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Abstract 

Most implementations of HTTP servers do not distinguish 
among requests to differeut pages. This has the implica- 
tiou that requests for popular pages have the tendency to 
overwhelm the requests for other pages. In addition, HTTP 
servers do not allow a site to specify policies for server re- 
source allocation. This paper presents a notion of wality 
of service that enables a site to customize how an HTTP 
server should respond to external requests by setting prior- 
ities among page requests and allocating server resources. 
It also describes a design and an implementation of a dis- 
tributed HTTP server, QoS Web Server, that enforces the 
quality of service constraints. The performance aualysis of 
the prototype server indicates that the server provides the 
desired quality of service with minimal overhead. 

1 Introduction 

With the advent of the WWW [13], there has been a fun- 
damental shift in the way information is exchanged among 
systems connected to the Internet. Three elements [26] of 
the WWW make this possible: a uniform naming mecha- 
nism (URL) for identifying resources, a protocol (HTTP) [2] 
for transferring information, aud the client-server based ar- 
chitecture [17]. A client such as a browser uses the URL 
of a resource to locate an HTTP server that provides the 
resource. It theu requests for services associated with the 
resource. The HTTP server performs the requested services 
(such as fetching a file or executing a program) and returns 
the results back to the client. 

The architecture of HTTP servers has been studied in 
great detail arid different variations of HTTP servers have 
beeu proposed. Much of the work has focussed on addressing 
the performance limiting behaviors [22] of HTTP servers. 
The research has, thus, focussed on developing techuiques 
(such as information caching [7, 20, 9, 231 and distribution, 
partitioning [16] of server load across clients and servers, and 
parallelization [15, 4, 14, 181 of HTTP servers over SMPs 
and workstations) for eliminating performance bottlenecks 
arising due to the lack of sufficieut CPU, disk, and network 

Permission to make digital or herd copies of ail or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the fti page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
PODC 98 Puerto Vallarta Mexico 
Copyright ACM 1998 O-89791-977-7/98/ 6...$5.00 

bandwidths as well as inherent limitations in the implemen- 
tation techniques of HTTP servers. 

While this has led to a deeper understanding of how 
HTTP servers operate when there are sufficient resources 
for various requests, not much work has been done in cases 
when HTTP servers are overwhelmed by the sheer volume 
of requests. The behavior of HTTP servers is quite unpre- 
dictable in such cases: they either completely bog down with 
pending requests resulting in unacceptable response times or 
start to drop requests indiscriminately. In addition, requests 
for popular pages have the tendency to overwhelm the re- 
quests for other, possibly more important, pages. Addition 
of uew resources (such as new machines) may not solve the 
problem as requests for the popular page may continue to 
overwhelm other requests. Further, most implementations 
of HTTP servers treat all requests uniformly. A site, thus, 
cannot assigu priorities to differeut pages or control how its 
server resources should be used. For instance, a site may 
wish to state that a set of specific pages (such as its main 
page or product page) be always available irrespective of the 
demands for other pages or that only 20% of its resources 
be allocated to anonymous ftp requests. 

One possible mechanism for ensuring that requests for 
a collection of pages are guaranteed some server resources 
is to physically separate pages from each other by hosting 
them on separate servers. The problem with this approach is 
that it is difficult to map allocation of resources to various 
requests statically. First, such allocation may not be pre- 
cise. Second, it may lead to inefficient utilization of server 
resources. Third, the grauularity of such partitioning can 
be applied only to large groups of pages. 

What is needed is a uotion of quality of service (&OS) 
that characterizes the behavior of au HTTP server given a 
set of requests. This paper presents such a notion for HTTP 
servers and describes a design and an implementation of an 
HTTP server, QoS Web Server, that euforces the proposed 
quality of service model. Specifically, this paper addresses 
the following: 

l What is an appropriate quality of service model for 
HTTP servers? The quality of service model presented 
in this paper is aimed at enabling a site to customize 
how an HTTP server should respond to external re- 
quests. This includes setting priorities among page 
requests, allocating different kinds (absolute and rel- 
ative) server resources to different requests, and speci- 
fying constraints such as “always” which indicate that 
a specific page (or groups of pages) should always be 
available. 
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. Hovr can such HTTP servers be anaplemented? An im- 
plementation requires creation of a resource model for 
determining various resources that exist at any given 
moment. The paper describes an algorithm for schedul- 
ing various requests given a resource model such that 
the QoS constraints are satisfied. 

. What is the perfownance behavior of such servers? We 
are interested in characterizing the execution behavior 
and responsiveness of HTTP servers. The results from 
the prototype server indicate that the implementation 
provides the desired quality of service with little over- 
head. 

This paper is organized as follows: Section 2 presents a qual- 
ity of service model for HTTP servers. Section 3 describes 
an abstract model of an HTTP server that implements this 
QoS model. It also includes the description of a distributed 
HTTP server that we have implemented. Section 4 presents 
an analysis of the performance behavior of the server. Sec- 
tion 5 contains a comparison of our work with related work. 
Finally, Section 6 summarizes the results and discusses fu- 
ture work. 

2 A Quality of Service Model for HTTP Servers 

The notion of quality of service has been addressed in 
great detail in the network and multi-media community [24]. 
Within a client-server framework, we can think of quality of 
service as a quantification of level of services that a server 
can guarantee its clients. Examples of typical parameters 
that servers have used to guarantee services are transmis- 
sion delay, network transfer rate, image resolution, video 
frame rate, and audio or video sequence skew, among oth- 
ers. Clearly, the quality of service parameters depend on the 
kind of services that a server provides. In this section, we 
develop a model of quality of service for HTTP servers. 

In traditional quality of service models, the emphasis 
has been on developing notions of service guarantees that 
a server can provide to its clients. For HTTP servers, we 
develop two views of the quality of service: client-based and 
server-based. III the client-based view, the HTTP server 
guarantees specific services to its clients. Examples of such 
quality of service are a server’s guarantees on lower bounds 
on its throughput (for instance, number of bytes/second) 
or upper bounds on response times for specific requests. In 
the server-based view, the quality of service pertains to im- 
plementing a site’s view of how it should provide certain 
services. This includes setting priorities among various re- 
quests and limits on server resource usages by various re- 
quests. We develop the QoS model by fist constructing a 
model of client requests. 

We model web pages as objects and requests to access 
pages as method invocations 011 pages. For instance, an 
invocation <page>. read (~1, ~2, . . . p,) denotes a request to 
read <page>. pl, pz, . . . and p, denotes parameters of the 
request. An HTTP server, therefore, can be thought of as a 
runtime system that manages executions of various method 
invocations. Traditional HTTP servers do not distinguish 
among different method invocations. Each method invoca- 
tion is serviced in the order it is received (unless it is dropped 
due to resource contentions [S]). The QoS model here allows 
one to specify priority relationships among method invoca- 
tions. Further, a site may specify a set of resource usage 

constraints for controlling the amount of server resources 
allocated to requests. 

Note that the constraints over different requests can be 
classified into two types: server-centric and client-centric. 
Server-centric constraints depend on the attributes of servers 
only. Such constraints do not distinguish among differ- 
ent requests to the same page. Hence, priority is estab- 
lished among requests for different pages. Client-centric 
constraints depend on the attributes of clients as well. Here, 
requests for the same page are distinguished and may be pro- 
vided different quality of service. Our focus in this paper is 
on server-centric constraints only. 

As part of the QoS model, we have devised a notation, 
which we call WebQoSL. WebQoSL supports specifications 
of the following: 

Allocation of specific and relative amount of server re- 
sources to specific page requests 

Availability of groups of pages at all time 

Time-based and link-relation-based allocation of re- 
sources 

Scalable allocation of resources 

Specification of guarantees about byte transfer and 
page request rates 

Below, we provide a brief overview of the notation infor- 
mally. We emphasize that WebQoSL is still evolving as we 
are still experimenting with the notation by implementing 
different kinds of quality of service models. 

2.1 Specification of server resources 

WebQoSL allows one to model server resources explicitly: 

. 

. 

. 

2.2 

Percentage of server resources 

Notation: Let the term <page>. server-resource de- 
note percent of total server resources associated with 
requests to <page>. 

Requests/second 

Notation: Let the term <page>. nmrequests denote 
number of requests per second associated with <page>. 

Number of bytes/second 

Notation: Let the term <page>. num_bytes denote num- 
ber of kilobytes of <page> transmitted per second. 

Specification of QoS constraints 

A site specifies how its server resources should be allocated 
by defining a number of resource constraints of the form: 

<condition> => <QoSConstraint> 

The constraint specifies that if <condition> is true, 
the <QoSConstraint> must hold. Booleau expression 
<condition> can include specific attributes (such as time, 
size, owner, client, time of last access and time of last mod- 
ification) of pages in constraint specifications. 

QoS constraints for various requests can be defined as 
absolute, relative, scalable and time-bound. Absolute con- 
straint are used to specify specific resources that are allo- 
cated to various requests. Relative constraints, on the other 
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hand, allow one to assign various priorities among different 
requests. Scalable constraints allow QoS specifications to 
scale as new server resources (such as new machines) are 
added. Time-bound constraints allow one to specify con 
straints that have temporal characteristics (e.g., if page p 
is accessed at time t, page q should be available until time 
t + At.) Due to lack of space, we will only describe absolute 
QoS constraints here. 

The absolute constraints are specified by allocating a spe- 
cific amount of resources to various requests or putting a 
lower or upper bound on resources. For instance, the con- 
straint 

<page>.server-resource = r 

specifies that <page> be allocated r units of resources. The 
constraint 

<page>.server-resource < r 

specifies that <page> be allocated at most r units of re- 
sources. The constraint 

<page>.server-resource > r 

specifies that <page> be allocated at least r units of re- 
sources. Another way of specifying a lower bound on re- 
source allocations is to assert that a page should be available 
at all times. 

<page>.available = always 

The language also supports specification of allocation of de- 
fault, equal and other scalable allocation of server resources. 

Example 2.1. (&OS Specijication). The following con- 
straints 

<www.commerce.com/free>.server~resource < 0.1 
<www.commerce.com/paid/full>.server-resource > 0.5 

are used to divide the server resources at wuw. commerce. corn 
into two: free that can be given up to 10% of the server 
resources, and full that should be given at least 50% of the 
resources. 

The uext example specifies that a particular group of 
pages should always be available: 

<wwu.commerce.com/index>.available = always 

n 

3 QoS Web Server 

In this section, we describe an abstract model for the QoS 
Web Server. A distributed QoS Web Server is implemented 
in terms of a set of HTTP servers, each executing on a dif- 
ferent host. 

In figure 1, we show the architecture of a distributed QoS 
Web Server which is implemented in terms of five HTTP 
servers (s 1, . . . , 85) executing on different hosts. Each server 
responds to user’s requests by accessing files from either the 
local disk or remote disk through the network file system 
and transmitting them to the client. We assume that a client 
can send a request to any of the HTTP servers directly by 
using one of the routing mechanisms (such as the Domain 
Name Server’s redirection [g], ONE-IP mechanism [lo] and 
router-based redirection [ll]). 

QoS Web Serve 

Figure 1: Architecture of a QoS Web Server 

The primary goal of a QoS Web Server is to serve a 
file request only if servicing the requests does not violate 
the quality of service constraint that a site imposes. Each 
server, upon start, reads a file containing the quality of ser- 
vice specifications. It then constructs a priority model and 
a resource requirement model. The priority model defines a 
partial order among various requests to different pages and 
specifies the order in which requests should be handled. The 
resource requirements model, on the other hand, specifies 
the amount of resources that must be allocated to specific 
groups of requests. The servers then start to run and accept 
requests from clients. 

Unlike the traditional HTTP servers where servers do not 
discriminate between various requests, a QoS Web Server 
must ensure that QoS constraints are met when requests are 
accepted. This is achieved by constructing a global model of 
resource availability and a global queue of all outstanding re- 
quests. The global resource model predicts the total amount 
of resources available at the hosts. The global request queue 
contains the pending requests. The priority model, global 
resource model, and global request queue are used to de- 
termine (i) the requests that will be granted service at this 
moment and (ii) the location of the server where a request 
will be executed. 

We have implemented a version of a distributed HTTP 
server in which the global request queue and the resource 
model are centralized. Further, the algorithm for allocating 
resources is centralized as well. We describe the resource 
model and the HTTP server algorithm in Sections 3.1 and 
3.2. 

3.1 Resource model 

This section briefly describes how we construct a resource 
model of the underlying system. The resource model spec- 
ifies the capacity (in terms of bytes/second) of each HTTP 
server at a given moment. This provides an abstraction 
of resources (CPU, memory, network bandwidth) that the 
HTTP server can provide. 

The resource model is evaluated by requiring that 
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Figure 2: Architecture of the QoS Web Server 

each HTTP server periodically determine the number of 
bytes/second it can deliver. Note that a machine’s ability to 
serve a specific bandwidth depends on a number of factors: 
CPU speed, local CPU load factor, file server’s capacity, file 
server’s load factor, and local area network characteristics. 
III [19], an analytical model is created for evaluating the cost 
associated with accessing remote files, whereas in [25], the 
experimental technique used in the NFS benchmark (LAD- 
DIS) for evaluating the performance behavior of NSF servers 
is described. Both of these techniques can be extended to 
construct a resource model for the QoS Web Server. 

Currently, we are using a simple experimental technique 
for constructing the resource model. We measure the length 
of time to send a request and use it to extrapolate the 
amount of bytes the HTTP servers can handle. This is 
performed as follows: Each HTTP server keeps a table of 
various local load factors and its capacity to access its local 
and remote files. In addition, the servers keep track of the 
average number of concurrent HTTP requests being served. 
Every time a job finishes, the table is updated and revised 
by calculating the transmission time. The total bandwidth 
is then calculated (approximately) by utilizing the average 
number of concurrent HTTP requests made during the in- 
terval. The average of the total bandwidth calculated by the 
recent jobs is then used to determine the total bandwidth 
for the server at a given CPU load. 

3.2 An HTTP server 

In this section, we describe the implementation of the QoS 
Web Server. 

3.2.1 Architecture 

We have implemented the QoS Web Server by modifying 
the NCSA’s httpd web server. In figure 2, we show the ar- 
chitecture of the QoS Web Server. The QoS Web Server 
is implemented in terms of a set of components: a WWW 
server, a communications server and a centralized quality of 
service daemon (qosd). The WWW server is a modified ver- 
sion of the stand alone NCSA httpd WWW server [l]. It is 
used to handle individual HTTP requests. The modification 
in the NCSA server involves adding a check to ensure that a 
request is served only if the quality of service constraints are 
not violated. The modified server, therefore, sends a query 
to the qosd if the HTTP request should be handled. The 
qosd returns one of three values: handle the HTTP request, 

deny the HTTP request (because of QoS constraints), or 
redirect the HTTP request to a WWW server at a different 
host. 

The wmmunicntion server at a host performs two tasks: 
forwarding messages between the WWW Server at the host 
and the qosd, and implementing the resource model (Sec- 
tion 3.1). The communication server periodically transmits 
the WWW capacity to the qosd so that the qosd can update 
the global resource model. We have separated the commu- 
nication server from the WWW server in order to avoid the 
overhead of initiating a new connection to the qosd every 
time an HTTP request is made. Also, the separation allows 
us to add new functionalities to the NCSA server without 
requiring extensive modifications in the NCSA server source 
code. 

The quality of service daemon maintains global infor- 
mation for the distributed server and schedules HTTP 
requests. It maintains a quality of service model for various 
pages indicating priorities and resources associated with 
different requests, a global queue of outstanding HTTP 
requests, and a global resource model indicating the 
capacities of the WWW servers. We now describe how we 
use this set of information for implementing the qosd. 

3.2.2 Implementation of the QoS daemon 

The qosd first reads the QoS specification and constructs a 
QoS model. The QoS model defines categories or subsets 
of the document space and is used to associate an absolute 
or relative resource allocation with documents within the 
subset. 

The qosd models each WWW server as a pipe capable of 
supporting a dynamic byte stream. It determines the capac- 
ity of the pipe in terms of number of bytes transmitted per 
second. Each WWW server periodically sends its projected 
capacity over the next allocation time unit to the qosd. Each 
pipe is further subdivided into smaller units, called channels 
(figure 3). A channel forms a connection between a server 
and a single HTTP client. It is the unit of allocation and 
resource control in the QoS Web Server. 
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Figure 3: Pipes and channels 

The size of each channel (in terms of bandwidth) is de- 
pendent 011 how many times we subdivide a pipe. For exan- 
ple, if a server indicates that it can serve 20 MB/second, the 
pipe size is 20 MB/second. Further, this pipe can be sub- 
divided into 10 2 MB/second channels or 40 .5 MB/second 
channels. A channel with 2 Mb/second capacity is different 
from a channel with 0.5 MB/second capacity in that it can 
serve a request 4 times faster than the latter channel. The 
channel capacity has, thus, implications on response time. 
Our implementation allows a site administrator to specify 
the server response time for a given file of certain size’. 
The administrator can specify that a WWW page of size z 

‘The response tiine does not consider the latency and transmission 
costs across a wide area network. 
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should be served in time t. This cam be handled by defiuing 
the channel size to be x/t. 

The scheduling of HTTP requests is achieved by keep- 
iug track of two sets of requests: requests waitiug to be 
serviced aud currently being serviced. We first schedule all 
jobs in categories which should always be served. We theu 
determiue the uumber of reinaiuing chaunels that can be 
allocated to requests with bounds 011 resource usage. 

For each such category, we deteriniue the uumber of 
channels available. We subtract from the number of avail- 
able channels for this category the uumber of chaimels cur- 
rently in use by requests in this category. This tells us how 
many channels we can allocate for new jobs in this category. 
We start jobs if we cau start them on the server at which 
they arrived. After applyiug the algorithm, some categories 
may not have used all of their slots because the server at 
which the request arrived does uot have any open channels. 
At this time the qosd redirects the request to a server with 
a free channel. 

We assign all requests in the bouuded quality of service 
category a lifetime. When a request surpasses a set age, QoS 
Web Server send a message to the HTTP client denying 
their HTTP request. Such a denial allows the QoS Web 
Server to put a limit OII the implicit resources it allocates to 
various requests. For instauce, each request occupies a space 
on request queue, holds a socket connection, and may even 
have a process assigned to it. By dropping connections, the 
server indicates that the request is uot goiug to be assigned 
auy resources in the near future as it is still trying to serve 
more important jobs. 

4 Performance analysis 

III this section, we present an evaluatiou of the QoS Web 
Server. The objectives of the evaluation are to address the 
following: 

l How does the QoS Web Server perform for different 
kinds of resource constraints? 

l What is the overhead of addiug the notion of quality 
of service to HTTP servers? 

4.1 Performance analysis environment 

Our test environment consists of ten Sun workstations, con- 

sisting of a combination of Spare 2, Spare 5, Spare 10, and 
Spare 20 workstations. These workstations are connected 
on a local area network. 

For the purpose of comparing results, we created a beuch- 
mark program baaed on ptester, a HTTP retrieval bench- 
mark program included in the phttpd package [12]. The 
benchmark program takes as input a trace of requests and 
times, and uses the trace to send requests to the QoS Web 
Server. We generate traces that reflect specific or random 
mixes of various requests for different pages. All of our ex- 
periments, thus, were conducted on synthetic page requests. 

The benchmark program is also responsible for calculat- 
iug response times and storing the results for each request as 
to whether the request was accepted, was denied or failed. 
It allows reply of a trace of requests so that we cau com- 
pare the behavior of the QoS Web Server under different 
configurations. The benchmark program is multi-threaded 
and distributed across multiple processes. This distribution 

is utilized in order to avoid limits due to the uumber of opeu 
sockets per process. 

The tests were conducted on a local area network. As 
a result, the measurements obtained by these experiineuts 
provide a look at how to optimize the sending of pages Goin 
the Web Server’s standpoint. They do uot address issues 
related to the bandwidth of the network between the server 
and the clients. 

4.2 Resource usage constraints 

In this section, we present the set of experiments that char- 
acterize the behavior of the QoS Web Server with respect to 
different resource usage constraints. Specifically, our con- 
ceru here is addressiug the following issue: Does the QoS 
Web Server implemeut specified coustraints on resource al- 
location to various requests? The experiments show that 
achieving the desired service specification depeuds on sev- 
eral facts: 

l Our scheduling algorithm tries to satisfy resource COII- 

straiuts and, at the same time, utilize server resources 
effectively. Hence, if the QoS Web Server in not in 
contention, allocatiou of resources to various requests 
reflect the mix of the input requests. However, when 
the QoS Web Server is in contention, resources are al- 
located according to the constraints. 

l In a giveu request mix, the QoS Web Server allocates a 
categories eutire portion of resources ouly if there are 
enough requests in that category. For instance, the &OS 
Web Server can allocate 60% of its resources to requests 
for page A only if the requests are greater than 60% of 
the total QoS Web Server bandwidth. 

l Chauuel size and request queue lifetime both affect how 
precisely the QoS Web Server can allocate various re- 
sources. Increasing chauuel size and lengthening the 
request queue lifetime increase accuracy but decrease 
response time. 

In the resource usage constraint experiments, we specify 
fixed perceutages for jobs in a given category. We theu ran- 
domly requests jobs from the different categories. Also, we 
utilize two to five categories of pages. We carried out the 
the various experiments by changing the following param- 
eters: page size, resource usage constraints, queue lifetime 
and channel size. 

4.2.1 Percentage requests handled 

This experiment measures the number of pages served in 
each of the five categories over a ten second interval. We 
then calculate the percentage of pages served from each of 
the five categories. 

In the first set of experiments, the beuchrnark program 
scuds 18 requests per second for 16K files and 8 requests 
per second for 128K files. The life time for each request on 

the request queue was set to be l/2 second. Figure 4(a) 
displays the results for files of size 16K; figure 4(b) displays 
the results for files of size 128K. 

The graph shows the experiment time aud plots the per- 
centage of the server responses for the five different cate- 
gories. The legend shows the resource constraints for various 
pages. As we can see, the server euforces the constraints 011 

amount of resources that can be allocated to various pages. 
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Figure 4: Percentages of requests served for pages with different resource usage constraints 

Note that there are some fluctuations in the percentage 
of pages served. The fluctuations arise primarily due to the 
randomness in the number of various category requests that 
arrive at the server. 

4.2.2 Guaranteed service 

In this experiment, we determine if the QoS Web Server 
can enforce resource constraints that specify that a set of 
pages should always be available. We request pages in five 
categories (A, B, C, D and E). We specify the constraint 
that A should always be available and that B, C, D and 
E receive 30%, 30%, 20% and 20% of the remaining server 
resources respectively. 

We ran two sets of experiments: one for 16K pages and 
another for 128K pages. The results of the two experiments 
show that the QoS Web Server accepts 100% of A requests. 
In table 1, we show the percentages and numbers of requests 
accepted by the server for the two experiments. 

Table 1: Performance behavior of server with always con- 
straint 

Note that the server accepts all requests for the guar- 
anteed category. It denies about 750 requests in the 16K 
experiment and 500 requests in the 128K experiment for 
the remaining categories. 

4.2.3 Different file sizes 

We ran another set of experiments in order to analyze the 
behavior of the server when clients request files of different 
sizes. In this experiments, requests for files of sizes 16K, 
32K, and 64K are respectively allocated lo%, 35%, and 55% 
of server resources. 

The results of the percentages of requests handled in each 
of these categories are shown in figure 5(a). Instead, if we 
scale the results to measure the number of bytes served in 
each of these categories, the results appear as shown in fig- 
ure 5(b). 

Note that the percentage of bytes seems to match the 
QoS specification best. This matches our resource model 
that considers the resources of the server to be the band- 
width. Although, this fits better we also note that the 
larger file receives a disproportionate amount of the server 
resources. This is due to the diminishing effect of the con- 
stant overhead of making a connection to the server. 

4.2.4 Flash crowds 

In this experiment, we observe the behavior of the server 
when there is a drastic change in the number of requests for 
a specific page. This experiment aims to simulate the situ- 
ation when there is high demand for a temporarily popular 
page. All file sizes are 15K and we create five categories 
each of which has a resource usage constraint of 20%. In 
this experiment, an equal number of requests arrive at the 
server at first. However, after 50 seconds, a large number 
of requests for page A arrives for the next 20 seconds. In 
figure 6(a), we show the request pattern for various requests. 

In figure 6(b), we show the percentages of requests ac- 
cepted by the server. Note that the percentages of requests 
served for A do not change. 

4.2.5 Contention and non-contention behavior 

As we stated earlier, the scheduling algorithm in the QoS 
Web Server operates in two modes: if there is no contention, 
the server tries to optimally utilize resources by serving all 
requests. However, if there is contention, it enforces the 
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(b) Percentage of bytes served 

Figure 5: Behavior of server for requests of different sizes 

(a) Request pattern 

Figure 6: Behavior of server with flash crowds 
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(b) Denied requests 

Figure 7: Behavior of server with differing number of con- 
current requests 

resource constraints. This set of experiments shows how the 
behavior of the server changes when contention arises in the 
server. 

In this experiment, clients request two files, denoted A 
and B. The size of each file is 128K. The incoming requests 
are a mix of 65% page A and 35% page B. The QoS specifi- 
cation assigns equal resources to both A and B. The request 
lifetime for each file is 1 second. In figure 7, we show the 
behavior of the server. 

In figure 7(a), we show the percentages of requests of A 
and B accepted. Note that contention begins to occur at 
about 8 requests/second. At about 12 requests/second, the 
server is in full contention. Note that as long as there is 
no contention, the percentages of server’s acceptances of A 
and B match those of the requests. However, as we reach 
contention, the percentages of server’s acceptances start to 
match those of the resource specifications. 

In figure 7(b), we show the number of requests denied 
to meet the resource constraints. As long as we are not 
under contention, no requests are dropped. However, when 

in contention the server begins to deny requests in a manner 
that attempts to satisfy the resource constraints. 

4.3 Performance comparisons 

In this set of experiments, we compare the performance be- 
havior of the QoS Web Server with respect to the NCSA 
HTTP server which we modified. We have compared two 
characteristics of the servers: throughput and average re- 
sponse time. In the experiments here, the tester program 
requests 8 files every second. The size of the files is 128K. 

In figure 8, we show the throughput of the two servers. 
For the NCSA server, it is about 0.78 M bytes/second. The 
throughput for the QoS Web Server ranges from 0.42 M 
bytes/second to about 0.7 M bytes/second. The graph il- 
lustrates two points: First, the throughput of the QoS Web 
Server is only marginally less than that of the NCSA server. 
Hence, the overhead of adding the notion of quality of ser- 
vice to an HTTP server does not cause the performance 
of the HTTP server to degrade significantly. Second, in- 
creasing the life time of requests 0x1 the request queue in- 
creases the throughput of the QoS Web Server up to some 
point. When the request life time is low, QoS Web Server 
rejects many requests which would have been granted re- 
sources. However, by rejecting these requests, the QoS Web 
Server wastes all resources (such as queue space, socket over- 
head, process creation and deletion overhead) it devoted to 
the requests. However, as the requests stay on the queue 
longer and longer, the probability that they will be served 
increases more, thereby leading to better utilization of server 
resources. 

“““~A”nC ” 
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Figure 8: Comparison of throughput of NCSA and QoS Web 
servers 

In figure 9, we show the average response times for the 
two servers. The lifetime for requests on the request queue 
is about 4 seconds. The graph highlights the fact that the 
average response time for the QoS Web Server remains fairly 
constant, whereas the response time for NCSA server is in- 
creasing. This is because the QoS Web Server drops all 
requests that it cannot serve after they stayed in the queue, 
whereas the NCSA server continues to accept requests even 
if it cannot handle them promptly. 
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Figure 9: Comparison of average response times of NCSA 
and QoS Web servers 

5 Related Work 

There are two bodies of research with which our work over- 
laps: research on HTTP servers and research on quality of 
service in distributed systems. The focus in the first is on 
the design of HTTP servers, whereas the focus in the sec- 
ond is on developing various quality of service models and 
scheduling algorithms for supporting specific quality of ser- 
vice guarantees. 

5.1 HTTP servers 

As we described earlier, the primary goal of an HTTP server 
is to service requests for web pages. Much of the HTTP 
server work has focussed 0x1 developing variations of HTTP 
server architectures that reduce the CPU, network, and disk 
bottleneck. We will focus only on the distributed HTTP 
server work [15, 14, 41 because of the similarity in the issues 
addressed by these approaches and our approach. The fo- 
cus in the distributed server research has been on using the 
resources of distributed hosts to increase the throughput of 
HTTP servers. Most of the research here has been aimed 
at addressing the notion of load balancing and scalability: 
given a request, how should the server schedule this request 
so that resources on the distributed hosts are optimally uti- 
lized. Our work, on the other hand, addresses additional 
issues in the design of HTTP servers: 

l Should the server accept a request? 

l If so, how much resources should be allocated to the 
request? 

There has been some work that looks at the notion of quality 
of service for HTTP servers. [3] proposes a notion of quality 
of service by associating priorities with requests from differ- 
ent sites. The HTTP server schedules requests according to 
priorities, thereby ensuring that preferred sites (with higher 
priority) are allocated resources before other sites. Our work 
differs in many ways: first, the focus in [3] is on proposing 
techniques for structuring single host HTTP servers in order 
to improve the response times of high priority requests. Our 
work primarily involves distributed HTTP servers. Second, 
our notion of quality of service is more general in that we 

not only allow a site to specify priorities but also allow it to 
specify resource usage constraints 0x1 a group of requests. In 
[5], a notion of quality of service is proposed with respect to 
the content. However, there is not support for awry notion of 
quality of service with respect to resource usage, throughput 
or response time. 

5.2 Quality of service in Distributed Systems 

The notion of quality of service [21] has been studied in 
great detail within the context of networking [21] and multi- 
media [24]. The focus of work here has been on developing 
varying level of services (including low-level notions such 
as number of bytes/second to high-level notions such as 
jitter-free play of images etc.) and on developing algorithms 
for scheduling CPU, memory and networking resources such 
that the quality of service guarantees are met. In 1271 mecha- 
nislns for specifying service guarantees with method invoca- 
tions of CORBA objects is presented. Our work is similar to 
these works in that we also associate quality of service with 
resources in order to schedule resources. However, our work 
differs from them in the nature of resources (web pages), 
in terms of constraints on usage of resource and how they 
should be scheduled. 

6 Summary 

We have presented the design and implementation of a dis- 
tributed HTTP server that implements a quality of service 
model. In this model, a site can determine how requests for 
various pages should be served. This includes setting priori- 
ties among the requests as well es associating constraints on 
resource usages. Resource usage constraints provide a useful 
tool for providing services on the WWW. They support the 
ability to guarantee documents and set desired performance 
characteristics by denying requests rather than serving all 
requests at the same time. 

We have also analyzed the performance characteristics 
of the QoS Web Server. The analysis shows that the server 
enforces user specifiable constraints on resource usages. Fur- 
ther, the performance behavior of the server is comparable 
to that of the standard NCSA HTTP server. 

Our future work involves formalizing WebQoSL, refining 
the resource model, and implementing a distributed version 
of the qosd. 
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