
HW/SW CoVerification Performance Estimation &
Benchmark for a 24 Embedded RISC Core Design

Thomas W. Albrecht
Siemens, Austria

Erdberger Laende 26
A-1030 Vienna, Austria

+43 1 1707 - 35850

thomas.albrecht@siemens.at

Johann Notbauer
Siemens, Austria

Erdberger Laende 26
A-1030 Vienna, Austria

+43 1 1707 - 36087

johann.notbauer@siemens.at

Stefan Rohringer
Siemens, Austria

Erdberger Laende 26
A-1030 Vienna, Austria

+43 1 1707 - 37630

stefan.rohringer@siemens.at

1 ABSTRACT
This paper describes the benchmarking of a HW/SW-
coverification design strategy. The benchmark results were the
base for making a principal verification decision for an already
ongoing project at Siemens AG, Public Communication Network
Group. The intention for this benchmark was to verify whether
commercial available coverification tools can handle the design
complexity of an embedded system containing 24 embedded
RISC cores and provides the necessary performance in terms of
simulation speed and throughput.

2 INTRODUCTION

2.1 Why Aiming HW/SW-CoVerification
The design to be coverified consists of
• 3 different types of ASICs each containing an embedded

RISC core, SDRAM arbiter, protocol specific controller and
interface to serve the board external interface, system
internal controller and interface to serve board-to-board serial
links. The gate count of a single ASIC is about 250kGates
each.

• 3 different types of printed-circuit boards each containing a
number of one type ASIC and off-the-shelf-components.

• Each type of those boards has one of the following external
interfaces:
200 MHz ATM serial interface, 8x HDLC serial interfaces,
proprietary system interface

• 2 boards of each type in the minimum configuration (equals
24 embedded core ASICs) and a sum of 26 boards in the
maximum configuration (equals 76 embedded core ASICs)
will be delivered to our customer.

• Each board is connected by a serial link with each other of
the boards.

At the time when the benchmark was carried out the design
described above was in specification phase.

The reasons for doing the benchmark and to ensure high

performance coverification capabilities for the design are several:
• No visibility and controllability of the RISC core’s signals

since they are all inside ASICs
• Limited access via a special type of In-Circuit-Emulator
• Early Integration of HW and SW on a virtual base
• Higher SW quality available for HW prototype tests
• „Breaking“ the wall between SW- and HW-engineers from

the system specification phase on
• Very tight project schedule

The goal of our coverification is to simulate the whole SW
startup routine, operating system, HW-device driver and protocol
stack with reasonable performance in the minimum configuration
of the system to be delivered to our customer - this means to
coverify a 24-core embedded RISC core design to be the largest
coverification configuration. This design configuration equals to
6,000 kGates.

2.2 Performance Factors in HW/SW
CoVerification
The traditional verification methodology [7] is based on
simulation of the design mainly described in a HDL. Processors
are either modeled in a HDL or they are integrated into
simulation via a hardware model. Both of them have the
disadvantages that the simulation performance is mainly given by
the processor and that there is no possibility to connect a
debugger to the processor.
Figure 1 shows a principal block diagram of a HW/SW-
coverification tool [1].

ROM

RAM
HDL

Wrapper

Load module

ISS
SW

Debugger

Coverification Tool

software domain hardware domain

HW/SW-CoVerification
Approach:
Processor modeled as
 Instruction Set Simulator,
other components in HDL

Figure 1 Blockdiagram of a HW/SW-coverification tool

The HDL model of the RISC core is replaced by an
InstructionSetSimulator (ISS) of the core. The ISS is connected
to the HW simulator by the coverification tool and instanciated

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 98, June 15-19, 1998, San Francisco, CA USA
ISBN 1-58113-049-x/98/06…$5.00

808

http://crossmark.crossref.org/dialog/?doi=10.1145%2F277044.277250&domain=pdf&date_stamp=1998-05-01

by a HDL wrapper. This HDL wrapper has to behave like a bus-
functional model controlled by the ISS in order to provide the
HW-design with cycles. The remaining HW is still modeled in
the HDL simulator. Beside the execution unit the ISS is also able
to model local memory areas. The key of simulation speedup is
to reduce the number of events in the HDL-simulator. The
percentage of memory cycles running across the HW-simulator to
the HDL-type of memory model is called „core-I/O-activity“.
100% core-I/O-activity means every single memory access is
running across the HW-simulator, no portion of memory is
modeled inside the ISS. The portion of memory area to be
modeled either in the ISS or to be accessed via the HW-simulator
to the HDL-type of memory must be defined in a mapping file
accordingly to the design’s memory layout.

The ISS has also an interface to a commercial SW-debugger.
This is beside simulation throughput essential to ensure
acceptance by SW engineers.

3 ESTIMATION OF REQUIRED HW/SW
COVERIFICATION PERFORMANCE
A set of coverification testcases has been defined for different
HW-configurations (see Table 1). For each testcase a core-I/O-
activity and the number of assembler commands has been
assumed.

T
es

tc
as

es

em

b
ed

d
ed

 c
o

re
s

as
su

m
ed

 c
o

re
-I

/O

ac
ti

vi
ty

A

ss
em

b
le

r
in

st
ru

ct
io

n
s

p
er

te

st
ca

se

m

em
o

ry
 a

cc
es

se
s

m

em
o

ry
 c

yc
le

s
ru

n
n

in
g

 a
cc

ro
ss

 t
h

e
H

W
-s

im
u

la
to

r

Driver 1 10 50.000 5.000 30.000
Startup 1 27 14.000 3.780 22.680
Diagnostics 1 10 200.000 20.000 120.000
RTOS 1 1 17.000 170 1.020
ASIC integration,
1 core

1 10 65.000 6.500 39.000

system integration,
2 cores

2 10 65.000 13.000 78.000

system integration,
8 cores

8 10 65.000 52.000 312.000

system integration,
24 cores

24 10 65.000 156.000 936.000

Table 1: Testcase Scenarios

In order to stress the protocol stack SW a certain amount of data
has to be transferred via the serial interfaces (ATM or HDLC) of
the boards into the design. For 1-,2-, 8- and 24-core integration
testcases it has been considered to play 50 HDLC frames, each
with a message length of 70 byte, and to play 50 ATM cells to
the design. It has also been considered that the HDLC interface
will be accelerated for simulation purposes by 10x. For this
acceleration the original VHDL HDLC interface block will be
replaced in the VHDL database by a speeded-up VHDL HDLC
interface block that allows to run the HDLC-protocol 10 times
faster in simulation than in reality.

It is important to consider the impact of the serial interfaces with
respect to the real design because protocol payload will be stored
in a common memory area. Therefore this memory area must be
mapped to the HDL-type of memory modeled in the HW-
simulator rather than in the local ISS memory.

Table 2 gives the estimated performance numbers in 1000
Instructions-per-second and simulation run time for a scenario of
simulated clock-cycles-per second and for a given ISS
performance.

System Clock (MHz) 50
ISS performance (1.000 instr/se 100
speed up of seriell HDLC links 10 max speed up with min add. effort
Scenarios Clock cycles simulated/sec, 1-core configuration

10 20 30 40 50 100 150 200
Results

CoVerification Performance (IPS)
Driver 17 33 50 67 83 166 249 332

Start up 6 12 19 25 31 62 93 123
Diagnostics 17 33 50 67 83 166 249 332

RTOS 166 332 498 662 826 1.639 2.439 3.226
ASIC integration 6 13 19 25 31 63 94 126

System integr. 2 cores 3 6 9 13 16 31 47 63
System integr. 8 cores 1 2 2 3 4 8 12 16

System integr. 24 cores 0 1 1 1 1 3 4 5
CoVerification Run Time (min)

Driver 50 25 17 13 10 5 3 3
Start up 38 19 13 9 8 4 3 2

Diagnostics 200 100 67 50 40 20 13 10
RTOS 2 1 1 0 0 0 0 0

Asic integration 172 86 57 43 34 17 11 9
System integr. 2 cores 345 172 115 86 69 34 23 17
System integr. 8 cores 1.378 689 459 345 276 138 92 69

System integr. 24 cores 4.135 2.037 1.378 1.034 827 413 276 207

Table 2 Performance Estimation Sheet

Most of the testcases will be carried out of the ASIC-integration
testcase group. A simulation run time of 10 to 20 minutes seems
to be reasonable for this 1-core configuration. Using the
performance estimation sheet it became obvious that the HW
simulator must provide a performance in the range of 150 to 200
simulated clock cycles per second.
It turns out that the HW-simulator is the bottleneck in overall
coverification performance. Therefore we have considered a
cycle-based HDL simulator in our benchmark as well.

A variation of the ISS performance shows that at a given HW-
simulator performance the ISS has not a substantial impact on
the overall coverification performance. Only for testcases having
a very low core-I/O-activity (around 1%) the ISS performance has
some impact on the overall performance when the ISS is low
performant (<5k Instructions per second).

4 THE BENCHMARK

4.1 The Benchmark Design
Due to the lack of having the real design available as described
above, we had the need to build up a benchmark design.
The benchmark design is modeled in a way allowing easy scaling
of the hardware's complexity. We decided to build up a basic
module consisting of all the components necessary for a
successful simulation run. Essentially these components are the
RISC core, a clock generation unit, some memories and a load

809

module. The scaling of the hardware’s complexity is done by
simply multiple instanciations of the above mentioned basic
module. That means, our benchmark design consists of 24 slots,
each of them capable to embed a basic module. The number of
basic modules in a specific configuration of the benchmark
design is determined by a specific HDL configuration.

ROM

RAM
CPU

JPEG Coder
ROM

RAM
CPU

JPEG Coder

ROM

RAM
CPU

Load module

D-Cache

BC

Core

I-Cache

m
ultip

le in
sta

nce
s

Figure 2 The Benchmark Design Configurations

When replacing the HDL model of the CPU by an ISS the load
for the hardware simulator is only given by the memory models.
In order to get a more realistic modeling of the target design we
added a so-called load module to the main components of the
basic module. It’s aim is to represent the load of the hardware
simulator generated by the specific interfaces (ATM, HDLC, ...)
in the target design. The gate complexity of the load module
(approx. 250 kGates) was chosen to be approximately equivalent
to the estimated gate count numbers of the target design. The
benchmark simulations were done with configurations consisting
of 1, 2, 8 and 24 cores (basic modules).

4.2 Benchmark Testcases
The Instruction Set Simulator of the RISC core gives the
possibility to map specific memory ranges either in the
workstations memory (internal memory) or in the memory
simulated by the hardware simulator (external memory).
Accesses to the internal memory do not require any bus cycles
and can therefore be done very fast. Typically code fragments are
stored in this internal memory. The mapping of specific memory
ranges to the external memory is necessary for data exchange
between the software and the hardware.

The Benchmark testcases are designed to allow an easy
modification of the access rate to the external memory. There are
two loops which are performing read and write cycles to the both
memories. By changing the maximum loop counts the density of
the access cycles to the external memory can be adapted. The
benchmark simulation runs were made for the following core-
I/O-activities: 0%, 1%, 5%, 10% and 100 %.

The benchmark testcases have been defined in a way that the
verification runs provide answers to the following questions:
• What is the simulation performance that can be achieved in

HW/SW-CoVerification? Is it acceptable for SW engineers?
• What’s the difference of the simulation performance when

using either a HDL model for the processor or an ISS?

• How large is the performance gain when using the cycle
based simulator Cyclone instead of the event driven
QuickHDL?

• Is there a linear dependence between number of cores and
simulated clock cycles per second?

• Is there a linear growth of the simulation runtime with the
core-I/O-activity?

• Is there an impact from the number of CPUs in the
workstation used for the simulation?

A total of 120 simulation runs have been done in order to present
the performance data given in this paper.

4.3 Tools that Have Been Used
The following commercial available tools have been used:
EagleI CoVerification Tool by Viewlogic [1]
Cycle-Based Simulator CYCLONE by Synopsys [2] [3]
Event-Driven Simulator QuickHDL by MentorGraphics
ISS MiniSim by LSI Logic [4]
SW-Debugger CrossView by Tasking [6]

5 BENCHMARK RESULTS
Benchmark simulations were done in various configurations
(Table 3) to answer the questions from section 4.2.

The carried out benchmark simulations gave clear performance
figures and answers to the above mentioned questions:
• The required HW-simulator performance of 150 to 200

cycles-per-second and therefore the overall coverification
performance has been achieved when using Cyclone as the
HW-simulator (Figure 3 and Figure 4)

• The simulation performance when using the ISS of the
processor instead of the VHDL model is twice as high
(Figure 3 and Figure 4).

• There is a linear reciprocal dependency between the number
of cores in the design and the number of simulated clock
cycles per second, double number of cores half number of
simulated clock cycles (Figure 4).

• The verification run-time increases linear to the core-I/O-
activity.

• The HW-simulator performance in cycles-per-second is
independent of the core-I/O activity. The core-I/O activity has
its impact on the overall verification runtime. The higher the
core-I/O activity the more memory cycles must run across the
HW-simulator.

• There is a very little impact of the number of CPUs in the
simulation workstation on the simulation drun-time. The
main part of the simulation effort is consumed by the
hardware simulation process which can not be splitted to run
on different CPUs.(Figure 3 and Figure 4)

• The performance gain when using the Synopsys’ Cyclone
(cycle-bases simulator) instead of Mentor’s QuickHDL
(event-driven simulator) is approximately 10x when
simulating in Cyclone 4 state debug mode, and
approximately 20x when simulating in 4 state performance
mode (Figure 3 and Figure 4).

810

Case 1 QuickHDL, pure VHDL
Case 2 QuickHDL, ISS, 1 CPU WS
Case 3 QuickHDL, ISS, 2 CPU WS
Case 4 Cyclone 4state, debug, ISS, 2 CPU WS
Case 5 Cyclone 4state, perf, ISS, 1 CPU WS

 Table 3: Legend for the cases in Figure 3 and Figure 4

0,0
50,0

100,0
150,0
200,0
250,0
300,0
350,0
400,0
450,0

C
as

e
1

C
as

e
2

C
as

e
3

C
as

e
4

C
as

e
5

C
as

e
6

verification method

1 core

2 cores

8 cores

24 cores

Figure 3 Verification RunTime in minutes depending on # of
cores and verfication toolset at a given core

I/O-activity of 10%

0,0
20,0
40,0
60,0
80,0

100,0
120,0
140,0
160,0
180,0

C
as

e
1

C
as

e
2

C
as

e
3

C
as

e
4

C
as

e
5

C
as

e
6

verification method

1 core
2 cores
8 cores
24 cores

Figure 4 HW-simulator performance in simulated clock-
cycles per second depending on # of cores and verification

toolset

6 CONCLUSIONS
It turned out that HW/SW-coverification is a very powerful
verification strategy. It has been decided to use HW/SW-
coverfication in the ongoing project. It enables SW-engineers to
start HW/SW integration already on a virtual base with no need
to wait for physical HW samples. Also HW engineers make use
of the cosimulation environment to debug their testcases written
in Assembler or C-code to stimulate the design from the
processor core site.

Despite the speed in terms of throughput performance that can be
achieved with emulation, it has been decided not to use
emulation for this project.

The reasons for this decision were:
• not capable to emulate a 24 core embedded RISC core design
• Emulation database and HW environment cannot be

replicated very easily
• Emulation maintenance effort is high compared to a virtual

based solution on workstations
• Man power costs for emulation-type of printed-circuit boards
• Emulation not flexible, e.g. in case of late ASIC-pinout

changes (respin of boards required,)
• Emulation cannot start that early in the design process than

HW/SW coverification can do, even for this type of system
design.

The conclusion is that for this type of complex system designs
the cost parameter for emulation is significantly higher than for
HW/SW-CoVerification.

At the time this paper has been submitted are already first results
of our real-world HW/SW-coverification application available.
The coverification performance achieved using Eaglei/Cyclone is
slightly better than the benmark results.

7 REFERENCES
[1] Viewlogic Systems Inc, „Hardware/Software Co-development

with Eagle Tools“,
http://www.viewlogic.com/products/eagletools.html

[2] Synopsys Inc, „Cyclone VHDL Coding Style Guide V1.1b“,

1997

[3] Synopsys Inc. „Cyclone VHDL Reference V1.1b“, 1997

[4] LSI Logic, „MiniSIM Architectural Simulator Family User’s

Guide“, November 1995

[5] Gerry Kane, Joe Heinrich, „MIPS RISC Architecture“,

Prentice Hall 1992 Mips Technology

[6] Tasking Inc. „R3000 v3.2 CrossView Debugger User’s

Guide“, 1996

[7] Thomas Albrecht, „Concurrent Design Methodology and

Configuration Management of the Siemens EWSD-CCS7E
Processor System Simulation“, Proceedings of the 32nd
ACM/IEEE Design Automation Conference, pages 222-227

[8] Matthias Bauer, Wolfgang Ecker, „Hardware/Software Co-

Simulation in a VHDL-Based Test Bench Approach“,
Proceedings of the 34th ACM/IEEE Design Automation
Conference, Pages 774-779

811

