
Elimination Forest Guided 2D Sparse LU Factorization

Kai Shen Xiangmin Jiao
Dept. of Computer Science Dept. of Computer Science

University of California University of Illinois
Santa Barbara, CA 93106 Urbana-Champaign, IL 61801

kshen@cs.ucsb.edu jiao@cs.uiuc.edu

Tao Yang
Dept. of Computer Science

University of California
Santa Barbara, CA 93106

tyang@cs.ucsb.edu

Abstract

Sparse LU factorization with partial pivoting is important
for many scientific applications and delivering high perfor-
mance for this problem is difficult on distributed memory
machines. Our previous work has developed an approach
called S’ that incorporates static symbolic factorization,
supernode partitioning and graph scheduling. This paper
studies the properties of elimination forests and uses them
to guide supernode partitioning/amalgamation and execu-
tion scheduling. The new design with 2D mapping effec-
tively identifies dense structures without introducing too
many zeros in the BLAS computation and exploits asyn-
chronous parallelism with low buffer space cost. The imple-
mentation of this code, called S+, uses supernodal matrix
multiplication which retains the BLAS-3 level efficiency and
avoids unnecessary arithmetic operations. The experiments
show that S+ improves our previous code substantially and
can achieve up to 11.04GFLOPS on 128 Cray T3E 450MHz
nodes, which is the highest performance reported in the lit-
erature.

1 Introduction

Solution of sparse linear systems is a computational bottle-
neck in many problems. If a matrix is symmetric and posi-
tive definite, Cholesky factorization can be used, for which
fast parallel algorithms have been developed [15, 19, 201.
When pivoting is required to maintain numerical stability
for non-symmetric linear systems [2, 141, it is very hard to
produce high performance for this problem because partial
pivoting operations dynamically change computation and
communication patterns during the elimination process, and
cause severe caching miss and load imbalance on modern
computers with memory hierarchies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the fi11l citation on the fti page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SPAA 98 Puerto Vakta Mexico
Copyright ACM 1998 O-89791-989-0/98/ 6...15.00

The previous work has addressed parallelization using
shared memory platforms or restricted pivoting [3, 12, 13,
161. Most notably, the recent shared memory implementa-
tion of SuperLU [3, 4, 181 has achieved up to 2.58GFLOPS
on 8 Cray C90 nodes. For distributed memory machines,
in [lo] we proposed a novel approach called S’ that inte-
grates three key strategies together in parallelizing this al-
gorithm: 1) adopt a static symbolic factorization scheme [13]
to eliminate the data structure variation caused by dynamic
pivoting; 2) identify data regularity from the sparse struc-
ture obtained by the symbolic factorization so that efficient
dense operations can be used to perform most of the com-
putation; 3) make use of graph scheduling techniques and
efficient run-time support called RAPID [9, 111 to exploit
irregular parallelism. The preliminary experiments are en-
couraging and good performance results are obtained with
ID data mapping for a set of nonsymmetric benchmark ma-
trices. We have achieved up to 1.35GFLOPS with RAPID
code on 64 Cray T3E 300MHz nodes.

Our previous design uses task graphs for fast code proto-
typing. Elimination trees or forests are used extensively in
sparse Cholesky because they have more compact represen-
tation of parallelism and can be used for both matrix parti-
tioning and parallelism scheduling. It is difficult to handle
sparse LU similarly for a general matrix A because A can be
nonsymmetric and may require partial pivoting. The classi-
cal approach for LU normally uses elimination trees of ATA,
which normally produce too much false computational de-
pendency. Thus our primary goal is to study the definition
and properties of elimination trees/forests to guide matrix
partitioning and parallelism control in LU.

Our second goal is to incorporate 2D block-based map-
ping in our framework. In the literature 2D mapping has
been shown more scalable than 1D for dense LU and sparse
Cholesky [l, 20, 211. However there are difficulties to apply
the 2D block-oriented mapping to the case of sparse LU fac-
torization even the static structure is predicted in advance.
First, pivoting operations and row interchanges require fre-
quent and well-synchronized inter-processor communication
when each column is distributed to multiprocessors. Second,
exploiting irregular parallelism to a maximum degree may
need a substantial amount of extra buffer space.

In [7], we reported a preliminary version of the 2D code
with a simple parallelism scheduling mechanism. Recently
with a modified control mechanism called factor-ahead, S’
has achieved up to 6.87GFLOPS on 128 Cray T3E 300MHz
nodes [8]. In this paper, we will briefly explain this control

5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F277651.277658&domain=pdf&date_stamp=1998-06-01

mechanism, and will further report several new performance-
improving strategies based on elimination forests. Those
strategies include supernode partitioning and amalgamation
using the properties of elimination forests, efficient supernode-
level matrix multiplication, and parallelism exploitation us-
ing elimination forests. Our new design, called S+, can im-
prove our previous code in an average of more than 50% in
terms of execution time. In particular we can achieve up to
8.44GFLOPS on 128 T3E 300MHz nodes and 11.04GFLOPS
on 128 T3E 450MHz nodes. This is the highest performance
ever achieved for this problem.

The rest of this extended abstract is organized as follows.
Section 2 gives the background knowledge of the sparse LU.
Section 3 presents a modified definition and properties of
elimination forests for sparse LU, gives the strategies of su-
pernode partitioning and amalgamation using those prop-
erties. Section 4 describes strategies for 2D asynchronous
parallelism exploitation. Section 5 discusses a fast matrix
multiplication algorithm suitable for submatrices obtained
by supernode partitioning strategies. Section 6 presents the
experimental results on Cray T3E. Section 7 concludes the
paper. Due to the limit on the paper length, all theorem
proofs are not included, but are available in [23].

2 Background

The purpose of LU factorization is to find two matrices
L and U for a nonsymmetric sparse matrix A such that
PA = LU, where L is a unit lower triangular matrix, U is
an upper triangular matrix, and P is a permutation matrix
containing pivoting information. In this section, we briefly
discuss related techniques used in our algorithm.

Static symbolic factorization. Static symbolic fac-
torization is proposed in [13] to identify the worst cme nonzero
patterns without knowing numerical values of elements. The
basic idea is to statically consider all the possible pivoting
choices at each elimination step and the space is allocated
for all the possible nonzero entries. The symbolic factoriza-
tion for an n x n matrix can be outlined as follows:

“At each step k(1 5 k < n), each row i 2 k which has
a nonzero element in column k is a candidate pivot row
for row k. As the static symbolic factorization proceeds, at
step k the nonzero structure of each candidate pivot row is
replaced by the union of the structures of all these candidate
pivot rows except the elements in the first k - 1 columns.”

Using an efficient implementation of the symbolic factor-
ization algorithm [17], this preprocessing step can be very
fast. For example, it costs less than one second for most
of our tested matrices, at worst it costs 2 seconds on a sin-
gle node of Cray T3E, and the memory requirement is rela-
tively small. The dynamic factorization, which is used in the
sequential and share-memory versions of SuperLU [3, 181,
provides more accurate data structure prediction on the
fly, but it is challenging to parallelize SuperLU with low
runtime control overhead on distributed memory machines.
In [8, lo], we show that static factorization does not pro-
duce too many fill-ins for most of the tested matrices, even
for large matrices using a simple matrix ordering strategy
(minimum degree ordering). For few tested matrices, static
factorization generates an excessive amount of fill-ins and
future work is needed to study re-ordering strategies to re-
duce over-estimation ratios.

L/U supernode partitioning. After the nonzero fill-in
pattern of a matrix is predicted, the matrix is further parti-

tioned using a supernodal approach to improve the caching
performance. In [18], a nonsymmetric supernode is defined
as a group of consecutive columns in which the correspond-
ing L factor has a dense lower triangular block on the diago-
nal and the same nonzero pattern below the diagonal. Based
on this definition, in each column block the L part only
contains dense subrows. We call this partitioning method
L supernode partitioning. Here by “subrow” we mean the
contiguous part of a row within a supernode. After an L su-
pernode partition has been obtained on a sparse matrix A,
the same partitioning is applied to the rows of the matrix to
further break each supernode into submatrices. This is also
known as U supernode partitioning. In [lo], we show that
after the L/U supernode partitioning, each diagonal subma-
trix is dense, and each nonzero off-diagonal submatrix in the
L part contains only dense subrows, and furthermore each
nonzero submatrix in the U factor of A contains only dense
subcolumns. This is the key to maximize the use of BLAS-3
subroutines [5] in our algorithm. And on most current com-
modity processors with memory hierarchies, BLAS-3 sub-
routines usually outperform BLAS-2 subroutines substan-
tially when implementing the same functionality [5]. Fig-
ure 1 illustrates an example of a partitioned sparse matrix
and the black areas depict dense submatrices, subrows and
subcolumns.

Figure 1: Example of a partitioned sparse matrix.

Data mapping. Given an n x n matrix A, assume that
after the matrix partitioning it has N x N submatrix blocks.
For example, the matrix in Figure 1 has 8 x 8 submatrices.
Let Ai,j denote a submatrix of A with row block index i
and column block index j. For block-oriented matrix com-
putation, 1D column block cyclic mapping and 2D block
cyclic mapping are commonly used. In 1D column block
cyclic mapping, the j-th column block of A is assigned to
the same processor Pj mod p, where p is the number of the
processors. In the 2D cyclic mapping, processors are viewed
as a 2D grid, and a column block of A is assigned to a column
of processors. 2D sparse LU Factorization is more scalable
than the 1D data mapping [7, 171. However 2D mapping
introduces more overhead for pivoting and row swapping.

Program partitioning. Each column block k is asso-
ciated with two types of tasks: Factor(k) and Update(k,j)
for 1 < k < j 5 IV. 1) Task Factor(k) factorizes all the
columns in the k-th column block, including finding the
pivoting sequence associated with those columns and up-
dating the lower triangular portion of column block k. The
pivoting sequence is held until the factorization of the Ic-

6

th column block is completed. Then the pivoting sequence
is applied to the rest of the matrix. This is called “de-
layed pivoting” [2]. 2) Task Update(k,j) uses column block
k (&,k, Ak+l,k, . , &,k) to modify column block j. That
includes “row swapping” using the result of pivoting derived
by Factor(k), “scaling” which uses the factorized submatrix
Ak,k to scale Ak,j, and “updating” which uses submatrices
Ai,k and &,j to modify Ai,j for lc+l 5 i 5 N. Figure 2 out-
lines the partitioned LU factorization algorithm with partial
pivoting.

Figure 2: Partitioned sparse LU factorization with partial
pivoting.

The 1D RAPID code. We have implemented a paral-
lel method with 1D data mapping using the RAPID runtime
system [9, lo]. This code uses a DAG to model irregular par-
allelism and RAPID to schedule the tasks. Then RAPID will
execute the scheduled DAG on a distributed memory ma-
chine using a low-overhead communication scheme. Using
DAGs to model irregular LU parallelism is good in help-
ing us understand the parallelism in sparse LU and develop
the first prototype of high performance message-passing LU
code. In [8, 171, we show that 1D RAPID code based on
graph scheduling can actually outperform 2D codes with
simpler scheduling methods when sufficient space is avail-
able. But 2D mapping exposes more parallelism, which
makes 2D codes more scalable and easier to achieve load
balance. Also the RAPID implementation in [lo] uses ex-
tra memory space for supporting general irregular computa-
tions. Thus in designing 2D codes, we paid special attention
to the usage of buffer space so that 2D codes are able to fac-
torize large matrices under memory constraints.

3 Elimination forests and nonsymmetric supernode
partitioning

In this section, we extend the previous work on elimina-
tion forests [l, 131 and identify the properties of elimination
forests to design more robust strategies for supernode parti-
tioning and detect when pivoting for different columns can
be conducted concurrently. As a result, both sequential and
parallel codes can be improved.

3.1 The definition of elimination forests

Considering an n x n sparse matrix A, we assume that every
diagonal element of A is nonzero. Notice that for any non-
singular matrix which does not have a zero-free diagonal, it
is always possible to permute the rows of the matrix so that
the permuted matrix has a zero-free diagonal [6]. We will
use the following notations in the rest of this section. We
will still call the matrix after symbolic factorization as A
since this paper assumes the symbolic factorization is con-
ducted first. Let ai,j be the element of row i and column j
in A and a;:,,,:t be the submatrix of A from row i to row j

and column s to t. Let Lk denote column k of the L fac-
tor, which is ak:n,k:k. Let uk denote row k of the U factor,
which is ak:k,k:n. Also let ILkI and lukj be the total number
of nonzeros and fill-ins in those structures.

Definition 1 An LU Elimination forest for an n x n
matrix A has n nodes numbered from 1 to n. For any two
numbers k and j (k < j), there is an edge from vertex j

to vertex k in the forest if and only if akj is the first off-
diagonal nonzero in uk and [&,I > 1. Vertex j is called the
parent of vertex k, and vertex k is called a child of vertex

An elimination forest for a given matrix can be gener-
ated in a time complexity of O(n) and it can actually be
a byproduct of the symbolic factorization. Figure 3 illus-
trates a sparse matrix after symbolic factorization and its
elimination forest.

I 2 3 4 5 6 7 8

I

2

3

4

s

6

7

x 0 0 0 0 0

Elimination Forest

“T

7

i

0 Nonzeros in the original matrix

0 Fill-in entries generated by symbolic factorization

Figure 3: A sparse matrix and its elimination forest

Theorem 1 below demonstrates the structural properties
of an elimination forest.

Theorem 1 If vertex j is an ancestor of vertex k in an
elimination forest, then J!& - {k, k + 1,. , j - l} C Lj and
uk-{k,k+l,“‘,j-I}cUj.

Theorem 2 below identifies the dependency information
in the elimination forest.

Definition 2 Let j > k, Lk directly updates Lj if task
Update(k,j) is performed in LU factorization, i.e. akj # 0
and ILkI > 1. Lk indirectly updates Lj if there is a
sequence SI, SZ, , sP such that: SI = k, sP = j and L,,
directly updates LSnfl for each 1 5 q 5 p - 1.

Theorem 2 Let k < j, Lk is used to directly OT indirectly
update L, in LU factorization if and only if vertex j is an
ancestor of vertex k.

Theorem 1 captures the structural containment between
two columns in L and two rows in U, which will be used
for designing supernode partitioning with amalgamation in
the next subsection. Theorem 2 indicates dependency infor-
mation in the numerical elimination, which can guide our
parallel scheduling of asynchronous parallelism.

7

George and Ng proposed a definition of elimination forests
in [I31 to control row-wise elimination. The difference be-
tween their definition and the above definition is that we
impose the condition]Lk(> 1. In practice, we find that the
tested matrices can have up to 50% of columns with zero
lower-diagonal elements. Imposing this condition avoids some
unnecessary dependence among vertices and it is also re-
quired for proving Theorems 1 and 2.

Figure 4 illustrates the difference among three definitions
of elimination tree/forests using a very simple example. Fig-
ure 4(a) shows a spase matrix A and no fill-in is created by
symbolic factorization. Figure 4(b) displays the elimination
tree of ATA. Figure 4(c) illustrates the elimination forest
under George and Ng’s definition and Figure 4(d) shows the
elimination forest under our definition. It can be seen that
the elimination forest under our definition identifies more
parallelism. Another observation is that Theorem 1 only
holds under our definition of elimination forests.

f@J ii

(a) Sparse matrix A (b) Elimination tree of ATA

(c) Elimination forest under (d) Elimination forest under
George and Ng’s definition our definition

Figure 4: A sparse matrix and its elimination tree/forests
under three different definitions.

3.2 2D L/U supernode partitioning and amalgama-
tion

Given a nonsymmetric matrix A after symbolic factoriza-
tion, in [lo] we have described a 2D L/U supernode parti-
tioning in which two stage partitioning is applied. Stage 1:
A group of consecutive columns that have the same struc-
ture in the L factor is considered as one supernode column
block. Then the L factor is sliced as a set of consecutive
column blocks. Stage 2: After an L supernode partition has
been obtained, the same partition is applied to the rows of
the matrix to further break each supernode column block
into submatrices.

We examine how elimination forests can be used to guide
and improve the 2D L/U supernode partitioning. The fol-
lowing corollary is a straightforward result of Theorem 1 and
it shows that we can easily traverse an elimination forest to
identify supernodes. Notice that each element in a dense
structure can be a nonzero or a fill-in due to static symbolic
factorization.

Corollary 1 If for each i E {s + 1,s + 2,. . , t}, vertex i
is the parent of vertex i - 1 and ILi(= ILi-11 - 1, then 1)
the diagonal block a.+ s:t is completely dense, 2) at+l:n,s:t
contains only dense subrows, and 3) as:t,t+l:,, contains only
dense subcolumns.

The partitioning algorithm using the above corollary can
be briefly summarized as follows. For each pair of two con-
secutively numbered vertices with the parent/child relation-
ship in the elimination forest, we check the size difference
between the two corresponding columns in the L part. If
the difference is one, we assign these two columns into an
L supernode. Since if a submatrix in a supernode is too
large, it won’t fit into the cache and also large grain parti-
tioning reduces available parallelism, we usually enforce an
upper bound on the supernode size. Notice that U parti-
tioning is applied after the L partitioning is completed. We
do not need to check any constraint on U because as long
as a child-parent pair (i, i - 1) satisfies \Lil = ILi-11 - 1,
we can show that lUi/ = IUi-,l - 1 based on Theorem 1 in
[lo] and hence the structures of Vi and Ui-1 are identical.
Figure 5(a) illustrates supernode partitioning of the sparse
matrix in Figure 3. There are 6 L/U supernodes and from
the L partitioning point of view, columns from 1 to 5 are
not grouped but columns 6, 7 and 8 are clustered together.

Figure 5: (a) Supernode partitioning for the matrix in Fig-
ure 3; (b) The result of supernode amalgamation.

For most of the tested sparse matrices in our experi-
ments, the average supernode size after the above partition-
ing strategy is very small, about 1.5 to 2 columns. This
leads to relatively fine grained computation. In practice,
amalgamation is commonly adopted to increase the aver-
age supernode size by introducing some extra zero entries in
dense structures of supernodes. In this way, caching perfor-
mance can be improved and interprocessor communication
overhead may be reduced. For sparse Cholesky (e.g. [19]),
the basic idea of amalgamation is to relax the restriction
that all the columns in a supernode must have exactly the
same off-diagonal nonzero structure. In a Cholesky elimi-
nation tree, a parent could be merged with its children if
merging does not introduce too many extra zero entries into
a supernode. Row and column permutations are needed if
the parent is not consecutive with its children. For sparse
LU, such a permutation may alter the symbolic factorization
result. In our previous approach [lo], we simply compare the
consecutive columns of the L factor, and make a decision on
merging if the total number of difference is under a pre-set
threshold. This approach is simple, resulting in a bounded
number of extra zero entries included in the dense structure
of L supernode. However, the result of partitioning may
lead to too many extra zero entries in the dense structure
of U supernode. Using the elimination forest properties, we
can remedy this problem by partitioning L and U factors

8

simultaneously as follows.
We call our supernodes after amalgamation as relaxed

L/U supernodes and each of them includes elements from
both the L part and the U part.

Definition 3 A relaxed L/U supernode R(s:t) contains three
parts: the diagonal block as:t,s:t, the L supernode part as+irn+t
and the U supernode part as:t,t+lin.

The following corollary, which is also a straightforward
result of Theorem 1, can be used to bound the nonzero struc-
ture of a relaxed L/U supernode.

Corollary 2 If for each i where s + 1 2 i 5 t, vertex i is
the parent of vertex i - 1 in an elimination forest, then the
nonzero structure of each column in as+lzn, s:t is a subset of

the structure in Lt, and the nonzero structure of each row
in aszt, t+lzn is a subset of the structure in Ut.

Using Corollary 2, in R(s : t) the ratio of extra fill-ins in-
troduced by amalgamation compared with the actual nonze-
ros can be computed as:

z = (t - s + 1)’ + (t - s + 1) x (nz(Lt) + nz(Ut) - 2) _ 1
nz(R(s : t))

where nz() gives the number of nonzero elements in the cor-
responding structure including fill-ins created by symbolic
factorization. Also notice that both Lt and Ut include the
diagonal element.

Thus our heuristic for 2D partitioning is to traverse the
elimination forest and find relaxed supernodes R(s : t) sat-

isfying the following conditions:

for each i where s + 1 < i < t, vertex i is the parent of
vertex i - 1 in the elin&a~ion forest,

the extra fill-in ratio, z, is less than the pre-defined
threshold, and

t - s + 1 5: the pre-defined upper bound for supernode
sizes.

Our experiments show that the above strategy is very effec-
tive and the complexity of the partitioning algorithm with
amalgamation is O(n), which is very low and is made possi-
ble by Corollary 2. Our experiments show that the number
of total extra fill-ins doesn’t change much when the upper
bound for z is in the range of 10 - 100% and it seldom ex-
ceeds 2% of the total nonzeros in the whole matrix. In terms
of upper bound for supernode size, 25 gives the best caching
and parallel performance on T3E. Thus all the experiments
in Section 6 are completed with z 5 30% and t - s + 1 5 25.

Figure 5(b) illustrates the result of supernode amalgama-
tion for the sparse matrix in Figure 3. Condition z 5 30%
is applied during the amalgamation. There are four relaxed
L/U supernodes: R(l : 2), R(3 : 4), R(5 : 5), and R(6 : 8).

In the rest of this paper, we will call relaxed L/U su-
pernodes simply as supernodes, and the supernode size of
R(s : t) is t - s + 1.

4 2D asynchronous parallelism exploitation

In this section, we present scheduling control strategies for
exploiting asynchronous 2D parallelism so that different up-
dating stages can be overlapped. After 2D L/U supernode
partitioning and amalgamation, the n x n sparse matrix A is

2-dimensionally partitioned into N x N submatrices. Sym-
bol Ai,j is used to denote the submatrix in row block i and
column block j and A;:j,,:t denotes the submatrices from
row block i to j and column block s to t. Our 2D algorithm
uses the standard cyclic mapping since it tends to distribute
data evenly which is important to solve large problems. In
this scheme, p available processors are viewed as a two di-
mensional grid: p = pr x pc. Then block AQ is assigned to
processor Pi mod p,, j mod pc.

In Section 2, we have described two types of tasks in-
volved in LU. One is Factor(k), which is to factorize all the
columns in the k-th column block, including finding the piv-
oting sequence associated with those columns. The other is
Update(k, j), which is to apply the pivoting sequence derived
from Factor(k) to the j-th column block, and modify the
j-th column block using the k-th column block, where k < j
and ukj # 0. The 2D data mapping enables parallelization
of a single Factor(k) or Update(k,j) task on pr processors
because each of them is executed by column k mod pC of the
processor grid. The main challenge is the coordination of
pivoting and data swapping across a subset of processors to
exploit as much parallelism as possible with low buffer space
demand.

For task Factor(k), the computation is distributed among
processors in column k mod pC of the processor grid and a
global synchronization between those processors is needed
for correct pivoting. To simplify the parallelism control of
task Update(k, j) we split it into two subtasks: ScaleSwap
which does scaling and delayed row interchange for subma-
trices Ak:N, k+l:N; UpdatePD(k,j) which modifies column
block j using column block k. For ScaleSwap(the syn-
chronization among processors within the same column of
the grid is needed. For Update2D(k, j), no synchronization
among processors is needed as long as the desired submatri-
ces in column blocks k and j are made available to processor
pi mod p,, j mod pe wherek+l<i<N.

We discuss three scheduling strategies below. The first
one as reported in [7] is a basic approach in which computa-
tion flow is controlled by the pivoting tasks Factor(k). The
order of execution for Factor(k), k = 1,2, . . , N is sequen-
tial, but Update2D() tasks, where most of the computation
comes from, can execute in parallel among all processors.
Let symbol UpdateZD(k, *) denote tasks Update2D(k, t) for
k + 1 5 t < N. The asynchronous parallelism comes from
two levels. First a single stage of tasks Update2D(k, *) can
be executed concurrently on all processors. In addition, dif-
ferent stages of UpdateZD() tasks from UpdateZD(k, *) and
Update2D(k’, *), where k # k’, can also be overlapped.

The second approach is called factor-ahead which im-
proves the first approach by letting Factor(k + 1) start as
soon as UpdateSD(k, k + 1) completes. This is based on
an observation that in the basic approach, after all tasks
UpdatePD(k,*) are done, all processors must wait for the
result of Facor(k + 1) to start Update2D(k + 1, *). It is not
necessary that Facor(k + 1) has to wait the completion of
all tasks Update2D(k,*). This idea has been used in the
dense LU algorithm [14] and we extend it for asynchronous
execution and incorporate a buffer space control mechanism.
The details are in [8].

The factor-ahead technique still imposes a constraint that
Factor(k + 1) must be executed after the completion of
Factor(k). In order to exploit potential parallelism between
Factor0 tasks, our third design is to utilize dependence in-
formation implied by elimination forests. Since we deal with
a partitioned matrix, an element-wise elimination forest in

9

Definition 1 needs to be clustered into a supernode-wise
elimination forest. We call the new forest as a supernodal
elimination forest.

Definition 4 A supernodal elimination forest has N nodes.
Each node corresponds to a relaxed L/U supernode. Supern-
ode R(il : iz) is the parent of supernode R(jl : jz) if and
only if there exists vertex i E {il, il + 1,. , i2) and wer-
tex j 6 {jl,jl + l,...,jz} such that i is j’s parent in the
corresponding element-wise elimination forest.

As for the example in Figure 5(b), its supernodal elim-
ination forest is depicted in Figure 6. The corresponding
matrix is partitioned into 4 x 4 submatrices.

Supemode 4 - R(6:8)

Supernode 3 - R(S:5)

Supemode I - R(1:2) P

Supemode 2 - R(3:4)

Figure 6: Supernodal elimination forest for the matrix in
Figure 5(b)

A supernodal elimination forest can be generated effi-
ciently in complexity O(n) using the Theorem 3 below.

Theorem 3 Supernode R(il : iz) is the parent of supernode
R(jl : ~‘2) in the supernodal elimination forest if and only if
there exists vertex i E {il, il + 1,. , iz} which is the parent
of vertex jz in the element-wise elimination forest.

Finally the following theorem indicates computation de-
pendence among supernodes and exposes the possible par-
allelism that can be exploited.

Theorem 4 L part of supernode R(jl : jz) directly or indi-
rectly updates L supernode R(il : iz) if and only if R(il : iz)
is an ancestor of supernode R(jl : j,).

Our design for LU task scheduling using the above for-
est concept is different from the ones for Cholesky [l, 191
because pivoting and row interchanges complicate the flow
control in LU. Using Theorem 4, we are able to exploit some
parallelism among Factor0 tasks. After tasks Factor(i)
and UpdateZD(i, k) have finished for every child i of su-
pernode I?, task Factor is ready for execution. Because
of the space constraint on the buffer size, our current de-
sign does not fully exploit the parallelism and this design is
explained below.

Space complexity. We examine the degree of par-
allelism exploited in the factor-ahead and elimination for-
est guided algorithms by determining number of updating
stages that can be overlapped. Using this information we
can estimate the extra buffer space needed per processor
for asynchronous execution. This buffer is used to accom-
modate nonzeros in Ak:~,k and pivoting sequence at each
elimination step k. We define the stage overlapping de-
gree for updating tasks as

max{lk - k’l 1 Th ere exist tasks UpdateZD(k, *) and
UpdateZD(k’, *) executed concurrently.}

It is proved in [8] that for the factor-ahead approach,
the reachable overlapping degree for p, among all processors

and the extra buffer space complexity is about 2.5’BzrzE .,Sl
where S1 is the sequential space size for storing the entire
sparse matrix and BSIZE is the maximum supernode size.
This complexity is very small for a large matrix. Also be-
cause 2D cyclic mapping normally leads to a uniform data
distribution, our factor-head approach is able to handle large
matrices.

In our current design for the elimination forest guided
approach, we enforce a constraint so that the above size
of extra buffer space is also sufficient. This constraint is
that for any processor that executes both Factor(k) and
Factor where k < k’, Factor cannot start until
Factor(k) completes. In other words, Factor0 tasks are
executed sequentially on each single processor column but
they can be concurrent across all processor columns. Fig-
ure 7 shows the elimination forest guided approach based
on the above strategy. It is obvious that allocating more
buffers can relax this constraint and increase the degree of
stage overlapping. Our current experimental study does not
show a substantial advantage by doing that, however, more
work is needed to investigate this issue under the memory
constraint.

Example. Figure 8(a) and (b) are the factor-ahead and
elimination forest guided schedules for the partitioned ma-
trix in Figure 5(b) on a 2 x 2 processor grid. Notice that some
of UpdateZD() tasks such as U(1,2) are not listed because
they do not exist due to the matrix sparsity. To simplify our
illustration, we assume that each of Factor(), ScaleSwap
and Update2D() takes one unit time and communication
cost is zero. In the factor-ahead schedule, Factor(3) is ex-
ecuted immediately after Update2D(1,3) on the processor
column 1. The basic approach would schedule Factor(3) af-
ter ScaleSwap(2). Letting Factor0 tasks complete as early
as possible is important since many updating tasks depend
on Factor0 tasks. In the elimination forest based schedule,
Factor(S) is executed in parallel with Factor(l) because
there is no dependence between them, implied by the forest
in Figure 6. As a result, the length of this schedule is one
unit shorter than the factor-ahead schedule.

PCI PC2 PC1 PC2

(a) Factor-ahead Approach

(b) Elimination Forest
Guided Approach

Figure 8: Task schedules for matrix in Figure 5(b). F()
stands for Factor(), S() stands for ScaleSwap(), U() stands
for Update2D() and PC stands for Processor Column.

5 Implementation with supernodal GEMM kernel

We examine how the computation-dominating part of the
LU algorithm is efficiently implemented using the level of

10

(01) Let (myrno,my-cno) be the 2D coordinates of this processor;
(02) Let m be the smallest column block number assigned to this processor.
(03) if m doesn’t have any child supernode then
(04) Perform task Factor(m) for blocks this processor owns;
(05) endif
(06) for k = 1 to N - 1
(07) Perform ScaleSruap(lc) for blocks this processor owns;
(08) Let m be the smallest column block number (m > !r) assigned to this processor.
(09) Perf arm UpdateZD(k, m) for blocks this processor owns;
(IO) if column block m is not factorized and all m’s child supernodes have been factorized then
(11) Perform Factor(m) for blocks this processor owns;
(12) endif
(13) for j = m + 1 to N
(14) if my-cno = j mod pc then
(15) Perform UpdateZD(k,j) for blocks this processor owns;
(16) endif
(17) endfor
(18) endfor

Figure 7: Supernode elimination forest guided 2D approach.

BLAS as high as possible. Computations in task UpdatePD()
involve the following supernode block multiplication: A;,j =
Ai,j - Ai,k * Ak,j where k 5 i and k 5 j. The BLAS-3
GEMM routine [5] may not directly be applicable because
subcolumns or subrows in those submatrices may not be
consecutive and the target block Ai,j may have a nonzero
structure different from that of product Ai,k * &,j.

There could be several approaches to circumvent the
above problem: One approach is to use the mixture of BLAS-
l/2/3 routines. If Ai,k and Ai*j have the same row sparse
structure, and &J and Ai,j have the same column sparse
structure, BLAS-3 GEMM can be directly used to modify
Ai,j If only one of the above two conditions holds, then the
BLAS-2 routine GEMV can be employed. Otherwise only
the BLAS-1 routine DOT can be used. In the worst case, the
performance of this approach is close to the BLAS-1 perfor-
mance. Another approach is to treat non-zero submatrices
of A as dense during the space allocation and computation,
and hence BLAS-3 GEMM can be employed more often.
But this approach normally leads to an excessive amount of
extra space and unnecessary arithmetic operations.

We propose the following approach called Szlpernodal
GEMM to minimize unnecessary computation but retain
high efficiency. The basic idea is described as follows. If the
BLAS-3 GEMM is not directly applicable, we divide the op-
eration into two steps. At the first step, we ignore the target
nonzero structure of Ai,j and directly use BLAS-3 GEMM
to compute A;,k * Ak,j. The result is stored in a temporal
block. At the second step, we merge this temporal result
block with Ai,j using subtraction. Figure 9 illustrates these
two steps. Since the computation of the first step is more
expensive than the second step, our code for multiplying su-
pernodal submatrices can achieve performance comparable
to the BLAS-3 GEMM. A further optimization is to speedup
the second step since the result merging starts to play some
role for the total time after the GEMM routine reduces the
cost of the first step. Our strategy is that if the result block
and Ai,j have the same row sparse structure or the same col-
umn sparse structure, the BLAS-I AXPY routine should be
used to avoid scalar operations. And to increase the prob-
ability of structure consistency between the temporal result

block and Ai,j, we treat some of L and U submatrices as
dense during the space allocation stage if the percentage of
nonzeros in such a submatrix compared to the entire block
size exceeds a threshold. For Cray-T3E, our experiments
show that threshold 85% is the best to reduce the result
merging time with small space increase.

Ai.k Ak,j tw

step 1:) x !JJ = p&

w A~J Aid tmp Aid

step+&•=, OR [III]-•=o[m
if target block is in L factor if target block is in U factor

Figure 9: An illustration of Supernodal GEMM. Target
block Ai,j could be in the L factor or U factor.

Another issue is how to store and detect dense subrows
and subcolumns. In our approach, for an L submatrix, sub-
rows are stored in a consecutive space even their correspond-
ing row numbers may not be consecutive. A bitmap scheme
is used to indicate the supernode nonzero structure. A bit
is set to 0 if the corresponding subrow is zero, and set to
1 otherwise. For example if an L submatrix contains only
dense subrows, a bit is assigned for each subrow. Since we
limit the supernode size no larger than 25 to fit the cache on
T3E, we can use a 32-bit integer to store the bitmap of each
submatrix, and can determine if a subrow is dense efficiently
using a single logical “and” operation. The strategy for a
U submatrix is the same except in a subcolumn-oriented
fashion.

6 Experimental studies on Cray T3E

In this section, most of the experiments are conducted on
T3E at San Diego Supercomputing Center (SDSC) unless
explicitly stated. Each Cray-T3E processing element at
SDSC has a clock rate of 300MHz, an 8Kbytes internal

11

cache, 96Kbytes second level cache, and 128Mbytes mem-
ory. The peak bandwidth between nodes is reported as
500Mbytes/s and the peak round trip communication la-
tency is about 0.5-2~s [22]. We have observed that when
block size is 25, double-precision GEMM achieves 388MFLOPS
while double precision GEMV reaches 255MFLOPS. We have
used block size 25 in our experiments. We recently ob-
tained an access to a Cray-T3E at the NERSC division of
the Lawrence Berkeley Lab. Each node in this machine has
a clock rate of 450MHz and 256Mbytes memory. We have
done one set of experiments to show the performance im-
provement on an upgraded machine.

We will first report the overall sequential and parallel
performance of our new code compared to SuperLU and
our previous design. Then we measure the effectiveness
of the proposed optimization strategies. In calculating the
MFLOPS achieved by our parallel algorithms, we do not in-
clude extra floating point operations introduced by the static
fill-in overestimation. The achieved MFLOPS is computed
as the operation count obtained from SuperLU divided by
the parallel time of our algorithm on T3E. Table 1 shows
the statistics of the tested matrices. Column 2 is the or-
der of the matrix and column 3 is the number of nonzeros
before symbolic factorization. We have also listed the total
number of factor entries divided by IAl in SuperLU, S+ and
Cholesky factorization of ATA for these matrices. And the
comparison is shown in column 4, 5 and 6. The result shows
that the overestimation in S+ usually leads to less than 50%
extra nonzeros than SuperLU does. But the ATA approach
overestimates substantially more nonzeros, which also indi-
cates that the elimination tree of ATA introduces too many
false dependency edges. All matrices are ordered using the
minimum degree algorithm and the permutation algorithm
for zero-free diagonal [6 In subsection 6.3, we will also
report performance of S I for circuit simulation matrices.

Matrix Order PI
Sherman5 3312 20793
lnsp3937 3937 25407
lns3937 3937 25407
Sherman3 5005 20033
jpwh991 991 6027
orsregl 2205 14133
saylr4 3564 22316
goodwin 7320 324772
e40rOlOO 17281 553562
raefsky4 19779 1316789
inaccura 16146 1015156
af23560 23560 460598
fidapOl1 16614 1091362
vavasis3 41092 1683902

l- factor ntries/r;
SuperLU s+

12.03 15.70
17.87 27.33
18.07 27.92
22.13 31.20
23.55 34.02
29.34 41.44
30.01 44.19

9.63 10.80
14.76 17.32
20.36 28.06

9.79 12.21
30.39 44.39
23.36 24.55
29.21 32.03

20.42
36.76
37.21
39.24
42.57
52.19
56.40
16.00
26.48
35.68
16.47
57.40
31.21
38.75

Table 1: Testing matrices and their statistics.

6.1 Overall code performance

Our previous study [8, lo] shows that even with the intro-
duction of extra nonzero elements by static symbolic factor-
ization, the performance of the S* sequential code can still
be competitive to SuperLU because we are able to use more
BLAS-3 operations. Table 2 shows new code S+ can actually

be faster than the SuperLU because of using new supernode
partitioning and matrix multiplication strategies. The test
matrices are selected from Table 1 that can be executed on
a single T3E node. We include a test for factorizing a dense
matrix to examine the algorithm performance on this ex-
treme aspect. The improvement over SuperLU for the dense
case is the highest because our code can fully utilize BLAS-3
for this case. We also compare the sequential performance
of S+ with our previous design S’ [lo]. The performance
improvement ratios vary from 22% to 40%. For the dense
case, there is no improvement because the results of parti-
tioning and matrix multiplication between two versions are
the same in this case.

For parallel performance, we compare our new code with
the previous version [8] in Table 3 and the improvement ratio
in terms of MFLOPS vary from 16% to llS%, in average
more than 50%. Table 4 shows the absolute performance of
the S+ on an LBL’s Cray T3E machine with 450MHz CPU.
The highest performance reached is ll.O4GFLOPS, while
for the same matrix, 8.44GFLOPS is reached on 300MHz
T3E.

6.2 Effectiveness of the proposed optimization strate-
gies

Elimination forest guided partitioning and amalga-
mation. Our new strategies for supernode partitioning with
amalgamation cluster columns and rows simultaneously us-
ing structural containment information implied by an elim-
ination forest. Our previous design S’ [lo] does not con-
sider the bounding of nonzeros in the U part. We compare
our new code S+ with a modified version using the previ-
ous partitioning strategy. The performance improvement
ratio by using the new strategy is listed in Figure 10 and
an average of 20% improvement is obtained. The ratio for
matrix “af23560” is not substantial because this matrix is
very sparse and even new partitioning/amalgamation strat-
egy can not produce large supernodes.

1 0.4.
B
eo.35.
E
*’ 0.3.

EO.25
t

3 o.2
c,o.rs-

:I 0.1.

$05.

OL--
0

*: goodwin
0: e40rOiOO
+: a123560
x: fidapOl1

5 10 15 20 25 30
#proc

Figure 10: Performance improvement by using new supern-
ode partitioning/amalgamation strategy.

Effectiveness of supernodal GEMM. We assess the
gain due to the introduction of the supernodal GEMM op-
eration. We compare S+ with a modified version using a
mixed approach which mixes BLAS-l/2/3 as described in
Section 5. We don’t compare with the approach that treats
all nonzero blocks dense since it introduces too much extra
space and computation. The performance improvement ra-
tio of our supernodal approach over the mixed approach is

12

Matrix

Sherman5
lnsp3937
lns3937

Sherman3
jpwh991
orsregl
saylr4

goodwin
dense1000

F Sequential S+
Time Mflops
0.65 38.88
1.48 28.52
1.58 28.30
1.56 39.52
0.52 33.38
1.60 39.11
2.67 40.10
10.26 65.28
4.04 165.0

SuperLU) Sequential S*] Exec. Time Ratio
I Time M~~ODS 1 Time M~~ODS I S+/SuoerLU S+/S*

0.78 32.4
1.73 24.4
1.84 24.3
1.68 36.7
0.56 31.0
1.53 40.9
2.69 39.8

8.39 79.4

0.94 26.9 ’ 0.83 o.i.59
2.0 21.1 0.86 0.74

2.19 20.4 0.86 0.72
2.03 30.4 0.93 0.77
0.69 25.2 0.93 0.75
2.04 30.7 1.05 0.78
3.53 30.3 0.99 0.76
17.0 39.4 0.60
4.04 165.0 0.48 1.00

Table 2: Sequential performance. Symbol ‘(-” implies the data is not available due to insufficient memory.

Matrix

goodwin
e40rOlOO
raefsky4
inaccura
af23560
fidapOl1
vavasis3

P=8 P=16 P=32
s s+ S’ s+ S’ Sf

215.2 403.5 344.6 603.4 496.3 736.0
205.1 443.2 342.9 727.8 515.8 992.8
391.2 568.2 718.9 1072.5 1290.7 1930.3
272.2 495.5 462.0 803.8 726.0 1203.6
285.4 432.1 492.9 753.2 784.3 1161.3
489.3 811.2 878.1 1522.8 1524.3 2625.0
813.4 958.4 1519.0 1864.8 2651.9 3303.6 I

P=64
S’ Sf

599.2 797.3
748.0 1204.8

2233.3 3398.1
1172.7 1627.6
1123.2 1518.9
2504.4 4247.6
4505.5 5640.4

Table 3: MFLOPS performance of Sf and S’ on 300MHz Cray T3E.

3592.9 5133.6
1524.5 1921.7
1512.7 1844.7
3828.5 6248.4

listed in Figure 11. The improvement is not substantial for
matrix “e40rOlOO” and none for “goodwin”. This is because
they are relatively dense and the mixed approach has been
employing BLAS-3 GEMM most of the time. For the other
two matrices which are relatively sparse, the improvement
ratio can be up to 10%.

0.14 ":goodwin
7 o:e40r0100
$0.12.

g 0.1.
2
&o.oa-
8
50.06-
-i
;0.04-
m
ko.02.

+:a123560
x: fidapOl1

d-5
#proc

Figure 11: Performance improvement by using the supern-
odal GEMM.

A comparison of the control strategies for ex-
ploiting 2D parallelism. In Table 5 we assess the perfor-
mance improvement by using the elimination forest guided
approach against factor-ahead and basic approaches described
in Section 4. Compared to the basic approach, the improve-
ment ratios vary from 16% to 41% and the average is 28%.
Compared to the factor-ahead approach, the average im-
provement ratio is 11% and the ratios tend to increase when
the number of processors increases. This result is expected

in the sense that the factor-ahead approach improves the de-
gree of computation overlapping by scheduling factor tasks
one step ahead while using elimination forests can exploit
more parallelism.

6.3 Performance on circuit simulation matrices

We recently obtained a few matrices from circuit simulation
in Texas Instruments [24], for which the static factorization
may generate many extra fill-ins. We chose three of them
which are large enough for parallel test and ran them using
S+ on 450MHz Cray T3E. Table 6 shows that static fac-
torization does produce a large number of fill-ins for these
matrices (up to 3 times higher than dynamic factorization
using the same matrix ordering). However, the experimen-
tal results in Table 7 demonstrate that S+ still achieves de-
cent MFLOPS in a large number of processors. Remember
that we do not include extra floating point operations intro-
duced by the static fill-in overestimation in calculating the
MFLOPS achieved by our parallel algorithms. The achieved
MFLOPS is computed as the operation count obtained from
SuperLU divided by the parallel time of our algorithm on
T3E.

II I 1 I factor entries/IA1 II
Matrix Order 1 IAl 1 SuperLU] S+’ i ‘A”‘A
TIa 1 3432 I 25220 I 24.45 I 42.49 1 307.1
TId 6136 53329 27.53 61.41 614.2
TIb 18510 145149 91.84 278.34 1270.7

Table 6: Circuit simulation testing matrices and their statis-
tics.

13

Matrix P=8 P=16 P=32 P=64 P=128
Time Mflops Time Mflops Time Mflops Time Mflops Time Mflops

aoodwin 1.21 553.5 0.82 816.8 0.69 970.6 0.68 984.9 0.67 999.6
eu40r0100 4.06 611.3 2.50 992.7 1.87 1327.2 1.65 1504.1 1.59 1560.9
raefsky4 38.62 804.2 20.61 1507.0 11.54 2691.5 6.80 4567.6 4.55 6826.0
inaccura 6.56 697.2 4.12 1110.1 2.80 1633.4 2.23 2050.9 1.91 2394.6
af23560 10.57 602.1 6.17 1031.5 4.06 1567.5 3.47 1834.0 2.80 2272.9
fidapOl1 21.58 1149.5 11.71 2118.4 6.81 3642.7 4.42 5612.3 3.04 8159.9
vavasis3 62.68 1423.6 33.68 2649.3 19.26 4632.9 11.75 7594.0 8.08 11043.5

Table 4: Experimental results of S+ on 450MHz Cray T3E. All times are in seconds.

Table 5: Performance improvement by using the elimination forest guided approach.

7 Concluding remarks

Our experiments show that properly using elimination forests
can guide us for effective matrix partitioning and parallelism
exploitation. Together with the supernodal matrix multipli-
cation algorithm, our new design can improve the previous
code substantially and set a new performance record.

Our experiments also show that Sf and S* can deliver
high performance for large sparse matrices. Static symbolic
factorization may create too many fill-ins for some matrices,
in which case S+ can still achieve good performance on a
large number of processors. Therefore our approach is ap-
plicable to a large range of problems using a simple ordering
strategy (minimum degree ordering). It might be possible
to use different matrix reordering to reduce overestimation
ratios and more studies are needed on this issue.

Acknowledgment

This work is supported by NSF CDA-9529418, NSF CA-
REER CCR-9702640, and DARPA DABT-63-93-C-0064 thro
the Rutgers HPCD project,.

We would like to thank Cong Fu for continuous help on
this project,, Horst Simon for providing access to a Cray T3E
at National Energy Research Scientific Computing Center,
Stefan Boeriu for supporting access to a Cray T3E at San
Diego Supercomputing Center, Andrew Sherman and Vinod
Gupta for providing circuit simulation matrices, Esmond Ng
for helpful discussions, Apostolos Gerasoulis and the anony-
mous referees for their valuable comments.

References

[l] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and
H. Simon. Progress in Sparse Matrix Methods for

Large Sparse Linear Systems on Vector Supercomput-
ers. International Journal of Supercomputer Applica-
tions, l:lO-30, 1987.

[2] J. Demmel. Numerical Linear Algebra on Parallel Pro-
cessors. Lecture Notes for NSF-CBMS Regional Con-
ference in the Mathematical Sciences, June 1995.

[3] J. Demmel, S. Eisenstat, J. Gilbert, X. Li, and J. Liu.
A Supernodal Approach to Sparse Partial Pivoting.
Technical Report CSD-95-883, EECS Department, UC
Berkeley, September 1995. To appear in SIAM J. Ma-
trix Anal. Appl.

[4] J. Demmel, J. Gilbert, and X. Li. An Asynchronous
Parallel Supernodal Algorithm for Sparse Gaussian
Elimination. Technical Report CSD-97-943, EECS De-
partment, UC Berkeley, February 1997. To appear in
SIAM J. Matrix Anal. Appl.

[5] J. Dongarra, J. Du Croz, S. Hammarling, and R. Han-

lugh son. An Extended Set of Basic Linear Algebra Subrou-
tines. ACM Trans. on Mathematical Software, 14:18-
32, 1988.

[6] I. S. Duff. On Algorithms for Obtaining a Maximum
Transversal. A CM fiansactaons on Mathematical Soft-
ware, 7(3):315-330, September 1981.

[7] C. Fu, X. Jiao, and T. Yang. A Comparison of 1-D
and 2-D Data Mapping for Sparse LU Factorization on
Distributed Memory Machines. Proc. of 8th SIAM Con-
ference on Parallel Processing for Scient$c Computing,
March 1997.

[8] C. Fu, X. Jiao, and T. Yang. Efficient Sparse LU Fac-
torization with Partial Pivoting on Distributed Mem-
ory Architectures. IEEE Transactions on Parallel and
Distributed Systems, 9(2):109-125, February 1998.

14

PI

PO1

PI

P21

iI31

1141

1151

WI

[I71

PI

[I91

[201

Matrix P=8 P=16 P=32 P=64 P=128
Time Mflops Time Mflops Time Mflops Time Mflops Tune Mflops

TIa 0.64 323.7 0.40 517.9 0.31 668.3 0.28 739.9 0.26 796.8
TId 1.98 298.6 1.15 514.1 0.80 739.0 0.62 953.6 0.54 1094.8
TIb 47.88 148.7 25.05 284.2 14.05 506.7 7.82 910.3 4.98 1429.5

Table 7: Performance of S+ for circuit simulation matrices on 450MHz Cray T3E. All times are in seconds.

C. Fu and T. Yang. Run-time Compilation for Par-
allel Sparse Matrix Computations. In Proceedings
of ACM International Conference on Supercomputing,
pages 237-244, Philadelphia, May 1996.

WI

C. Fu and T. Yang. Sparse LU Factorization with Par-
tial Pivoting on Distributed Memory Machines. In Pro-
ceedings of ACM/IEEE Supercomputing, Pittsburgh,
November 1996.

wl

C. Fu and T. Yang. Space and Time Efficient Execution
of Parallel Irregular Computations. In Proceedings of
ACM Symposium on Principles & Practice of Parallel
Programming, June 1997.

1231

K. Gallivan, B. Marsolf, and H. Wijshoff. The Parallel
Solution of Nonsymmetric Sparse Linear Systems Us-
ing H* Reordering and an Associated Factorization. In
Proc. of ACM International Conference on Supercom-
puting, pages 419-430, Manchester, July 1994.

PI

A. George and E. Ng. Parallel Sparse Gaussian Elim-
ination with Partial Pivoting. Annals of Operations
Research, 22:219-240, 1990.

G. Golub and J. M. Ortega. Scientific Computing: An
Introduction with Parallel Computing Compilers. Aca-
demic Press, 1993.

A. Gupta, G. Karypis, and V. Kumar. Highly Scal-
able Parallel Algorithms for Sparse Matrix Factoriza-
tion. IEEE !lkansactions on Parallel and Distributed
Systems, 8(5), 1995.

S. Hadfield and T. Davis. A Parallel Unsymmetric-
pattern Multifrontal Method. Technical Report TR-94-
028, Computer and Information Sciences Department,
University of Florida, August 1994.

X. Jiao. Parallel Sparse Gaussian Elimination with Par-
tial Pivoting and 2-D Data Mapping. Master’s thesis,
Dept. of Computer Science, University of California at
Santa Barbara, August 1997.

X. Li. Sparse Gaussian Elimination on High Perfor-
mance Computers. PhD thesis, Computer Science Di-
vision, EECS, UC Berkeley, 1996.

E. Rothberg. Exploiting the Memory Hierarchy in Se-
quential and Parallel Sparse Cholesky Factorization.
PhD thesis, Dept. of Computer Science, Stanford, De-
cember 1992.

E. Rothberg and R. Schreiber. Improved Load Distri-
bution in Parallel Sparse Cholesky Factorization. In
PTOC. of Supercomputing’94, pages 783-792, November
1994.

R. Schreiber. Scalability of Sparse Direct Solvers, vol-
ume 56 of Graph Theory and Sparse Matrix Computa-
tion (Edited by Alan George and John R. Gilbert and
Joseph W.H. Liu), pages 191-209. Springer-Verlag,
New York, 1993.

S. L. Scott and G. M. Thorson. The Cray T3E Network:
Adaptive Routing in a High Performance 3D Torus. In
Proceedings of HOT Interconnects IV, August 1996.

K. Shen, X. Jiao, and T. Yang. Elimination For-
est, Guided 2D Sparse LU Factorization. Techni-
cal Report TRCS98-08, Computer Science Depart-
ment, UC Santa Barbara, March 1998. Available at
www.cs.ucsb.edu/researchfrapid~web/RAPID.html.

A. Sherman and V. Gupta. Personal Communication,
1998.

15

