Responsiveness and Consistency Tradeoffs in Interactive
Groupware

Sumeer Bhola*
sumeerb@cc.gatech.edu

ABSTRACT

Interactive (or Synchronous) groupware is increasingly be-
ing deployed in widely distributed environments. Users of
such applications are accustomed to direct manipulation in-
terfaces that require fast response time. The state that en-
ables interaction among distributed users can be replicated
to provide acceptable response time in the presence of high
communication latencies. We describe and evaluate design
choices for protocols that maintain consistency of such state.
In particular, we develop workloads which model user ac-
tions, identify the metrics important from a user's viewpoint,
and do detailed simulations of a number of protocols to eval-
uate how effective they are in meeting user requirements.
Keywords: Replication, Consistency, Response Time, Per-
formance Evaluation, Workloads.

INTRODUCTION

Simple interactive groupware, like chat, whiteboards, and
text editors are becoming commonplace. In the future, we
can expect complex groupware like engineering CAD (Com-
puter Aided Design), and DIS (Distributed Interactive Simu-
lation) to be widely available. The interactive nature of such
applications requires that the effect of a user's action is seen
by himself as well as other users in a timely fashion. How-
ever, the problem of providing interactive response time is
becoming increasingly difficult as groupware is deployed in
a wide-area distributed environment like the Internet, where
high communication latencies are common. End-users are
increasingly accustomed to direct manipulation user inter-
faces, which typically require response times on the order of
50-100ms. However, due to the fundamental limitation of
the speed of light, the round-trip delay to the far side of the
planet is at least 200ms. In mobile wireless computers, inter-
mittent connectivity can also cause large delays. Also, with
modem manufacturers optimizing on bandwidth and not la-
tency [5], it is unlikely that latencies when connecting from

*College of Computing, Georgia Tech, Atlanta, GA 30332.
TIBM T. J. Watson Research Center, Yorktown Heights, NY 10598.

Guruduth Banavar’
banavar@watson.ibm.com

Mustaque Ahamad*
mustaq @cc.gatech.edu

home will be substantially reduced any time soon. As a con-
sequence of these limitations, groupware systems have been
exploring ways to provide interactive responsiveness inde-
pendent of network latency.

The interactions across distributed collaborating users are
supported by shared state. There is general agreement that
replication of shared state has the potential to reduce re-
sponse time for actions that manipulate this state, since a
user's action can be executed on her local replica. In ad-
dition, it can reduce bandwidth requirements by batching a
user's actions before propagating them to other users [3].
However, state replication leads to the problem of replica
consistency due to the possibility of different ordering of up-
dates at different replicas.

We assume a model in which the shared state is composed
of a set of objects which are fully replicated at all the col-
laborating processes/users (processes are instances of the
groupware applications). These objects are updated through
atomic updates that are issued by the collaborating pro-
cesses. An atomic update is a code fragment which can read
and write a subset of the shared objects in the set, and is
guaranteed to execute atomically at each replica. This model
eliminates the need for groupware applications to explicitly
use locks to achieve atomicity, and permits more flexibility
in employing different consistency protocols.

The protocols that are used by current groupware systems to
order updates consistently at all replicas fall into two broad
categories: pessimistic and optimistic. Pessimistic protocols
usually delay the execution of an update until it is ordered
consistently at all sites. An optimistic protocol allows a lo-
cally issued update to be executed immediately. In essence,
an optimistic protocol makes assumptions about the local
replica and later confirms these assumptions. The immediate
execution of an update corresponding to a user action pro-
vides response time that is independent of communication
latencies in the system. However, there is a possibility that
optimistic assumptions turn out to be false since two conflict-
ing updates can be executed in different orders at different
replicas. When this happens, updates have to be undone, and
then redone in the correct order to get a consistent replica
state.

Optimistic protocols in some form have been used in
many groupware research prototypes like Grove [7],
ORESTE [10], COAST [15], DECAF [17] and Villa [3].
However, there is no quantitative evaluation of the design

choices. In this paper, our goal is to understand and eval-
uate the design choices for optimistic and pessimistic pro-
tocols for interactive groupware. We identify two contrast-
ing classes of consistency protocols: Dependent and Inde-
pendent. The Independent protocol allows both optimistic
and pessimistic consistency policies, while the Dependent
protocols are pessimistic. They differ in how updates are
timestamped to determine a global order, and how they com-
mit updates. Commit is important in pessimism to deter-
mine when an update can be executed, and in optimism to
know when an update will not need to be undone. To cap-
ture conflicts between updates of different users, we define
three types of contention, virtual, real, and user-perceived
which affect the behavior of these protocols. In particular,
the following are the main contributions of this paper.

o We extend the user interaction model for graphical in-
terfaces to include the concept of a lookahead thresh-
old, which models the ability of the user to continue
input actions while the previous actions are being ex-
ecuted. We use this to motivate why the issuing and
execution of updates should be decoupled, and to de-
velop a general model of user behavior for the synthetic
workloads.

o We develop a detailed simulation of both Independent
and Dependent protocols. The simulation allows la-
tency to be varied, and assigns a cost to update ex-
ecution and undo. It is driven by adaptive synthetic
workloads, which allow control over parameters like
the lookahead threshold and the different kinds of con-
tention. The parameter values we use are motivated
by real application scenarios. Metrics such as response
time mean and deviation, stall count and stall time, mes-
sage overhead and jitter count are used to understand
the tradeoffs when choosing one of the protocols.

The next section describes the interactivity requirements in
more detail and introduces the lookahead threshold. Subse-
quently, we describe the two consistency protocol classes we
evaluate and how they are affected by the three types of con-
tention. We then discuss the synthetic workloads, how they
map to certain application scenarios, and motivate the met-
rics important for the evaluation. Next, we discuss the main
results and how they can be used to choose the appropri-
ate protocol for a certain situation. We then describe related
work and conclude.

INTERACTIVITY REQUIREMENTS

In this section we give a more concrete definition of the in-
teractivity requirements for groupware. For this, we build
upon the considerable amount of research already done in
single user graphical interfaces (for a good introduction see
Collins [6], Shneiderman [16]).

The time interval between a user's input action and its re-
sponse seen by the same user is the Input Response(IR) time.
The key problem in interactive groupware is to keep the IR

Thought
lookahead C \L

Action

N

Computation

N

Response

Figure 1: Extended human interaction model

time low enough as to not differ significantly from single-
user applications. This problem is made difficult by the fact
that data consistency must not be overly compromised to
achieve an acceptable IR time.

Remote Response (RR) time is the time interval between a
user's input gesture and its effect seen by a remote user. It
is also important to minimize this quantity for interactive
groupware, but this is not as critical as low IR time. How-
ever, in some scenarios, e.g., two users in the same virtual
room involved in a war game, it is important to keep the ra-
tio of RR to IR time small.

The typical model used for user interaction is a cycle of
thought-action-computation-response. The computation and
response part of this cycle is responsible for the IR time. This
includes, translating the user action into an update on the
shared state, and execution of this update on the local replica.
Card [4] classifies tasks into categories based on the timing
of this cycle. Perceptual tasks take less than 50-100ms. An
example of this is tracking the motion of the mouse pointer.
The user handles these tasks without conscious processing.
Due to the very short duration of perceptual tasks, users do
not necessarily wait for response from the previous task be-
fore going onto the next task. In terms of the human interac-
tion model, we propose that tasks have a lookahead threshold
(shown in Figure 1), which represents the number of actions
that the user is willing to issue before the response to the first
one is required. The lookahead threshold for perceptual tasks
is expected to be non-zero. As tasks become longer duration
this threshold will drop to zero. We now discuss the impact
of a non-zero lookahead threshold.

Synchronous versus Asynchronous Processing

A non-zero threshold does not effect most single-user appli-
cations, in which response time is totally dependent on lo-
cal processing. But in collaborative applications, in which
IR time may depend on communication latency, it implies
that a process can start processing the next user action, if
available, before the previous one has executed on the local
replica. This asynchrony allows pipelining of the computa-
tion required for locally issued actions. Contrast this with
a synchronous processing model, in which the process does
not begin computing the locally issued action, until the pre-
vious action by it has executed on the replica.

To evaluate the impact of synchronous versus asynchronous

Opt

APAAAAAA A -
R1R2R3R4R5R6R7R8 R
SyncPess
Al ; A 2 A3 A4 R
- Rl R 2 R3 R4
AsyncPess
A1A2A3A4A5A6A7A8. ..

_ ! _ RRR3RRRRRg . . .

Figure 2: Some Action-Response Patterns

Protocol Acceptable | Unacceptable
[(ms) [(ms)

SyncPess 50 80

AsyncPess 140 240

Table 1: Response Time Expectations

processing, as seen by the end-user, we use a consistency
protocol in which every local update is sent to a central
server, which totally orders all the updates. The optimistic
policy will execute the update locally, before it is sent to the
central server and therefore IR time is independent of the
network latency. The pessimistic policy waits till the up-
date is returned by the central server, so IR time, say /, de-
pends on the round trip communication delay with the server.
These policies can be combined with asynchronous or syn-
chronous processing, to give four choices, SyncOpt, Asyn-
cOpt, SyncPess, and AsyncPess. As synchrony or asyn-
chrony has no impact when we execute optimistically, we
are only left with three cases. Figure 2, shows some action-
response patterns for the three cases. A; is the instant when
the computation on a user action begins and R; is the instant
when the response is seen locally.

We did an expert evaluation with two tasks, drawing lines
and drawing free hand curves, to find the appropriate re-
sponse time values. Optimism is the perfect case for re-
sponse time, and we observed that the inter-action (most of
the actions were mouse drag events) time was between 20-
40ms — clearly a perceptual task. We then asked the ex-
perts to provide the minimum / values at which they started
noticing the delay in response (acceptable), and when it be-
came very irritating (unacceptable). These are tabulated in
table 1. We can see that AsyncPess, which utilizes looka-
head to pipeline computation, has a much higher unaccept-
able latency, implying that lookahead does occur, and can be
utilized by the consistency protocol. On the other hand, even
a response time of 80ms is unacceptable for SyncPess.
More detailed and rigorous user studies using more tasks are
necessary to understand how the type of task affects these
numbers. However, this preliminary result which shows the
significant effect of lookahead, motivates us to use an asyn-

chronous processing model in the rest of the paper. Also,
it shows that the value of the threshold can be an important
factor when evaluating consistency protocols.

CONSISTENCY PROTOCOLS

The previous section discussed responsiveness. There is also
a competing requirement — that of maintaining data con-
sistency. We describe protocols which cover a large design
space of protocol choices that can be made for interactive
groupware.

We assume a model similar to that in [3], where the shared
state is composed of a set of objects that are fully repli-
cated at all the processes in the collaboration. User actions
are translated into atomic updates by the process, which are
then issued to the consistency protocol!. Each atomic update
can read and write a number of objects in the set. The sys-
tem ensures that all read and write operations of an update
are executed atomically at a given replica i.e. operations of
two atomic updates do not interleave. Also, as the looka-
head threshold can be greater than zero, the process can is-
sue atomic updates even when its previously issued updates
have not yet been executed locally.

Each update goes through the following stages, issue, times-
tamp at source, disseminate update with the timestamp to all
replicas, execute at each replica. The timestamps define a
partial order on all the updates issued by the processes. A
total order is not essential as concurrent updates could be ac-
cessing different objects, and so do not need to be ordered.
The partial order must guarantee that any order of execution
of the updates that is consistent with this order leads to the
same replica state. A pessimistic protocol always executes
according to this partial order, while an optimistic protocol
may have to reorder execution (using undo,redo), when it no-
tices that it has violated the partial order. An update is said
to have committed at a replica, when all the updates before it
in the partial order have been received and executed. There-
fore, a pessimistic protocol only executes an update after it
has committed.

Other than the optimistic, pessimistic choice, the key aspect
in which consistency protocols differ is: Is there any coordi-
nation between processes when timestamping concurrently
issued updates ? A protocol that does no coordination has to
generate a total order, because it does not know if two con-
current updates need to be ordered, so by default it has to
order them. We refer to such protocols as Independent pro-
tocols, and the one we use generates a total order using Lam-
port clocks [11]. With the optimistic policy, this protocol is
similar to the ORESTE [10] protocol, except that we con-
sider atomic updates. The Dependent protocols coordinate
the assignment of timestamps by using locks, and therefore
can generate a partial order. These protocols attempt to use
the locality of access by a user to commit updates quickly,
which is important when doing pessimistic execution. There-
fore, we restrict our attention to pessimistic versions of the

'Sometimes referred to as the 'system'.

Dependent protocols. We consider two types of Dependent
protocols, one which uses predeclared read, write sets (also
referred to as access sets) for the updates and another which
uses real access sets. There are some tradeoffs there, which
we discuss later.

Before discussing the protocols, we define two pairs of read,
write sets (r1,w1), (r2, wa) to be conflicting if and only if
rL Nws # 0 orwy Nwsy # @ orwy Nry # 0.

Independent Protocols

These protocols use a Lamport clock at each process, which
is incremented whenever a local update is issued, and is used
along with the process number, to timestamp the update.
These timestamps define a total order on all the updates.
The update is then multicast to every process (including the
source). Clocks are also modified whenever a timestamped
remote update/message is received, using the usual modifi-
cation rules. Every update received by a process is put in an
uncommitted queue sorted in increasing order of timestamp.
Each process also maintains a vector of timestamps which
are estimates of the clock values of other processes (inferred
from the messages received from those processes), and the
minimum value in this vector is used to decide when an up-
date in the uncommitted queue can commit. A committed
update is removed from the queue. A timestamped heartbeat
message is sent out by a process if it has not sent a message
in a while, to ensure liveness of commit.

In the optimistic protocol (QoCTrd), a process (say p) im-
mediately executes all received updates. For each uncommit-
ted update (say e), it also maintains the access sets (R., W)
of the last time that update was executed. This information
is changed whenever an update is undone and then redone.
Suppose p receives an update u, which should have been or-
dered before a set of updates F, which it has already exe-
cuted. To conform with the total order, p should undo F,
however it cheats a bit. It first executes u, and if its access
sets (Ry, Wy) conflict with R., W, for any e € F, some of
the updates in £ need to be undone.

For the pessimistic protocol (pesslrd), updates are only
executed after they commit, therefore no detection of con-
flicts is necessary.

Dependent Protocols

The Dependent protocols use locks, which are associated
with mutually exclusive subsets of the objects. A lock has a
version number, and the version numbers form a continuous
sequence of integers starting with 0. These version numbers
are used to timestamp updates associated with that lock, and
this timestamp is used to order these updates. For example,
suppose the current version number of lock A is 3, and lock
B is 1. Then if user Alice issues an update (say u) which
requires both lock A and B, then after acquiring both locks,
this update will be timestamped with ((A,4),(B,2)). After
timestamping, the locks are released, this update is multicast
to others, and also inserted in the local uncommitted queue.

Update u will be removed from this queue and executed only
when update(s) with timestamps (A,3) and (B,1) have been
executed. Note, that locks are only useful for timestamp-
ing, and are not required for committing an update. In our
simulation of this protocol, we did not want to choose a spe-
cific lock management protocol, so we made a simplifying
assumption. We assume that the process requesting the lock
is omniscient and knows who last requested that lock. There-
fore, it can send the lock request directly to that process,
which eliminates the need to forward lock requests. Sup-
pose a process just acquired lock X with version number 2,
then the updates with timestamp (X, j) where j < i have
been received or are on their way. Once such updates arrive,
the process can commit its local update which has timestamp
(X,74 1). To ensure no contradictory ordering information,
locks that are acquired to timestamp an update are not re-
leased until the update is fully timestamped. This is similar
to the 2-phase locking scheme used in databases.

We consider two types of dependent protocols, which differ
in how the locks that need to be acquired for an update are
determined. Dol uses predeclared access sets which are
provided when the update was issued, while D532 actually
executes the update and based on the objects that need to
be read or written, acquires the locks on demand. The ad-
vantage of using real information is that concurrency is en-
hanced, because predeclared access sets may include more
objects than are actually accessed, however deadlocks can
occur if not used very carefully.

Contention and Semantic Information

Due to social protocols mediating between users, in most
collaboration scenarios where users are issuing actions con-
currently, the concurrency is itself not a problem. However,
it can cause problems for the consistency protocols. We
define three kinds of contention which impact how these
protocols perform. Two updates are virtually contending
(vc), when their predicted read, write sets conflict. Vir-
tual contention limits concurrency for DOl . Real Con-
tention (RC) between two updates means that their real read,
write sets (the read,write sets when they are executed consis-
tent with the partial order) are conflicting. Real contention
limits the concurrency for D532 and will cause undos in
Qetrd . User perceived contention (UPC) between two up-
dates means that correcting a misordering between the two
results in a state which cannot be reasonably explained from
the previously observed state. User perceived contention
causes jitter in the user's interface (or view, in MVC termi-
nology). From the above definitions it is clear that for a pair
of updates, UPC=>RC=>VC. Note that when using gqcrd
a user does not notice real contention that is not user per-
ceived, because techniques like double buffering can hide
the intermediate states of the view when undoing and redo-
ing updates.

Two questions that arise from the above definitions are, (1)
in what scenarios are the three kinds of contention not equiv-

| Parameters | Text Editing | Engineering |
N (number of users) 4 4
threshold 0,1,2,3 3
update interval(ms) (400, 200) (100, 50)
numUpdates 1000 1000
latency (ms) 100,...,1000 | 30,...,300
heartbeat multiple 1,2,3,4 3

Table 2: Parameter Values

alent, and (2) how can semantics of the shared data and up-
dates be used to reduce these scenarios. Data-dependent ac-
cess patterns, which occur, for example, when objects con-
strain the state of other objects, can cause VC which is not
RC. One situation in which RC happens, is when the lock (or
object) granularity does not match the dynamic division of
work the participants in a collaboration agree upon. Tech-
niques which exploit the type information of the objects can
reduce undoes in optimistic protocols[9], and increase con-
currency in pessimistic protocols used for groupware [13].
In gotIrd , undo and redo is completely local (unlike [9]),
and potentially very fast, and because we do not expose the
intermediate states to the user, semantic information will
probably not improve the performance of qotTrd signif-
icantly. For D53 , techniques like multi-granularity lock-
ing [2], can increase concurrency, however there are two
problems which may limit improvements, or even worsen
the situation. Firstly, in scenarios we consider with data-
dependent access patterns, the granularity of what will be
accessed by an update is not known beforehand, and so too
many locks may be acquired. Secondly, having many locks
may reduce the locality of acquiring locks by a process.
For example, in the first sequence lock table given in [13],
which can be used for text editors, insertion of each character
causes a new lock to be acquired. The performance impact of
semantic techniques on end-users needs more investigation,
but is outside the scope of this paper.

Another situation which causes real read-write contention
occurs when the objects represent some physical entity, and
there are physical constraints between them. For example,
for collision detection in DIS, updates to the position of ev-
ery entity require the positions of other entities in the neigh-
borhood to be read. However, the read value is discarded
whenever collisions haven't occured.

We consider all three types of contention, and a range of
values for each, when doing the evaluation.

EVALUATION SETUP

Workload

One of the main problems in evaluating the consistency pro-
tocols is that user input (both what is input, and when it is
generated), can change with varying response time. We are
not aware of any traces of user interaction with complex col-
laborative applications which we can use to evaluate these
protocols. As a first step in real evaluation of such proto-

i 1
<— Constraints O Level 10g2N+1

2 =————> 03

| 5 O6<—> O 7 Level 1
O@O Q@O Q@O Q@O Level 0
8 9 10 11 12 13 14 15
P P P P
0 1 2 3

---- Update A : 1(8)r(9)w(8) r(4)r(5)w(4)
—— Update B : r(10)r(11)w(10) r(5)r(4)w(5) r(2)r(3)w(2)
Update C : r(12)r(13)w(12)

Figure 3: Forest Workload

cols we construct adaptive distributed synthetic workloads.
These workloads are adaptive in that they use the lookahead
threshold to change the timing of the user input based on the
response seen. A threshold of 0 means that a process does
not issue a new update until the previous one has been locally
executed i.e. each process only has 1 outstanding request at
any time. Therefore a threshold of £ means that a process
can have ¢ + 1 outstanding requests, and it stalls until the
current lookahead falls below ¢ + 1. A uniform distribution
with a certain mean and range is used to model the inter-
update interval. numUpdates is the total number of updates
issued by each process and latency is the one-way commu-
nication latency between processes. The heartbeat multiple
gives the inter-heartbeat interval for the Independent proto-
cols as a multiple of the latency.

The key characteristic of a workload is the number and type
of objects in the shared set, and the access patterns of the
updates issued by each process. We use two realistic collab-
oration scenarios to motivate these characteristics.

Text Editing N=4 users are editing a document which is
divided into sections, each of which is modeled as a shared
object. Assume that the Dependent protocols use a lock per
section. Depending on the situation, each user is editing his
own section, or two users are editing different parts of the
same section. To capture this behavior, we vary a parameter
h from 0 .. .1, where h=0 implies no contention of any sort,
while #=1 means that there is real contention between pairs
of users. There is no user perceived contention. The range
of values of the other parameters is given in table 2.

Engineering Design This scenario is motivated by an ex-
ample collaboration in the SHASTRA system [1], and in-
volves the design of a complex physical model.

Although it can be scaled to higher N values, we illustrate
it with N=4. All the vertices in figure 3 represent shared
objects. The leaf vertices represent primitive models which
are combined hierarchically to create more complex mod-
els. Two models with the same parent model constrain each

other, and therefore a write of one has to read the other. For
example, an update which writes model 5 must read model
4. In this scenario, each process reads and writes two primi-
tive models. For example, process P; reads and writes model
10 and model 11. With a certain probability p, a write of a
model at level , results in a write of its parent at level z 4 1.
Also, we can control the number of levels in the workloadi.e.
a maximum level of 2 means that there are 14 model objects,
with model 2 and 3 not constraining each other. The number
of the highest level is denoted by A + 1. The value of i con-
trols the amount of virtual contention, and is varied between
0,1, 2. As each update has the potential to write its ancestor
atlevel h+ 1, for D50l we use N /2" locks. For D532 , there
are N/2* locks for level k, with no additional lock required
for level h + 1. As children of the same parent share a lock,
and every process moves from the bottom to the top when
acquiring locks, there is no possibility of deadlock. p con-
trols how much of the virtual contention is real and is varied
between 0.0,0.2,...,1.0. In figure 3, with h=2, updates A
and B cause real contention, while A and C, or B and C are
only virtually contending. Note that because D0l uses pre-
declared access sets, we have used locks which are coarse
grained as compared to the locks used for D32 .

This workload allows virtual and user perceived contention
to be modeled in an elegant way. The range of values of the
other parameters are given in table 2.

Performance Metrics
We consider the following metrics.

1. Local response time (mean and deviation) : Along with
a low mean, a low deviation is also important to avoid
user surprise due to wide variation in response time.

2. Local commit time (mean and deviation) : For the pes-
simistic protocols the commit time is the same as the
response time. A low commit time is also good for an
optimistic protocol as it reduces the possibility that an
update may be undone a long time after it was initially
performed.

3. Jitter Count : This is only important for the optimistic
protocol. This counts the number of undos that were
user perceived.

4. Number of messages of each type : Important for mea-
suring the communication cost of the protocols. Other
than the messages to disseminate the updates, which are
the same for each protocol, the extra messages for the
Independent protocols are due to heartbeat messages,
and those in the Dependent protocols are due to lock
request and reply messages.

5. Stalled count and Stalled time : Stalled count measures
the number of times the user had to stall because the
previous threshold + 1 updates had not been locally
performed. Stalled time is the mean time for which the
user stalled.

pessind

4000

Heartbeat=1
Heartbeat=2
Heartbeat=3
Heartbeat=4

X+>0

3000

Commit Time Mean(ms)
2000

1000

T T T T T
200 400 600 800 1000

Latency(ms)

optind

1600

Heartbeat=1
Heartbeat=2
Heartbeat=3
Heartbeat=4

X+>0

1200

Commit Time Mean(ms)

200 400 600 800

T T T T T
200 400 600 800 1000

Latency(ms)

Figure 4: Commit time vs. Latency. Threshold=0

6. Total execution time :
took to finish their tasks.

Measures how long the users

RESULTS

We simulated the protocols with both the text editing and
engineering design workload. In this section we summarize
some of the interesting results.

Text Editing

As RC=VC and each update only needs one lock, Dol and
Dg3’ behave the same, and will be referred to as Dg0. Due
to the large number of parameters, we highlight the effect of
the threshold and heartbeat multiple and then fix their values
to reasonable levels. A scatter plot of the commit time versus
the threshold, for all the protocols, showed that it was usu-
ally not affected by the lookahead threshold value. This may
be expected as the threshold value affects when an update is
issued, but should not affect the commit time of an already
issued update. However, when threshold=0 for p@sll’d s
the commit time was much larger than when threshold > 0.
Also, it was much larger than the commit time for qotIrd

with threshold=0. To explain this, figure 4 shows the ef-
fect of heartbeat multiple and latency on commit time for
pessird and gotlrd when threshold=0. For cotird
the effect of heartbeat frequency decreases as latency is in-
creased. This is because the inter-update interval is much
lower than the latency so heartbeats are not really needed.
However, as esslid executes updates pessimistically, it
stalls after issuing each update, and hence heartbeat mes-
sages are very important to pick up the slack in message fre-

1400

threshold=0
threshold=1
threshold=2
threshold=3

X+>0

1200

Total Time(s)
1000

800

600

400

T T T T T
200 400 600 800 1000

Latency(ms)

PR e

threshold=1
threshold=2
threshold=3

/

2000

X+>0

Stall Count
1500

1000

500

T T T T
200 400 600 800 1000

Latency(ms)

Figure 5: Total time and Stall count for Dgp ,h=1

quency. It can be seen that with heartbeat=1 the commit is
almost as fast as that of quﬂd , however in this case the
number of heartbeat messages was of the order of the total
number of updates. This gives us the following observation.
O 1 When threshold=0, increasing the heartbeat rate de-
creases the response time and total time for pessIrd sig-
nificantly. However, Q0CITd is unaffected by heartbeat rate
at high latencies.

Next, we looked at how threshold affected the total time of
the task. As expected, it did not affect qatIrd , and Dep
when 7=0, but had a strong effect on pessIrd , and Dep
when h=1. Figure 5 shows the effect of threshold and latency
on Do when h=1. As expected, the total time for the task
decreases with increasing threshold value. Increase in total
time with latency is due to increasing number of stalls (up to
a certain maximum, dependent on the threshold value) and
increasing time for each stall. For threshold=3, no process
stalls until latency=600ms and therefore the total time taken
remains constant until then.

O 2 In a task with a high value of threshold, the user can
perform well even at high latencies, because of the lower
total number of stalls and the smaller mean time for each
stall.

The results pertaining to varying contention are better exam-
ined in the engineering design experiments.

Engineering Design

We fixed the threshold=3 and heartbeat=3. With no VC, i.e.
h=0, the performance of qdtIrd and Deol is equivalent, as
neither communicates with other processes before executing

(=3
3 O optind
N A pessind
% 8 X Dep1
%, <7 n Dep2-n
©
(]
= 8
(] n 7|
g =
E
o o
1) o
< o
s =
a
@
O
o g i
w
o 4
T T T T T T
50 100 150 200 250 300
Latency(ms)
§ i O optind
PR A pessind
2 X Dep1
E n Dep2-n
® 9
3 21
[a}
o
£
=
8 o
2 8
@
o
o
o 4

50 100 150 200 250 300

Latency(ms)

Figure 6: Responsiveness vs. Latency. h=2

alocal update. Similarly, when A = 0Vp = 0, i.e. there is no
RC, otIrd and D are equivalent. In the plots shown,
D refers to the D532 protocol when p = 0.n. The
values of p, h, i.e. RC and VC, have no effect on passird .
In the following discussion, low VC refers to h=1, high vC
to h=2,low RC top = 0.2,0.4 and highRC to p > 0.4. We
first examine metrics in which p, h do not affect qatTrd 2.
Figure 6, shows that gessIrd gives a lower response time
than Dgol beyond a latency of 60ms. Dgad2 withp < 0.2 is
better than essIrd , however it deteriorates quickly with
increasing real contention. In fact, at high real contention
(p > 0.4), D52 performs much worse than Dol , because
it is acquiring multiple locks in sequence for every update,
while B0l only acquires one lock of coarser granularity.
This gives us the following observation.

O 3 When VC is high and RC is low, D532 has lower mean
response time than D0l and pessird . However, with
high RC, D532 can have higher mean response time than
Dol and wessIrd |, and this difference increases with in-
creasing latency.

Looking at the standard deviation of response time, we see

that it is lower for pessird than both Dol and D .
Also, the deviation for pesslrd and Dol is relatively in-

2 Although undo and redo do impact these metric values, the effect was
insignificant.

2000

A pessind W
X Dep1

n Dep2-n

1500

Stall Count
1000
I

500
L

Latency(ms)

pessind
Dep1
Dep2-n

s XP>

800 1000 1200

Stall Mean(ms)
600

50 100 150 200 250 300

Latency(ms)

Figure 7: Stall vs. Latency. h=2

dependent of latency, even though the variation in latency
is increasing with increasing mean latency. This can be at-
tributed to the sum of many independent random variables,
like the latency and inter-update interval, having a lower de-
viation than each of them alone. However, with p = 0.2,
D2 has a higher deviation than both Dol and pessird
even at very low latencies, because for each update it may
have to acquire anywhere between 0 and 2 locks.

O 4 Even with highVC and low RC, D832 can have a higher
response time deviation than D0l and pessIrd |, and this

difference increases with increasing latency.

Figure 7 shows how the stall count and mean vary with la-
tency. The stall count of gotIrd , Decl with no v, and
D2 with no RC is zero. The stall count for pessird
rapidly increases after latency=240ms, because the looka-
head can no longer suppress the effect of the latency. How-
ever its stall mean is relatively stable and is around 25ms.
In our user model, in which the user stalls when her looka-
head exceeds the threshold, the relative importance of stall
count and stall mean needs to be investigated i.e. does the
user want to wait more number of times or wait longer each
time. An alternative user model, the no-stall model, may
be more appropriate in certain situations. In this model
the number of stalls are minimized by using the past re-
sponse time information to increase the inter-update inter-
val. In our model, the stall count for Dol stabilizes at
N « numUpdates/(threshold + 1).

3 | [0 optind
- A pessind
X Dep1
n Dep2-n
z g
s -
£
B
o
2
o
] 4
o i
S 8
- T T T T T T
50 100 150 200 250 300
Latency(ms)
h=1
o
8
O optind
S | A pessind
© X Dep1
o n Dep2-n
8 4
— w
@
T
£ 8
‘_g <
o
F o
8 4
®
o
IS
Y
Sl g # 4 a M
- T T T T T T
50 100 150 200 250 300
Latency(ms)
h=2

Figure 8: Total time vs. Latency

O 5 The stall count of the Dependent protocols is limited by
the threshold, while that of pesSIrd keeps increasing with
latency. However, the mean time for the stall is independent
of latency for essIrd |, but keeps increasing for the De-
pendent protocols.

Figure 8 shows how the total time varies with latency with
h=1,2. Even though the response time mean for pesslid
was usually higher than the Dependent protocols with low
contention, the total time does not show this. This is because
the lower stall mean of pessIrd compensates.

O 6 Forlow VC and RC and latency < 180ms, the choice
of the protocol has negligible effect on the total time taken
to perform a task. However, with high VC and low RC, the
Dependent protocols perform significantly worse than the In-
dependent protocols.

Note that we have not modeled the increasing errors, or user
frustration that may occur when response time increases,
which can impact the total time. Therefore, acceptable re-
sponse time values for the task need to be considered along
with this total time information when choosing a protocol.
From figure 9, we can see how many extra messages are
sent per second, by each of the protocols. For the Indepen-
dent protocols at a very low latency, the heartbeat interval
(3 * latency) is lower than the inter-update interval, so a lot
of extra heartbeat messages are sent. Otherwise, the Inde-

optind
pessind
Dept
Dep2-n

50
L

s X>0O

40
L

30

Extra Messages/second
20
I

10

50 100 150 200 250 300

Latency(ms)

12000

TUvTO
ooo
v o

Jitter Count/Total Updates executed
0.015
I

=3
RS

o
=3
©

<LOX+r>0
e

2000 4000 6000 8000
L L

\

o
o

Local Rollback Count

50 100 150 200 250 300

Latency(ms)
optind

Figure 9: Extra Messages, Rollback count. h=2

pendent protocols have 0 extra messages. The extra mes-
sages for the Dependent protocols slowly decline as latency
increases, as the total time to perform the task is increasing.
Also, the same figure gives the number of rollbacks/undos
for qotlrd as the latency and RC increases. Note that how
many of these rollbacks cause user perceived contention (jit-
ter) is very dependent on the collaboration scenario. How-
ever, the amount of jitter that is tolerable, is a very important
factor in determining whether qdtIrd is useful for a certain
collaboration scenario.

Discussion

An important question is, given the situation, how do we
apply the preceding information to decide which protocol
to use. We illustrate with an example. Suppose we know
that h=2,p=0.3, that the latency can vary between 30ms and
120ms, and 50% of the rollbacks cause jitter. Figure 10
shows the mean response time for qotlrd, pesshrd,
De3’ , and the fraction of the total updates executed which
caused jitter, which we call the jitter fraction. If the maxi-
mum tolerable jitter fraction is greater than 0.022, gotTrd
is clearly the best because of its instantaneous response. If
the maximum tolerable jitter fraction is a value z, less than
0.022, we have a choice to make. Let y be the latency value
corresponding to this value z. We can use qotld when
the latency is less than y, and then dynamically switch to
pesslird . This can be easily done because the choice to

[0 optind
pessind
175 v Dep2

200
.
>

150
L

Response Time Mean(ms)

&

40 60 80 100 120

Latency(ms)

0.020
L

0.010
L

40 60 80 100 120

Latency(ms)

Figure 10: Protocol comparison. h=2,p=0.3

switch from gotlrd to pessIrd and vice versa can be

made locally by each process. However, if we also can-
not tolerate a mean response time greater than 175ms, we
will have to use D@2 after a latency threshold of 80ms is
reached. As it is hard to dynamically switch between De-
pendent and Independent protocols without coordination be-
tween all the processes, which may not be possible, we may
then have to use D532 for the whole collaboration.

RELATED WORK

Greenberg and Marwood [8] qualitatively discuss the im-
pact of different concurrency control schemes, including op-
timistic and pessimistic protocols, on certain collaboration
scenarios. They observe that social protocol between partic-
ipants make conflicts rare, and in many cases it is possible
for users to notice conflicts and manually repair them. For
the next generation of collaborative applications, we expect
that conflicts usually occur due to secondary effects of user
actions, for example, automatic constraint evaluation in en-
gineering design, and collision detection in distributed inter-
active simulation. In such scenarios, conflicts will be more
common, and we cannot expect the user to manually fix the
state.

For replicated state, two types of consistency protocols have
typically been used. Explicit locking approaches use locks
for atomicity and concurrency control, like DistView [14].
Ordering based approaches need an associated commit pro-

tocol. Our Independent protocol is similar to ORESTE [10].
DECAF [17] uses a primary copy commit protocol, which is
a dependent protocol. The advantage is that an update issu-
ing site only needs to talk to the primary copy sites for the
update to commit. By strategically placing the primary copy
sites, the commit for certain sites can be made faster. The
disadvantage is that the protocol uses the primary copies to
accept or reject the timestamp assigned by the update issuer,
so there is no bound on how many times the guess for a cer-
tain update may be rejected. A protocol in which the primary
copies assign timestamps can also be constructed, and our
dependent protocol is a dynamic variation of this, in which
the primary copies can move.

Finally, there has been some work in understanding how
poor response time affects human performance for single
user tasks. MacKenzie and Ware [12] use a target acquisi-
tion task in which the user has to move the mouse cursor into
a rectangular target. They see that increasing the response
time from 8.3ms to 225ms (for an asynchronous processing
model) increased the time taken to perform the task by 64%
and the error rate by 214%. This shows the importance of
low response time for human performance.

CONCLUSION

The conflicting goals of fast response and consistency
are difficult to meet for interactive groupware deployed
in widely distributed environments. We have developed
workload models and quantitatively evaluated a number of
choices for consistency protocols that can be used to meet the
response time and consistency needs of such applications.

For such high latency environments, the concept of a looka-
head threshold for user actions is very important for a true
evaluation. This models the users ability to issue a number of
actions without waiting for the first action to complete. We
have used two classes of protocols that can be used to con-
sistently execute the user updates at all sites. With a novel
workload model, we have evaluated these consistency proto-
cols along a number of dimensions.

Our results show that when lookahead is high and contention
is low, the pessimistic protocols perform significantly better
than expected. The pessimistic dependent and optimistic in-
dependent protocols are the best when there is no contention.
Howeyver, with a small amount of real or virtual contention,
the dependent protocols have a much higher response time
deviation than the pessimistic independent protocol. When
there is user perceived contention, the optimistic indepen-
dent protocol could have problems due to high jitter. Based
on the parameters of the operating environment, like latency
and contention, and the bounds required on the performance
metrics, we have shown how our plots could be used to
choose the appropriate protocol.

Future work involves using detailed user studies to further
refine our workloads, and to better understand the relative
importance of the metrics we measured. Also, better con-
sistency protocols, which utilize application semantics, and

adapt to changes in the external and collaboration environ-
ment, need to be designed and evaluated.

REFERENCES

1 C.Bajajand V. Anupam. Collaborative multimedia in scientific
design. IEEE Multimedia, 1(2):39-49, 1994.

2 P. A. Bemnstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley,
1987.

3 S. Bhola, B. Mukherjee, S. Doddapaneni, and M. Ahamad.
Flexible batching and consistency mechanisms for building in-
teractive groupware applications. In Proceedings of the 18th
International Conference on Distributed Computing Systems
(ICDCS), 1998. To appear.

4 S. Card, T. Moran, and A. Newell. The Psychology of Human-
Computer Interaction. Lawrence Erlbaum Associates, 1983.

5 S. Cheshire. Latency and the quest for interactivity. Commis-
sioned by Volpe Welty Asset Management, L.L.C., November
1996.

6 D. Collins. Designing Object-Oriented User Interfaces. Ben-
jamin/Cummings Publishing Company, 1995.

7 C. A.Ellis and S. J. Gibbs. Concurrency control in groupware
systems. In Proceedings of the ACM SIGMOD'89, pages 399—
407, 1989.

8 S. Greenberg and D. Marwood. Real time groupware as a dis-
tributed system: Concurrency control and its effect on the inter-
face. In Proceedings of the Fifth ACM Conference on Computer
Supported Cooperative Work (CSCW), 1994.

9 M. Herlihy. Apologizing versus asking permission: Optimistic
concurrency control for abstract data types. ACM Transactions
on Database Systems, 15(1), March 1990.

10 A. Karsenty and M. Beaudouin-Lafon. An algorithm for dis-
tributed groupware applications. In Proceedings of the 13th
ICDCS, pages 195-202, 1993.

11 L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558-565,
July 1978.

12 I. S. MacKenzie and C. Ware. Lag as a determinant of human
performance in iteractive systems. In INTERCHI'93 Proceed-
ings, 1993.

13 J. Munson and P. Dewan. A concurrency control framework for
collaborative systems. In Proceedings of the 6th CSCW, 1996.

14 A. Prakash and H. S. Shim. Distview: Support for building
efficient collaborative applications using replicated objects. In
Proceedings of the 5th CSCW, 1994.

15 C. Schuckmann, L. Kirchner, J. Schummer, and J. M.
Haake. Designing object-oriented synchronous groupware with
COAST. In ACM CSCW'96, 1996.

16 B. Shneiderman. Designing the User Interface: Strategies for
Effective Human-Computer Interaction. Addison-Wesley, 2nd
edition, 1992.

17 R. Strom, G. Banavar, K. Miller, A. Prakash, and M. Ward.
Concurrency control and view notification algorithms for col-

laborative replicated objects. In Proceedings of the 17th
ICDCS, 1997.

