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Abstract 

We take a significant step toward unifying the 
synchronous, semi-synchronous, and asynchronous 
message-passing models of distributed computation. 
The key idea is the concept of a pseudosphere, a new 
combinatorial structure in which each process from 
a set of processes is independently assigned a value 
from a set of values. Pseudospheres have a number 
of nice combinatorial properties, but their principal 
interest lies in the observation that the behavior of 
protocols in the three models can be characterized 
as simple unions of pseudospheres, where the exact 
structure of these unions is determined by the timing 
properties of the model. We use this pseudosphere 
construction to derive new and remarkably succinct 
proofs of bounds on consensus and k-set agreement 
in the asynchronous and synchronous models, as well 
as the first lower bound on wait-free k-set agreement 
in the semi-synchronous model. 

1 Introduction 

The field of distributed computing embraces a bewil- 
dering variety of models [LL90, Gaf98]. A fundamen- 
tal dimension along which these models differ is the 
degree to which process activity is synchronized. At 
one end of the spectrum is the synchronous model in 
which computation proceeds in a sequence of rounds. 
In each round, a process sends messages to the other 
processes, receives the messages sent to it by the other 
processes in that round, and changes state. All pro- 
cesses take steps at exactly the sanle rate, and all 
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messages are delivered with exactly the same message 
delivery time. At the other end is the asynchronous 
model in which there is no bound on the anrount of 
time that can elapse between process steps, and there 
is no bound on the time it can take for a message to 
be delivered. Between these extremes is the semi- 
synchronous model in which process step times and 
message delivery times can vary, but are bounded be- 
tween constant upper and lower bounds. Proving a 
lower bound in any of these models requires a deep 
understanding of the global states that can arise in 
the course of a protocol’s execution, and of how these 
global states are related. 

The notion of indistinguishability or similar- 
ity [FLP85, HM90] has played a fundamental role 
in nearly every lower bound in distributed computa- 
tion. Two global states are considered indistinguish- 
able if one process has the same local state in both, 
and therefore cannot distinguish between them. The 
graph-theoretic representation of similarity, in which 
two global states are joined by an edge labeled with 
a process P if the global states are indistinguishable 
to P, has proven to be immensely powerful. 

While the classical notion of similarity captures 
the notion of two states being indistinguishable to 
a single process, higher degrees of similarity have 
proved essential for understanding problems such 
as k-set agreement [ChaSl] and renaming [ABND+87, 
ABND+SO]. For example, it may matter that a pair 
of global states are indistinguishable to two processes, 
to three processes, and so on. To capture these higher 
degrees of similarity it is convenient to represent the 
global state of a system of n + 1 processes with the n- 
dimensional analog of a triangle, called a simplex, 
where each vertex of the simplex representing a global 
state is labeled with the local states of processes in 
this global state. The set of all global states at the end 
of a protocol represented in this way forms a simpli- 
cial complex, sometimes called the protocol complex. 
The degree of similarity between two global states is 
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Figure 1: Construction of a three-process binary 
pseudosphere. 

represented geometrically by the number of vertices 
the corresponding simplexes have in common: two 
global states similar to one process share one ver- 
tex (namely that vertex labeled with the local state 
of this process having the same local state in both 
global states), states similar to two processes share 
two vertices, states similar to three processes share 
three vertices, and so on. 

In this paper, we take a significant step toward uni- 
fying the synchronous, semi-synchronous, and asyn- 
chronous models of computation. The key, unifying 
idea in this paper is the concept of a pseudosphere, a 
simplicial complex in which each process from a set 
of processes is independently assigned a value from a 
set of values. Pseudospheres have a number of nice 
combinatorial properties, but their principal interest 
lies in the observation that protocol complexes in the 
three models can be characterized as simple unions 
of pseudospheres, where the exact structure of these 
unions is determined by the timing properties of the 
model. Because of the simple combinatorial proper- 
ties of pseudospheres, reasoning about these unions 
can be accomplished by straightforward combinato- 
rial arguments. We use this pseudosphere construc- 
tion to derive new and remarkably succinct proofs of 
bounds on consensus [PSL80, Fis83] and k-set agree- 
ment [ChaSl] in the asynchronous and synchronous 
models, as well as the first lower bound on wait-free k- 
set agreement in the semi-synchronous model. 

A pseudosphere can be defined very simply. Start 
with an n-dimensional simplex where each vertex is 
labeled with a process id, and choose a finite set of 
values taken from an arbitrary domain. The pseudo- 
sphere is the complex constructed by taking multi- 
ple copies of this simplex and independently labeling 
each vertex with a value from the domain. For exam- 
ple, Figure 1 shows how to construct a pseudosphere 
by independently assigning binary values to a set of 
three processes. The left-hand figure shows a trian- 
gle labeled with process ids P, Q, and R. The central 
figure shows an intermediate stage where two copies 
of the triangle are each labeled with zeros and ones. 

The right-hand figure shows the complete construc- 
tion, where copies of the triangle are labeled with all 
combinations of zeros and ones. We can just as easily 
assign values from a set larger than (0, l}, although 
the result is harder to illustrate. We call this con- 
struct a pseudosphere because it is easily shown that 
the result of assigning binary values to n + 1 pro- 
cesses is topologically equivalent to an n-dimensional 
sphere. 

The collection of initial global states for consen- 
sus or k-set agreement clearly forms a pseudosphere 
whose vertices are labeled with input values. For ex- 
ample, the right-hand figure in Figure 1 is the in- 
put complex for three-process consensus. The basic 
insight underlying the work presented in this paper 
is that protocol complexes in the models of inter- 
est have natural representations as unions of pseu- 
dospheres, except that the vertices are labeled with 
timing and failure information instead of input values. 
Reasoning about these protocol complexes reduces to 
the purely combinatorial problem of reasoning about 
unions of pseudospheres, and indeed the formal ma- 
nipulations needed to derive our results are remark- 
ably similar in all three models. In each model, we de- 
fine a “round” structure appropriate for that model, 
and express the one-round executions as the union of 
pseudospheres. An r-round execution is constructed 
by inductively replacing each simplex in the single- 
round execution with the union of pseudospheres pro- 
duced by the (r - 1)-round protocol. The protocol 
complex produced by this iterative construction rep- 
resents only a subset of the global states reachable in 
the model, but this set is large enough to prove the 
desired results for consensus, k-set agreement, and so 
on. 

2 Related Work 

Of course, we are not the first to propose itera- 
tive constructions representing the global states at 
the end of a protocol. As one example, Borowsky 
and Gafni [BG93] state a construction for the asyn- 
chronous model, and while the intuition behind the 
construction is compelling, it is not easy to write 
down a formal description of that construction. In 
a later paper [BG97], they define an iterated immedi- 
ate snapshot model that has a recursive structure and 
has proven to be useful [HS97]. As another example, 
Chaudhuri, Herlihy, Lynch, and Tuttle [CHLT93] give 
an inductive construction for the synchronous model, 
and while the resulting “Bermuda Triangle” is visu- 
ally appealing and an elegant combination of proof 
techniques from the literature, there is a fair amount 
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of machinery needed in the formal description of the 
construction. In this sense, the formal presentation of 
our construction is substantially more succinct than 
these constructions. 

We are also not the first to attempt to unify syn- 
chronous and asynchronous models of computation. 
All such attempts, including ours, restrict atten- 
tion to a subset of well-behaved, round-based exe- 
cutions. There are a number of ways one could con- 
sider unifying models. One approach is to translate 
algorithms written for a synchronous model into an 
asynchronous model. This was the approach used 
by Awerbuch [Awe851 in the message-passing model 
when he constructed his synchronizer and showed 
how (in the absence of faults) synchronous protocols 
can be run in asynchronous systems in the presence 
of a synchronizer. This was also the approach used by 
Gafni [Gaf98] in the shared-memory model when he 
described a round-by-round failure detector and how 
these detectors can be used to run in an asynchronous 
model an algorithm written for a synchronous model. 
Another approach, which is basically our approach, 
is to identify a set of concepts that can be used to de- 
scribe or reason about multiple models. This was the 
direction followed by Moses and Rajsbauni [MR98] 
when they showed how the concepts of conununica- 
tion layering and mobile faults can be used to reason 
in a uniform way about the synchronous and asyn- 
chronous models, and news of their results motivated 
us to work out our own direction. The translation ap- 
proach assumes that the synchronous model is an eas- 
ier model in which to work. This assumption seems 
justified for algorithm design, but lower bounds are 
typically easier to derive in the asynchronous model. 
Our pseudosphere construction illustrates this dis- 
tinction in a striking way, since the asynchronous con- 
struction has a much simpler combinatorial structure. 

We are the first, however, to unify the syn- 
chronous, semi-synchronous, and asynchronous mod- 
els of message-passing computation with a single 
concept, namely the pseudosphere. Gafni [Gaf98] 
does his most formal work in a synchronous and 
asynchronous shared-memory model, and while he 
sketches how his ideas might be extended to a semi- 
synchronous message-passing model, this extension 
requires changing the nature of the failure detector. 
Moses and Rajsbauni [MR98] focus on synchronous 
and asynchronous models. Their stated results apply 
to consensus whereas our results apply to both con- 
sensus and k-set agreement, although they consider 
other issues as well. 

One indication that our construction is fundamen- 
tal is that the pseudosphere constructions originally 
developed to unify the synchronous and asynchronous 

models extended cleanly to the semi-synchronous 
model. We consider this significant. Although 
variants of the semi-synchronous model have been 
around for a long time, we are aware of only one 
substantial lower bound in this model: the con- 
sensus bound of Attiya, Dwork, Lynch, and Stock- 
rneyer [ADLS94]. The absence of other results sug- 
gests that it is very difficult to prove significant lower 
bounds in this model, and that results and proof 
techniques from other models do not translate into 
the semi-synchronous model as easily as one might 
hope. With our pseudosphere construction, however, 
we can prove the first lower bound for wait-free /c-set 
agreement in this model. Another indication is that 
our construction can be used to simplify the proof of 
known results. For example, our protocol complex 
construction is significantly more succinct than the 
construction used by Herlihy and Shavit [HS93] in 
their asynchronous computability theorem, and our 
construction could be used to simplify the proof of one 
direction of that theorem. And, as mentioned, the 
formal analysis underlying our construction can be 
presented considerably more succinctly than the con- 
structions used by Borowsky and Gafni [BG93] and 
by Chaudhuri, Herlihy, Lynch, and Tuttle [CHLT93]. 

Our constructions are guided by concepts and the- 
orems taken from elementary combinatorial topology. 
As described above, we believe our results are in- 
teresting in their own right, even to readers unfa- 
miliar with or uninterested in topological techniques. 
For readers interested in applications of topology to 
distributed computing, however, our constructions 
should be even more interesting. Our approach here 
replaces the existential arguments used by Herlihy 
and Shavit [HS93] to analyze protocol complexes in 
the asynchronous model with a constructive, induc- 
tive analysis. Although the existential analysis en- 
compasses the entire complex, and ours is restricted 
to a well-structured subcomplex, we feel that the con- 
cise and constructive nature of our treatment makes a 
contribution, both in terms of simplicity and brevity, 
and in terms of intuitive appeal. Like us, Chaud- 
huri, Herlihy, Lynch, and Tuttle [CHLT93] explicitly 
construct a subset of the protocol complex in the 
synchronous model. It is not clear, however, how 
to translate that construction into the asynchronous 
model. 

3 Basic Topology 

A vertex v’ is a point in a high-dimensional Euclidean 
space. Vertexes ce, . . . ,& are afinely independent 
ifvi-co,..., V;, - Ui, are linearly independent. An n- 
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dimensional simplex (or n-simplex) S” = ($0, . . . , g7,) 
is the convex hull of a set of n + 1 afhnely-independent 
vertexes. For example, a O-simplex is a vertex, a l- 
simplex a line segment, a 2-simplex a solid triangle, 
and a 3-simplex a solid tetrahedron. Where conve- 
nient, we use superscripts to indicate dimensions of 
simplexes. We say that the s’o, . . . , si, span 5”“. By 
convention, a simplex of dimension d < 0 is an empty 
simplex. Simplex S”” is a (proper) face of T7’ if the 
vertexes of S”” are a (proper) subset of the vertexes 
of T. 

A simplicial complex (or complex) is a set of sim- 
plexes closed under containment and intersection. 
The dimension of a complex is the highest dimension 
of any of its simplexes. L is a subcomplex of K if every 
simplex of C is a simplex of K. A map p : K --+ L 
carrying vertexes to vertexes is simplicial if it also 
induces a map of simplexes to simplexes. Two com- 
plexes K and .C %e isomorphic, written I(: 2 J$ if 
there is a surjective and one-to-one simplicial map 
1: K + L. 

Informally, a complex is k-connected if it has no 
holes in dimensions k or less. More precisely, 

Definition 1: A complex K is k-connected if every 
continuous map of the k-sphere to K can be extended 
to a continuous map of the (k + I)-disk [Spa66, p. 
511. By convention, a complex is (-l)-connected iff 
it is nonempty, and every complex is k-connected for 
k < -1. 

This definition says that a complex is O-connected 
if it is connected in the graph-theoretic sense. The 
definition of k-connectivity may appear difficult to 
use, but fortunately we can do all our reasoning in 
a combinatorial way, using the following elementary 
consequence of the Mayer-Vietoris sequence [Mun84, 
p. 1421. 

Theorem 2: If K: and L are complexes such that K 
and l are k-connected, and K n .C is nonempty 
and (k - I)-connected, then K U ,C is k-connected. 

This theorem allows us to reason about a complex’s 
connectivity in terms of the connectivity of its com- 
ponents. 

4 Model 

A set of n + 1 sequential processes communicate by 
sending messages to one another. At any point, a 
process may crash: it stops and sends no more mes- 
sages. There is a bound f on the number of processes 
that can fail. In this paper, we consider three dis- 
tinct message-passing models. In the asynchronous 

model, there is no bound on process speed or mes- 
sage delivery time. In the synchronous model, pro- 
cesses take steps at the same rate, and messages 
take the same amount of time to be delivered. In 
the semi-synchronous model, the time between two 
consecutive steps of a process is at least cl and at 
most ~2, and the time to deliver a message is at 
most d, where cl, cs, and d are known constants. 
(The synchronous and asynchronous models are lim- 
iting cases of the semi-synchronous model.) In all 
three models, message delivery is reliable and FIFO. 

Each process starts with an input value taken from 
a set V, and then executes a deterministic protocol 
in which it repeatedly receives one or more messages, 
changes its local state, and sends one or more mes- 
sages. After a finite number of steps, each process 
chooses a decision value and halts. At any instant, a 
process’s local state is given by the input value and 
the the sequence of messages received so far. A pro- 
tocol is uniquely determined by its message function 
and its decision function. The message function de- 
termines which messages a process should send in 
a given state, and the decision function determines 
which output value a process should choose in a given 
state (if any). A protocol is a fu&injormation pro- 
tocol [Had83, FL82, PSL80] if the message function 
causes each process to send its entire local state when 
it sends a message. We can assume without loss of 
generality that all protocols P we consider are full- 
information protocols [Had83, FL82, PSL80, DM90]. 

In the k-set agreement task [ChaSl], processes are 
required to (1) choose a decision value after a fi- 
nite number of steps, (2) choose as their decision 
values some process’s input value, and (3) collec- 
tively choose no more than k distinct decision values. 
When k = 1, this problem is usually called consen- 
sus [PSL80, Fis83]. 

We now show how to apply concepts from com- 
binatorial topology to this model. An initial local 
state of process P is modeled as a vertex v’ = (P, w) 
labeled with P’s process id and initial value o. An 
initial global state is modeled as an n-simplex S’” = 
((PO, ve) , . . . , (P,,, u,,)), where the Pi are distinct. We 
use id.s(STE) to denote the set of process ids associated 
with S’“, and vaZs(S’“) the set of values. The set of all 
possible initial global states forms a complex, called 
the input complex. 

Any protocol has an associated protocol complex P, 

defined as follows. Each vertex is labeled with a pro- 
cess id and a possible local state for that process. A 
set of vertexes (PO, ve> , . . . , (Pd, wd) spans a simplex 
of P if and only if there is some protocol execution 
in which PO, . _ . , Pd finish the protocol with respective 
local states we,. . . , ud. Each simplex thus corresponds 
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Figure 2: Pseudospheres $(S’; {O,l}) and 
W’; {O,L2)). 

to an equivalence class of executions that “look the 
same” to the processes at its vertexes. The protocol 
complex P depends both on the protocol and on the 
timing and failure characteristics of the model. 

We use P(S”‘) to denote the subcomplex of P cor- 
responding to executions in which only the processes 
in i&(S”“) participate (the rest fail before sending 
any messages). If m < n - f, then there are no such 
executions, and P(S”) is empty. More generally, if Z 
is a subcomplex of the input complex, then we de- 
fine P(Z) to be the union of P(S”) for all 9’” in 1. 
A protocol solves Ic-set agreement if the protocol’s 
decision map 6 carries vertexes of P to values in V 
such that if 3 E P(9) then a($) E wals(S’), and 
such that 6 maps the vertices of any given simplex 
in P(P) to at most Ic distinct values. 

5 Pseudospheres 

Informally, a pseudosphere is a combinatorial struc- 
ture in which each process from a set of processes is 
independently assigned a value from a set of values. 

Definition 3: Let 9” = (&, _ _ , .&) be a simplex 
andUe,... , U,,, be a sequence of finite sets. The pseu- 
dosphere Q(S’“; Ue, . . . , U,,,) is the following complex. 
Each vertex is a pair (&, ui), where Z’i is a vertex 
of S”” and ui E Vi. Vertexes (&,uiO), . . . , (&!,uie) 
span a simplex of $((s”“; Ue, . . . , U,,,) if and only if 
the Zi are distinct. A pseudosphere in which all Vi 
equal to U is simply written $(S”“; U). 

We call this construct a pseudosphere because if S’” 
is an n-dimensional simplex, then +(S’“; (0, 1)) is 
homeomorphic to an n-dimensional sphere. Pseudo- 
spheres are important because every complex consid- 
ered here is either a pseudosphere or the union of 
pseudospheres. Because any process can start with 
any input from V, the input complex to k-set agree- 
ment is the pseudosphere $(P’“; V), where P” is a 

simplex whose vertexes are labeled with the n + 1 
distinct process ids. 

Lemma 4: Pseudospheres satisfy the following sim- 
ple combinatorial properties. 

If U is a singleton set, then Q(S’“, U) 2 S”“. 

Let S”” = ($0,. . . , z,,), and let S”‘-’ = 
($0, . . . ) s’i, . . . S’nJ, where circumflex denotes 
omission. If Vi = 8, then 

7)(S”“; uo,. . . , U,,,) z 

$(S”‘-l; UO, . . . , iFi,. 1. 7 U7,$). 

If Se f’ Sr = (&, . . . ,3l), then 

~(so;Vo,...,U,,,)n~(Sl;Vo,...,V,,~~ r 

~(sonsl;uonVo ,..-, w-m)- 

The next theorem shows how to exploit the nice 
combinatorial properties of pseudospheres. It states 
that if applying a protocol to a single simplex pre- 
serves connectivity below some dimension, then ap- 
plying that protocol to any input pseudosphere also 
preserves that degree of connectivity. If we view a 
protocol complex as a map from siniplexes to coni- 
plexes, then it is actually a theorem in topology, and 
so it applies to any model of computation. 

Theorem 5: Let P be a protocol, S”” be a sinr- 
dex, and c 2 0 be a constant. If P(9) 
is (! - c - l)-connected for every face SL of S”“, 
then P($(S”“; Uo, . _ . , Unt)) is (m - c - I)-connected 
for every sequence UO, _ . . , U,,, of nonempty sets. 

A consequence of this theorem is that any n- 
dimensional pseudosphere is (n - l)-connected (just 
let P be the identity map, a trivial protocol in which 
each process halts immediately): 

Corollary 6: If UO, . . . , U,,, are all nonempty, 
then $(S”“; UO, _ . . , U,,,) is (m - l)-connected. 

Naively, one might think that S”” is always m- 
connected, but note that although the empty simplex 
has dimension -1, it is not (-l)-connected. We can 
generalize Theorem 5 to multiple pseudospheres. 

Theorem 7: Let P be a protocol satisfying the pre- 
condition of Theorem 5, and let Ao, . . . , Al be a se- 
quence of finite sets. If nizoAi # 8 then 

P (($W;Al) is (m - c - I)-connected. 
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Letting P be the identity map again, the trivial 
protocol in which each process decides its input, we 
have: 

Corollary 8: If Ao, . . . , At is a sequence of finite sets 
such that f~!=~Ai # 0 then 

; $(S”“; Ai) is (m - I)-connected. 
i=O 

Our results about k-set agreement are based on 
the corollary to the following theorem, proved using 
Sperner’s Lemma [Lef49, Lemma 5.51. 

Theorem 9: Let V = (~0,. . . , vk} be a set of k + 1 
possible input values, let PTL be a simplex with pro- 
cess ids PO, . . . , P,,, and P be a protocol with input 
complex $(P’%; V). If P has the property that for ev 
ery n-dimensional pseudosphere $(P’“; U), where U 
is a nonempty subset of V, P($(PrL;U)) is (k - l)- 
connected, then P cannot solve k-set agreement. 

Corollary 10: If P(S”‘) is (m - (n - k) - l)- 
connected for all m with n - f 5 m 5 n, then P 
cannot solve k-set agreement in the presence off fail- 
ures. 

6 Asynchronous Computation 

In this section, we define the r-round asynchronous 
protocol complex d.(Y). We restrict attention to 
global states that arise during a set of well-behaved, 
round-based executions of the full-information proto- 
col defined as follows. In each round, each process 
sends its state to every other process, receives the 
messages delivered to it during that round, and un- 
dergoes a state transition. Because the model is asyn- 
chronous, a message m sent from P to Q in round r 
may not be delivered in that round. When m is de- 
livered, however, all previously undelivered messages 
sent from P to Q in rounds 1 through r are deliv- 
ered at the same time. This means that messages are 
delivered in FIFO order. In each round, each pro- 
cess receives at least n - f + 1 messages sent during 
that round, including its message to itself. This is the 
greatest number of messages a process can count on 
receiving when up to f processes can fail. This set 
of executions looks something like a message-passing 
analog of the executions arising in the iterated inr- 
mediate snapshot model defined by Borowsky and 
Gafni [BG97] for shared memory. 

Let dl(S”) be the protocol complex of all one- 
round, f-faulty, (n + l)-process protocol executions 
with input simplex S’“. Let P be the set of all n + 1 

processes. For any set U, let 2” denote the power set 
of U, and let 2: denote the subset of 2” consisting of 
sets of size at least k. Our first result says that the 
one-round protocol complex is a single pseudosphere: 

Lemma 11: dl(S’“) 2 Q(S’“; 2~~~po’, . . . , 2rIjp”‘). 

Proof: Each vertex in A1 (S7’) has the form (Pi, M), 
where Pi E P and ill is the set of messages deliv- 
ered to Pi during the round. Every process receives 
a message from itself, and also horn at least n - f 
other processes (since at most f processes can fail). 
Since each process can hear horn an independently 
assigned set of at least n - f other processes, these 
sets induce a pseudosphere on S’“. Define the vertex 
map 

L : A1 (S’“) + $(S’“; 2;:jpo}, . . . , 2;:jp=}) 

by L(Pi, 111) = (i?i, i&(M) - {Pi}). It is easy to see 
that L is sirnplicial, one-to-one, and onto. ci 

Let d’(P) be the r-round protocol complex de- 
fined by induction to be the result of taking the 
union of AT-l(T) for every simplex T in A1(S77z). 
(Recall that for 5’“’ c S’“, d1(S7”) is the subcorn- 
plex of dl(S’“) f o executions in which only the pro- 
cesses in ids(S’“) participate, and the remaining pro- 
cesses fail before sending any messages). We can 
prove that the one-round protocol complex Al(P) 
is (m - (n - f) - 1)-connected for all n > m 2 0, 
and we can iterate this argument to prove that the T- 
round complex is also highly connected: 

Lemma 12: dr(Snz) is (m - (n - f) - 1)-connected. 

It follows that the asynchronous protocol complex 
is (f - l)-connected (when m = n), and thus we can 
prove the impossibility of asynchronous k-set agree- 
ment [BG93, HS93, SZ93]: 

Corollary 13: There is no asynchronous f-resilient 
k-set agreement protocol for k 5 f. 

7 Synchronous Computation 

We now define the r-round synchronous protocol 
complex ST(S71z). Here too, we consider only a sub- 
set of all possible executions: executions in which no 
more than k processes fail in any round. Informally, 
we will show that the one-round protocol complex is 
the union of pseudospheres, where each pseudosphere 
corresponds to the set of executions in which a fixed 
set of processes fail. For example, Figure 3 illustrates 
the possible executions of a one-round protocol for 
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three processes, P, Q, and R, starting from a fixed 
input simplex, in which no more than one process 
fails. Here, each vertex is labeled with a process, 
followed by the processes from which it has received 
messages. The figure on the left represents the execu- 
tion in which in which no processes fail: this is a (de- 
generate) pseudosphere in which each process receives 
the same set of messages. The figure in the middle 
represents the executions in which R alone fails. This 
complex is a pseudosphere: P and Q independently 
do or do not receive a message from R. The figure 
on the right represents the entire one-faulty protocol 
complex. It is the union of the failure-free pseudo- 
sphere with the three single-failure pseudospheres. 

Let S1 (S”) be the complex of one-round executions 
of an (n + l)-process protocol with input simplex S’” 
in which at most Ic processes fail. It is the union 
of complexes S&(9’) of one-round executions start- 
ing from S’” in which exactly the processes in K fail. 
Given a set K of process ids, let S’\K be the face 
of S” labeled with the process ids not in K. Our 
next result says tha.t Sk(S”) is a pseudosphere, which 
means that S1(S7,) is a union of pseudospheres: 

Lemma 14: Sk(Y) Z $J(S’~\K; 2K). 

Proof: Each vertex in S&(S”) has the form (Pi, A4), 
where Pi E ids(S’“\K) and M is a set of messages 
received from other processes in the round. Every 
nonfaulty process receives a message from every other 
nonfaulty process, and also from some subset of faulty 
processes. Define the vertex map 

L : sj&97y --f qqs’“\K; 27 

by L(Pi, M) = (Zi, K - ids(M)). The vertex map L is 
simplicial, one-to-one, and onto. q 

Note the similarity between the two models: the 
one-round complex is a single pseudosphere in the 
asynchronous model (Lemma 11) and a union of pseu- 
dospheres in the synchronous model (Lemma 14). To 

compute the connectivity of this union using Theo- 
rem 2, we need to understand the intersections. The 
next lemma shows that these intersections have a sini- 
ple structure: they are themselves the union of pseu- 
dospheres. Order the process sets lexicographically: 
the empty set first, followed by singleton sets, fol- 
lowed by two-element sets, and so on. Let Ko, . . . , Kt 
be the sequence of sets of process ids less than or equal 
to Ke, listed in lexicographic order. 

Lemma 15: 

t-1 

u Skz (9) n Sk, (S”) E u q!4S’“\K1; 2K’-{PJ). 
i=o PtKc 

Lemma 16: S1(SnL) is (m - (n - Ic) - 1)-connected 
if n 2 2k. 

Let S’(S”) be the protocol complex of r-round syn- 
chronous executions of an (n +- l)-process protocol 
with input simplex S’” where no more than than k 
processes fail in each round. We can decompose this 
complex as follows. Let Ko, . . . , Kt be the sequence 
of sets of k or fewer process ids in lexicographic or- 
der. Recall that S&(,9%) = $(S’“\Ki; 2Ki) is the 
complex of one-round executions in which exactly the 
processes in Ki fail. The set of r-round executions 
in which exactly the processes in Ki fail in the first 
round can be written as SL-l(Ski (SE.)), where Sl-’ 
is the complex for an (T - l)-round, (f - IKil)- 
faulty, (n - 1 Ki I+ 1)-p recess full-information protocol. 
The S1-i are considered distinct protocols because 
the Sk.(STL) have varying dimensions. Taking the 
union over all the Ki, we have 

ST(Y) = (J s;-l(s~i (&Y)). 
i=O 

We can prove an r-round analog of Lemma 15, which 
yields the following r-round analog of Lemma 16. 

Figure 3: Construction of a one-round three-process protocol complex. 
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Lemma 17: Sr(S7”) is (m - (n - k) - l)-connected 
ifn 2 rk+k. 

The connectivity of this protocol complex im- 
plies the lower bound for synchronous k-set agree- 
ment [CHLT93]: 

Theorem 18: If n > f + k, then any synchronous f- 
resilient k-set agreement protocol requires [f/kJ + 1 
rounds. If n < f + k, then any synchronous f- 
resilient k-set agreement protocol requires Lf/kJ 
rounds. 

8 Semi-Synchronous Computa- 
tion 

Finally, we define the r-round semi-synchronous pro- 
tocol complex M’(S”). In this model, the time be- 
tween two consecutive steps of a process is at least Cr 
and at most c2, and the time to deliver a message is at 
most d. The values cl, ~2, and dare known constants, 
and we define C = ~/cl. 

Once again, we restrict attention to round- 
structured executions defined as follows. Each round 
takes exactly time d. All messages sent during a 
round are delivered at the very end of that round 
(at multiples of time d). All processes take steps 
in lockstep as quickly as possible (at multiples of 
time cl). The interval between process steps is called 
a microround, and there are p = [d/cl] microrounds 
per round. Each message is labeled with the mi- 
croround in which it was sent. A process P,ls view 
of a failure pattern at the end of a round is a se- 
quence (PO, . . . , P,J, where pj is the microround of 
the last message received from Pj (or 0 if no message 
was received from Pj). 

Consider a set K of processes, and consider all 
single-round executions in which K is the set of fail- 
ing processes. A failure pattern for K is a function F 
mapping each process Pj E K to the microround nj 
in which it fails. At the end of the round, there are 
a number of views consistent with F, since the last 
message received by Pi from a process Pj failing in 
microround nLj will be sent either in microround pj 
or nj - 1. We define [F] to be the set of possible 
views (PO,. . . , p,J produced by F: 

pi = 
{ 

F(Pi) - 1 or F(Pi) if Pi E K 
P otherwise 

We define [F t j] to be the subset of [F] in 
which Pj’s last message is delivered in microround pj 
(and not nj - 1). If F is a failure pattern for K, 

and j E K, then [F t j] is defined to be the set of 
views (PO,. . . , ,LL,~>, where 

{ 

F(Pi) - 1 or F(P;) if Pi E K - {j} 
Pi = F(Pi) ifi=j 

P otherwise. 

We order the failure patterns for K in reverse lexi- 
cographical order: the first pattern fails all processes 
in K at microround /1, and the last at 0. 

Let M1(S7’) be the complex of one-round execu- 
tions of an (n + l)-process protocol with input sim- 
plex S’” in which at most k processes fail. It is 
the union of complexes Mk,F(S71) denoting proto- 
col complex of one-round executions starting from S’” 
in which the processes in K fail with pattern F. The 
next result says that Mk,F(S71) is a pseudosphere, so 
the one-round protocol complex is a union of pseudo- 
spheres: 

Lemma 19: Mk,F (S”) = $(S7”\K; [F]). 

Proof: Each vertex in JV~,~(P) has the 
form (Pi, M), where Pi E i&(Sn\K) and M is a set of 
messages received from other processes in the round. 
This set contains a message from every nonfaulty pro- 
cess in every microround, and a message from every 
faulty process in some (possibly empty) prefix of mi- 
crorounds. Each message is labeled with the micro- 
round in which it was sent. Let L map each vertex TJ 
of Mk,F(S7’) to the vertex 2)’ of +(S”\K; [F]) where 
the j-th component of the view labeling V’ is the mi- 
croround of the last message from Pj in the set of 
messages labeling w. This is an isomorphism. 0 

Once again, notice the similarity among the mod- 
els (Lemmas 11, 14, and 19). In each case, the 
one-round complex is the union of pseudospheres, 
where the structure of the union reflects the tim- 
ing and failure properties of the model. The pseu- 
dospheres +(S’“\K; [F]) forming the one-round conr- 
plex Ml(Y) are lexicographically ordered by the 
ordering on process sets K and the ordering on 
failure patterns F, ordering first by K and then 
by F. Let $(S’“\Ko; [Fo]), . . . , $(S’“\Ke; [Fe]) be 

the sequence of pseudospheres less than or equal 
to $(SL\Ke;[Ft]), listed in this order. Let K: = 
&,’ $(S’\Ki, [Fi]) and L = $(S’“\Ke; [Ft]). 

Lemma 20: K: n ,C = UjtKp $(S”\Ke; [Fe t j]). 

This result says that the intersections of the pseu- 
dospheres making up M1(S7’) are just the unions 
of other pseudospheres. This makes is possible to 
use Theorem 2 to compute the connectivity of their 
union M’(P). For the case of one-round proto- 
cols, we can prove that one particular union M1 (5”“) 
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of pseudospheres is (m - (n - k) - 1)-connected 
for all m 5 n when n 2 2k. Iterating this 
construction r times to define the r-round proto- 
col complex Mr(S”‘), using techniques analogous to 
those used in the synchronous model, we can prove 
that Mr(S”‘) is also highly-connected: 

Lemma 21: Mr(,Y’) is (m - (n - k) - I)-connected 
if n 2 (r + 1)k. 

So far, we have shown that if n 2 (r + l)k, the r- 
round protocol executions in which at at most k 
processes fail comprise a (k - 1)-connected complex, 
which cannot solve k-set agreement. These execu- 
tions take time rd, which is short. We now show how 
to “stretch” the final round of this protocol. 

In the wait-free case, we have n = (r + l)k + 1 
processes, and we are allowed a “failure budget” 
of f = (r + l)k. We have established that k-set agree- 
ment has no decision map on M’(Z). 

Let M:+‘(Z) denote the protocol complex at 
time (r + l)d - c for d > E > 0, which is just e time 
before the start of round r + 1. We claim that k- 
set agreement has no decision map on M:+l(Z). No 
process has received a message since time rd, so any 
decision it could make after waiting d - e without a 
message could have been made at time rd, implying 
that M’(Z) would a decision map, which it does not. 

Let M:‘(T) denote the protocol complex corre- 
sponding to the following executions: for each ver- 
tex v’ in M’(Z), where P = id($), fail all processes 
but P, and run P as slowly as possible, (taking steps 
at multiples of time cz). At time rd + Cd, P will time 
out, but at time rd + Cd - 6, this execution is indis- 
tinguishable to P tionr the corresponding execution 
in M:+l(Z), and therefore Mz,+‘(Z) has no decision 
map. We have just shown a worst-case lower bound 
of time 

to solve k-set agreement wait-free with f = n failures. 

Corollary 22: Any wait-free protocol for k-set 
agreement and n + 1 processes in the sem- 
synchronous model requires time [f] d + Cd. 

As noted above, this corollary is the first substan- 
tial new lower bound for the semi-synchronous model 
since the Attiya, Dwork, Lynch, and Stockmeyer con- 
sensus bound of 1993 [ADLS94]. We believe that this 
result can be extended to the f-resilient case, but this 
will require further work. 
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