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ABSTRACT 

This paper describes new fast integer sorting methods for single 
vector and shared-memory parallel vector computers, based on 
the bucket sort algorithm. Existing vectorization methods for 
bucket sort have made great efforts to avoid store conflicts of 
vector scatter operations, and therefore are not so efftcient. The 
vectorization methods shown in this paper-the retry method, the 
split vector method and the mask vector method-all actively 
utilize the nature of the store conflicts to achieve high 
performance. The parallelization method in this paper uses a 
feature of shared-memory machines and dynamically changes the 
partitioning of histogram arrays without any overhead. By 
combining the retry and the parallelization methods, we got the 
worlds fastest results for the IS program (Class B) in the NAS 
Parallel Benchmarks on the NBC $X4. Our methods are also 
applicable to a wide range of particle simulation programs. 

Keywords 

wide range of particle simulations. 

Bucket sort, a basic sorting algorithm which we use, consists of 
the following three phases: 

Integer sorting, particle pusher, store conflict, vectorization, 
parallelization. 

1. INTRODUCTION 
There is a class of programs called “particle pusher” codes, 
which accumulate data into target arrays using indirect index 
vectors. These codes often appear in application programs of 
high performance computing, and therefore ate very important. 
The NAS Parallel Benchmarks (NPB) include integer sorting (IS) 
as an example of “particle pusher” codes. 

We have developed new fast integer sorting methods for single 
vector computers and shared-memory parallel vector computers. 
Using these methods, we got the world’s fastest results for the 
NPB IS on the NEC SX-4. Our methods are also applicable to a 

(a) Compute a histogram of keys to sort. 

(b) Compute running sum of the histogram. 

(c) Rank keys by the running sum. 

Better vectorization of phase (a) is the key to faster sorting, since 
good vectorization methods for phase (b) and (c) ate known. 
Phase (a) is also a variation of “particle pusher” codes, therefore 
if we can vectorize phase (a) efficiently, we could improve vector 
performance of particle simulation programs using the same 
techniques. This paper focuses on the vectorization of phase (a). 
We vectorize phase (b) using vector reduction instructions and 
phase (c) using the method of Ishiura et al.131 

In Section 2, we define the problem to solve and clarify the 
background assumptions. In Section 3, we present the retry 
method, a vectorization method we developed for vector 
computers. In Section 4, we discuss two other vectorization 
methods we developed and tried. In Section 5, we present the 
parallelization method we developed for shared-memory parallel 
vector computers. In Section 6, we show some evaluation results 
on the SX-4. In Section 7, concluding remarks and future plans 
are presented. 

2. PRELIMINARIES 
2.1 Definition of Integer Sorting 
This paper uses the same definition of “integer sorting” as that in 
the NPB document[l]: 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the fill citation on the fti page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ICS 98 Melbourne Australia 

A sequence of keys key(i), where i = 0, . . . . M-l, will be sorted if 
it is arranged in non-descending order, i.e. key(i) I key(i+l) for 
all i. The rank of a particular key is the index value i that the 
key would have if the sequence of keys were sorted. Ranking is 
the process to obtain ranks for all the keys. Sorting is the process 
to permute the keys to produce a sorted sequence. Sorting is not 
required to be stable; equal keys do not need to retain their 
original order. 

Copyright ACM 1998 0-89791-998-x/98/ 7...$5.00 This paper discusses vectorization and parallelization of ranking. 
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Index vector: IDX(I) 

2 4 1 1 3 2 

Vector: V(1) 

(1) (2) (3) (4) 
Array: A(I) 

(a) Vector gather operation 
V(I) = A(IDX(I)) 

Index vector: IDX(I) 

Vector: V(1) 

(1) (2) (3) (4) 

Array: A(I) 

(b) Vector scatter operation 
A(IDX(I)) = V(I) 

Figure 1: Vector Gather/Scatter Operation 

2.2 Assumption on Vector Gather/Scatter 
Operations 
This paper assumes the following characteristics of a vector 
gather/scatter operation: 

(A) A processor correctly loads all vector elements by any 
index vector in a vector gather operation, even if there are 
two or more equal index values in the index vector. For 
example, Figure l-(a) shows that both V(I) and V(6) are 
loaded correctly although their indices are the same. 

(B) A processor correctly stores exactly one vector element 
of those which should be stored to the same location by a 
vector scatter operation. That is, when there are two or 
more equal index values in the index vector, one of the 
corresponding elements “survives” and is guaranteed to be 
stored. For example, Figure l-(b) shows that V(3) is stored 
correctly and V(4) is not. 

(C) A processor always stores the same elements correctly 
for the same index vector in a vector scatter operation. 
That is, the set of “surviving” elements is always the same 
combination for a given index vector. For example, the 
processor illustrated in Figure l-(b) always stores V(3) to 
A(1) when the index vectorIDX is (29 4,1, I, 3,2}. 

Most existing vector processors (including the SX-4) conform all 
the above assumptions. 

3. RETRY METHOD 
3.1 Overview 
The retry method is a vectorization method we developed for 
single vector computers. It vector&s Phase (a) of bucket sort. 
As mentioned in Section 1, the method is directly applicable to 
“particle pusher” codes and can improve the performance of 
particle simulation programs. 

The essence of Phase (a) is to increment histogram hist(k) for 
each {k / k = key(i), i = 0, . . ., M-I}. More precisely, a processor 
loads h&(k), increments it, and stores it back to hist(k) for each k 

= key(i). lf we vector& the process straightforwardly, the loads 
will become vector gather operations and the stores will become 
vector scatter operations with index vectors of k = key(i), which 
may cause store conflicts. Existing vectorization methods usually 
try to avoid these conflicts, while our retry method accepts and 
even uses the conflicts to achieve high performance. 

The main merits of the retry method are the following. First, it 
needs only a small amount of extra memory for vectorization. 
Secondly, it needs only a small amount of extra computation for 
vectorization. Finally, it is fully vectorizable and therefore it can 
be fast. 

3.2 Procedure 
The retry method breaks Phase (a) of the bucket sort algorithm 
down into the following four operations: 

(1) Compute a histogram with a key vector, ignoring store 
conflicts. 

(2) Detect store conflicts for the key vector and gather those 
key elements causing store conflicts (called conflicted keys) 
into a retry queue, which saves conflicted keys for later 
retry. The computation results of Step (1) for conflicted 
keys are not stored properly at this point. Later we 
describe a technique to detect the store conflicts. 

(3) Repeat Step (1) and (2) for all keys. 

(4) Repeat Loop (3) for all keys in the retry queue, until no 
key remains. 

Figure 2 illustrates an example of the procedure. Twelve keys 
are processed by 4-way vector execution (shown in the upper left 
blocks). In Step (I), the first three elements of the first key 
vector properly counted into the histogram array, while the fourth 
is not because of a conflict with the third key. Therefore in Step 
(2), the fourth element is gathered into the retry queue by a 
vector gather operation (denoted by an arrow to the upper middle 
blocks). In Loop (3), the process so far is repeated for the 
remaining key vectors. At this point, nine of all twelve keys are 
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Figure 2: Retry Method 

counted into the histogram (the lower left blocks), and the other 
three keys are gathered into the retry queue. Then in Loop (4), 
the process so far is repeated for keys in the retry queue until no 
key remains. The first two keys in the retry queue are counted by 
the first retry (the lower middle blocks) and the last is stored 
again to the queue (the upper right blocks), which is finally 
counted by the second retry (the lower right blocks). 

3.3 Detecting Store Conflicts 
We use a very simple method to detect store conflicts in Step (2). 
We prepare a work array of the same shape as the histogram 
array. Let K be a key vector of length V to be examined. A 

Keys 

241132 

Index 

processor stores the trivial sequence T = {I, . . . . V} to the work 
array with the index vector K, then loads it back immediately 
with the same index vector K. If there is no store conflict, the 
loaded vector T’ will be exactly the same as T. If there is a 
conflict, suppose the i-th and j-th elements of K are equal, then 
the i-th element of T’ will have the value j (or vice versa) since 
only one store of the two is done correctly when storing T to the 
work array. So the processor can detect conflicts by comparing T 
and 7” element-wise; it can get a mask vector by vector 
comparison. This mask represents which elements of the key 
vector should bc recomputed, and can be used for gathering 
conflicted keys in vector gather operations. 

Figure 3 illustrates an example of the store conflict detection. 
The key vector to be examined is K = (2,4, I, 1,3,2} (shown in 
the upper left blocks). At first, a processor stores a trivial 
sequence T = {l, 2, 3, 4, 5, 6} to the work array with the index 
vector K (the lower left diagram). Because K has two Is at its 
third and fourth elements, one of the corresponding elements of T 
cannot be stored correctly. (Here the fourth cannot.) Similarly, 
the sixth element of T cannot bc stored by the conflict of two 26 
in K. Then, the processor loads T’ back from the work array with 
the same index vector K (the lower right diagram) and compares 
T’ with T (the upper right blocks). The difference of the fourth 
and sixth elements shows that, with the index vector K, the 
stores of the fourth and sixth elements always fail due to 
conflicts. 

3.4 Considerations 
If no conflict occurs, all keys in a key vector are processed 
without retry. Otherwise, Assumption (A) and (B) in Section 2 
guarantees that one key is processed for each set of equal keys. 
That means at least one key per a key vector is processed and 
therefore the repetition in Loop (4) always terminates. 
Assumption (C) guarantees that the conflict pattern detected in 
Step (2) are the exactly same as that occurs in Step (1). 

The retry method is fully vectorizable and therefore can be 
performed fast. It needs some extra computation for store 

Mask 

I I 
T T 

Trivial sequence 

Work array 

Storing a trivial sequence 

Figure 3: Detection of Store Conflicts 

Loading a sequence 

315 



conflict detection and for recomputation of conflicted keys. The 
amount of computation for the conflict detection is three vector 
operations (a load, a store, and a compare) per key vector and so 
is very little. The amount of computation for the retry completely 
depends on input data, but is usually not so much. 

The retry method needs some extra memory for the work array 
and for the retry queue. As for the work array, it actually needs 
no extra memory on implementation because the histogram array 
itself can be used for this purpose by performing Step (1) and (2) 
simultaneously. That is, a processor at first loads current 
histogram values from the histogram array to its vector register 
RI, and increments it. ‘Ihen the processor stores a trivial 
sequence preloaded on register Rz to the histogram array, loads it 
back to register Rs, and compares RZ and R3 to detect conflicts. 
Finally it stores the new histogram values kept on RI to the 
histogram array. This works correctly because all loads and 
stores above use an identical index vector. 

As for the retry queue, it requires an array of almost the same 
size as input keys in the worst cases. That can be a problem 
when there are not enough memory. We can reduce that memory 
size by modifying the retry method procedure so that the 
recomputation in Loop (4) is done whenever there are enough 
conflicting keys in the queue to form a vector. For example: 

(1’) Compute a histogram with a key vector, ignoring store 
conflicts. 

(2’) Detect store conflicts for the key vector and gather 
conflicted keys into a retry queue. 

(3’) If there ate enough elements to form a vector in the retry 
queue, get a key vector from them and do Step (1’) and Step 
(2’) for it. 

(4’) Repeat Step (1’) through (3’) for all keys. 

(5’) Repeat Loop (4’) for remaining keys in the retry queue, 
until no key remains. 

In this procedure, the retry queue requires only as much memory 

Vector 
Execution 

Keys 

0 Conflicted key 

Figure 4: Split Vector Method 

as two index vectors. (More precisely, the maximum number of 
keys in the retry queue is (2V-2), where V is the vector length. 
That occurs when Step (2’) gathers (V-I) conflicted keys to the 
retry queue already having (V-l) elements. Step (3’) makes sure 
that the queue have at most (V-l) keys before Step (2’) starts, and 
as mentioned above, Step (2’) can gather at most (V-l) conflicted 
keys.) The performance of the modified procedure may be a 
little worse than the original, because the process in Step (3’) 
such as decision and queue manipulation needs some extra 
computation. 

4. OTHER VECTORIZATION METHODS 
We developed and tried two other vectorization methods as well, 
called the split vector method and the mask vector method. This 
section describes them briefly. 

4.1 Split Vector Method 
The split vector method detects store conflicts before 
computation, and repeatedly splits key vectors until the conflicts 
are resolved. 

(1) Detect store conflicts for a key vector by the same way 
as retry method. 

(2) If no conflict exists, then compute a histogram with the 
key vector. Otherwise, split the key vector into two half 
vectors and apply the procedure so far to both of them 
recursively. 

(3) Repeat Step (1) and (2) for all keys. 

Figure 4 illustrates an example of the procedure. In Step (l), a 
key vector of eight keys K = (I, 4, 2,3, 2, 5, I, 2} is examined 
(shown in the left blocks). Because the fifth, seventh and eighth 
key cause store conflicts, Step (2) splits the vector K into two 
half vectors Kl = {I, 4, 2,3} and KZ = {2, 5, I, 2). and both are 
examined again (the middle blocks). The first half k does not 
have conflicts, so a histogram can be computed directly from the 
key vector (the upper middle blocks). The second half K2 still 
has conflicts (the lower middle blocks), so it is split again into 
K~I = (2, 5} and K22 = {l, 2} (the right blocks). They do not 
have conflicts anymore, so a histogram is calculated from them. 

An advantage of this method is that it needs almost no extra 
memory for vectorization. A disadvantage of this method is that 
the vector length of computation tends to be short and therefore 
vector performance may be worse than the processor’s peak 
performance. 

4.2 Mask Vector Method 
The mask vector method immediately retries the computation for 
conflicting keys using a mask vector, instead of gathering them 
into a retry queue for later recomputation. 

(1) Set a mask to all-true. 

(2) Compute a histogram with a key vector where the mask 
elements are true. 

(3) Detect store conflicts for the key vector where the mask 
elements are true by the same way as retry method. Set 
mask elements corresponding to the non-conflicted keys to 
false. 
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Figure 5: Mask Vector Method 

(4) Repeat Step (2) and (3) until the mask becomes all- 
false. 

(5) Repeat Step (1) through (4) for all keys. 

Figure 5 illustrates an example of the procedure. The key vector 
to be processed is K = {I, 4, 2, 3, 2, 5, 1, 2}. In the first try, 
Step (2) computes a histogram with the all-true mask set by Step 
(1) and the histogram array H becomes {I, 1, I, 1, 1} counting 
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the first, second, third, fourth and sixth keys in the key vector. 
The fifth, seventh and eighth are not counted due to conflicts, 
which are detected in Step (3). The mask elements 
corresponding to the conflicted keys are kept true and the others 
are turned to false. In the second try, Step (2) computes a 
histogram with the mask M = {F, F, F, F, T, F, T, T} and the 
histogram H becomes (2, 2, I, 1, l} counting the fifth and 
seventh keys. Again the eighth key are not counted due to 
conflicts, and the mask M becomes (F, F, F, F, F, F, F, T} in 
Step (3). Then in the third try, the eighth key is counted at last 
and H becomes {2, 3, I, 1, I}. The mask M becomes all-false 
and therefore the repetition terminates. 

An advantage of this method is that it needs almost no extra 
memory for vectorization. A disadvantage of this method is that 
vector operations with sparse masks may degrade performance. 

5. PARALLELIZATION OF BUCKET 
SORT 
This section describes the parallelization method we developed 
for shared-memory vector parallel computers. The method uses a 
merit of shared-memory machines to dynamically change 
partitioning and assignment of arrays to processors without any 
cost. This method is fully parallelized and therefore efficient. 

5.1 Procedure 
Using our method, bucket sort is parallelized as follows: 

(0) Partition the input keys into P equal sets and assign 
them to P processors. Create P copies of the histogram 
array. Because the order of equal keys is arbitrary, here we 
decide to give a smaller rank to a key on a smaller- 

Proc. 2 

Proc. 3 

Proc. 4 

Ranks for keys on 
Pm, 1 

-1 

Ranks for keys on 
Proc. 2 

pliElq 

Ranks for keys on 
hoc. 3 

Imxliq 

Ranks for keys on 
Proc. 4 

lplizilq 

(a) Compute histograms (b) Calculate running sums (c) Offset running sums 

Figure 6: Parallelization of Bucket Sort 

(d) Rank keys 
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numbered processor. 

(1) Compute a histogram on each processor with its own 
keys by some vectorization method such as retry method. 
Processorp (p = 0, . . . . P-I) exclusively uses the part of the 
histogram array such that an index i to the array conforms 
mod& P) = p. In other words, the histogram array is 
distributed by the “cyclic” format to processors. The 
“smaller rank for smaller processor” rule is naturally 
realized by using the histogram array in that way. 

(2) Compute running sum of the whole histogram. Change 
the distribution of the histogram array to the “block” 
format, compute local running sum on each processor, and 
offset it by total sums of preceding processors. Note that 
the change of array distribution and the reference to other 
processors’ sums are done without any cost by using shared- 
memory. 

(3) Rank keys by the running sum on each processor. 
Change the distribution of the histogram array back to 
“cyclic”, and rank keys with it on each processor. Again, 
the distribution changes with no cost. 

Figure 6 illustrates an example of the procedure. There are 16 
keys to sort, distributed to four processors equally. The 
histogram array H is extended to four times and initially 
distributed to the four processors in the “cyclic” format. In the 
figure, the hatching blocks denote the elements assigned to 
Processor 1. In Step (l), every processor computes its own 
histogram (shown in figure (a)). In this step, Processor 1 uses 
H(I) for keeping the number of keys 1, and Processors 2, 3 and 4 
use H(2), H(3) and H(4) respectively. That means a key 1 on a 
smaller-numbered processor has a smaller tank. In Step (2), H is 
redistributed in the “block” format and every processor computes 
a local running sum (figure (b)), then offsets it by total sums of 
preceding processors (figure (c)). For example, Processor 3 
computes its local running sum {0, 3, 4}, and offsets all the 
elements by total sums of Processor 1 and 2, that is, 9 (=6+3). 
The resulting sum will be (9, 12, 13}. In Step (3), H is 
redistributed back in the “cyclic” format and every processor 
computes ranks of their own keys (figure (d)). 

5.2 Considerations 
This method is fully parallelized and therefore efficient. The 
amount of computation per processor in Step (2) is constant even 
when the number of processors changes, therefore Step (2) could 
be a bottleneck of performance improvement in highly parallel 
machines. 

6. EVALUATION RESULTS 
We implement the methods described above to the NPB 1.0 IS 
program on an NRC SX4 shared-memory vector parallel 
supercomputer using the FORTRAN77/SX compiler. This 
section shows some results of the evaluation. 

6.1 Comparison of Vectorization Methods 
Figure 7 and Table 1 show the comparison of the retry method, 
the split vector method, the mask vector method, and the work 
buffer method121 for an example of existing methods. The 
parenthesized numbers for the work buffer method denote vector 
lengths. The work buffer method with a long vector needs a 

: 

I n ri 
CPU (sec.) Size (MB) 

Split Vector Mask Vector Work Buffer (64) SCdIlI 

(a) Results of NPB IS Class A 

5 

(b) Results of NPB IS Class B 

Figure 7: Comparison of Vectorization Methods 
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Figure 8: Evaluation of Conflict Frequency 

huge amount of memory and the longest vector length we could 
implement was 64. We use a vector length of 256 for the other 
vector methods. 

The methods described in this paper all show better performance 
than the work buffer methods. The retry method is the best of 
three new methods, and better than the 64-way work buffer 
method in class B. 

6.2 Distribution of Input Keys 
The performance of the retry method depends on the input data. 
We measured the execution time of the retry method version 
varying conflict frequency; we fix the number of keys to 216 and 
vary the maximum value of keys. We also measured the 
execution time of the 64-way work buffer version under the same 
conditions. 

Figure 8 shows the results. Although the performance of retry 
method gets worse when the conflict frequency becomes higher, 
it is better than work buffer method except at the very high 
frequency area. 

6.3 Evaluation of the Parallelization Method 
Figure 9 and Table 2 show the results of the parallelized retry 
method version. The table also shows the official results of 
CRAY Y-MP, C90, T916 and Fujitsu VPP700[4]. With the 
methods described in this paper, the SX4 got the world’s fastest 
results (in November 1996) of class B. 

7. CONCLUDING REMARKS 
We developed new fast integer sorting methods for vector 
computers and shared-memory parallel vector computers. Using 
these methods, we got the world’s fastest results of the NPB IS 
program on the NEC SX-4. Our methods are also applicable to a 
wide range of applications such as “particle pusher” codes. 

We now plan to more tune up our sorting programs to get better 
performance, and try more input patterns or more different 

NEC SX-4 t 
CRAY YMP -t . 

30 - CRAY TgO Q- 
Fujitsu VPP500 -I+ 

5- 

(a) Results of NPB IS Class A 

161 , , I I 

14 - 

2- 

0’ ’ ’ I I I 
0 1 2 4 6 16 

Number of PrOceSSOrS 

(a) Results of NPB IS Class A 

Figure 9: Evaluation of NPB IS Class B 

methods. We also plan to apply our methods to real applications 
such as particle simulations. 
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