
Sound Reasoning about Integral Data Types
with a Reusable SMT Solver Interface

Régis Blanc Viktor Kuncak ∗

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{firstname.lastname}@epfl.ch

Abstract
We extend the Leon verification system for Scala with support
for bit-vector reasoning, thus addressing one of its fundamen-
tal soundness limitation with respect to the treatment of inte-
gers primitives. We leverage significant progresses recently
achieved in SMT solving by developing a solver-independent
interface to easily configure the back-end of Leon. Our inter-
face is based on the emerging SMT-LIB standard for SMT
solvers, and we release a Scala library offering full support
for the latest version of the standard.

We use the standard BigInt Scala library to represent math-
ematical integers, whereas we correctly model Int as 32-bit
integers. We ensure safety of arithmetic by checking for di-
vision by zero and correctly modeling division and modulo.
We conclude with a performance comparison between the
sound representation of Ints and the cleaner abstract represen-
tation using mathematical integers, and discuss the trade-off
involved.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification

General Terms Algorithms, Reliability, Verification

Keywords Verification, Satisfiability

1. Introduction
Leon is a verification and synthesis system for a purely
functional subset of Scala. Leon’s input language is Turing-
complete thanks to the expressivity of recursive functions.

∗ This work is supported in part by the European Research Council (ERC)
Project Implicit Programming and Swiss National Science Foundation Grant
“Constraint Solving Infrastructure for Program Analysis”.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SCALA’15, June 13-14, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3626-0/15/06.
http://dx.doi.org/10.1145/2774975.2774980

Leon verifier works by mapping Scala expressions into
logical formulas, which are typically quantifier-free. Leon
attempts to prove postconditions of functions expressed using
the ensuring constructs of Scala, as well as preconditions
of functions and completeness of pattern matching. Leon
searches for inputs that violate the verification conditions
using SMT solvers [2, 10]. In addition to mapping the
semantics of a subset of Scala to logic, Leon implements
a lazy unrolling algorithm to deal with recursive functions,
by alternating between an abstraction using uninterpreted
functions and adding assumptions to only consider fully
unrolled paths [3, 19].

Previous state. Previously, Leon mapped Scala’s Int data
type into the mathematical integers of the underlying theo-
rem prover. One could argue that the mathematical integers
correspond to many typical uses of integer type, and are ap-
propriate for a high-level language. In languages such as
Haskell, the convenient to use integer type, Int, denotes un-
bounded integers, so mapping as used in Leon up to recently
would be correct. Having access to the type of mathematical
integers indeed enables the construction of programs through
well-behaved components, making programs easier to un-
derstand and reason about. However, to model or to specify
code that performs bit manipulation or code that has strong
requirements on performance and memory use, a developer
may wish to use bounded integers, which are the most com-
mon choice in Scala and Java. In any case, a verification tool
should provide meaningful guarantees, so it is essential that
the verification semantics conforms to the runtime semantics.

As an illustration of the semantics differences between
mathematical and 32-bit integers, consider the infamous im-
plementation of the binary search algorithm used in the java
JDK1. This standard algorithm is present in most algorithm
textbooks and was even proven correct mathematically. How-
ever, a naive proof of correctness would assume that the
following statement:

val mid = (low + high)/2

1 http://googleresearch.blogspot.ch/2006/06/
extra-extra-read-all-about-it-nearly.html

returns a number in the interval of low and high. This
implicitly assumes integer semantics, as such a property does
not hold with bit-vector arithmetic:

scala> (1000000000 + 2000000000)/2
res1: Int = -647483648

Because such index overflows occur only for very large data
sets, it may take a very long time to detect in the field that this
implementation of a binary search algorithm is not correct.
A program verifier using mathematical integers to represent
native integers would be fooled in the exact same way as
mathematicians believing they proved the correctness of that
algorithm.

Contributions. We present a modification of Leon that dis-
tinguishes between the mathematical integers, modeled as
BigInt, and the lower level concept of bit-vectors, modeled
as Int. We show how reasoning about bit-vector formulas in-
teracts with the core Leon algorithm. We discuss the treatment
or the integer division, whose definition in Scala and Java
differs slightly from the accepted one in mathematics, and
the addition of new verification conditions to detect division
by zero statically. Together, these techniques give flexibility
to the developers, while maintaining sound answers from
a verification tool. We also release a Scala library to work
with the SMT-LIB standardized solvers. We used the library
in our implementation, but it is of general interest for Scala
applications that need portable SMT solving functionality.

Related Work. This paper extends the Leon verification
system for Scala [3, 18, 19]. Leon attempts to model the
semantics of a subset of Scala precisely and soundly. The
original system supported a first-order functional subset [18,
19]; additional support for imperative programming [3] and
higher-order functions [20] were added in later works. There
are other extensions of Leon that leverage the core solving
algorithm for program synthesis [14], program repair [13],
constraint solving [15], as well as extensions for reasoning
about floating points and roundoff errors relative to real-
valued semantics [6, 7].

Isabelle [17] and ACL2 [12] are interactive theorem
provers that enable users to elaborate very expressive and
complex proofs about programs. They provide their own lan-
guage, although ACL2 is very close to Common Lisp, that
distinguishes between integers and bit-vectors. Leon is more
automated in typical use, but less expressive in general. These
systems typically have their own internal rule systems to cor-
rectly model their language, including bit-vector arithmetic.

Verifun [21] attempts to automatically prove properties
on a small functional programming language. It is a hybrid
system that involves the user when the proof fails to complete.
Their functionnal language only provides natural numbers
as numerical types. Dafny [16], similarly to Leon, is fully
automated and relies on SMT solvers. Dafny supports a int
type that represents mathematical integers, as well as nat
that supports natural numbers (which, of course, include 0),

but there appears to be no support for bit-vectors at the time
of writing. Why3 [9] is another mostly automated verifica-
tion tool based on SMT solvers. Much like our solution, it
provides two different types for integers and bit-vectors.

SBV is a Haskell package2 that relies on SMT solvers
to solve properties about Haskell program. SBV supports
multiple SMT solvers. Compared to Leon, SBV is a lighter
abstraction over SMT solvers, using Haskell as a front-end
to SMT solvers. SBV does not implement an independent
algorithm to handle recursive functions.

2. Sound Reasoning about Integers
In this section, we build on previous work on Leon and Satis-
fiability Modulo Theory (SMT) solvers in order to propose a
sound and efficient automated reasoning on programs involv-
ing primitive types and recursive functions.

We consider a very simple functional subset of Scala,
one supporting the two types Int and Boolean and a list of
functions in a top level object definition. The functions
can be mutually recursive. We build expressions with a
combination of conditional expressions and standard integer
and boolean operators.

Such a language is Turing-complete, and capable enough
to write interesting functions, such as:

def factorial(n: Int): Int = {
require(n >= 0)
if(n == 0) 1 else n ∗ factorial(n − 1)

} ensuring(res ⇒ res >= 0)

This function is defined recursively. We use ensuring to
state properties that should hold for the output of a function
given any input that passes a precondition (expressed with
require).

Leon encodes the above implementation into an equivalent
logical formula, as a set of clauses:

• r = f(n)

• n = 0 =⇒ r = 1

• n 6= 0 =⇒ r = n · f(n− 1)

The last clause corresponds to an unrolling step, and Leon
uses an induction hypothesis to add the clause f(n− 1) ≥ 0
to the set. We are trying to prove the following property:

n ≥ 0 =⇒ f(n) ≥ 0

We can carry the proof manually with a simple case analysis.
If n = 0, then r = 1 ≥ 0, and if n > 0, then n 6= 0 and
r = n · f(n − 1) ≥ 0 because both n and f(n − 1) are
positive.

This simple proof is done automatically in Leon by dis-
patching it to an SMT solver. The SMT solver can check for
satisfiability of the conjunction of clauses with the negation
of the property:

n ≥ 0 ∧ f(n) < 0

2 https://hackage.haskell.org/package/sbv

A model would represent a counter-example. In the present
example, the conjunction is unsatisfiable as the previous proof
shows.

Notice how, in the proof, the exact meaning of the function
f does not matter. Leon actually models such function
with the theory of unintepreted functions. The formula is
still unsatisfiable even without constraining the value of f .
The only constraints are from the concrete unrolling steps,
introducing a constraint for its value at n−1. This abstraction
means that Leon cannot trust a counter-example to the set
of clauses as a concrete counter-example to the property.
A counter-example can only be trusted if it does not uses
uninterpeted parts of the functions. Leon keeps unrolling
the program by introducing more and more definitions of
functions, until either a concrete counter-example is found or
an unsatisfiable set of clauses is derived.

Leon relies on a satisfiability modulo theories (SMT)
solver. In the above program, we need a solver supporting the
theories of integers, uninterpreted functions and propositional
logic.

Unfortunately there is a semantic gap between Scala
and pure mathematics. Scala defines primitive integers as
machine integers, with only a finite range, so Scala’s Int is
really a BitVector of size 32. It does not take much for a
function such as factorial to diverge from its mathematical
definition. While 13! = 6, 227, 020, 800, running the above
implementation on 13 will give:

scala> factorial(13)
res0: Int = 1932053504

which significantly differs from the correct mathematical
definition. Although the above actually verifies the postcon-
dition of being positive, factorial(17) returns a negative
number, violating the postcondition and throwing a runtime
exception if contracts are checked dynamically.

This poses the question whether Leon should follow the
natural mathematical meaning of the code, or adhere to the ex-
act Scala semantics. We argue for the latter. Matching Scala
semantics would enable the use of Leon in real systems—
those concerned with actually delivering working applica-
tions. In addition, nothing is lost because there is a Scala type,
BigInt, whose semantics closely matches the one of mathe-
matical integers. Efficiency concerns put aside, programmers
should be using Int when they expect bit-vector semantics
and BigInt when true mathematical integers are expected.
This helps the program carry more information on its intent,
and gives static analysis tools a better understanding of the
properties.

The proof in our example does not extend to bit-vectors.
The problematic step is assuming the product of two positive
numbers is always positive. This property does not translate
from integers arithmetic to bit-vector arithmetic because of
overflows. Many important properties of integers are not
verified by bit-vectors. This lack of mathematical properties
complicates the task of theorem prover for a formula over bit-

vectors, when compared to the same formula over integers.
However, SMT solvers with the backgrond theory of bit-
vectors are still reasonably fast [1, 5, 8, 11]. Additionally, due
to the finite nature of the domain, there are some problems
that are easier to solve when considered over bit-vector
arithmetics. We discuss and compare performance of the
two approaches in Section 4.

We follow the same technique as with integers when
generating verification conditions. We generate the set of
clauses corresponding to the implementation of the function.
We then attempt to prove unsatisfiability of the negation of the
property as before. This time, however, we interpret constants
and operators over the domain of bit-vectors instead of
integers. We find a concrete counter-example for f(17) < 0
and report a bug to the user.

2.1 Semantic of Division
There are many possible definitions for the integer divi-
sion [4]. In mathematics, one usually defines the division
of integers x and y as the quotient q and remainder r such
that q · y + r = x and 0 ≤ r < |y|. This is known as the
Euclidean definition [4] and is the definition used by the
SMT-LIB standard and thus supported by SMT solvers. The
Scala programming languages, following Java, defines inte-
ger division as “rounding towards zero”, which differs from
the Euclidean definition. In particular, the remainder — the
value returned by the % operator — is sometimes negative.
This definition is used both for the primitive Int type and the
math class BigInt.

Leon interprets BigInt as mathematical integers. We
ensure that Leon supports integer division according to Scala
behavior by encoding Scala semantics of division using the
Euclidean definition. Mathematically we define the result q,
and denote the Euclidean division of x and y as x

y . A direct
encoding of the Scala division as a case split is as follows:

• x ≥ 0 ∧ y > 0 =⇒ q = x
y

• x ≥ 0 ∧ y < 0 =⇒ q = x
y

• x < 0 ∧ y > 0 =⇒ q = −−x
y

• x < 0 ∧ y < 0 =⇒ q = −x
−y

When expressed in SMT-LIB, this encoding uses the ITE
operator to do the case splitting for the different possible
signs of the operands. This results in a relatively complex
term with nested conditional expressions to express a simple
division operation. The only solution to avoid such a heavy
encoding would be for the mathematical meaning of division
(of SMT solvers) and the programming language meaning (of
Scala) to match. As an optimization, we can actually group
the branches with positive x and rewrite the last branch and
we obtain the following expression for q:

if x ≥ 0 then
x

y
else − −x

y

We are using the latter one in our implementation, though
the presence of a branching condition in the middle of an
arithmetic expression is still potentially costly for the solver.

The encoding of the modulo operator is based on the result
of the division operator, ensuring the correct relation between
the quotient and remainder:

r = x− y · q

So far we discussed the semantic of the pure mathemat-
ical integers. The theory of bit-vectors comes with its own
bvsdiv and bvsrem operators with distinct definitions from
the corresonding operators on integers. It always performs
the unsigned division on corresponding absolute values. The
remainder is then defined to be consistent with the quotient of
the division. This definition actually matches the definition of
Scala for primitive Int and allows us to use a straightforward
encoding of Scala division expressions into bit-vectors.

We also added support to Leon for preventing division by
zero. For each division expression over integers, or bit-vector,
Leon verifies that the divisor is never zero in any possible
execution of the program. Leon processes such checks in the
same way it handles postcondition to a function, finding a
counter-example if the condition does not hold.

Table 1. Comparing performence of verification using bit-
vectors (BV) and integers.

Solver Z3 CVC4
Bench. BV Integer BV Integer
List Ops. 1.167 1.088 2.025 2.053
Insert. Sort 0.851 0.702 1.215 0.978
Merge Sort 0.821 0.269 N.A. N.A.
Sorted List 1.088 1.152 1.751 1.717
Red-Black Tree 6.254 3.743 6.755 6.512
Amort. Queue 4.477 3.225 7.011 6.384
AVL Tree 3.494 2.836 8.146 7.103

3. Implementation
We integrated the above techniques into the Leon system. We
show an overview of the architecture of Leon in Figure 1.
First, Leon runs the input program through the first part
of the standard Scala 2.11.* compiler pipeline, until phase
refchecks. We extract the resulting tree and translate it
into an internal representation used by Leon. We derive
verification conditions and attempt to prove them.

The unrolling works as described in the previous section.
It generates clauses and then sends them to the SMT-LIB
module. This module handles the communication with a
native SMT solver: Z3 or CVC4 in the current version of
Leon. For better performances, that communication must be
incremental because Leon is refining the formulas more and
more based on the feedback from the solver.

3.1 Reusable SMT Solver Interface
This section presents how we use the SMT-LIB interface to
make Leon solver-agnostic. Based on that interface, we added
support for CVC4 [1] and are now officially supporting it as
well as Z3 [8]. Being independent of the solver is particularly
important as designing efficient decision procedures for
theories used in programming languages are still a research
topic and is evolving at a very fast pace.

Leon embraces the SMT-LIB standard for communicat-
ing with SMT solvers [2]. Many state-of-the-art solvers, in-
cluding Z3 and CVC4, implement a robust support for that
standard. SMT-LIB version 2 provides a scripting language
to communicate with SMT solvers. This scripting language
supports, in particular, a notion of stack of assertions that
enable incremental solving if the underlying solver supports
it properly.

The solving backend of Leon is an abstraction over SMT-
LIB, which essentially defines a transformation from the
Leon representation of Scala programs to a first-order logic
representation of programs. It performs unrolling of recursive
functions in a lazy manner, asserting more and more clauses
to the solver.

We developed and released an open-source Scala library,
scala-smtlib, that provides a nearly complete support for
the upcoming 2.5 version of the standard. The library is open-
source and available on GitHub3 as a separate package on
which Leon depends.

scala-smtlib is a lightweight interface on top of the
SMT-LIB standard that exposes a tree representation mirror-
ing the abstract grammar of the SMT-LIB language. At its
core, the API offers a Parser that transforms an input stream
into the tree representation, and a Printer that transforms a
tree into a SMT-LIB complient textual output. Building on
that abstraction, scala-smtlib wraps solver processes as
an interpreter for SMT-LIB scripts. This gives Scala program-
mers access to a type-safe interface to an SMT solver. The
wrapper handles low level communication with an external
process, communicating over the textual standard input and
output. The library comes with two implementations of that
wrapper for Z3 and CVC4, but very little solver-specific code
is required to add additional wrappers.

We refer to the online repository for more extensive
documentation on the library.

4. Experiments
With the change introduced in the present work, previous
benchmarks using Int as a data type are rewritten as bench-
marks that use BigInt, capturing our original intent behind
those benchmarks. We now additionally consider the Int
benchmarks, but now correctly interpreted using 32-bit in-
tegers. Certain specification-only functions, such as size,
still use BigInt, which suits their purpose in specification

3 https://github.com/regb/scala-smtlib

Scala
Program

Scala
Compiler

until refchecks

Leon
Unrolling

Scala
SMT-LIB Z3/CVC4

Figure 1. Architecture of Leon.

Table 2. Evaluation of programs using bit-vectors, showing
the numbers of valid (V), invalid (I), and unknown (U)
verification conditions and the total time for the benchmark
in seconds.

Solver Z3 CVC4
Benchmark V I U T. (s) V I U T. (s)
Bin. Search 0 1 0 0.32 0 1 0 0.11
Bit Tricks 24 0 3 0.03 25 0 2 0.08
Identities 4 1 0 4.89 4 1 0 3.68

and allows us to prove basic properties such as that size is
non-negative. We ran a set of experiments to evaluate the
difference in verification performance between these two ver-
sions of benchmarks. The extensions presented in this paper
are available on the official version of Leon4. A snapshot of
Leon containing all the benchmarks reported here, is available
on the submission/scala-2015-bv branch of the official
Leon repository.

Table 1 compares the performence of bit-vectors and
mathematical integers on a few different benchmarks. The
experiments have been run on an Intel core i7-4820K @
3.70GHz with 64 GB RAM. We report the average of several
run of Leon on the benchmark for each of the configurations
reported. The running time is shown in seconds. Not available
(N.A.) are due to CVC4 not supporting non linear arithmetic.

The use of integers in these benchmarks is not subject to
problems of overflow, hence the use of bit-vector instead of
integers does not influence the correctness of these particular
properties. We can see that there is some overhead to the
use of bit-vectors, in particular when implementing more
complex data structures. However, in sorting benchmarks, the
impact of using bit-vector is less noticeable.

We tried to use benchmarks representative of the use of
integers. List operations verifies standard operations over lists
of integers. They are mostly transparent to the properties of
their element and the results show, as expected, close to no
difference between using bit-vectors or integers. The sorting
and sorted list benchmarks rely on the comparison operators
in order to insert elements. Data structure benchmarks are
similar in its use of comparison, however the more complex
shapes of formulas makes reasoning more complicated for
the bit-vector solver.

Table 2 summarizes experiments involving bit-vectors
only. The results list the different kind of verification condi-
tions generated for each benchmark. A valid (V.) verification

4 https://github.com/epfl-lara/leon

condition corresponds to proving a property, an invalid (I.)
corresponds to finding a bug and an unknown (U.) is due
to a timeout. The timeout was set to 30 seconds. The time
is in seconds and is the average for solving all verification
condition that did not time out.

The binary search benchmark illustrates a typical bug that
implementations of binary search can suffer from. One step
of the search algoirthm consist in looking up the value at
the mean of the two indices. The natural implementation of
the mean is (x + y)/2, which unfortunately can overflow
when x and y are large. However, this is only an artifact due
to the computation, as the average is always in the interval
between x and y. Leon, with support for bit-vectors, finds
a counter-example on the former implementation. A correct
implementation of the mean with bit-vector arithmetic is
x+ (y − x)/2. Notice that using mathematical integer, Leon
does not report any counter-example, as in such case the two
versions are equivalent.

We also evaluated several low level bit manipulation code
fragments, many of them taken from the Hacker’s Delight
book [22]. The operations exploit a small constant number
of bit manipulations to obtain a result that one would naively
solve using a loop over all the bits. We assert the correctness
by comparing the output to what the naive, loop-based,
algorithm would have computed. The timeout cases could,
in fact, be solved given sufficient time, in this case about a
hundred seconds.

Finally we looked at a few arithmetic identities involving
non linear arithmetic. Non linear arithmetic is undecidable
over unbounded integers, whereas it is decidable but difficult
over bit-vectors (indeed, it can encode the breaking of certain
problems in cryptography). We use the following types of
definitions to prove the validity of an arithmetic simplifica-
tion:

def f(x: Int): Int = {
require(x > 0 && x < 10000)
(2∗x + x∗x) / x

} ensuring(res ⇒ res == x + 2)

Both Z3 and CVC4 are currently unable to prove this property
over unbounded integers. Due to the finite domain, they do
manage to prove it for bit-vectors. Notice the upper bound
constraint on the input: without some such upper bound, the
identity would actually not hold due to an overflow. The
invalid verification conditions is due to one such case.

5. Conclusion
We presented an extension to Leon that addresses a previous
semantics mismatch between integral data types of Leon and
Scala. With this new support for bit-vector reasoning, Leon
is now sound for proving properties about integers, and gives
the developer a choice between using mathematical integers
or 32-bit bit-vectors, with the semantics used by the verifier
matching the actual run-time semantics. Data types such as
Long and Short can be supported entirely analogously as
32-bit integers. We also build on the new SMT-LIB standard
to develop a solver-agnostic backend that let Leon profits
from advancements in SMT solving algorithms.

Our results show that precise semantics modeling of inte-
gers can be more costly than the abstraction with mathemati-
cal integers. However, the overhead is often acceptable and
sometimes even unnoticeable. Moreover, we demonstrated
cases where bit-vector semantics was necessary in order to
catch real bugs. In addition to checking division by zero, it is
also straightforward to check for expression that could lead
to overflows and issue a warning in such cases.

Because Scala and Java do not consider overflows of Int
as an error but as well-behaved modular arithmetic data types,
we are exploring the addition of bounded integers libraries
that would automatically check for overflows. These data
types would simultaneously encode developer’s expectations
that the integers remain small and efficient yet have mathe-
matical properties of BigInts. Preliminary results showed
that simple Scala programs written with BigInt instead of
Int could lead to a difference in performance of two orders
of magnitude. This naturally pushes developers to write code
using Int even when the intent is simply to use a mathemati-
cal integer. We believe that with the infrastructure present in
Leon, we might be able to combine the correctness of using
BigInt with the efficiency of using Int via an automated
optimization step.

References
[1] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jo-

vanović, T. King, A. Reynolds, and C. Tinelli. CVC4. In
Proceedings of the 23rd International Conference on Computer
Aided Verification, CAV’11, pages 171–177, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[2] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2010.

[3] R. Blanc, V. Kuncak, E. Kneuss, and P. Suter. An overview
of the Leon verification system: Verification by translation
to recursive functions. In Proceedings of the 4th Workshop
on Scala, SCALA ’13, pages 1:1–1:10, New York, NY, USA,
2013. ACM.

[4] R. T. Boute. The euclidean definition of the functions div and
mod. ACM Trans. Program. Lang. Syst., 14(2):127–144, Apr.
1992.

[5] R. Brummayer and A. Biere. Boolector: An efficient smt
solver for bit-vectors and arrays. In Tools and Algorithms

for the Construction and Analysis of Systems, pages 174–177.
Springer, 2009.

[6] E. Darulova. Programming with Numerical Uncertainties. PhD
thesis, EPFL, 2014.

[7] E. Darulova and V. Kuncak. Sound compilation of reals. In
ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages (POPL), 2014.

[8] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
TACAS, 2008.

[9] J.-C. Filliâtre and A. Paskevich. Why3 – Where Programs
Meet Provers. In ESOP’13 22nd European Symposium on
Programming, volume 7792, Rome, Italy, Mar. 2013. Springer.

[10] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and
C. Tinelli. DPLL(T): Fast Decision Procedures. In R. Alur
and D. Peled, editors, Computer Aided Verification, volume
3114 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2004.

[11] S. Jha, R. Limaye, and S. Seshia. Beaver: Engineering an
efficient smt solver for bit-vector arithmetic. In Computer
Aided Verification, pages 668–674. 2009.

[12] M. Kaufmann, J. S. Moore, and P. Manolios. Computer-aided
reasoning: an approach. Kluwer Academic Publishers, 2000.

[13] E. Kneuss, M. Koukoutos, and V. Kuncak. Deductive program
repair. In Computer-Aided Verification (CAV), 2015.

[14] E. Kneuss, I. Kuraj, V. Kuncak, and P. Suter. Synthesis modulo
recursive functions. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’13, pages
407–426, New York, NY, USA, 2013. ACM.

[15] V. Kuncak, E. Kneuss, and P. Suter. Executing specifications
using synthesis and constraint solving (invited talk). In Runtime
Verification (RV), 2013.

[16] K. R. M. Leino. Dafny: An automatic program verifier for
functional correctness. In Proceedings of the 16th International
Conference on Logic for Programming, Artificial Intelligence,
and Reasoning, LPAR’10, pages 348–370, Berlin, Heidelberg,
2010. Springer-Verlag.

[17] L. C. Paulson. Isabelle: A generic theorem prover, volume 828.
Springer Science & Business Media, 1994.

[18] P. Suter, M. Dotta, and V. Kuncak. Decision procedures
for algebraic data types with abstractions. In Proceedings
of the 37th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’10, pages 199–
210, New York, NY, USA, 2010. ACM.

[19] P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability Modulo
Recursive Programs. In SAS, 2011.

[20] N. Voirol, E. Kneuss, and V. Kuncak. Counterexample-
complete verification for higher-order functions. In SCALA,
2015.

[21] C. Walther and S. Schweitzer. About verifun. In Automated
Deduction–CADE-19, pages 322–327. Springer, 2003.

[22] H. S. Warren. Hacker’s Delight. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

