
Integer Sorting on Shared-Memory Vector Parallel
Computers

Kenji Suehiro Hitoshi Murai Yoshiki Seo
NEC Corporation

4-l -1 Miyazaki, Miyamae-ku
Kawasaki, 216-8555 Japan

+81-44-856-2183

suehiro@ccm.cl.nec.co.jp

NEC Corporation
4-l-l Miyazaki, Miyamae-ku
Kawasaki, 216-8555 Japan

+81-44-856-2183

murai@ccm.cl.nec.co.jp

NEC Corporation
4-l-l Miyazaki, Miyamae-ku
Kawasaki, 216-8555 Japan

+81-44-856-2183

seo@ccm.cl.nec.co.jp

ABSTRACT

This paper describes new fast integer sorting methods for single
vector and shared-memory parallel vector computers, based on
the bucket sort algorithm. Existing vectorization methods for
bucket sort have made great efforts to avoid store conflicts of
vector scatter operations, and therefore are not so efftcient. The
vectorization methods shown in this paper-the retry method, the
split vector method and the mask vector method-all actively
utilize the nature of the store conflicts to achieve high
performance. The parallelization method in this paper uses a
feature of shared-memory machines and dynamically changes the
partitioning of histogram arrays without any overhead. By
combining the retry and the parallelization methods, we got the
worlds fastest results for the IS program (Class B) in the NAS
Parallel Benchmarks on the NBC $X4. Our methods are also
applicable to a wide range of particle simulation programs.

Keywords

wide range of particle simulations.

Bucket sort, a basic sorting algorithm which we use, consists of
the following three phases:

Integer sorting, particle pusher, store conflict, vectorization,
parallelization.

1. INTRODUCTION
There is a class of programs called “particle pusher” codes,
which accumulate data into target arrays using indirect index
vectors. These codes often appear in application programs of
high performance computing, and therefore ate very important.
The NAS Parallel Benchmarks (NPB) include integer sorting (IS)
as an example of “particle pusher” codes.

We have developed new fast integer sorting methods for single
vector computers and shared-memory parallel vector computers.
Using these methods, we got the world’s fastest results for the
NPB IS on the NEC SX-4. Our methods are also applicable to a

(a) Compute a histogram of keys to sort.

(b) Compute running sum of the histogram.

(c) Rank keys by the running sum.

Better vectorization of phase (a) is the key to faster sorting, since
good vectorization methods for phase (b) and (c) ate known.
Phase (a) is also a variation of “particle pusher” codes, therefore
if we can vectorize phase (a) efficiently, we could improve vector
performance of particle simulation programs using the same
techniques. This paper focuses on the vectorization of phase (a).
We vectorize phase (b) using vector reduction instructions and
phase (c) using the method of Ishiura et al.131

In Section 2, we define the problem to solve and clarify the
background assumptions. In Section 3, we present the retry
method, a vectorization method we developed for vector
computers. In Section 4, we discuss two other vectorization
methods we developed and tried. In Section 5, we present the
parallelization method we developed for shared-memory parallel
vector computers. In Section 6, we show some evaluation results
on the SX-4. In Section 7, concluding remarks and future plans
are presented.

2. PRELIMINARIES
2.1 Definition of Integer Sorting
This paper uses the same definition of “integer sorting” as that in
the NPB document[l]:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the fill citation on the fti page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS 98 Melbourne Australia

A sequence of keys key(i), where i = 0, M-l, will be sorted if
it is arranged in non-descending order, i.e. key(i) I key(i+l) for
all i. The rank of a particular key is the index value i that the
key would have if the sequence of keys were sorted. Ranking is
the process to obtain ranks for all the keys. Sorting is the process
to permute the keys to produce a sorted sequence. Sorting is not
required to be stable; equal keys do not need to retain their
original order.

Copyright ACM 1998 0-89791-998-x/98/ 7...$5.00 This paper discusses vectorization and parallelization of ranking.

313

http://crossmark.crossref.org/dialog/?doi=10.1145%2F277830.277904&domain=pdf&date_stamp=1998-07-13

Index vector: IDX(I)

2 4 1 1 3 2

Vector: V(1)

(1) (2) (3) (4)
Array: A(I)

(a) Vector gather operation
V(I) = A(IDX(I))

Index vector: IDX(I)

Vector: V(1)

(1) (2) (3) (4)

Array: A(I)

(b) Vector scatter operation
A(IDX(I)) = V(I)

Figure 1: Vector Gather/Scatter Operation

2.2 Assumption on Vector Gather/Scatter
Operations
This paper assumes the following characteristics of a vector
gather/scatter operation:

(A) A processor correctly loads all vector elements by any
index vector in a vector gather operation, even if there are
two or more equal index values in the index vector. For
example, Figure l-(a) shows that both V(I) and V(6) are
loaded correctly although their indices are the same.

(B) A processor correctly stores exactly one vector element
of those which should be stored to the same location by a
vector scatter operation. That is, when there are two or
more equal index values in the index vector, one of the
corresponding elements “survives” and is guaranteed to be
stored. For example, Figure l-(b) shows that V(3) is stored
correctly and V(4) is not.

(C) A processor always stores the same elements correctly
for the same index vector in a vector scatter operation.
That is, the set of “surviving” elements is always the same
combination for a given index vector. For example, the
processor illustrated in Figure l-(b) always stores V(3) to
A(1) when the index vectorIDX is (29 4,1, I, 3,2}.

Most existing vector processors (including the SX-4) conform all
the above assumptions.

3. RETRY METHOD
3.1 Overview
The retry method is a vectorization method we developed for
single vector computers. It vector&s Phase (a) of bucket sort.
As mentioned in Section 1, the method is directly applicable to
“particle pusher” codes and can improve the performance of
particle simulation programs.

The essence of Phase (a) is to increment histogram hist(k) for
each {k / k = key(i), i = 0, . . ., M-I}. More precisely, a processor
loads h&(k), increments it, and stores it back to hist(k) for each k

= key(i). lf we vector& the process straightforwardly, the loads
will become vector gather operations and the stores will become
vector scatter operations with index vectors of k = key(i), which
may cause store conflicts. Existing vectorization methods usually
try to avoid these conflicts, while our retry method accepts and
even uses the conflicts to achieve high performance.

The main merits of the retry method are the following. First, it
needs only a small amount of extra memory for vectorization.
Secondly, it needs only a small amount of extra computation for
vectorization. Finally, it is fully vectorizable and therefore it can
be fast.

3.2 Procedure
The retry method breaks Phase (a) of the bucket sort algorithm
down into the following four operations:

(1) Compute a histogram with a key vector, ignoring store
conflicts.

(2) Detect store conflicts for the key vector and gather those
key elements causing store conflicts (called conflicted keys)
into a retry queue, which saves conflicted keys for later
retry. The computation results of Step (1) for conflicted
keys are not stored properly at this point. Later we
describe a technique to detect the store conflicts.

(3) Repeat Step (1) and (2) for all keys.

(4) Repeat Loop (3) for all keys in the retry queue, until no
key remains.

Figure 2 illustrates an example of the procedure. Twelve keys
are processed by 4-way vector execution (shown in the upper left
blocks). In Step (I), the first three elements of the first key
vector properly counted into the histogram array, while the fourth
is not because of a conflict with the third key. Therefore in Step
(2), the fourth element is gathered into the retry queue by a
vector gather operation (denoted by an arrow to the upper middle
blocks). In Loop (3), the process so far is repeated for the
remaining key vectors. At this point, nine of all twelve keys are

314

Keys Retry
Queue

Retry
Queue

III 2

0 Conflicted key

h&(l) (2) (3)

Figure 2: Retry Method

counted into the histogram (the lower left blocks), and the other
three keys are gathered into the retry queue. Then in Loop (4),
the process so far is repeated for keys in the retry queue until no
key remains. The first two keys in the retry queue are counted by
the first retry (the lower middle blocks) and the last is stored
again to the queue (the upper right blocks), which is finally
counted by the second retry (the lower right blocks).

3.3 Detecting Store Conflicts
We use a very simple method to detect store conflicts in Step (2).
We prepare a work array of the same shape as the histogram
array. Let K be a key vector of length V to be examined. A

Keys

241132

Index

processor stores the trivial sequence T = {I, V} to the work
array with the index vector K, then loads it back immediately
with the same index vector K. If there is no store conflict, the
loaded vector T’ will be exactly the same as T. If there is a
conflict, suppose the i-th and j-th elements of K are equal, then
the i-th element of T’ will have the value j (or vice versa) since
only one store of the two is done correctly when storing T to the
work array. So the processor can detect conflicts by comparing T
and 7” element-wise; it can get a mask vector by vector
comparison. This mask represents which elements of the key
vector should bc recomputed, and can be used for gathering
conflicted keys in vector gather operations.

Figure 3 illustrates an example of the store conflict detection.
The key vector to be examined is K = (2,4, I, 1,3,2} (shown in
the upper left blocks). At first, a processor stores a trivial
sequence T = {l, 2, 3, 4, 5, 6} to the work array with the index
vector K (the lower left diagram). Because K has two Is at its
third and fourth elements, one of the corresponding elements of T
cannot be stored correctly. (Here the fourth cannot.) Similarly,
the sixth element of T cannot bc stored by the conflict of two 26
in K. Then, the processor loads T’ back from the work array with
the same index vector K (the lower right diagram) and compares
T’ with T (the upper right blocks). The difference of the fourth
and sixth elements shows that, with the index vector K, the
stores of the fourth and sixth elements always fail due to
conflicts.

3.4 Considerations
If no conflict occurs, all keys in a key vector are processed
without retry. Otherwise, Assumption (A) and (B) in Section 2
guarantees that one key is processed for each set of equal keys.
That means at least one key per a key vector is processed and
therefore the repetition in Loop (4) always terminates.
Assumption (C) guarantees that the conflict pattern detected in
Step (2) are the exactly same as that occurs in Step (1).

The retry method is fully vectorizable and therefore can be
performed fast. It needs some extra computation for store

Mask

I I
T T

Trivial sequence

Work array

Storing a trivial sequence

Figure 3: Detection of Store Conflicts

Loading a sequence

315

conflict detection and for recomputation of conflicted keys. The
amount of computation for the conflict detection is three vector
operations (a load, a store, and a compare) per key vector and so
is very little. The amount of computation for the retry completely
depends on input data, but is usually not so much.

The retry method needs some extra memory for the work array
and for the retry queue. As for the work array, it actually needs
no extra memory on implementation because the histogram array
itself can be used for this purpose by performing Step (1) and (2)
simultaneously. That is, a processor at first loads current
histogram values from the histogram array to its vector register
RI, and increments it. ‘Ihen the processor stores a trivial
sequence preloaded on register Rz to the histogram array, loads it
back to register Rs, and compares RZ and R3 to detect conflicts.
Finally it stores the new histogram values kept on RI to the
histogram array. This works correctly because all loads and
stores above use an identical index vector.

As for the retry queue, it requires an array of almost the same
size as input keys in the worst cases. That can be a problem
when there are not enough memory. We can reduce that memory
size by modifying the retry method procedure so that the
recomputation in Loop (4) is done whenever there are enough
conflicting keys in the queue to form a vector. For example:

(1’) Compute a histogram with a key vector, ignoring store
conflicts.

(2’) Detect store conflicts for the key vector and gather
conflicted keys into a retry queue.

(3’) If there ate enough elements to form a vector in the retry
queue, get a key vector from them and do Step (1’) and Step
(2’) for it.

(4’) Repeat Step (1’) through (3’) for all keys.

(5’) Repeat Loop (4’) for remaining keys in the retry queue,
until no key remains.

In this procedure, the retry queue requires only as much memory

Vector
Execution

Keys

0 Conflicted key

Figure 4: Split Vector Method

as two index vectors. (More precisely, the maximum number of
keys in the retry queue is (2V-2), where V is the vector length.
That occurs when Step (2’) gathers (V-I) conflicted keys to the
retry queue already having (V-l) elements. Step (3’) makes sure
that the queue have at most (V-l) keys before Step (2’) starts, and
as mentioned above, Step (2’) can gather at most (V-l) conflicted
keys.) The performance of the modified procedure may be a
little worse than the original, because the process in Step (3’)
such as decision and queue manipulation needs some extra
computation.

4. OTHER VECTORIZATION METHODS
We developed and tried two other vectorization methods as well,
called the split vector method and the mask vector method. This
section describes them briefly.

4.1 Split Vector Method
The split vector method detects store conflicts before
computation, and repeatedly splits key vectors until the conflicts
are resolved.

(1) Detect store conflicts for a key vector by the same way
as retry method.

(2) If no conflict exists, then compute a histogram with the
key vector. Otherwise, split the key vector into two half
vectors and apply the procedure so far to both of them
recursively.

(3) Repeat Step (1) and (2) for all keys.

Figure 4 illustrates an example of the procedure. In Step (l), a
key vector of eight keys K = (I, 4, 2,3, 2, 5, I, 2} is examined
(shown in the left blocks). Because the fifth, seventh and eighth
key cause store conflicts, Step (2) splits the vector K into two
half vectors Kl = {I, 4, 2,3} and KZ = {2, 5, I, 2). and both are
examined again (the middle blocks). The first half k does not
have conflicts, so a histogram can be computed directly from the
key vector (the upper middle blocks). The second half K2 still
has conflicts (the lower middle blocks), so it is split again into
K~I = (2, 5} and K22 = {l, 2} (the right blocks). They do not
have conflicts anymore, so a histogram is calculated from them.

An advantage of this method is that it needs almost no extra
memory for vectorization. A disadvantage of this method is that
the vector length of computation tends to be short and therefore
vector performance may be worse than the processor’s peak
performance.

4.2 Mask Vector Method
The mask vector method immediately retries the computation for
conflicting keys using a mask vector, instead of gathering them
into a retry queue for later recomputation.

(1) Set a mask to all-true.

(2) Compute a histogram with a key vector where the mask
elements are true.

(3) Detect store conflicts for the key vector where the mask
elements are true by the same way as retry method. Set
mask elements corresponding to the non-conflicted keys to
false.

316

Vector
Execution

Keys Mask
0 Conflicted key

Histogram

-1 ~-qTlyqq 1213(111111
(1) (2) (3) (4) (5)

Figure 5: Mask Vector Method

(4) Repeat Step (2) and (3) until the mask becomes all-
false.

(5) Repeat Step (1) through (4) for all keys.

Figure 5 illustrates an example of the procedure. The key vector
to be processed is K = {I, 4, 2, 3, 2, 5, 1, 2}. In the first try,
Step (2) computes a histogram with the all-true mask set by Step
(1) and the histogram array H becomes {I, 1, I, 1, 1} counting

Keys on -
Proc. 1

lrn[

Keys on +
Proc. 2

1-1

Keys on +
Proc. 3

lplirlq

Keys on -.
Proc. 4

lrn]

Extended
Histogram

0

I Number of
key 1

I

key 2

I

key 3

_-

Calculates on .:j.:.:jj.
pmt. 1 ::I!%;:; I

‘.‘.‘.1;.:.:. ::.
:.~.;g

1
Proc. 2

I

3

3

Proc. 3

I ~
0

3

4

In 1
Proc. 4 I 3

kl 3

the first, second, third, fourth and sixth keys in the key vector.
The fifth, seventh and eighth are not counted due to conflicts,
which are detected in Step (3). The mask elements
corresponding to the conflicted keys are kept true and the others
are turned to false. In the second try, Step (2) computes a
histogram with the mask M = {F, F, F, F, T, F, T, T} and the
histogram H becomes (2, 2, I, 1, l} counting the fifth and
seventh keys. Again the eighth key are not counted due to
conflicts, and the mask M becomes (F, F, F, F, F, F, F, T} in
Step (3). Then in the third try, the eighth key is counted at last
and H becomes {2, 3, I, 1, I}. The mask M becomes all-false
and therefore the repetition terminates.

An advantage of this method is that it needs almost no extra
memory for vectorization. A disadvantage of this method is that
vector operations with sparse masks may degrade performance.

5. PARALLELIZATION OF BUCKET
SORT
This section describes the parallelization method we developed
for shared-memory vector parallel computers. The method uses a
merit of shared-memory machines to dynamically change
partitioning and assignment of arrays to processors without any
cost. This method is fully parallelized and therefore efficient.

5.1 Procedure
Using our method, bucket sort is parallelized as follows:

(0) Partition the input keys into P equal sets and assign
them to P processors. Create P copies of the histogram
array. Because the order of equal keys is arbitrary, here we
decide to give a smaller rank to a key on a smaller-

Proc. 2

Proc. 3

Proc. 4

Ranks for keys on
Pm, 1

-1

Ranks for keys on
Proc. 2

pliElq

Ranks for keys on
hoc. 3

Imxliq

Ranks for keys on
Proc. 4

lplizilq

(a) Compute histograms (b) Calculate running sums (c) Offset running sums

Figure 6: Parallelization of Bucket Sort

(d) Rank keys

317

numbered processor.

(1) Compute a histogram on each processor with its own
keys by some vectorization method such as retry method.
Processorp (p = 0, P-I) exclusively uses the part of the
histogram array such that an index i to the array conforms
mod& P) = p. In other words, the histogram array is
distributed by the “cyclic” format to processors. The
“smaller rank for smaller processor” rule is naturally
realized by using the histogram array in that way.

(2) Compute running sum of the whole histogram. Change
the distribution of the histogram array to the “block”
format, compute local running sum on each processor, and
offset it by total sums of preceding processors. Note that
the change of array distribution and the reference to other
processors’ sums are done without any cost by using shared-
memory.

(3) Rank keys by the running sum on each processor.
Change the distribution of the histogram array back to
“cyclic”, and rank keys with it on each processor. Again,
the distribution changes with no cost.

Figure 6 illustrates an example of the procedure. There are 16
keys to sort, distributed to four processors equally. The
histogram array H is extended to four times and initially
distributed to the four processors in the “cyclic” format. In the
figure, the hatching blocks denote the elements assigned to
Processor 1. In Step (l), every processor computes its own
histogram (shown in figure (a)). In this step, Processor 1 uses
H(I) for keeping the number of keys 1, and Processors 2, 3 and 4
use H(2), H(3) and H(4) respectively. That means a key 1 on a
smaller-numbered processor has a smaller tank. In Step (2), H is
redistributed in the “block” format and every processor computes
a local running sum (figure (b)), then offsets it by total sums of
preceding processors (figure (c)). For example, Processor 3
computes its local running sum {0, 3, 4}, and offsets all the
elements by total sums of Processor 1 and 2, that is, 9 (=6+3).
The resulting sum will be (9, 12, 13}. In Step (3), H is
redistributed back in the “cyclic” format and every processor
computes ranks of their own keys (figure (d)).

5.2 Considerations
This method is fully parallelized and therefore efficient. The
amount of computation per processor in Step (2) is constant even
when the number of processors changes, therefore Step (2) could
be a bottleneck of performance improvement in highly parallel
machines.

6. EVALUATION RESULTS
We implement the methods described above to the NPB 1.0 IS
program on an NRC SX4 shared-memory vector parallel
supercomputer using the FORTRAN77/SX compiler. This
section shows some results of the evaluation.

6.1 Comparison of Vectorization Methods
Figure 7 and Table 1 show the comparison of the retry method,
the split vector method, the mask vector method, and the work
buffer method121 for an example of existing methods. The
parenthesized numbers for the work buffer method denote vector
lengths. The work buffer method with a long vector needs a

:

I n ri
CPU (sec.) Size (MB)

Split Vector Mask Vector Work Buffer (64) SCdIlI

(a) Results of NPB IS Class A

5

(b) Results of NPB IS Class B

Figure 7: Comparison of Vectorization Methods

318

0 ’ ,’ ’ ,’ ’ *’ ’ ’ .’ ’ ,’
10 100 1000 10000 100000 1000000

Maxmum value of keys (MAXKEY)

Figure 8: Evaluation of Conflict Frequency

huge amount of memory and the longest vector length we could
implement was 64. We use a vector length of 256 for the other
vector methods.

The methods described in this paper all show better performance
than the work buffer methods. The retry method is the best of
three new methods, and better than the 64-way work buffer
method in class B.

6.2 Distribution of Input Keys
The performance of the retry method depends on the input data.
We measured the execution time of the retry method version
varying conflict frequency; we fix the number of keys to 216 and
vary the maximum value of keys. We also measured the
execution time of the 64-way work buffer version under the same
conditions.

Figure 8 shows the results. Although the performance of retry
method gets worse when the conflict frequency becomes higher,
it is better than work buffer method except at the very high
frequency area.

6.3 Evaluation of the Parallelization Method
Figure 9 and Table 2 show the results of the parallelized retry
method version. The table also shows the official results of
CRAY Y-MP, C90, T916 and Fujitsu VPP700[4]. With the
methods described in this paper, the SX4 got the world’s fastest
results (in November 1996) of class B.

7. CONCLUDING REMARKS
We developed new fast integer sorting methods for vector
computers and shared-memory parallel vector computers. Using
these methods, we got the world’s fastest results of the NPB IS
program on the NEC SX-4. Our methods are also applicable to a
wide range of applications such as “particle pusher” codes.

We now plan to more tune up our sorting programs to get better
performance, and try more input patterns or more different

NEC SX-4 t
CRAY YMP -t .

30 - CRAY TgO Q-
Fujitsu VPP500 -I+

5-

(a) Results of NPB IS Class A

161 , , I I

14 -

2-

0’ ’ ’ I I I
0 1 2 4 6 16

Number of PrOceSSOrS

(a) Results of NPB IS Class A

Figure 9: Evaluation of NPB IS Class B

methods. We also plan to apply our methods to real applications
such as particle simulations.

ACKNOWLEDGMENTS
We would like to thank Toshiyuki Nakata for his valuable
remarks and discussions about sorting algorithms.

We also thank Takeo Fujimori for his help in the experiments on
the SX-4.

REFERENCES
[l] Bailey, D. et al. The NAS Parallel Benchmarks, RNR

Technical Report RNR-94-007, Mar. 1994.

[2] Elton, B. H. and Miura, K. A Vector-Parallel hnplemen-
tation and Statistical Analysis of the Bucket Sort on a

319

Vector-Parallel Distributed Memory System: Lessons
Learned in the Integer Sort NAS Parallel Benchmark,
Proceedings of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing, pp.782-3, 1995.

Method CPU (sec.) Ratio Size (MB)

Retry 1.55 39.96 140

Split vector 2.09 29.63 140

Mask vector 2.48 24.96 172

Work buffer (64) 5.50 11.26 236

Scalar 61.94 1.00 104

(a) Results of NPB IS Class A

Method CPU (sec.) Ratio Size (MB)

Retry 6.77 38.00 560

Split vector 8.49 30.30 688

Mask vector 10.60 24.27 560

Work buffer (8) 71.55 3.60 468

Work buffer (16) 44.11 5.83 532

Work buffer (32) 32.48 7.92 660

Work buffer (64) 26.20 9.81 916

Scalar 257.27 1.00 456

(b) Results of NPB IS Class B

Table 1: Comparison of Vectorization Methods

[3] Ishiura, N. et al. Sorting on a vector processor (in
Japanese), Transactions of the Information Processing
Society of Japan, ~01.29, no.4, pp.378-85, 1988.

[4] Saini, S. and Bailey, D. H. NAS Parallel Benchmark
(Version 1.0) Results 11-96, Report NAS-96-18, NASA
Ames Research Center, Nov. 1996.

Number of CPUs 1 2 4

NEC SX-4 (sec.) 1.55 0.81 0.45

(Ratio to Y-Mph) 7.39 14.14 25.46

Cray Y-MP 11.46 ____

1.00 ____ ____

Cray T9 16 2.02 1.02 0.52

5.67 11.24 22.04

Fujitsu VPF’700 2.3968 1.8038 1.2519

4.78 6.35 9.15

(a) Results of NPB IS Class A

8

0.29

39.5 1

1.85

6.19

0.38

30.16

1.1249

10.19

(b) Results of NPB IS Class B

Table 2: Evaluation of NPB IS Class B

320

