of
a watermark incurs no overhead; it simply guides which solution
is selected. The watermarking strategy is alsonon-intrusive (more
specifically, it is based onpre-processing of the input instance), in
that any existing solution strategy remains applicable to the aug-
mented (watermarked) 3SAT instance.4 In our experience, many
commonly encountered NP-complete formulations can also be wa-
termarked using similar constraints.

1.1 Organization of the Paper

The remainder of this paper is organized as follows. Related con-
cepts in artifact watermarking, cryptography and IP-based synthe-
sis are surveyed in Section 2. Principles and desiderata (e.g., pro-
tection requirements) of non-intrusive, constraint-based IP water-
marking are discussed in Section 3. A review of cryptography
background and supporting tools (e.g., one-way functions, pseudo-
random encrypted streams, digital signatures, and strength analy-
ses) is given in Section 4. Section 5, as well as the above discussion
in Section 1, suggests that non-instrusive (pre- or post-processing
based) IP watermarking with constraints is often easy to implement
with no significant added complexity or loss of solution quality.
While an analysis of typical attacks in Section 4 shows that not all
possible protection levels can be achieved with known algorithms,
we nonetheless conclude in Section 6 that constraint-based water-
marking has significant potential to protect IP and support design
reuse.

2 Related Work

We now survey related work in watermarking-based IPP, cryptog-
raphy, and IP-based synthesis.

2.1 Artifact vs. IP Protection Watermarking

A watermark is a mark that is (i) embedded into an artifact (text,
image, video, audio) or piece of intellectual property (hardware,
software, algorithm, data organization), (ii) designed to identify the
author, the source, the used tools and techniques and/or recipient of
the artifact or the intellectual property, and (iii) difficult to detect
and remove. It is important to distinguish traditional requirements
for artifact watermarking from those governing theIP protection
applications that we address. Artifact watermarking simply adds a
signature into a given artifactwithout regard to maintaining cor-
rectness or function. “Transparency” of the signature stems from
imperfections in human auditory and visual systems: the artifact
(e.g., a digitized photograph) is actually changed, but the human
eye cannot perceive the change.5

In contrast, watermarking for IP protection imposes much
stronger constraints because the watermarked IP must remainfunc-
tionally correct. For example, one cannot arbitrarily introduce ex-
tra lines of code into a Verilog program, or extra devices and inter-

3For example, the signature “cat dog fox” would be encoded using the extra clauses
ffu2;u1; ū10g;fu14; ū2;u8g;fu4;u14; ū3g;fu8; ū12;u14gg (we pad the end of the mes-
sage with an extra space to maintain three literals per clause).

4This observation holds for the three major classes of SAT heuristics: (i) random
search [25, 7], (ii) nonlinear programming relaxation and rounding [12], and (iii) a
variety of BDD-based techniques [3].

5Artifact watermarking has been used for thousands of years. Only with the prolif-
eration of digital media has it attracted wide research and economic interest, e.g., for
protection of audio [1, 15], text [21, 2], image [5], and video.

connects into a transistor-level layout. Our discussion is centered
around the following key idea: watermarking for IPP is most prac-
tically accomplished by imposing a set of additionalconstraints
during the design and implementation of IP, so as to uniquely en-
code the signature of the author. Since 1996, the effectiveness of
this generic scheme for watermarking-based IPP has been demon-
strated at the level of algorithms [15], behavior [14], logic synthesis
and physical design [16], as well as in FPGA designs [18, 19].

2.2 Cryptography

Modern age cryptography grew from the seminal work of Diffie
and Hellman [9], who introduced public-key cryptography based
on the computational intractability of certain mathematical tasks.
Since 1976, cryptographic algorithms and techniques have evolved
through vigorous innovation and public scrutiny, resulting in a va-
riety of digital signature mechanisms, as well as protocols for se-
cret splitting, timestamping, proxy signatures, group signatures,
key escrow, oblivious transfer, oblivious signatures, digital cash,
etc. [27, 22]. The link between cryptography and watermarking
is fundamental: cryptography provides the theoretical foundations
as well as the algorithmic and protocol infrastructure that support
watermarking-based IPP and provide a wide spectrum of author-
ship protection services.

2.3 IP-Based Synthesis

As noted above, short design times, increased device counts and de-
sign starts, and foundry amortization have together forced a change
in design methodology. The new semiconductor business regime
is based on IP reuse. No other regime is compatible with rapid
turnaround and high device counts; no other regime enables ASIC
vendors to keep their foundries full of high-value product.6

Less than two years ago, the VSI Alliance and CFI Component
Information Library Project were first announced. Today, at least
three major industry organizations – RAPID (IP providers) [32],
SI2 [34] (ASIC vendors), and VSIA [33] (a large organization of
EDA vendors, ASIC vendors, system houses and IP providers) –
are actively building the industry infrastructure for IP-based de-
sign.7 Several missing infrastructure pieces are technical, with
deep implications for the associated EDA technology and design
methodologies.8 Other missing pieces include the standards for
representing design IP. However, arguably the most pressing in-
frastructure issues are legal: what are the risks faced by ASIC sup-
pliers and EDA tools vendors as they incorporate third-party IP?
Who holds accountability for design success? How will the rights
of IP creators and owners be protected? It is notable that despite
their varying perspectives, each of the three major industry organi-
zations has a working group for legal issues.

3 Precepts and an Approach for Constraint-Based IPP

In this section we develop basic precepts, and a general constraint-
based approach, for watermarking IP protection. Our discussion
will abstract the design process as a form of optimization, and we
will focus on opportunities for non-intrusive watermarking (i.e.,

6Interestingly, the vision of pervasive IP reuse can be viewed as simply a refinement
of earlier visions which saw the inability of the structured-custom methodology to
scale with design complexity as a main driver for “methodology convergence”.

7The early CFI effort spawned the Pinnacles Component Information Standard,
and CFI subsequently became SI2 (Silicon Integration Initiative).

8For example, how reusable IP will be bundled with standardized test and simula-
tion “envelopes”, or the form of reusable IP and the manner in which it will “mix and
match”, remains unclear. Current visions encompass varying degrees of “hardness” of
the IP, e.g., soft (HDL program), medium (HDL program + floorplan), hard (GDSII
stream file), etc. Harder forms of IP might have greater value since they would embody
greater amounts of design effort. At the same time, hard IP is less reusable due to its
well-defined shape and inherent timing/noise/thermal context; it also allows less flex-
ibility in floorplanning and routing due to constraints on over-the-block routing (e.g.,
timing and signal integrity margins). It remains to be seen how “parameterizable”
an IP block can be in terms of area-time tradeoffs, migration to alternate processes,
routing resource utilization, etc.



methods that can be transparently integrated within existing design
flows via pre- or post-processing).

3.1 Context for Watermarking

The following ingredients form thecontext for a non-intrusive wa-
termarking procedure:

� An optimization problem with known difficult complexity,
corresponding to some design synthesis task. By difficult, we
mean that either achieving an acceptable solution, or enumer-
ating enough acceptable solutions, is prohibitively costly. The
solution space of the optimization problem should be large
enough to accommodate a digital watermark.

� A well-definedinterpretation of the solutions of the optimiza-
tion problem as intellectual property.

� Existing algorithms and/or off-the-shelf software that solve
the optimization problem, likely without any kind of water-
marking involved. Typically, the “black box” software model
is appropriate, and is moreover compatible with defining the
watermarking procedure by composition with pre- and post-
processing stages.9

� Protection requirements that are largely similar to well-
understood protection requirements for currency watermark-
ing. Examples of such requirements, which are discussed in
Section 4 below, include: (i) removing or forging a watermark
must be as hard as re-creating the design; and (ii) tampering
with a watermark must be provable in court.

A non-intrusive watermarking procedure then applies to any
given instance of the optimization problem, and can be attached
to any specific algorithms and/or software solving it. Such a proce-
dure can be described by the following components:

� A use model or protocols for the watermarking procedure.
This is not the same as algorithm descriptions; it is less for-
mal, and can be helpful in revealing possible attacks beyond
the generic types noted above. For example, algorithms as-
sume a cell numbering, while renumbering cells can defeat
a watermarking procedure (something that can be seen only
at the protocol level). In general, each watermarking scheme
must be aware of attacks based on design symmetries, renam-
ing, reordering, small perturbations (which may set require-
ments for the structure of the solution space), etc.

� Algorithmic descriptions of thepre- and post-processing
steps of the watermarking procedure.

� Strength and feasibility analyses showing that the procedure
satisfies given protection requirements on a given instance.
Strength analysis requires metrics, as well as structural un-
derstanding of the solution space (e.g., “barriers” (with re-
spect to local search) between acceptable solutions). Feasi-
bility analysis requires measures of solution quality, whether
a watermarked solution remains well-formed, etc.

� General robustness analyses, including discussion of suscep-
tibility to typical attacks, discussion of possible new attacks,
performance guarantees (including complexity analysis) and
implementation feasibility.

Before describing a general strategy for embedding digital wa-
termarks, we observe that optimization problems with known wa-
termarking procedures share several common features: (i) having

9Watermarking the results of non-deterministic and/or unknown algorithms – or
even “hand-made” results – is possible as well. IP protection can even be achieved,
to some extent, with black-box off-the-shelf software that is viewed as a one-way
function mapping inputs to design solutions. In this discussion, we focus only on the
simple model involving known deterministic algorithms.

multiple acceptable solutions (we typically accept suboptimal solu-
tions for NP-hard problems); (ii) solved by optimization heuristics;
and (iii) discrete in nature.10

3.2 General Strategy for Constraint-Based IPP

Our general strategy is to map an author’s signature into a set of
constraints (“desired relations”) which can independently hold for
a particular solution (or independence can be assumed, via some
manipulations). If disproportionately many of these constraints are
satisfied the presence of the signature is indicated, and vice versa.
Choosing the type of constraints, and the tactic (e.g., pre- or post-
processing) by which we make it likely for more of them to be
satisfied than would otherwise be expected, is what instantiates a
particular watermarking algorithm from the general strategy. These
choices can dramatically affect the strength of the watermark and
the degradation of solution quality caused by watermarking. To
facilitate later discussion, we now describe generic watermarking
and signature verification procedures using “Alice (and Bob)” sce-
narios, where Alice uses watermarking to protect some IP (below,
Bob will attempt to subvert such protection).
Generic Watermarking Procedure. Alice wishes to protect
some IP that involves many stages of processing. She chooses to
watermark one or more of these stages. The results of these stages
now carry a watermark which will propagate down to the output
of further stages all the way down to the final result. Clearly the
amount of watermarking she imposes on a particular stage trades
off with the degree of degradation of quality of the final result. Al-
ice watermarks each stage by selecting a set of “constraints”, then
using preprocessing of the stage’s input and postprocessing of the
stage’s output to encourage a disproportionate number of these con-
straints to be satisfied. Note that Alice need not tell anyone which
constraints correspond to her signature.
Generic Signature Verification Procedure. To demonstrate that
a particular stage was watermarked Alice must show that its solu-
tion (which may have been passed on undisturbed to other stages
and perhaps all the way to the final result) satisfies a dispropor-
tionate number of her watermarking constraints. By identifying the
watermarking constraints, determining how many of them are sat-
isfied, and calculatingPc – the probability of so many (or more)
of the constraints being satisfied by coincidence – Alice can verify
that her signature is present. A strong proof of authorship corre-
sponds to a low value forPc. Note that to show this to other people,
Alice must reveal her signature and, hence, the chosen constraints.

4 Analysis of Constraint-Based Watermarking

We now analyze the constraint-based watermarking strategy and
present the cryptographic background and support tools that are
necessary for the analysis. We first describe how to map a signature
into a set of constraints and the method by which we determine
the strength of the watermark in a watermarked solution. We then
discuss typical forms of attack on our scheme and the obstacles that
prevent these attacks from succeeding.

4.1 Selection of Constraints

Given a pseudorandom number generator and a particular type of
constraint it is a simple matter to select a set ofX constraints where
each one is determined independently. It is only slightly more work
to select a set ofX constraints with no constraint repeated. Thus,
the task of mapping an author’s signature into a set of constraints
can be reduced to the task of seeding a pseudorandom number gen-
erator with the signature. This is also easy. Suppose that the au-
thor’s signature is a particular text message. We can convert this
message into a cryptographically sound pseudorandom bit stream
by simply hashing the message (using a one-way hash function
such as MD5 [24]) and using the hash as a seed for a stream ci-
pher such as RC4 [35].

10We believe “continuous watermarking” is possible as well, e.g., by mapping into
“discrete watermarking” by Fourier transform. However, watermarking has tradition-
ally been of more relevance to discrete problems.



4.2 Proof of Authorship

A watermark’sproof of authorship is expressed as a single value,
Pc, which is the probability of so many (or more) of the selected
constraints being satisfied. Essentially,Pc is the probability of a
non-watermarked solution carrying our watermark by coincidence.
We wish this probability to be convincingly low so as to have a
strong proof of authorship. When we cannot computePc exactly it
is acceptable to overestimate it so that we actually report an upper
bound onPc. Computing such an upper bound onPc is typically
straightforward. Letp be the probability of satisfying a single ran-
dom constraint by coincidence. This value, or a fairly tight upper
bound on it, is usually obvious from the definition of a constraint.
Here we assume thatp is independent of whether the other con-
straints were satisfied. LetC be the number of imposed constraints.
Let b be the number of these constraints that werenot satisfied. Let
X be a random variable that represents how many of theC con-
straints were not satisfied. NowPc can be computed as a sum of
binomials, i.e., the probability that coincidentally onlyb or less
of C constraints were not satisfied is given byPc � P(X � b) =
∑b

i=0(
C!

(C�i)!�i! � (p)C�i � (1� p)i). This analysis assumes thatp is
independent of whether other constraints are satisfied, an assump-
tion that is often untrue. However, when the number of imposed
constraints (C) is sufficiently small, we have a very good approxi-
mation.

4.3 Typical Attacks

There are several general ways of attacking our watermarking
scheme. Here we discuss the more prominent ones: finding “ghost
signatures”, tampering, and forging. We analyze these attacks us-
ing “Alice and Bob” scenarios.

Attack: Finding Ghosts. Bob wishes to steal IP from Alice and
claim it as his own. He knows that Alice has protected her IP (i.e.,
the solution to a particular stage of the design process) with a water-
mark, but will claim that the IPalso contains his own watermark.
Bob thus attempts to find aghost signature, namely, a signature
that corresponds to a set of constraints that yields afavorablePc,
but which was discovered after fact instead of being actually water-
marked into the solution. To be convincing, Bob must find a ghost
signature that yields a sufficiently convincing valuePc.

Bob has only two approaches. He may choose a set of con-
straints (presumably ones that yield a good proof of authorshipPc)
and then attempt to find a signature that corresponds to this set.
This requires reversing the cryptographically secure one-way func-
tions that convert a signature into a set of constraints, which is hard.
Alternatively, Bob may try a brute-force approach to find a signa-
ture that corresponds to a set of constraints that yields a convincing
proof of authorshipPc. However, this brute-force attack becomes
computationally infeasible if the threshold for proof of authorship
is set sufficiently low (e.g.,Pc � 2�56).

Attack: Tampering. If Bob cannot find a convincing ghost sig-
nature, he may decide totamper with Alice’s solution. Ideally,
such tampering would completely remove Alice’s signature and
add Bob’s own signature. Bob can do this by simply re-solving the
problem from scratch with his own watermark encoded, then con-
tinuing through subsequent processing stages based upon the out-
put he obtains. Nothing can be done to stop this directly. However,
we believe that in realistic scenarios, Bob cannot afford to redo all
of the subsequent phases of the design process, particularly if the
watermarking occurred relatively early in the process.

There are realistic means by which Bob can tamper with a so-
lution without having to re-solve every subsequent stage of the pro-
cess. Generally, these amount to transforming the solution output
by the last phase of the design process, where the transformation
has a similar effect on the output of the watermarked phase of the
design process. Specific changes that Bob makes to the final solu-
tion will likely correspond to (i) local perturbations of the solution
to the watermarked phase, or to (ii) global-scale transformations

such as those which exploit a symmetry of the design representa-
tion. Given that Bob is limited to these kinds of tampering attacks,
it is critical that Alice’s watermarking technique be resistant to such
transformations.11

Attack: Forging. Finally, Bob may attempt to subvert Alice’s
watermark by inappropriately watermarking other solutions with
Alice’s watermark. In other words, Bob wishes toforge Alice’s
signature. To do this, Bob needs a signature that he can convince
others belongs to Alice. If a signature corresponds simply to a
text message (as it has so far in this discussion) then Bob’s task is
easy: he simply chooses a text message resembling one that Alice
would use. However, such attacks can be easily prevented by using
a public key encryption system [23]. Any message actually signed
by Alice would be encrypted with her private key, yet verifiable
with her public key. Notice that the private key is not compromised
even if messages that encoded with it are compromised, so Alice
may still demonstrate the presence of her watermark to anyone who
knows her public key, without compromising her private key. Thus,
Bob is able to forge a message from Alice only if he knows her
private key.

5 IP Watermarking Synthesis Examples

In this section, we sketch three examples of IP watermarking ap-
proaches, in three very distinct domains. Our intent is to illustrate
the wide-ranging applicability of the principles developed above.

5.1 Preprocessing in System-Level Design

At the system level, instruction and data caches consume a signif-
icant portion of the overall area, and often have crucial impact on
system timing and power consumption [17]. Much effort has been
devoted to allocating minimal cache structures and optimizing code
for effective cache utilization [30]. A particularly successful tech-
nique iscache line coloring [13].

Given a code segment and input data benchmarks, cache line
coloring code optimization seeks a permutation of basic block code
segments such that the mapping of code to cache entries minimizes
the cache miss ratio over the given benchmarks. The problem can
be modeled as follows. The program is profiled with respect to
the benchmark data, and spatial (frequent sequences of sequentially
executed code) and temporal (frequent control sequences) correla-
tions noted among basic blocks of code. The program is modeled
using a control data flow graph, where a graph node corresponds
to a set of instructions that are encompassed in a single basic block
and fit exactly one cache line. Weighted edges between nodes cor-
respond to spatial or temporal correlations that exceed given thresh-
old values (modeling accuracy thus depends on the thresholds for
edge inclusion). The problem of minimizing cache misses is equiv-
alent to finding a solution to graph coloring using a given fixed
number of colors (corresponding to available cache lines).12

To watermark such designs, the initial design constraints may
be augmented with additional constraints corresponding to the dig-
ital signature of the designer. For example, following the technique
for watermarking of graph coloring solutions proposed by Hong
and Potkonjak [14], one may add additional edges to the graph ac-
cording to some encrypted signature of the author. Therefore, the
signature will be embedded in the activation path which transfers
data between two levels of hierarchy.

11Note that since the attacker does not know which constraints correspond to the
author’s signature, tampering attacks might not be able to ruin the proof of authorship
before they significantly degrade the quality of the final solution (at which point the
tampered solution ceases to be useful); see [16] for experience in the physical design
realm. However, it seems possible for an attacker to use tampering methods to remove
a signature that is known to him, or to add an entirely new signature.

12Kirovski et al. [17] have experimentally shown that this optimization results in
significant performance increase. In general, such optimizations can play an important
role in the design of modern multimedia, communications, or low-power systems-on-
silicon.



5.2 Postprocessing in Physical-Level FPGA Design

One method of watermarking an FPGA at the physical level in-
volves manipulating unused portions of the configuration bitstream.
Informed parties can then extract the mark from the bitstream.
There is no effect on the function of the design during insertion
or extraction because only unused portions of the design are al-
tered. This approach can be implemented through pre-processing,
iterative, or post- processing techniques. The advantage of post-
processing is that it does not impact other CAD design tools, and
has zero impact on design peformance, area or power consump-
tion. The disadvantage of this approach is that the watermark is
not embedded in the functional part of the design; given enough in-
formation, the watermark can be removed without affecting design
functionality. An example of an iterative approach can be found in
the work by Lach et al. [18, 19].

An example of a purely post-processing approach involves in-
serting the watermark into the control bits for unused outputs from
configurable logic blocks (CLBs). Certain bits in the configura-
tion bitstream that control multiplexers for the CLB outputs can be
replaced by watermark bits if the CLB outputs are not used. For ex-
ample, the Xilinx 4000 family of FPGAs contain CLBs with four
outputs [31]. Two outputs (X and Y) are combinational, while the
others (XQ and YQ) can be used in sequential designs. The two
combinatorial outputs are each controlled by a 2-to-1 multiplexer,
and the two sequential outputs are each controlled by three 2-to-1
multiplexers and one 4-to-1 multiplexer. Figure 1 shows the control
layout of the 4000 family’s CLB outputs.

EC

D Q

EC

D Q

XQ

X

Y

YQ

Figure 1: Control directly attributed to CLB outputs.

The number of configuration bits associated with a multiplexer
is equal to (or greater than) the number of required control bits.
Therefore, one and two watermark bits can be inserted at each un-
used 2-to-1 and 4-to-1 multiplexer respectively. Thus, each unused
combinatorial output can store one watermark bit and each unused
sequential output can store five watermark bits. The total number
of watermark bits that can be inserted in an entirely unused CLB
is twelve. Table 1 shows the number of watermark bits that can be
inserted into various devices within the 4000 family given certain
percentages of unused CLB outputs. The numbers calculated here
are for an even number of unused combinatorial and sequential out-
puts.

The process of watermark insertion in this approach is an en-
tirely post-processing step and requires very little added design ef-
fort. The tool methodically scans the bitstream searching for un-
used outputs by finding CLB output pinwires that do not attach
to any external CLB interconnect. Upon the detection of unused
outputs, the next bits of the watermark are inserted in place of the
corresponding multiplexer configuration bits. The size of the wa-
termark is limited by the number of bits made available by this
approach. Extracting the watermark is an almost identical process.

Part/# CLBs
% Outputs 4006 4010 4013 4020 4025

Unused /256 /400 /576 /784 /1024
1 30 48 69 94 122
5 153 240 345 470 614
10 307 480 691 940 1228
20 614 960 1382 1881 2457

Table 1: Number of bits available for watermarking.

The tool finds unused CLB outputs the same way as was done in
insertion and pieces the watermark back together by examining the
corresponding multiplexer configuration bits.

This FPGA watermarking approach requires little extra design
effort, can store fairly large watermarks, allows for easy mark ex-
traction, and has no overhead in terms of design area or perfor-
mance. However, because a mark is nonfunctional, it may be re-
moved by reverse engineering a design to a stage in the flow before
the mark has been applied. Fortunately, most FPGA vendors will
not reveal the specification of their configuration streams, specifi-
cally to complicate the task of reverse engineering and thus protect
the investment of their customers. For example, the Xilinx XC4000
devices follow a form of Pareto’s rule: the first 80% of the config-
uration information can be determined relatively easily by inspec-
tion, the next 18% is much more difficult, etc. The complexity is
enhanced by an irregular pattern that is not consistent between rows
or columns, as a result of the hierarchical interconnect network.
Xilinx does not take any specific actions to make their configura-
tions difficult to reverse engineer. However, they do believe that it
is difficult to do in general, and they promise their customers that
they will keep the bitstream specification confidential in order to
raise the bar for reverse engineering [28].

5.3 Preprocessing in Physical Design

Finally, in the context of physical design, we present a new pre-
processing based approach for design watermarking. Our approach
exploits the flexibility with whichpath-based timing constraints
can be satisfied.

Consider the typical elements of an input instance for timing-
driven placement and routing.

� physical floorplan, library of physical cell masters, and cell-
level netlist

� cell-level performance macromodels for each cell master
(e.g., non-linear table models (Synopsys .lib, Cadence .ctlf,
OVI ALF, etc.)) for timing and power dissipation analysis

� technology file (models of interconnect RC characteristics,
design rules, etc.)

� constraints, which are chiefly (i) “direct” placement and rout-
ing constraints (e.g., region-based location constraints aris-
ing from the floorplanner, and transmitted in PDEF format),
and (ii) performance constraints (e.g., SDF latch-to-latch path
timing upper and lower bounds, with false path and multi-
cycle constraints specially annotated)

We watermark a design by selecting path timing constraints and
replacing them with “subpath” timing constraints. Suppose that we
have the path timing constraintt(C1�C2�C3� : : :�C10)� 50ns
(Ci � cells). We can allocate the timing bound between two sub-
paths and replace this constraint by two constraintst(C1 � : : :�
C5)� 20ns andt(C5� : : :�C10)� 30ns. All else being equal, the
chance that satisfying the original constraint happens to satisfy both
of these subpath constraints is at most one-half.13 Constraining on

13Note that the allocation would be done with respect to available slack on the path,
e.g., path delay upper bound minus sum of “intrinsic” cell delays. Also note that
constraint satisfaction will likely be determined in the context of final layout.



the order of hundreds of timing paths (from the several millions
one finds in typical verbose SDF specifications) is transparent to
timing-driven design tools, yet affords strong proofs of authorship.
Similar techniques can be applied in the regime of compact SDF
timing constraints, or at the budgeting stages of timing-driven de-
sign.14

6 Conclusions

Motivations and antecedents forwatermarking-based protection
of hardware and software design IP arise in reuse-centric system
design, artifact watermarking, and cryptography. In this paper,
we have described fundamental precepts, a canonical technique,
and example applications for watermarking-based IPP. Several key
ideas are as follows.

� Stages of the (hardware, software) design process can typ-
ically be viewed as (difficult)optimization instances whose
solutions constitute intellectual property to be protected.

� IP watermarking can typically be achieved by addingcon-
straints (e.g., interpreted from a cryptographically secure en-
coding of the IP owner’s signature) to any given design opti-
mization instance.

� The addition of constraints can typically be achieved using
pre- or post-processing of the inputs and outputs, respectively,
for a given design optimization. In this way, the watermarking
is often transparent to existing algorithms and tools, i.e., it is
non-intrusive.

We have also noted other aspects of the watermarking context,
e.g., protection requirements against typical forms of attack, and
cryptography background (one-way functions, cipher streams, and
digital signatures). Problem formulations from several domains
(high-level design, FPGA design, physical design, as well as SAT)
illustrate the general applicability of our techniques, and suggest
that non-instrusive IP watermarking with constraints can typically
be implemented with no significant added complexity or loss of
solution quality. Thus, constraint-based watermarking appears to
have significant potential to protect IP and support design reuse.

Our ongoing work develops watermarking-based IPP tech-
niques for many other domains, with particular attention to robust-
ness under various attacks. We also address a number of variant
requirements, including fingerprinting, copy detection, and propor-
tionate watermarking (e.g., of hierarchical designs).

References
[1] W. Bender, D Gruhl, N. Morimoto and A. Lu, “Techniques for Data Hiding”,

IBM Systems Journal, 35(3-4), 1996, pp. 313-336.
[2] J.T. Brassil, S. Low, N.F. Maxemchuk and L. O’Gorman, “Electronic Marking

and Identification Techniques to Discourage Document Copying”,IEEE Journal
on Selected Areas in Communications, 13(4) (1995), pp. 1495-1504.

[3] R.E. Bryant, “Binary Decision Diagrams and Beyond: Enabling Technologies
for Formal Verification”,Proc. of the International Conference on Computer-
Aided Design, 1995, pp. 236-243.

[4] S.T. Chakradhar, V.D. Agrawal and S.G. Rothweiler, “A Transitive Closure Al-
gorithm for Test Generation”,IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 12(7) (1993), pp.1015-28.

[5] I.J. Cox and M.L. Miller, ”A Review of Watermarking and the Importance of
Perceptual Modeling”,SPIE Conf. on Human Vision and Electronic Imaging II,
3016(1997), pp.92-99.

14In general, the physical design context presents a rich environment for constraint-
based watermarking. For example, the physical library information and/or design rules
allow variant pin access models for a cell, which will constrain how interconnects
attach to pins; extra blockage geometries in cell instances or masters can also be used
to constrain the routing; and via and stub rules can again encode a signature within
the output of a constraint-driven router [16]. Simple parity-based schemes abound,
e.g., based on mirroring of cells, parity of row indices to which cells are assigned [16],
routing of wires to the left or right of shield wires, etc. Even performance macromodels
(nonlinear table models for timing and power) can be perturbed (thus constraining the
performance-driven layout) to influence the layout tool’s output.

[6] I.J.Cox, J. Kilian, F.T. Leighton and T. Shamoon, “Secure Spread Spectrum Wa-
termarking for Multimedia”,Transactions on Image Processing, 6(12) (1997),
pp.1673-87.

[7] M. Davis and H. Putnam, “A Computing Procedure for Quantification Theory”,
Journal of the ACM, 7(3) (1960), pp. 201-215.

[8] S. Devadas, “Optimal Layout Via Boolean Satisfiability”,IEEE International
Conference on Computer-Aided Design, 1989, pp. 294-7.

[9] W.Diffie and M. Hellman, “New Directions in Cryptography”,IEEE Transac-
tions on Information Theory, IT-22(6), 1976, pp. 644-654.

[10] M. E. Garey and D. S. Johnson,Computers and Intractability: a Guide to the
Theory of NP-Completeness, Freeman, 1979.

[11] J. Giraldi and M.L. Bushnell, “Search State Equivalence for Redundancy Iden-
tification and Test Generation”,Proc. Intl. Test Conf., 1991, pp. 184-193.

[12] M. X. Goemans and D. P. Williamson, “Improved Approximation Algorithms
for Maximum Cut and Satisfiability Problems Using Semidefinite Program-
ming”, Journal of the ACM, 42(6) (1995), pp.1115-45.

[13] A.H. Hashemi, D.R. Kaeli and B. Calder, “Efficient Procedure Mapping Using
Cache Line Coloring”, SIGPLAN Notices, 32(5) (1997), pp.171-182.

[14] I. Hong and M. Potkonjak, “Behavioral Synthesis Techniques for Intellectual
Property Protection”, unpublished manuscript, 1997.

[15] L. Honey, A.H. Tewfik and K.N. Hamdy, “Digital Watermarks for Audio Sig-
nals”,Proc. of the International Conference on Multimedia Computing and Sys-
tems, 1998, pp. 473-480.

[16] A. B. Kahng, S. Mantik, I. L. Markov, M. Potkonjak, P. Tucker, H. Wang and
G. Wolfe, “Robust IP Watermarking Methodologies for Physical Design”,Proc.
ACM/IEEE Design Automation Conf., 1998.

[17] D. Kirovski and M. Potkonjak, “System-Level Synthesis of Low-Power Hard
Real-Time Systems”,Proc. ACM/IEEE Design Automation Conference, 1997,
pp. 697-702.

[18] J. Lach, W. H. Mangione-Smith and M. Potkonjak, “Fingerprinting Digital Cir-
cuits on Programmable Hardware”,Proc. Workshop on Information Hiding,
1998.

[19] J. Lach, W. H. Mangione-Smith and M. Potkonjak, “FPGA Fingerprinting Tech-
niques for Protecting Intellectual Property”,Proc. CICC, 1998.

[20] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability”,Proc. Inter-
national Test Conf., 11(1) (1992), pp.4-15.

[21] S.H. Low, N.F. Maxemchuk, J.T. Brassil and L. O’Gorman, “Document Marking
and Identification Using both Line and Word Shifting”,Proc. INFOCOM, 1995,
pp.853-60.

[22] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone,Handbook of Applied Cryp-
tography, Boca Raton, CRC Press, 1997.

[23] Pretty Good (tm) Privacy, Phil Zimmerman, Users Guide: Vol. 1, Vol.
2, and Internal Data Structures from Phil’s Pretty Good Software, copy:
http://www-atp.llnl.gov/atp/papers/HRM/references/pgp-refs.html

[24] R.L.Rivest, “RFC 1321: the MD5 Message-Digest Algorithm”,Internet Activi-
ties Board, April 1992.

[25] B. Selman, “Stochastic Search and Phase Transitions: AI Meets Physics”,IJCAI,
1 (1995), pp.998-1002.

[26] Semiconductor Industry Association,National Technology Roadmap for Semi-
conductors, revised November 1997.

[27] D.R. Stinson,Cryptography: Theory and Practice, Boca Raton, CRC Press,
1995.

[28] S. Trimberger,personal communication, 1997.
[29] VSI Alliance, “Fall Worldwide Member Meeting: a Year of Achievement”,

Santa Clara, CA, October 1997.
[30] H. Wang, T. Sun, Q. Yang, “Minimizing Area Cost of on-Chip Cache Memories

by Caching Address Tags”,IEEE Transactions on Computers, 46(11) (1997),
pp. 1187-1201.

[31] Xilinx, The Programmable Logic Data Book, Xilinx Corporation, San Jose,
1996.

[32] http://www.rapid.org

[33] http://www.vsi.org

[34] http://www.si2.org

[35] http://dcs.ex.ac.uk/~aba/rsa/rc4.html


