Cache Efficient Functional Algorithms

Guy E. Blelloch
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15232

guyb@cs.cmu.edu

ABSTRACT

The widely studied I/O and ideal-cache models were devel-
oped to account for the large difference in costs to access
memory at different levels of the memory hierarchy. Both
models are based on a two level memory hierarchy with a
fixed size fast memory (cache) of size M, and an unbounded
slow memory organized in blocks of size B. The cost measure
is based purely on the number of block transfers between the
primary and secondary memory. All other operations are
free. Many algorithms have been analyzed in these models
and indeed these models predict the relative performance of
algorithms much more accurately than the standard RAM
model. The models, however, require specifying algorithms
at a very low level, requiring the user to carefully lay out
their data in arrays in memory and manage their own mem-
ory allocation.

We present a cost model for analyzing the memory effi-
ciency of algorithms expressed in a simple functional lan-
guage. We show how some algorithms written in standard
forms using just lists and trees (no arrays) and requiring
no explicit memory layout or memory management are ef-
ficient in the model. We then describe an implementation
of the language and show provable bounds for mapping the
cost in our model to the cost in the ideal-cache model. These
bounds imply that purely functional programs based on lists
and trees with no special attention to any details of memory
layout can be asymptotically as efficient as the carefully de-
signed imperative 1/O efficient algorithms. For example we
describe an O( g log,s/5 %) cost sorting algorithm, which is
optimal in the ideal cache and I/O models.

1. INTRODUCTION

Today’s computers exhibit a vast difference in cost for ac-
cessing different levels of the memory hierarchy, whether it
be registers, one of many levels of cache, the main memory,
or a disk. On current processors, for example, there is over
a factor of a hundred between the time to access a register
and main memory, and another factor of a hundred or so be-
tween main memory and disk, even a solid state drive (SSD).
This variance in costs is contrary to the standard Random
Access Machine (RAM) model, which assumes that the cost
of accessing memory is uniform. To account for non unifor-
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Figure 1: The I/0 model [2] assumes a memory hi-
erarchy comprising a fast memory of size M and
slow memory of unbounded size. Both memories are
partitioned into blocks of a fixed size B of consecu-
tive memory locations. The CPU and fast memory
are treated as a standard Random Access Machine
(RAM)—the CPU accesses individual words, not
blocks. Additional instructions allow one to move
any block between the fast and slow memory. The
cost of an algorithm is analyzed in terms of the num-
ber of block transfers—the cost of operations within
the main memory is ignored. The ideal-cache ma-
chine model (ICMM) [11] is similar except that the
program only addresses the slow memory, and an
“ideal” cache decides which blocks to cache in the
fast memory using an optimal replacement strategy.
Accessing the fast memory (cache) is again regarded
as cost-free and transferring between slow memory
and fast memory has unit cost. The costs in the two
models are equivalent within a constant factor, and
in both models the two levels of memory can either
represent main memory and disk, or cache and main
memory.

mity, several cost models have been developed that assign
difference costs to different levels of the memory hierarchy.

Figure 1 describes the the widely used I/O [2] and ideal-
cache [11] machine models designed for this purpose. The
models are based on two parameters, the memory size M and
the block size B, which are considered variables for the sake
of analysis and therefore show up in asymptotic bounds. To
design efficient algorithms for these models, it is important
to consider both temporal locality, so as to take advantage
of the limited size slow memory, and spatial locality, be-
cause memory is transferred in contiguous blocks. In this
paper we will use terminology from the ideal-cache machine



1 fun mergeSort([]) = []

2 | mergeSort([al) = [al

3 | mergeSort(A) =

4 let

5 val (L,H) = split(A)

6 in

7  merge(mergeSort(L),mergeSort(H))
8 end

Figure 2: Recursive mergeSort. If the input sequence
is empty or a singleton the algorithm returns the
same value, otherwise it splits the input in two ap-
proximately equal sized sequences, L and H, recur-
sively sorts each sequence, and merges the result.

model (ICMM), including referring to the fast memory as
cache, the slow memory as main memory, block transfers
as cache misses, and the cost as the cache cost.

Algorithms that do well in these models are often referred
to as cache or I/O efficient. The theory of cache efficient
algorithms is now well developed (see, for example, the sur-
veys [17, 3, 23, 6, 19, 12]). These models do indeed express
more accurately the cost of algorithms on real machines than
does the standard RAM model, for example. For example,
the models properly indicate that a blocked or hierarchical
matrix-matrix multiply has cost

n? >
mat. mult. cache cost = O —— ). 1
(5% 0

This is much more efficient than the naive triply nested loop,
which has cost ©(n®/B). Furthermore, although the mod-
els only consider two levels of a memory hierarchy, cache
efficient algorithms that do not use the parameters B or M
in the code are simultaneously efficient across all levels of
the memory hierarchy. Algorithms designed in this way are
called cache oblivious [11].

As an example of an algorithm analyzed in the models
consider recursive mergeSort (see Figure 2). If the inputs
of size n and output are in arrays, then the merge can take
advantage of spatial locality and has cache cost O(n/B) (see
Figure 3). The split can be done within the same, or bet-
ter bounds. For the recursive mergeSort once the recursion
reaches a level where the computation fits into the cache, all
subcalls are free, taking advantage of temporal locality. Fig-
ure 4 illustrates the merge sort recursion tree and analyzes
the total cost, which for an input of size n is:

merge sort cache cost = © ((%) log, (%)) (2)

This is a reasonable cost and a lot better than assuming
every memory access requires a cache miss. However, this is
not optimal for the model. Later, we will discuss a multiway
merge sort that is optimal. It has cost

optimal sort cache cost = © ((%) log% (%)) (3)

This optimal cost can be significantly less than the cost for
mergeSort. For example if n < M k and M > B?, which are
reasonable assumptions in many situations, then the cost
reduces to O(nk/B). All the fastest disk sorts indeed use
some variant of a multiway merge sort or another optimal
cache efficient algorithm based on sample sorting [21].
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Figure 3: Merging two sorted arrays. The fingers
are moved from left to right along the two inputs
and the output. At each point the lesser value at the
input fingers is copied to the output, and that fin-
ger, along with the output finger, are incremented.
During the merge, each block of the inputs only has
to be loaded into the fast memory once, and each
block of the output only needs to be written to slow
memory once. Therefore, for two arrays of size n
the total cache cost of the merge is O(n/B).

Cache Cost
kn/B

KB\ log, (2rm)
o o o
o o o
0000000 kn/B
size = M, just fits in cache Free

Total = (kn/B) log, (2n/M)
= 0O(n/B log, (n/M))

Figure 4: The cost of mergeSort in the I/O or ideal-
cache model. At the i'" level from the top there are
2¢ calls to mergeSort, each of size n; = n/2i. Each call
has cost kn;/B for some constant k. The total cost
of each level is therefore about 2°k (2t) /B = kn/B.
When a call fits into the fast memory, then the rest
of the sort is cost-free. Because a merge requires
about 2n space (for the input and the output), this
will occur when M = 2(3;). Therefore, there are
log,(2n/M) levels that have non-zero cost, each with
cost kn/B.

Careful Layout and Careful Allocation.

Although the analysis for mergeSort given above seems
relatively straightforward, we have picked a simple exam-
ple and left out several important details. With regards to
memory layout, ordering a sorted sequence contiguously in
memory is pretty straightforward, but this is not the case
for many other data structures. Should a matrix, for exam-
ple, be laid out in row-major order, in column-major order,
or perhaps in some hierarchical order such as z-ordering?
These different orders can make a big difference. What
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Figure 5: Two lists in memory. The cost of travers-
ing the lists is very different depending on how the
lists are laid out. In the figure, the top one, which
is randomly laid out, will require O(n) steps to tra-
verse, whereas the bottom only requires O(n/B).

about pointer-based structures such as linked-lists or trees?
As Figure 5 indicates, the cost of traversing a linked list will
depend on how the lists are laid out in memory.

More subtle than memory layout is memory allocation.
Touching unused memory after allocation will cause a cache
miss. Managing the pool of free memory properly is there-
fore very important. Consider, again, the mergeSort exam-
ple. In our discussion we assumed that once 2n; < M the
problem fits in fast memory and therefore is free. However,
if we used a memory allocator to allocate the temporary
array needed for the merge the locations would likely be
fresh and accessing them would cause a cache miss. The
cost would therefore not be free, and in fact because levels
near the leaves of the recursion tree do many small alloca-
tions, the cost could be significantly larger near the leaves.
To avoid this, programmers need to manage their own mem-
ory. They could, for example, preallocate a temporary array
and then pass it down to the recursive calls as an extra ar-
gument, therefore making sure that all temporary space is
being reused. For more involved algorithms, allocation can
be much more complicated.

In summary, designing and programming cache efficient
algorithms for these models requires a careful layout of data
in the flat memory and careful management of space in that
memory.

Our Goals.

The goal of our work is to be able to take advantage of
the ideal-cache model, and hence machines that match the
model, without requiring careful layout of data in memory
and without requiring managing memory allocation by hand.
In particular we want to work with recursive data structures
(pointer structures) such as lists or trees. Furthermore, we
want to work with a fully automated memory manager with
garbage collection and no (explicit) specifications of where
data is placed in memory. These goals might seem impos-
sible, but we show that they can be achieved, at least for
certain cases. We show this in the context of a purely func-
tional (side-effect free) language. The formulation given here
is slightly simplified compared to the associated conference
paper [5] for the sake of brevity and clarity; we refer the
reader to that paper for a fuller explanation.

As an example of what we are trying to achieve consider
the merge algorithm shown in Figure 6. Some properties to
notice about the algorithm are that it is based on linked-lists

datatype List = Cons of (int * List)

| Nil

1

2

3

4 fun merge(A, B) =

5 case (A, B) of

6 (Nil, B) = B

7 | (A, Nil) = A

8 | (Cons(a, At), Cons(b, Bt)) =
9

if (a < b)
10 then Cons(!a, merge(At, B))
11 else Cons(!b, merge(A, Bt))

Figure 6: Code for merge of two lists. If list is empty,
the code compares the two heads of the list and re-
curs on the tail of the list with the smaller element,
and on the whole list with the larger element. When
the recursive call finishes a new list element is cre-
ated with the smaller element as the head and the
result of the recursive call as the tail. The ! is
discussed in section 3.

instead of arrays. Furthermore, because we are working in
the functional setting, every list element is created fresh (in
the Cons operations in Lines 10 and 11.) Finally there is no
specification of where things are allocated and no explicit
memory management. Given these properties it might seem
that this code could be terrible for cache efficiency because
accessing each element could be very expensive, as indicated
in Figure 5. Furthermore, each fresh allocation could cause
a cache miss. Also there is an implied stack in the recursion
and it is not clear how this affects the cost.

We show, however, that with an appropriate implementa-
tion the code is indeed cache efficient, and when used in a
mergeSort gives the same bound as given in Equation 2. We
also describe an algorithm that matches the optimal sorting
bounds given in Equation 3. The approach is not limited to
lists, it also works with trees. For example Figure 11 defines
a representation of matrices recursively divided into a tree
and a matrix multiplication based on it. The cost bounds
for this multiplication match the bounds for matrix multi-
plication for the ideal-cache model (Equation 1) using arrays
and careful programmer layout.

Cost Models and Provable Implementation Bounds.

One way to achieve our goals would be to analyze each
algorithm written in high-level code with respect to a par-
ticular compilation strategy and specific runtime memory
allocation scheme. This would be extremely tedious, time
consuming, not portable, and error prone. It would not lead
to a practical way to analyze algorithms.

Instead we use a cost semantics that directly defines costs
in the programming language so that algorithms can be an-
alyzed without concern of implementation details (such as
how the garbage collector works). We refer to our language,
equipped with our cost semantics, as ICFP, for Ideal-Cache
Functional Programming language. The goal is then to re-
late the costs in ICFP to costs in the ICMM. We do this by
describing a simulation of ICFP on the ICMM and proving
bounds on the relative costs based on this simulation. In
particular, we show that a computation running with cost
Q, with parameters M and B, in ICFP can be simulated
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Figure 7: Cost semantics for ICFP and its mapping
to the ideal cache model (ICMM). The values k and
k' are constants.

on the ICMM with M’ = O(M) locations of fast memory,
blocksize B, and cost O(Q). The framework is illustrated in
Figure 7.

Allocation Order and Spatial Locality.

Because functional languages abstract away from data lay-
out decisions, we use temporal locality (proximity of alloca-
tion time) as a proxy for spatial locality (proximity of al-
location in memory). To do this, the memory model for
ICFP consists of two fast memories: a nursery (for new al-
locations) and a read cache. The nursery is time ordered
to ensure that items are laid out contiguously when writ-
ten to main (slow) memory. For merging, for example, the
output list elements will be placed one after the other in
main memory. To formalize this idea we introduce the no-
tion of a data structure being compact. Roughly speaking
a data structure of size n is compact if it can be traversed
in the model in O(n/B) cache cost. The output of merge is
compact by construction. Furthermore, if both inputs lists
to merge are compact, we show that merge has cache cost
O(n/B). This notion of compactness generalizes to other
data structures, such as trees.

Another feature of the allocation cache of ICFP is that it
only contains live data. This is important because in some
algorithms, such as matrix multiply, the rate at which tem-
porary memory is generated is asymptotically larger than
the rate at which output data is generated. Therefore, if all
counted it could fill up the cache, whereas we want to make
sure that temporary data slots are reused. Also, we want
to ensure that temporary memory is not transferred to the
slow memory because such transfer would cause extra traffic.
Moreover, the temporary data could end up between output
data elements, causing them to be fragmented across blocks.
In our provable implementation we do not require a precise
tracking of live data, but instead use a generational collector
with a nursery of size 2M. The simulation then keeps all the
2M locations in the fast memory so that all allocation and
collection (within the new generation) is fast.

Related Work.

The general idea of using high-level cost models based on

a cost semantics along with a provable efficient implemen-
tation has previously been used in the context of parallel
cost models [4, 13, 22, 15]. Although there has been a large
amount of experimental work on showing how good garbage
collection can lead to efficient use of caches and disks ([10,
24, 14, 7] and many references in [16]), we know of none
that try to prove bounds for algorithms for functional pro-
grams when manipulating recursive data types such as lists
or trees. Abello, et. al. [1] show how a functional style can
be used to design cache efficient graph algorithms. How-
ever, they assume that data structures are in arrays (called
lists), and that primitives for operations such as sorting,
map, filter and reductions are supplied and implemented
with optimal asymptotic cost (presumably at a lower level
using imperative code). Their goal is therefore to design
graph algorithms by composing these high-level operations
on collections. They do not explain how to deal with garbage
collection or memory management.

2. COST SEMANTICS

In general a cost semantics for a language defines both how
to execute a program and the cost of its execution. In func-
tional languages execution consists of a deterministic strat-
egy for calculating the value of an expression by a process
of simplification, or reduction, similar to what one learns in
elementary algebra. But rather than working with the real
numbers, programs in a functional language calculate with
integers, with inductive data structures, such as lists and
trees, and with functions that act on such values, including
other functions. The theoretical foundation for functional
languages is Church’s A-calculus [8, 9].

The cost of a computation in a functional language may
be defined in various ways, including familiar measures such
as time complexity, defined as the number of primitive re-
duction steps required to evaluate an expression, and space
complexity, defined as the number of basic data objects allo-
cated during evaluation. Such measures are defined in terms
of the constructs of the language itself, rather than in terms
of its implementation on a machine model such as a RAM
or Turing machine. Algorithm analysis takes place entirely
at the language level. The role of the implementation is to
ensure that the abstract costs can be realized on a concrete
machine with stated bounds.

Cache Cost.

The cost measure of interest in the present paper is the
cache cost, which is derived from considering a combination
of the time and space behavior of a program. The cache cost
is derived by specifying when data objects are allocated and
retrieved, and as with the ICMM is parameterized by two
constants, B and M, governing the cache behavior. To be
more precise, expressions are evaluated relative to an ab-
stract store, o, which comprises a main memory, u, a read
cache, p, and a nursery, or allocation area, v. The struc-
ture of the store is depicted in Figure 8. The main memory
maps abstract locations to atomic data objects, and is of
unbounded capacity. Atomic data objects are considered to
occupy one unit of storage. Objects in main memory are
aggregated into blocks of size B in a manner to be described
shortly. The blocking of data objects does not change during
execution; once an object is assigned to a block, it remains
part of that block for the rest of the computation.

The read cache is a fixed-size mapping from locations to
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Figure 8: The memory model for the ICFP cost semantics. It is similar to the ideal cache model, but has two
fast memories of size M: a nursery for newly allocated data, and a read cache for data that has migrated
to main memory and was read again by the program. The main memory and read cache are organized into
blocks, as in the ideal-cache model, but the nursery is not blocked. Rather, it consists of (live) data objects
linearly ordered by the time at which they were allocated. The semantics defines when a piece of data is live,
but conceptually it is just when it is reachable from the executing program. If an allocation overflows the
nursery, the oldest B live objects are flushed from the cache into main memory as a block to make space for
the new object. If one of these words is later read, the entire block is moved into the read cache, possibly

displacing another block in the process. Displaced blocks can be discarded, because the only writes in a
functional language occur at allocation, and never during subsequent execution.

data objects containing at most M objects. As usual, the
read cache represents a partial view of main memory. Ob-
jects are loaded into the read cache in blocks of size B as
determined by the aggregation of objects in main memory.
Objects are evicted from the read cache by simply over-
writing them; in a functional language data objects can-
not be mutated, and hence need never be written back to
main memory. Blocks are evicted according to the (uncom-
putable) Ideal Cache Model (ICMM ).

The allocation area, or nursery, is fixed-sized mapping
from locations to data objects also containing at most M
objects. Locations in the nursery are not blocked, but they
are linearly ordered according to the time at which they are
allocated. We say that one data object is older than another
if the location of the one is ordered prior to that of the other.
A location in the nursery is live if it occurs within the pro-
gram being evaluated [18]. All data objects are allocated
in the nursery. When its capacity of M objects is exceeded,
the oldest B objects are formed into a block that is migrated
to main memory, determining once and for all the block to
which these objects belong. This policy ensures that tempo-
ral locality implies spatial locality, which means that objects
that are allocated nearby in time will be situated nearby in
space (that is, occupy the same block). In particular, when
an object is loaded into the read cache, its neighbors in its
block will be loaded along with it. These will be the objects
that were allocated at around the same time.

The role of a cost semantics is to enable reasoning about
the cache cost of algorithms without dropping down to the
implementation level. To support proof, the semantics must
be specified in a mathematically rigorous manner, which we
now illustrate for ICFP, a simple eager variant of Plotkin’s

language PCF [20] for higher-order computation over nat-
ural numbers. (It is straightforward to extend ICFP to ac-
count for a richer variety of data structures, such as lists or
trees, and for hardware-oriented concepts such as words and
floating point numbers, which we assume in our examples.)

Cost Semantics.
The abstract syntax of ICFP is defined as follows:

e == z|z|s(e)|ifz(e;eo;x.e1) |
fun(z,y.¢) | app(e1; e2)

Here x stands for a variable, which will always stand for a
data object allocated in memory. The expressions z and s()
represent 0 and successor, respectively, and the conditional
tests whether e is z or not, branching to eq if so, and branch-
ing to e; if not, substituting (the location of) the predeces-
sor for z in doing so. Functions, written fun(z,y.e), bind a
variable x standing for the function itself, and a variable y
standing for its argument. (The variable z is used to effect
recursive calls.) Function application is written app(e1;e2),
which applies the function given by the expression e; to the
argument value given by the expression es. The typing rules
for ICFP are standard (see Chapter 10 of [15]), and hence
are omitted for the sake of concision.

Were the cost of a computation in ICFP just the time
complexity, the semantics would be defined by an evalua-
tion relation e || v stating that the expression e evaluates
to the value v using n reduction steps according to a spec-
ified outermost strategy. Accounting for the cache cost of
a computation is a bit more complicated, because we must
account for the memory traffic induced by execution. To do
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Figure 9: Simplified semantics of function applica-
tion. This rule specifies the cost and evaluation of a
function application app(ei;ez2) of a function e; to an
argument ez. similar rules govern the other language
constructs. Bear in mind that all values are repre-
sented by (abstract) locations in memory. First, the
expression e; is evaluated, with cost n;, to obtain
the location /1 of the function being called. That
location is read from memory to obtain the function
itself, a self-referential A-abstraction, at cost n}. Sec-
ond, the expression e; is evaluated, with cost n2, to
obtain its value l>. Finally, /; and l; are substituted
into the body of the function, and then evaluated to
obtain the result [ at cost n. The overall result is [
with total cost the sum of the constituent costs. The
only non-zero cost arises from allocation of objects
and reading from memory; all other operations are
considered cost-free, as in the I/O model.

so, we consider an evaluation relation of the form
c@el” o @l

in which the evaluation of an expression e is performed rel-
ative to a store o, and returns a value represented by a
location in a modified store o’. The modifications to the
store reflect the allocation of new objects, their migration
to main memory, and their loading into the read cache. The
evaluation relation also specifies the cache cost n, which is
determined entirely by the movements of blocks to and from
main memory. All other operations are assigned zero cost.

The evaluation relation for ICFP is defined by derivation
rules that specify closure conditions on it. Evaluation is de-
fined to be the strongest relation satisfying these conditions.
To give a flavor of how this is done, we present in Figure 9
a simplified form of the rule for evaluating a function ap-
plication, app(e1;e2). The rule has four premises, and one
conclusion, separated by the horizontal line, which may be
read as implication stating that if the premises are all deriv-
able, then so is the conclusion.

The other constructs of ICFP are defined by similar rules,
which altogether specify the behavior and cost of the eval-
uation of any ICFP program. The abstract cost semantics
underlies the analyses given in Sections 1 and 3. The ab-
stract costs given by the semantics are validated by giving a
provable implementation [4, 13] that realizes these costs on
a concrete machine. In our case the realization is given in
terms of the ICMM, which is an accepted concrete formula-
tion of a machine with hierarchical memory. By composing
the abstract semantics with the provable implementation we
obtain end-to-end bounds on the cache complexity of algo-
rithms written in ICFP without having to perform the anal-
ysis at the level of the concrete machine, but rather at the
level of the language in which the algorithms are written.

Provable Implementation.

The provable implementation of ICFP on the ICMM is de-
scribed in Figure 10. Its main properties, which are impor-
tant for obtaining end-to-end bounds on cache complexity,
are summarized by the following theorem:

THEOREM 2.1. An evaluation c@e |" o' @l in ICFP
with abstract cache parameters M and B can be implemented
on the ICMM with concrete cache parameters 4 x M +k x B
and B with cache cost O(n), for some constant k.

The proof of the theorem consists of an implementation of
ICFP on the ICMM described in Figure 10, and of show-
ing that reduction step of ICFP is simulated on the ICMM
to within a (small) constant factor. The full details of the
proof, along with a tighter statement of the theorem, are
given in the associated conference paper.

3. CACHE EFFICIENT ALGORITHMS

We now analyze mergeSort and matrix multiply in ICFP,
and give bounds for a k-way mergeSort that is optimal. The
implementations are completely natural functional programs
using lists and trees instead of arrays. In the associated
conference paper we describe how one can deal with higher-
order functions (such as passing a comparison function to
merge), and define the notion of hereditarily finite values
for this purpose, but here we only consider first-order usage.

As mentioned in the introduction, the cost of accessing a
recursive datatype will depend on how it is laid out in mem-
ory, which depends on allocation order. We could try to
define the notion of a list being in a good order in terms of
how the list is represented in memory. This is cumbersome
and low level. We could also try to define it with respect to
the specific code that allocated the data. Again this is cum-
bersome. Instead we define it directly in terms of the cache
cost of traversing the structure. By traversing we mean go-
ing through the structure in a specific order and touching
(reading) all data in the structure. Because types such as
trees might have many traversal orders, the definition is with
respect to a particular traversal order. For this purpose we
define the notion of “compact”.

DEFINITION 3.1. A data structure of size m is compact
with respect to a given traversal order if traversing it in that
order has cache cost O(n/B) in our cost semantics with M >
kB for some constant k.

We can now argue that certain code will generate data struc-
tures that are compact with respect to a particular order.
We note that if a list is compact with respect to traversal in
one direction, it is also compact with respect to the opposite
direction.

To keep data structures compact, not only do the top level
links need to be accessed in approximately the order they
were allocated, but anything that is touched by the algo-
rithm during traversal also needs to be accessed in a similar
order. For example, if we are sorting a list it is important
that in addition to the “cons cells”, the keys are allocated in
the list order (or, as we will argue shortly, reverse order is
fine). To ensure that the keys are allocated in the appropri-
ate order, they need to be copied whenever placing them in
a new list. This copy needs to be a deep copy that copies all
components. If the keys are machine words then in practice
these might be inlined into the cons cells anyway by a com-
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Figure 10: Simulating the ICFP on the ICMM. The simulation requires a cache of size 4 x M + k x B for
some constant k. Allocation and migration is managed using generational copying garbage collection, which
requires 2 X M words of cache to manage M live objects. The liveness of objects in the nursery can be assessed
without accessing main memory, because in a functional language older objects cannot refer to newer objects.
Copying collecton preserves the allocation ordering of objects, as is required for our analyses. Because two
objects that are in the same abstract block can be separated into adjacent blocks by the simulation, blocks are
loaded two-at-a-time, requiring 2 x M additional words of cache on the ICMM. An additional B words of read
cache are required to account for the space required by the control stack using an amortization argument,
and a constant number of blocks are required for the allocation of the program itself in memory.

piler. However, to ensure that objects are copied we will use
operation !a to indicate copying of a.

Merge Sort.

We now consider analyzing mergeSort in our cost model,
and in particular the code given in Figures 2 and 6. We
will not cover the definition of split because it is similar to
merge. We first analyze the merge.

THEOREM 3.2. For compact lists A and B, the evaluation
of merge(A,B) starting with any cache state will have cache
cost O (%) (n=|A| +|B|) and will return a compact list.

PrOOF. We consider the cache cost of going down the
recursion and then coming back up. Because A and B are
both compact, we need only put aside a constant number of
cache blocks to traverse each one (by definition). Recall that
in the cost model we have a nursery v that maintains both
live allocated values and place holders for stack frames in the
order they are created. In merge nothing is allocated from
one recursive call to the next (the cons cells are created on
the way back up the recursion) so only the stack frames are
placed in the nursery. After M recursive calls the nursery
will fill and blocks will have to be flushed to the memory u
(as described in Section 2). The merge will invoke at most
O(n/B) such flushes because only n frames are created. On
the way back up the recursion we will generate the cons
cells for the list and copy each of the keys (using the !).
Note that copying the keys is important so that the result
remains compact. The cons cells and copies of the keys will
be interleaved in the allocation order in the nursery and
flushed to memory once the nursery fills. Once again these
will be flushed in blocks of size B and hence there will be
at most O(n/B) such flushes. Furthermore the resulting list

will be compact because adjacent elements of the list will be
in the same block. []

We now consider mergeSort as a whole.

THEOREM 3.3. For a compact list A, the evaluation of
mergeSort (A) starting with any cache state will have cache
cost given by Equation 2 and will return a compact list.

PROOF. As with the array version, we consider the two
cases when the input fits in cache and when it does not.
The mergeSort routine never requires more than O(n) live
allocated data. Therefore, when kn < M for some (small)
constant k all allocated data fits in the nursery. Further-
more, because the input list is compact, for £'n < M the
input fits in the read cache (for some constant k'). There-
fore, the cache cost for mergeSort is at most the time to
flush O(n) items out of the allocation cache that it might
have contained at the start, and to load the read cache with
the input. This cache cost is bounded by O(n/B). When
the input does not fit in cache we have to pay for the merge
as analyzed above plus the recursive calls. This gives the
same recurrence as for the array version and hence solves to
the claimed result. [

Here we just outline the k-way mergeSort algorithm and
state the cost bounds, which are optimal for sorting. The
sort is similar to mergeSort but instead of splitting into two
parts recursively sorting each, it splits into k parts. A k-way
merge is then used to merge the parts. The k-way merge can
be implemented using a priority queue. The sort in ICFP
has the optimal bounds for sorting given by Equation 3.

Matrix Multiply.



1 datatype M = Leaf of int

2 | Node of M * M * M x M

3

4 fun mmult(Leaf a, Leaf b) = Leaf(a X b)

5 | mmult(N de(an,alg,agl,ag )

6 Node(bi1, bi2,b21,b22)) =

7 let

8 fun madd(Leaf a, Leaf b) = Leaf(a+b)
9 | madd(Node(ai1,ai2,a21,a22),

10 Node(bu,blz,bzl,bzg))

11 Node(madd(au,bu),ma d( 12,1)12),
12 madd(agl, b21) ,madd(azg, bzg))
13 in

14 Node(madd(mmult(ai1, b11),mmult(aiz, b21)),

15 madd
16 madd
17 madd
18 end

mmult(ai1, bi2),mmult(aiz, bao

)
)
)
)

mmult(azi, bi2),mmult (a2, bao

)

))s
)
)

—~

( (
mmult (a21 s bi1),mmult (azg, b1
( (

Figure 11: Matrix Multiply.

Our final example is matrix multiply. The code is shown
in figure 11 (we have left out checks for matching sizes).
This is a block recursive matrix multiply with the matrix
laid out in a tree. We define compactness with respect to a
preorder traversal of this tree. We therefore say the matrix
is compact if traversing in this order can be done with cache
cost O(n?/B) for an n x n matrix (n? leaves). We note that
if we generate a matrix in a preorder traversal allocating the
leaves along the way, the resulting matrix will be compact.
Also, every recursive sub-matrix is itself compact.

THEOREM 3.4. For compact n X n matrices A and B, the
evaluation of mmult(A,B) starting with any cache state will
have cache cost given by Equation 1 and will return a com-
pact matrix as a result.

PROOF. Matrix addition has cache cost O(n?/B) and gen-
erates a compact result because we traverse the two input
matrices in preorder traversal and we generate the output in
the same order. Because the live data is never larger than
O(n?), the problem will fit in cache for n*> < M/c for some
constant ¢. Once it fits in cache the cost is O(n?/B) needed
to load the input matrices and write out the result. When
it does not fit in cache we have to do 8 recursive calls and
four calls to matrix addition. This gives a recurrence,

N Q) +0(%) n?>M/e
Q(n) { 0(";)

which solves to O ( \ﬁ)

otherwise

. The output is compact because

each of the four calls to madd in mmult allocate new results in
preorder with respect to the submatrices they generate, and
the four calls are made in preorder. Therefore, the overall
matrix returned is allocated in preorder. []

4. CONCLUSION

The present work extends the methodology of Blelloch and
Greiner [4, 13] to account for the cache complexity of algo-
rithms stated in terms of two parameters, the cache block

size and the number of cache blocks. Analyses are carried
out in terms of the semantics of ICFP given in Section 2, and
are transferred to the Ideal Cache Model by a provable im-
plementation, also sketched in Section 2. The essence of the
idea is that conventional copying garbage collection can be
deployed to achieve cache-efficient algorithms without sac-
rificing abstraction by resorting to manual allocation and
cacheing of data objects. Using this approach, we are able
to express algorithms in a high-level functional style, ana-
lyze them using a model that captures the idea of a fixed
size read and allocation stack, without exposing the imple-
mentation details, and still match the asymptotic bounds
for the ideal cache model achieved using low-level impera-
tive techniques including explicit memory management. For
sorting, the bounds are optimal.

One direction for further research is to integrate (deter-
ministic) parallelism with the present work. Based on pre-
vious work [4, 13] we expect that the evaluation semantics
given here will provide a good foundation for specifying par-
allel as well as sequential complexity. One complication is
that the explicit consideration of storage considerations in
the cost model given here would have to take account of
the interaction among parallel threads. The amortization
arguments would also have to be reconsidered to account
for parallelism. Finally, although we are able to generate an
optimal cache-aware sorting algorithm, it is unclear whether
it is possible to generate an optimal cache-oblivious sorting
algorithm in our model.
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