
ar
X

iv
:1

50
3.

07
65

9v
2

 [c
s.

P
L]

 1
6

M
ay

 2
01

5
Loo.py: From Fortran to performance

Loo.py: From Fortran to performance
via transformation and substitution rules

Andreas Klöckner
University of Illinois at Urbana-Champaign

andreask@illinois.edu

Abstract
A large amount of numerically-oriented code is written and isbeing
written in legacy languages. Much of this code could, in principle,
make good use of data-parallel throughput-oriented computer ar-
chitectures. Loo.py, a transformation-based programmingsystem
targeted at GPUs and general data-parallel architectures,provides
a mechanism for user-controlled transformation of array programs.
This transformation capability is designed to not just apply to pro-
grams written specifically for Loo.py, but also those imported from
other languages such as Fortran. It eases the trade-off between
achieving high performance, portability, and programmability by
allowing the user to apply a large and growing family of transfor-
mations to an input program. These transformations are expressed
in and used from Python and may be applied from a variety of set-
tings, including a pragma-like manner from other languages.

Categories and Subject Descriptors D [3]: 4— Code generators;
D [1]: 3— Concurrent programming; G [4]— Mathematical soft-
ware

Keywords Code generation, high-level language, GPU, substitu-
tion rule, embedded language, high-performance, program trans-
formation, OpenCL, Fortran

1. Introduction
Loo.py (Klöckner 2014) is a programming system for array com-
putations that targets CPUs, GPUs, and other, potentially heteroge-
neous compute architectures. One salient feature of Loo.pyis that
programs written in it necessarily consist of two parts:

• A semi-mathematical statement of the array computation to
be carried out, in terms of aloop polyhedronand a partially
orderedset of ‘instructions’.

• A sequence ofkernel transformations, driven by an ‘outer’ pro-
gram in the high-level scripting language Python (van Rossum et al.
1994).

This strong separation is an explicit design goal, as it enables
specialization of users, cleanliness of notation in eitherpart, as well
as greater flexibility in terms of transformation.

[Copyright notice will appear here once ’preprint’ option is removed.]

While a prior article(Klöckner 2014) emphasized Loo.py’spro-
gram model and semantics, this article focuses on the transformation-
related aspects of the system.

Loo.py was designed to suit a number of different use cases, all
of which have shaped its design:

• a means to concisely express computational kernels in the de-
sign of scientific computing applications (such as solvers for
partial differential equations (Klöckner et al. 2009)),

• a foundation for outlining the search space to be explored byan
autotuning component or a human performance tuner,

• an on-the-fly code generator for computational software,

• a code-generation back-end enabling high-level DSLs to obtain
performance on heterogeneous architectures, and

• a program transformation tool for de- and re-optimizing legacy
code.

The present article demonstrates how Loo.py can function asa
code generation back-end for a subset of Fortran (as an example
of a language separate from Loo.py’s own internal representation)
while maintaining its full capability to transform the ingested code
in a manner comprehensible and useful to the author of the original
program. A number of mechanisms are described that are intended
to aid the formulation of transformations on array computations in
this setting.

As one example of the issues that arise, the strong separation
of semantics and transformation, while desirable, also poses a dif-
ficulty. For example, unlike in an annotation-based setting, where
lexical proximity alone can be used to indicate what part of apro-
gram is to be transformed, this option does not exist for Loo.py, and
so alternatives have to be devised.

The literature on code generation and optimization for ar-
ray languages is vast, and no attempt will be made to provide
a survey of the subject in any meaningful way. Instead, we will
seek to highlight a few approaches that have significantly in-
fluenced the thinking behind Loo.py, are particularly similar,
or provide ideas for further development. Loo.py is heavilyin-
spired by the polyhedral model of expressing static-control pro-
grams (Bastoul 2004; Feautrier 1996). While it takes signifi-
cant inspiration from this approach, the details of how a pro-
gram is represented, beyond the existence of a loop domain,
are quite different. High-performance compilation for GPUs,
by now, is hardly a new topic, and many different approaches
have been used, including ones using OpenMP-style directives
(Han and Abdelrahman 2011; Lee and Eigenmann 2010), ones that
are fully automatic (Yang et al. 2010), ones based on functional
languages (Svensson et al. 2010), and ones based on the polyhedral
model (Verdoolaege et al. 2013). Other ones define an automatic,
array computation middleware (Garg and Hendren 2012) designed
as a back-end for multiple languages, including Python. Automatic,

Submitted to ARRAY15 1 2018/8/31

http://arxiv.org/abs/1503.07659v2
http://www.sable.mcgill.ca/array/

GPU-targeted compilers for languages embedded in Python also
abound (Catanzaro et al. 2011; Continuum Analytics, Inc. 2014;
Rubinsteyn et al. 2012), most of which transform a Python AST
at run-time based on various levels of annotation and operational
abstraction.

Code generators just targeting one or a few specific workloads
(often matrix-matrix multiplication) using many of the same tech-
niques available in Loo.py have been presented by various au-
thors, ranging from early work such PhiPAC (Bilmes et al. 1997)
to more recent OpenCL- and CUDA-based work (Cui et al. 2011;
Matsumoto et al. 2012).

Other optimizing compilers assume a substantial amount of
domain knowledge (such as what is needed for assembly of finite
element matrices) and leverage this to obtain parallel, optimized
code. One example of this family of code generators is COFFEE
(Luporini et al. 2015).

Perhaps the conceptually closest prior work to the approach
taken by Loo.py is CUDA-CHiLL (Rudy et al. 2011), which per-
forms source-to-source translation based on a set of user-controlled
transformations (Chen et al. 2008; Hall et al. 2010). Loo.pyand
CHiLL still are not quite alike, using dissimilar intermediate rep-
resentations, dissimilar levels of abstraction in the description of
transformations, and a dissimilar (static vs. program-controlled) ap-
proach to transformation.

Source-to-source transformation similarly has been studied ex-
tensively, with many mature systems existing in the literature (for
instance (Dave et al. 2009; Schordan and Quinlan 2003)).

2. Loo.py’s view of a kernel
We begin by briefly examining Loo.py’s model of a program (or
‘kernel’). A very simple example of a kernel shall serve as an
introduction. This kernel reads in one vector, doubles it, and writes
the result to another:

knl = loopy.make_kernel(
"{[i]: 0<=i<n}", # loop domain
"out[i] = 2*a[i]") # instructions

The above snippet of code illustrates the main components ofa
Loo.py kernel:

• The loop domain: { [i]: 0<=i<n }. This defines the integer
values of the loop variables for which instructions (see below)
will be executed. It is written in the syntax of theisl library
(Verdoolaege 2010). Loo.py calls the loop variablesinames. In
this case,i is the sole iname.n is aparameterthat is passed to
the kernel by the user.n in this case determines the length of
the vector being operated on.

To accommodate some data-dependent control flow, there is not
actually a single loop domain, but rather atree of loop domains,
allowing more deeply nested domains to depend on inames
introduced by domains closer to the root.

• The instructionsto be executed:out[i] = 2*a[i]. These are
scalar assignments between array elements, consisting of aleft-
hand side assignee and a right-hand side expression. Right-hand
side expressions are allowed to contain the usual mathematical
operators, calls to externally defined functions, and references
to substitution rules (see Section 4.1).

In addition to the left-hand- and right-hand-side expressions de-
scribing the assignment, each instruction carries the following
data:

An instruction identifier. A string that uniquely identifies
each instruction. Automatically generated if not specified.
In addition to specifying the entire unique ID, a ‘prefix’ may
also be specified, based on which a unique ID is generated.

A set of instruction tags. Used for transformation targeting
(see Section 4.2).

A set of inamesspecifying within which loops this instruc-
tion is intended to be nested. A heuristic (Klöckner 2014) is
applied to automatically discover this information. The in-
ame nesting may be overridden by the user if the heuristic
does not yield the intended result.

A set of instruction IDs depended upon, i.e. required to
be executed before the current instruction. As described
in (Klöckner 2014), these dependencies act at the inner-
most loop nesting level shared between the dependent and
depended-upon instruction. Like the nest-within inames, a
default set of dependencies is found by a heuristic that cre-
ates dependencies on instructions that write those variables
that are read by this instruction.

A set of predicates, the conjunction of which determines
the condition under which the instruction will be executed.
Each predicate refers to a stored ‘flag’ variable or its nega-
tion. This flag variable must have been set previously, and
it serves as a source for automatically generated dependen-
cies.

3. Transforming Fortran into Loo.py
While Loo.py’s native intermediate representation is sufficiently
abstract and convenient that it is suited to being used directly by
a user/programmer, one main use case for Loo.py is to be a back-
end to other systems whose result is a machine representation of an
array computation.

To illustrate this use case, a Fortran (Backus et al. 1957) front-
end for Loo.py is described in the following. Along the way, this
front-end provides a convenient case study of what can be done to
enable program transformation in a setting where the structure of
an input program is not designed to be convenient for rather but
rather given by outside constraints, such as a decades-old standards
document.

Based on a number of restrictions (see below), the main objec-
tive of Loo.py’s Fortran front-end is not (and cannot be) to be a fully
standards-conforming Fortran compiler. Instead, it seeksto lessen
the burden of capturing Loo.py kernels in Loo.py’s native repre-
sentation, by providing an alternate input format with which a user
may be more familiar. The continuing dominance of Fortran insci-
entific and engineering fields where computation is applied further
means that providing transformation avenues to modern architec-
tures is a possibly impactful way to leverage these legacy codes on
modern-day architectures.

The Fortran 77 model of computation is a surprisingly good
match for Loo.py’s input language, sharing not just the array-based
view of the data being operated on, but also much of its type
system and its model of the subroutine as the main unit of program
functionality.

Compared to the more comprehensive Fortran 90, a number of
restrictions exist:

• No early exits (EXIT, CYCLE, RETURN), no mid-subroutine entry
points (ENTRY), limited data-dependent control flow(essential)

• No guaranteed order between trips through a loop(essential)

• Translation acts on a single subroutine, which will be translated
to a single OpenCL compute kernel.(liftable)

• No I/O, no calls to other subroutines(liftable)

• No pointers, limited support for structured types(liftable)

• No support forSAVE andCOMMON data(liftable)

• No array-level assignments and intrinsics(liftable)

Submitted to ARRAY15 2 2018/8/31

http://www.sable.mcgill.ca/array/

• No dynamic memory management(liftable)

Each of the above restrictions is qualified with whether it ises-
sential and unlikely to be lifted in future revisions(essential)or
a matter of further software development(liftable). Some of these
are a direct result of underlying limitations in the OpenCL kernel
language for which Loo.py generates code.

The following example shows a Fortran kernel being translated
by Loo.py:

subroutine fill(out, a, n)
implicit none
real*8 a, out(n)
integer n

do i = 1, n
out(i) = a

end do
end
!$loopy begin transform
! fill = lp.split_iname(fill, "i", 128,
! outer_tag="g.0", inner_tag="l.0")
!$loopy end transform

The code shows a straightforward vector fill kernel. Mainly the
section between the$loopy begin/end transform markers (in
Fortran comments) is of note. This section consists ofPythoncode,
and the Fortran subroutine defined above becomes available here as
a Loo.py kernel object, under a Python identifier of the same name.
At this point, the user is free to use the entire transform vocabulary
defined in Loo.py (see (Klöckner 2014) and Section 4) on their
kernel.

The availability of all of the Python programming language
for program transformation sets Loo.py apart from other ‘pragma’-
type approaches to annotation such as OpenMP (Dagum and Menon
1998) or OpenACC (Group et al. 2011) as well as from other trans-
formation script approaches such as CHiLL (Chen et al. 2008;
Hall et al. 2010; Rudy et al. 2011). The following usage patterns
are enabled by it:

• Abstraction.Users are enabled to build their own, higher-level,
compound transformations that may be shared among a family
of kernels. For instance, a number of transformations changing
the data layout of a computation could (and, likely, should)be
shared among a group of kernels accessing said data.

• Dynamism.Being based on a full-featured programming lan-
guage allows the transform code to respond to its environment
in interesting, non-trivial ways. As a simple example, a different
transform path may be chosen depending on the target device
for which code is to be generated. Alternatively, the transform
code may consult a performance model or a database regarding
the most promising transforms to apply. It could also be partof
an auto-tuning scheme.

• Introspection.Transforms (and the code calling them) are at lib-
erty to inspect and reason about the kernel code. For example,
it is straightforward to write a loop over a set of variables being
written in a certain code region and apply prefetching or a data
layout transformation to them. This helps keep the transform
code general, adaptable, and reusable.

These points emphasize the fact that Loo.py can be employed as a
lower-level infrastructure component, providing enough expressive
power for higher-level, more abstract transformations built on top
of it.

Loo.py takes the following steps when translating a Fortran
kernel:

• When ado loop is encountered, a new axis is added to the
current loop domain. If necessary, the loop variable (‘iname’
in Loo.py-speak) and all its uses will be renamed to ensure
uniqueness.

• Fortran’s scalar assignments and data type/dimension declara-
tions map directly onto the corresponding features in Loo.py.

• When anif/then block is encountered, apredicatevariable
is created based on the condition in theif statement, and all
Loo.py instructions created from the body of theif block have
the predicate variable (or its negation, for theelse sub-block)
applied to it.

• Since Fortran programs are strongly sequentially ordered,the
translation creates a linear chain of dependencies matching the
program order.

A somewhat more challenging example including conditionals is
shown below:

do i = 1, n
a = inp(i)
if (a.ge.3) then

b = 2*a
do j = 1,3

b = 3 * b
end do
out(i) = 5*b

else
out(i) = 4*a

endif
end do

Loo.pytranslates this to the following C/OpenCL kernel code:

for (int i = 0; i <= -1 + n; ++i)
{
a = inp[i];
loopy_cond0 = a >= 3;
if (loopy_cond0)
{
b = 2.0 * a;
for (int j = 0; j <= 2; ++j)
b = 3.0 * b;

out[i] = 5.0 * b;
}
if (!loopy_cond0)
out[i] = 4.0 * a;

}

It is worth noting that instead of evaluating the conditional for each
instruction separately, Loo.py’s code generation stage iscapable of
grouping, also across loop entries/exits, to help reduce the cost of
conditional execution.

Loo.py instructions generated from segments of a Fortran pro-
gram may havetags applied to them to ease their identifica-
tion in the transformation process. This interacts with thetrans-
formation facilities in Loo.py and allows them to be applied
to subsets of the program. This is accomplished through the
!$loopy begin/end tagged marker in a Fortran comment:

Submitted to ARRAY15 3 2018/8/31

http://www.sable.mcgill.ca/array/

!$loopy begin tagged: input
a = cos(alpha)*inp1(i) + sin(alpha)*inp2(i)
b = -sin(alpha)*inp1(i) + cos(alpha)*inp2(i)
!$loopy end tagged: input

r = sqrt(a**2 + b**2)
a = a/r
b = b/r

out1(i) = a
out2(i) = b

This subset of the program can then be selected for transformation
using thematch expression‘*$input’ See Section 4.2 for details.

4. Transforming Array Computations
Loo.py employs a number of strategies to allow the creation of
maintainable, logical, and readable transformation code.One im-
portant aspect of this istransform targeting, and a mechanism for
performing this function is discussed next.

4.1 Substitution rules

Semantics. In addition to instructions (see Section 2), Loo.py ker-
nels may contain ‘substitution rules’, which, as their mostbasic
function, permit common subexpressions to be factored out and de-
fined once. In addition to simple subexpressions, substitution rules
also support parameters. The behavior of Loo.py’s substitution rule
system is similar to other macro systems, albeit no flow control is
provided for use during expansion. A similarity exists withthe C
preprocessor, although substitution rule processing takes place at
the level of the expression tree rather than the token stream.

Unless otherwise removed, substitution rules are automatically
expanded immediately before code generation. The following sim-
ple example illustrates their use:

lp.make_kernel(
"{[i,j,n,n2]: 0<=i,j<npart and 0<=n,n2<3}",
"""
grav_force(m, M, r) := -66.742*m*M/r**2

<> radc = sqrt(sum(n, (x[i,n]-center[n])**2))
<> rad_j = sqrt(sum(n2, (x[i,n2]-x[j,n2])**2))

force[i] = grav_force(mass[i], massc, radc) + \
sum(j, grav_force(mass[i], mass[j], rad_j))

""")

In Loo.py’s native kernel language, substitution rules aredifferen-
tiated from assignment instructions by the use of a different assign-
ment operator (‘:=’) and, optionally, the use of round parentheses
on the left-hand side of the assignment to delimit argument names.

In addition to providing a convenience for coding complex
computations, one major role of substitution rules in Loo.py is to
provide an additional facility for attaching identifiers toparts of the
computation.

Creation. While Loo.py’s built-in language includes facilities
for writing substitution rules directly, it is not reasonable to expect
that every programming system to which Loo.py may be coupled
will offer this possibility—the Fortran front-end of Section 3 is one
such example. To retain the specificity contributed by substitution
towards the transformation targeting problem (see Section4.2),
Loo.py provides several ways of creating substitution rules from
‘bare code’:

• Unification. Provided with a unification pattern, Loo.py can
locate all subexpressions unifiable with it and convert themto
invocations of a newly-created substitution rule. For example,
the two subexpressions involvingb in the assignment

a[i] = 23*b[i]**2 + 25*b[i]**2

are unified by

knl = lp.extract_subst(knl,
"bsquare", "alpha*b[i]**2", parameters=("alpha",))

which rewrites them to

bsquare(alpha) := alpha*b[i_0]**2
a[i] = bsquare(23) + bsquare(25)

• Wrapping of variable read access.A particular example of
unification, and in fact the most common one. Loo.py can
wrap any reading access to an array or scalar variable in a
substitution rule. Combined with precomputation (Section4.3),
this provides a mechanism for prefetching of off-chip variables.

• Conversion of an assignment to temporary.Temporary vari-
ables are often used to hold intermediate results for reuse.
Loo.py provides a facility to convert such an assignment into
a substitution rule. For example, the (Fortran) code

do i = 1, n
a(i) = 6*inp(i)

enddo
do i = 1, n
out(i) = 5*a(i)

end do

can be rewritten to

a_subst(i) := 6*inp[i]
out[i_1] = 5*a_subst(i_1)

using thetemporary_to_subst transformation. As one exam-
ple, this process of transitioning through a rule enables the pro-
grammer to change the granularity or a precomputation to com-
prise a larger or smaller footprint of the iteration domain.In
some sense, this undoes a common subexpression elimination
and is thus a type of de-optimization.

4.2 Transformation targeting

In transforming computational kernels, it is often undesirable to
apply a transformation to an entire kernel. Instead, the user may
wish to express specifically which instructions or which subexpres-
sions a transform should act upon. Loo.py supports this use case by
matching names/IDs and ‘tags’ of instructions and substitution rule
invocations.

An example may help clarify this:

f(x) := x*a[x]
g(x) := 12 + f(x)
h(x) := 1 + g(x) + 20*g$three(x)

a[i] = h$one(i) * h$two(i)

Three (nested) substitution rules are defined,f, g, andh. Many
of the substitution rule invocations have a ‘tag’ applied tothem
(suffixed onto the rule identifier with a dollar sign, e.g. ‘h$two’). If
necessary, this makes each rule invocation individually selectable.
These tags have no influence on the meaning of the program. They
only serve to make locations in the code identifiable.

We apply theexpand_subst transformation (which simply
expands a substitution rule) to the invocation ofg taggedthree
within the invocation ofh taggedtwo:

Submitted to ARRAY15 4 2018/8/31

http://www.sable.mcgill.ca/array/

knl = expand_subst(knl, "g$three < h$two")

More generally, a user may match arbitrary portions of the rule
expansion stack. The first component in the stack match expression
(‘g$three’ in the above example) is necessarily the innermost
level of expansion, and outer levels are separated by the< symbol.
Each level consists of the ‘main identifier’, matching a substitution
rule name or an instruction ID, and the ‘tag’, matching either an
invocation tag on a substitution rule, or an instruction tag. Each of
the two parts also supports shell-style wildcards. Multiple levels
may be matched by an ellipsis (innermost < ... < outer).

The above example results in the following code:

f(x) := x*a[x]
g(x) := 12 + f(x)
h(x) := 1 + g(x) + 20*g$three(x)
h_0(x) := 1 + g(x) + 20*(12 + f(i))
a[i] = h$one(i)*h_0$two(i)

When expanding the specified invocation ofg, not all invoca-
tions ofh (which contained the invocation ofg) were affected. As
a result, a new, separate version ofh, namedh_0 was created, and
the relevant invocation sites ofh were updated.

It should be noted that this mechanism for transformation
targeting is not limited to matching substitutions rules. Simi-
lar to substitution rules, instructions also have names andtags,
and the same notation applies. For example, a specific instruc-
tion ID can be matched directly as ‘instruction_id‘, and all
instructions whose tags match a given one may be matched by
‘*$instruction_tag‘, where the wildcard* for the instruction
ID does not impose any matching constraint.

4.3 Substitution rules for precomputation

For computations that make use of the same intermediate results
multiple times, it may be desirable to store these results insome
form of temporary memory until they are needed again. Similarly,
computations targeting cache-constrained architecturesthat refer-
ence the same off-chip data repeatedly may want to allocate on-chip
temporary memory to avoid incurring the fetch latency for this data
again and again. This challenge is met by Loo.py’sprecompute()
transformation, which generally helps programs trade off increased
on on-chip storage against the cost off repeatedly fetchingor com-
puting needed intermediate results.

To facilitate precise targeting of precomputation, Loo.py’s
precompute() transformation operates exclusively on substitu-
tion rules. Any subexpression for which precomputation is desired
must first be converted to a substitution rule using the machinery
of Section 4.1.

Once a substitution rule has been created, theprecompute
transformation can be used to allocate storage and create instruc-
tions to store the precomputed values. This is straightforward if the
substitution rule simply represents a scalar value. More interesting
cases arise if the value of the rule or one of its invocation argu-
ments involve inames. In this case, a set of inames can be provided
to precompute() which, when swept out, generate all values of
the substitution rule which are to be precomputed. In this situation,
enough storage is allocated to accommodate the access footprint,
and an auxiliary set of inames is generated that sweep out thefoot-
print and drive the precomputation. Naturally, the precomputation
logic can be applied with the same fine-grained targeting described
in Section 4.2.

5. Some examples
5.1 Forward differencing

Consider this example program which computes forward differ-
ences on a 1-dimensional array of lengthn:

knl = lp.make_kernel(
"{[i]: 0<=i<n}",
"result[i] = u[i+1]-u[i]")

Since each entry ofu is used twice, a plausible optimization for
parallel architectures with limited caches (such as GPUs) is to store
a group of values ofu in storage closer to the processor.

To achieve group-wise prefetching, we split the iteration domain
into fixed-size pieces of length 16, assuming divisibility to ease
understanding by avoiding the generation of many conditionals:

knl = lp.split_iname(knl, "i", 16)
knl = lp.assume(knl, "n mod 16 = 0")

Next, we extract the access tou into a substitution ruleu_acc and
apply (sequential, for now) precomputation for each sweep through
iterations ofi_inner, and assuming all other inames remain con-
stant:

knl = lp.extract_subst(knl, "u_acc", "u[j]",
parameters="j")

knl = lp.precompute(knl, "u_acc", "i_inner",
default_tag=None)

We obtain the following C code:

float u_acc_0[17];

for (int i_outer = 0;
i_outer <= -1 + int_floor_div_pos_b(15 + n, 16);
++i_outer)

{
for (int j = 0; j <= 16; ++j)
u_acc_0[j] = u[j + 16 * i_outer];

for (int i_inner = 0; i_inner <= 15; ++i_inner)
result[i_inner + i_outer * 16] =
u_acc_0[1 + i_inner] + -1.0f * u_acc_0[i_inner];

}

Precomputation has found the (17-long) footprint of the access
to u for each group of 16 iterations throughi_inner, created
a suitable prefetch loop, and modified the variable references to
match. Parallelization can the be applied to the generated loops
as described in (Klöckner 2014), as demonstrated in the following
example.

5.2 Matrix-Matrix multiplication

This end-to-end Fortran-to-GPU example parallelizes a matrix-
matrix multiplication loop for parallel execution, matches the ac-
cess to each of the argument matrices into a substitution rule, and
performs a block-wise prefetch:

Submitted to ARRAY15 5 2018/8/31

http://www.sable.mcgill.ca/array/

subroutine dgemm(m,n,l,alpha,a,b,c)
implicit none
real*8 temp, a(m,l),b(l,n),c(m,n), alpha
integer m,n,k,i,j,l

do j = 1,n
do k = 1,l
do i = 1,m
c(i,j) = c(i,j) + alpha*b(k,j)*a(i,k)

end do
end do

end do
end subroutine

!$loopy begin transform
! dgemm = lp.split_iname(dgemm, "i", 16,
! outer_tag="g.0", inner_tag="l.1")
! dgemm = lp.split_iname(dgemm, "j", 8,
! outer_tag="g.1", inner_tag="l.0")
! dgemm = lp.split_iname(dgemm, "k", 32)
!
! dgemm = lp.extract_subst(dgemm,
! "a_acc", "a[i1,i2]", parameters="i1, i2")
! dgemm = lp.extract_subst(dgemm,
! "b_acc", "b[i1,i2]", parameters="i1, i2")
! dgemm = lp.precompute(dgemm,
! "a_acc", "k_inner,i_inner")
! dgemm = lp.precompute(dgemm,
! "b_acc", "j_inner,k_inner")
!$loopy end transform

6. Conclusions
Loo.py provides a small, composable code generation capability for
high-performance array code on CPU- and GPU-type shared mem-
ory parallel computers. It is available under the MIT open-source
license fromhttp://mathema.tician.de/software/loopy.

The core contributions described in this article and implemented
in Loo.py are the following:

• An transformation targeting scheme based on substitution rules
and ‘tags’ that can be used to very precisely specify what parts
of an expression in a program is to be transformed.

• A way of using a high-level language (Python in this instance)
in a ‘pragma’-like role, for the transformation of a programin a
lower-level kernel language.

• A translation scheme from a subset of Fortran into Loo.py’s
polyhedral-like representation.

• The use and extraction of substitution rules to capture precisely
what elements of a computation should be precomputed, and
across which dependent axes.

Loo.py’s kernel representation, its library of transformations,
and its runtime features combine to provide a compelling environ-
ment within which array-shaped computations can be conveniently
expressed and optimized. Some examples in (Klöckner 2014)il-
lustrated that high-performance variants are within the set of pro-
grams reachable via Loo.py transformations. This article described
some techniques to help broaden the set of codes that can benefit
from these transformations, providing a pathway to performance
that does not compromise maintainability and separation ofcon-
cerns.

Acknowledgments
I would like to acknowledge tremendously influential discussions
with Tim Warburton that led to the genesis of Loo.py and guided
its design. I would also like to acknowledge feedback from early

adopters of Loo.py, including Rob Kirby, Lucas Wilcox, Maxim
Kuznetsov, and Ivan Oseledets.

My work on Loo.py was supported in part by US Navy ONR
grant number N00014-14-1-0117, and by the National Science
Foundation under grant number DMS-1418961.

References
J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick,

R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, et al. The FORTRAN
automatic coding system. InPapers presented at the February 26-
28, 1957, western joint computer conference: Techniques for reliability ,
pages 188–198. ACM, 1957.

C. Bastoul. Code generation in the polyhedral model is easier than you
think. In Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques, page 7–16, 2004.

J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix
multiply using PHiPAC: a portable, high-performance, ANSIC coding
methodology. InProceedings of the 11th international conference on
Supercomputing, pages 340–347. ACM, 1997.

B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: compiling an em-
bedded data parallel language. InACM SIGPLAN Notices, volume 46,
pages 47–56. ACM, 2011.

C. Chen, J. Chame, and M. Hall. CHiLL: A framework for composing
high-level loop transformations. Technical report, 2008.

Continuum Analytics, Inc. Numba Pro, 2014.

H. Cui, L. Wang, J. Xue, Y. Yang, and X. Feng. Automatic library genera-
tion for BLAS3 on GPUs. InProceedings of the 25th IEEE International
Parallel & Distributed Processing Symposium, Anchorage, AK, 2011.

L. Dagum and R. Menon. Openmp: an industry standard api for shared-
memory programming.Computational Science & Engineering, IEEE, 5
(1):46–55, 1998.

C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. Midkiff. Cetus:
A source-to-source compiler infrastructure for multicores. Computer, 42
(12):36–42, 2009.

P. Feautrier. Automatic parallelization in the polytope model. InThe Data
Parallel Programming Model, pages 79–103. Springer, 1996.

R. Garg and L. Hendren. A compiler toolkit for array-based languages tar-
geting CPU/GPU hybrid systems. Technical Report 2012-3, Sable Re-
search Group, Computer Science Department, McGill University, Mon-
treal, QC, Canada, 11 2012.

O. W. Group et al. The OpenACC Application Programming Interface,
2011.

M. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, and M. Khan. Loop
transformation recipes for code generation and auto-tuning. Languages
and Compilers for Parallel Computing, page 50–64, 2010.

T. D. Han and T. S. Abdelrahman. hiCUDA: High-Level GPGPU Pro-
gramming.IEEE Transactions on Parallel and Distributed Systems, 22:
78–90, 2011. .

A. Klöckner, T. Warburton, J. Bridge, and J. Hesthaven. Nodal discontin-
uous Galerkin methods on graphics processors.J. Comp. Phys., 228:
7863–7882, 2009. .

A. Klöckner. Loo.Py: Transformation-based Code Generation for GPUs
and CPUs. InProceedings of ACM SIGPLAN International Workshop
on Libraries, Languages, and Compilers for Array Programming, AR-
RAY’14, pages 82:82–82:87, Edinburgh, Scotland, 2014. ACM. .

S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP programming
and tuning for GPUs. InProceedings of the 2010 ACM/IEEE Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 1–11. IEEE Computer Society, 2010.

F. Luporini, A. L. Varbanescu, F. Rathgeber, G.-T. Bercea, J. Ramanujam,
D. A. Ham, and P. H. J. Kelly. Cross-loop optimization of arithmetic
intensity for finite element local assembly.ACM Trans. Archit. Code
Optim., 11(4):57:1–57:25, Jan. 2015. .

K. Matsumoto, N. Nakasato, S. G. Sedukhin, I. M. Tsuruga, andA. W. City.
Implementing a code generator for fast matrix multiplication in OpenCL
on the GPU. 2012.

Submitted to ARRAY15 6 2018/8/31

http://mathema.tician.de/software/loopy
http://www.sable.mcgill.ca/array/

A. Rubinsteyn, E. Hielscher, N. Weinman, and D. Shasha. Parakeet:
A just-in-time parallel accelerator for Python. InProceedings of the
4th USENIX conference on Hot Topics in Parallelism, pages 14–14.
USENIX Association, 2012.

G. Rudy, M. Khan, M. Hall, C. Chen, and J. Chame. A programminglan-
guage interface to describe transformations and code generation. Lan-
guages and Compilers for Parallel Computing, page 136–150, 2011.

M. Schordan and D. Quinlan.A source-to-source architecture for user-
defined optimizations. Springer, 2003.

J. Svensson, K. Claessen, and M. Sheeran. GPGPU kernel implementation
and refinement using Obsidian.Procedia Computer Science, 1(1):2065–
2074, 2010.

G. van Rossum et al. The Python programming language, 1994. URL
http://python.org.

S. Verdoolaege. isl: An integer set library for the polyhedral model. In
K. Fukuda, J. Hoeven, M. Joswig, and N. Takayama, editors,Mathemat-
ical Software – ICMS 2010, volume 6327 ofLecture Notes in Computer
Science, pages 299–302. Springer Berlin / Heidelberg, 2010.

S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado,
and F. Catthoor. Polyhedral parallel code generation for CUDA. ACM
Trans. Archit. Code Optim., 9(4):54:1–54:23, Jan. 2013.

Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU compiler for memory
optimization and parallelism management. InACM SIGPLAN Notices,
volume 45, page 86–97, 2010.

Submitted to ARRAY15 7 2018/8/31

http://python.org
http://www.sable.mcgill.ca/array/

	1 Introduction
	2 Loo.py's view of a kernel
	3 Transforming Fortran into Loo.py
	4 Transforming Array Computations
	4.1 Substitution rules
	4.2 Transformation targeting
	4.3 Substitution rules for precomputation

	5 Some examples
	5.1 Forward differencing
	5.2 Matrix-Matrix multiplication

	6 Conclusions

