
I E .@ \ m3 3 %
LA-UR-
Approved for public release;
disfribution IS unlimrted.

Title:

Author(s):

Submitted to

Los Alamos
N A T I O N A L L A B O R A T O R Y

.

Dependence Driven Execution for
Multiprogrammed Multiprocessor

Suvas Va j racharya
Dirk Grunwald

International Conference in
Supercomputing 1998

Los Alamos National Laboratory, an affirmative actionlequal opportunity employer, is operated by the University of California for the
U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US.
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow
others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article
as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supporIs
academic freedom and a researchel's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint
of a publication or guarantee its technical correctness. Form 836 (10195)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability 6r responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spc-
cific commercial product, process, or service by trade name, trademark, manufac-
turn. or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Dependence Driven Execution for Multiprograrnmed
Multiprocessor

Suvas Vajracharya
CIC/ACL

Los Alamos National Laboratory
Los Alamos, NM, U.S.A.

suvas @lanl.gov

Dirk Grunwald
Department of Computer Science

University of Colorado
Boulder, CO, U.S.A.

grunwald@ cs. colorado.edu

Abstract Barrier synchronizations can be very ezpensivc
o n multiprogramming environment because n o process can
go past a barrier until all the processes have arrived. If a
process participating at a b a m e r i s swapped out by the op-
erating system, the rest of participating processes end up
waiting for the swapped-out process. This paper presents
a compile-time/run-time system that uses a dependence-
driven ezecution t o overlap the ezecution of computations
separated by barriers so that the processes do not spend most
of the time idling at the synchronization point.

Keywords: Run-time systems, multiprogramming, loop schedu
ing, dependence-driven execution, barrier synchronization,
coarse-grain datdow.

The parallel execution of a sequence of loop nests is
typically broken into phases, each phase consisting of a
simple loop separated by a barrier synchronization to
ensure that the data dependencies between phases or a
collective operation are respected. A barrier synchro-
nization insists that all the participating processes be
collectively done with a particular phase of a computa-
tion before the next phase is begun. This is undesirable
in that the barrier synchronization causes the compu-
tation to stall while waiting for the slowest process.
On multiprogammed multiprocessors, a participating
process may be swapped out to run a process from a dif-
ferent job, making the problem worse. Figure 1 shows
that the swapped out processes effectively lengthen the
time required to achieve a barrier.

Much of the work on multiprogammed environment
has been done on the operating system or combination
of user space/operating system. Several researchers [I,
2, 10, 111 have focused on ways to establish some co-
operation between the application and the operating
system kernel. By extending the kernel to communicate
with the application, the kernel can avoid preempting a
task that is in a critical section. However, because these
methods require modification to the operating system
and more importantly, because they require that the

ll-

CPU 0

CPU 5

Time b
~ s e ~ m n p u t a t i o n

c] p m e s swapped out
Wailing to achieve the barrier

Figure 1: Performance Degradation in Multipro-
pammed Multiprocessors

applications handshake with the O.S. scheduler, many
commercial operating systems do not support scheduler
activations and scheduler-conscious synchronisation.

Others have focused on various multiprogramming
policies for scheduling kernel processes such as unsyn-
chronbed timesharing (time-slicing), synchronized time-
sharing (co-scheduling) [14], and space-sharing (hard-
ware partitions) [16]. It is extremely difficult to find
a single policy that can maximize utilization, ensure
fairness, and, at the same time, keep the overheads low.

We take an approach that is not incompatible with
the above methods. We are presenting a user-level loop
scheduling method that adapts to dynamic increases
or decreases in the available number of CPUs with-
out requiring modifications to the operating system.
This makes the runtime system that we are proposing
portable and easy to use, and makes no assumptions
about the policies or the kinds of extra services that
the operating system supports.

The loop scheduling method proposed here extends
traditional loop scheduling methods such as static, affin-
ity and dynamic loop schedulers by using symbolic data
dependence information. Having dependence informa-
tion allows the run-time system to schedule the entire
loop structure consisting of several simple loops. To
illustrate, let us turn to figure 1 once more. Using

mailto:lanl.gov
http://colorado.edu

a dependence-driven execution, some of the processors
can begin computing phase 2 while the other processors
are still computing phase 1. This allows us to do useful
computation while waiting for processes that the opea-
ating system has swapped out. However, overlapping
executions of different phases is only legal if the com-
putation respects the data dependencies between the
two phases. In our companion papers [18, 171, we &-
cussed how DUDE system improves memory locality and
increases parallelism. In this paper, we examine how
DUDE performs in a multiprogrammed environment.

1 The DUDE Runtime System

In this section, we describe DUDE runtime system. DUDE
is meant to be used either as a target for optimizing
compilers, or as a set of library calls that programmers
use directly to optimize their code. The intent of DUDE
is to optimize the common case in scientific and engi-
neering applications which consists of loop nests, each
loop nest ordinarily implementing a collective operation
on a multi-dimensional array.

To enforce dependencies between consecutive loop
nests (inter-loop dependencies), conventional models of
data parallel computation insert a barrier synchroniza-
tion between them, dividing the computation into &s-
tinct phases such that each loop nest is completed in
its entirety before the next loop nest is begun. This
model of computation introduces false dependencies or
dependencies that were not in the semantics of the
original program. By using a dependence-driven exe-
cution, DUDE overlaps the execution of iterations from
Merent loop nests to increase parallelism and improve
memory locality. The increased parallelism comes from
the asynchrony of the model: Processors need not idle,
while waiting for other processors stuck at a barrier to
complete a particular phase of the computation; they
can proceed to the next phase if the dependencies on
those iterations are satisfied. The improved locality
that the model offers, comes from applying multiple
operations (from different loop nests) on an array region
before that array region leaves the processor’s cache.

An optimizing system can also use a dependence-
driven execution to increase the parallelism of a single
loop nest with dependencies within the iterations of the
loop (intra-loop dependencies) or a doacross loop. In
DUDE, the system schedules the iterations within a loop
nest the moment the dependence constraints on them
are satisfied, similar to data-driven models.

The basic model has some similarities to the undcr-
lying concept of systolic arrays. Like systolic arrays,
computation in DUDE consists of a large number of
processing elements (cells) which are of the same type.
However, for ef3cient computation on general-purpose
computers, the granularity of computation in DUDE
is much coarser. In our implementation, these cells
are actually C++ objects consisting of an operation
and a descriptor describing a region of data to which
the operation is applied. Thus, the granularity of the
processing elements is blocks of iterations. We term
these objects Iterates, and an array of these Iterates
makes up an ItemteCollection.

To describe the runtime system, we first describe
how the user describes the static loop structure. We

then explain how the runtime system takes this loop
description to effect a dependence-driven execution.

1.1
The semantics of loops in imperative languages over-
specify the order in which iterations are to be exe-
cuted. Since a desirable order may not be known until
runtime, we want to describe loops with the weakest
restrictions on the order while preserving the semantics
of the original loop, such that we do not commit to
any specific iteration order at compile-time. Although
the loop structures that appear in a real program can
be quite complex (conditionals, varied levels of nesting,
etc.), the constructs that are used to build and define
the loop structures themselves are quite simple. For this
reason, we have taken a modular approach to describing
complex loop structures by providing simple objects as
building blocks. In DUDE, data, blocks of iterations,
dependence rules, loop bodies, and loop nest S t N C -
tures are objects which can be put together to describe
complex loops. By putting together and specializing
these objects, the user specializes the system to create
a “software systolic array” for the application at hand.
This object-oriented model is based on AWESIME [6]
and the Chores [2] runtime systems. The following is a
list of objects in DUDE:

Static Description of Loops in DUDE

Data Descriptor: Data Descriptors describe a
sub-region of the data space. For example, the
system can divide a matrix into sub-matrices with
each sub-matrix being defined by a data descrip-
tor. On a two dimensional sub-matrix, the meth-
ods on this object, SX(), EX(), SY(), and EY() re-
trieve the corners of a two-dimensional sub-matrix.

Dependence Rule: Dependence rules summa-
rize all dependencies between iterations in a loop
structure. The rule fires when a completed Iter-
ate’s ID, I matches the left-hand side of the rule
to produce a list of Iterates that the system may
now enable as a result of I having completed.

Iterate: An Iterate is a tupie <data descriptor,
operator> representing a non-blocking continua-
tion which runs on the stack of the worker threads.
An Iterate defines the granularity of the parallel
execution of a loop. The user specializes an Iter-
ate by overloading the default operator with an
application-specific one consisting of statements
found in the body of a simple loop. The system
applies the virtual operator to the data described
by the descriptor. Each Iterate has a unique ID
which the system instantiates with the left-hand
side of a dependence rule to produces candidate
Iterates (right-hand side of the dependence rule).

IterateCollection: An IterateCollection, as the
name implies, is an array of Iterates. An Iter-
atecollection represents a single loop nest (or a
collective operation) that performs a simple oper-
ation on the entire data space. The dimensional-
ity of an IterateCollection is normally the same as
that of the data array on which it operates. Figure
2 shows the relationship between Iterates and It-
eratecollection. Defined as a template, users can

w
W

rn
-3

r)

p1 -
0

0 1 2 3 4 5 6 7

IterateCollection It era t e

Figure 2: Building Blocks of Loops: Iterates and
Iteratecollections

choose different types of IterateCollection tem-
plates to specify the scheduling behavior that is
to be applied to the loop nest. The following is
a list of some of the C++ templates defined in
DUDE: QuadtreeCollection, MortonSeqColIection,
AfinityCollection,and StaticCoIlection.

e LOOP: A LOOP is a template structure used
to describe a sequence of collective operations by
putting together one or more IterateCollections.
The compiler uses the following methods provided
by the LOOP object to put together Merent It-
eratecollections:

- SetOp(n,ItereteCollection)makes the Iterate-
Collection the nth collective operation in a
sequence of collective operations.

- SetDependence(IC1, IC2,dep) deiines the sym-
bolic dependence dep, from IterateCollection
IC1 to IC2. The compiler dervies the s y m -
bolic dependencies from array subscript ex-
pressions in assignment statement of the two
loops. Note that if IC1 is the same as IC2,
then this describes a doacross loop.

- Ezecute() executes the entire loop nest de-
scribed by the loop descriptor.

As shown in figure 2, an Iterate has pointers to both
the IterateCollection to which it belongs, and to the
loop descriptor to which the IterateCollection belongs.
This allows a particular Iterate to derive information
about the entire loop structure. Endowed with this
information, an Iterate can determine what is the con-
tinuation (what is the Iterate in the subsequent Iter-
ateCollection), what are the loop bounds (to determine
whether the entire loop should be terminated), and
what is the scheduling behavior that is to be used in
choosing the next Iterate to run. Therefore, each Iterate
has sufficient information to act locally to schedule the
entire loop structure globally.

1.2 Generating Symbolic Dependence Rules

We have described how the system uses dependence
rules in our runtime system, but we have not described

Figure 3: Micro and Macro Dependence Rules

how to the user derives them from the source loop. We
will restrict our discussion to the loop structure for
a one-dimensional Red/Black SOR, although a com-
piler/runtime system can apply a dependence-driven
execution to more complicated loop structures. We wi l l
then give an example of how to derive a dependence rule
for a specific instance of this loop structure.

1.3 Macro and Micro Dependencies

We will call dependencies between two iterations, or
two points in an iteration space, micro-dependencies,
and dependence between Iterates, macro-dependencies.
What is the relationship between macro and micro de-
pendencies? This is an interesting question because
our implementation requires macro-dependence rules,
whereas true dependencies are in terms of micro-dependencies.

* The system can easily derive macro-dependence rules
from micro-dependencies if the array index sub-expressions
of statements in the loop body are linear or affine func-
tions of the induction variables. In fact, since the map-
ping between iteration space and Iterate space is itself
linear, the relation between the source and target of
the dependencies in the Iterate space is isomorphic to
the relation between dependencies between points in
the iteration space, as shown in figure 3. Fortunately,
affine subscript expressions are also the most common
form of subscripts in loops [19]. For linear subscript
expressions, we can derive the macro-dependence rule
directly from the sub-expressions: we simply replace
the iteration index i which ranges over 1..N, with an
Iterate index which ranges over 1..N/g where g is the
granularity of Iterates.

To illustrate, we now look at the process of deriving
macro-dependence rules with respect to a one-dimensional
Red/Black SOR, although this method applies to a p
plications with more complex dependencies. The loops
in the Red/Black SOR has following form:

DO t = 1, T
DOALL i = 1.B-1 by 2

A[i] = (A[; - 11 + A[i + 1])/2

EBDDO
DOALL i = 2, B by 2

A[i] = (A[< - 11 + A[i + 1])/2

ElDDO
EBDDO

The micro-dependence rules are:

id + (2" - 1,i" + 1)

0 1 2 3

Micro-Dependencies
0 1 2 3

Macro-Dependencies

DO time-step = 1,lO

D O J = l , N

ENDDO

D O I = l , N

cRed Oper > i ENDDO

DO I = 1, N
DO J = l,N

<Blk Open
ENDDO

ENDDO i ENDDO

Figure 4: The Butterfly Circuit

i " - l - + i d O T a - + i d + 1

iu + 1 --f iu or i --+ iu - l id -, id

Converting to macro-dependence rules and simplil
ing by removing redundant terms, we have the mac
dependence rule:

I d {I" - 1, I", I" + 1)

1.4 Non-linear subscript expressions

Although, linear subscript expressions cover the m
jority of loops found in real applications, there are
few important applications that have non-linear expre
sions. For some important class of loops structures, 1

can create a library of circuits to implement a depende
driven execution. For example, a common dependen.
pattern between consecutive collective operations ob
large class of applications is the butterfly pattern shov
in figure 4. This figure also shows that the relationsh
between micro-dependencies and macro-dependencies
not one-to-one. Nevertheless, a micro-dependence rule
can be "hand" generated for this application. The bold
squares on the right side of the figure indicate a possible
path of a dependence-driven execution for Iterate IO.

1.5 Example

To see how all this fits together, we show how a user
may describe the Red/Black SOR application, which
consists of two collective operations-the Red operation
and Blk operation. Figure 5 shows the original code and
the inter-loop dependencies. Both the Red and the BZk
operations in the loop body simply take the average of
an element's neighboring point creating the dependence
shown in the figure. Note that since the loops for the
Red and Blk collective operations are not nested within
each other, they are not perfectly nested, and hence,
unimodular transformation does not apply. Further-
more, because of the backward dependencies in this
application, loop fusion does not apply either. Figure 6
shows the application as it would appear when written
for DUDE. For this application, there are two Iterates,
the RED and the BLK, with corresponding BLK::main
and RED::main methods that overload the operator
to specialize the Iterate for this application. These
Iterates compose the RedColl and BlkColl collections.

Figure 5: Multi-Loop Dependencies on Red/Black SOR

Finally, these collections themselves are combined in
the loop descriptor to create a sequence of collective
operation that iterates up to 10 iterations.

1.6 Execution of loops on the DUDE System

Having described how a user specifies a loop structure
to the runtime system, we now turn to how the runtime
system takes the static specification of a loop struc-
ture and execute it using a dependence-driven model.
Figure 7 shows the basic model that the runtime sysr
tem uses. Initially, the system pushes only the uncon-
strained Iterates onto the system work queue. This
allows idle processors to remove an Iterate hom the
work queue to perform the operation associated with
that Iterate. The completion of the operation termi-
nates the activation of that Iterate, which may satisfy
dependence constraints to other Iterates based on what
the data dependencies are and what other Iterates have
completed. The dependence satisfaction engine creates
works while the scheduler distributes the work for Mer-
ent processors to complete. This creates a cycle shown
in figure 7, which the system repeats until the entire
loop nest is completed.

Figure 2 shows the structure of the Iterate object.
Internally, each Iterate contains a counter representing
the number of dependence arcs which sink into that It-
erate. When an Iterate completes, the system matches
the ID of that Iterate to the left-hand side of the de-
pendence rule, which when fied, produces a list of
s i n k s of dependence arcs; that is, it produces a list of
Iterate ID'S which can be used as indices to the Iter-
ateCollection. The system then decrements the counter
associated with the sink Iterate. If the counter becomes
zero, then the system can enable that sink Iterate for
execution.

heads that do not directly contribute to the numerical
computation. To make the implementation as efficient
as possible, the system initializes the internal depen-
dence representation of the entire loop structure, such
as the dependence counters, prior to the execution of
any iterations. Thus, the cost of the initialization which
is done only once, is amortized over several iterations of
the loop. If the list of sinks emanating from an Iterate

Dependence-driven execution introduces runtime over-

void main() {
RedColl = new IterateColIectioncRED~A,dim,BLOCK,cpus,grain~
BlkColl = new IterateCollection&LK>f A,dim,BLOCK,cpus,grain);
LOOP loop(iterations = 10);
loop.SetOp(O,RedColl);
loop.SetOp(1 ,BlkColl);
loop.SetDependence(RedColl,BIkColl,

loop.Execute();
“(ij) 3 (i+l,j), (i-l.j), (i,j+l), (i,j-1)”);

1

void RED::main() { void BLK::main() (

Figure 6: Red/Black SOR on DUDE

Figure 7: Dependence-driven Execution Model

T \ t \ T

I a ' a 2 a m @ ' @ I
Dependence Rule: I (I-l), (I), (I+1)

PDE::main {
for (I = SX(); I <= EX(); I++)

A[I+l] = 113 * (A[I] + A[I+l] + A[I+2]);
1

Figure 8: Iteration order for Hyperbolic 1D pde using
DUDE

do not change during the execution of the loop, as in
static and affinity scheduling, the system can create the
list for each Iterate in the IterateCollection during loop
initialization.

We now continue with the example of Red/Black
SOR to describe how the system executes the loop spec-
ification. The Execute() function of loop in figure 6
starts the system by pushing all of the initially un-
constrained Iterates onto the system work queue. The
initially unconstrained Iterates in this example consist
of Iterates from the RedColl collection. Now the com-
putation begins. After the initial Iterates have been
loaded, a worker pops off a (Red) Iterate from the sys-
tem work queue and applies the maan operator to the
data described by the descriptor for that Iterate. On
a parallel execution, workers may steal work from a
Merent processor to balance the workload. When com-
pleted, the system determines the list of sinks of the
dependence arcs for that Iterate based on the depen-
dence rule. For each sink, the system decrements the
counter in the destination Iterates which, at this point
in the execution, are Blk Iterates. If the count is zero,
the Iterate becomes unconstrained, or enabled, and the
dependence satisfaction engine pushes these enabled It-
erates onto the system work queue.

Continuing, the completion of a Blk Iterate can fur-
ther enable a Red Iterate from second time step, and
so forth. This describes a depth-first traversal of the
iteration space, since a Blk operation can begin before
all of the Red operations are completed.

In DUDE, Iterates represent a sub-computation on
a subregion of data. The fact that the granularity of
the processing elements, or Iterates, does not consist of
a single iteration but blocks of iterations, raises some
questions. What does each Iterate compute? In which
order should the system computer the iterations w i t h
an Iterate; that is, what is the intra-Iterate order? In
which order should the system compute the Iterates
themselves; that is, what is the inter-Iterate order? The
intra-1t.erate order is simply the order of the traversal

used in the original loop except that the loop bounds
are limited to the data region to which the Iterate has
been delegated. The inter-Iterate order, however, is
determined by the dependence-driven execution.

DUDE system consists of three types of dependence-
driven loop scheduling methods: static, affinity, and
dynamic. A description of these schedulers in DUDE
can also be found in our paper [17]. Depending on
the application, or based on runtime conditions, the
user can choose one of these methods by instantiating
the appropriate IterateCollection template which deter-
mines the scheduling behavior. In static scheduling, the
scheduler decomposes data into fixed-sized chunks, and
distributes the data to different processors prior to the
execution of loop iterations. In affinity scheduling, the
system decomposes the data prior to the loop execu-
tion but the scheduler distributes the decomposed data
during the execution of the loop. Finally, in dynamic
scheduling, the scheduler decomposes and distributes
the data during the execution of the loop. We begin by
discussing static and affinity scheduling.

1.7 Static and Affinity Scheduling

In both static (instantiation of the StaticCollection tem-
plate) and affinity scheduling (the AfhityCollection
template), the system associates an Iterate with a home
CPU. In static scheduling, an Iterate is permanently
bound to the home CPU for the duration of the pro-
gram, while in affinity scheduling, the home CPU is the
preferred place where the Iterate will be executed but
the Iterate may be stolen by a Merent idle CPU to bal-
ance the load. The advantage of using static scheduling
is that having a fixed home for Iterates allows the com-
piler/runtime system to determine which Iterates need
to communicate with a remote CPU and which Iterates
need only local communication within a CPU. Iterates
that do not need to communicate with another CPU
also do not need to use locks for accessing local work
queues. The advantage of affinity scheduling is that
the scheduler can adapt to the dynamic fluctuation of
the workload by distributing Iterates to idle processors
while trying to maintain data locality [12].

One of the parameters used in instantiating a Stat-
icCollection or an AfityCollection is the decompo-
sition method, which determines how the system di-
vides the data between the Merent Iterates. The user
chooses the decomposition method such as by BLOCK
or CYCLIC similar to decomposition and distribution
utilities available in HPF [9] and pC++ [3]. One im-
portant difference, however, is that in the process of

objects or Iterates, which are tuples consisting of both
data and operation.

data decomposition, DUDE takes flat data and creates /

1.8 Dynamic Scheduling

In dynamic scheduling, the data decomposition and
data distribution is determined at run-time by the sched-
uler. The definition of loop structure and dependence
specification, however, remains similar to static and
affinity scheduling. Unlike static and affinity schedul-
ing, the chunk sizes are not fixed, but vary during run-
time as the scheduler sees fit to balance the workload.

Figure 9: A Quadtree

In DUDE, we use spatial data-structures based on
the principle of recursive decomposition called quadtrees
(or its three dimensional version, octree) breakdown
and coalesce neighboring Iterates. Figure 9 shows an
example of a quadtree. The tree in the figure represents
the Iterate space on the left side of the figure. The
dark portion of the Iterate space (which corresponds
to dark nodes in the tree) represents the Iterate space
region that is ready to be executed or enabled. The
resolution of the decomposition(Le., the depth of the
tree) can be fixed or varied during run-time. Note that
the quadtree-representation numbers the nodes such
that the children of any node compose a contiguous
block.

In the quadtree decomposition, each subdivision is a
block divided into four equal parts. Alternatively, at
each subdivision, the block could be divided into two
parts as in a bantree. Samet [15] gives a comprehensive
description of these data-structures. These structures
enables efficient indexing into the pools of Iterates be-
cause the chunk sizes are uniform at any given level.
Given the level and the index, the system can retrieve
the Iterates from a pool by simply using random ac-
cess. Similarly, unification with the left-hand side of
the firing rules is efficient since, at any given level, the
unification algorithm is the same as it would be for
static decomposition where grain sizes are uniform.

The hierarchical structure is also ideal for dealing
with the problems of coalescing small chunks. As the
dependence-driven execution enables a group of neigh-
boring small chunks of iterations, the system can coa-
lesce them to create a larger set of contiguous iterations.
This amounts to setting the parent node when the sys-
tem has enabled all of its four child nodes at the finer
resolution.

We now describe the quadtree scheduling method
can which consists of the following steps:

1. Construct a quadtree for the iteration space using
some minimum granularity; that is, determine the
granularity of the leaf nodes.

iterations can be coalesced into large blocks. Co-
alescing amounts to marking the parent node as
enabled if all its chil&en are enabled.

5 . Go to step two until no new iterations can be
enabled.

2 Related Work

Using dependence information to increase parallelism is
not a new idea. One issue that distinguises the various
works is the unit or the granularity of parallelism. A
very fine granulaity of asynchronuous computation re-
quires a significanlty different design than for a coarse-
grain computation. For example, dataflow computers
such as the Manchester Dataflow Machine [7, 81 relied
on special hardware to orchestrate parallelism at the
level arithmetic operations. In Mentat [5, 41, the unit
of parallelism were functions. In the autoscheduling
work by Moreira and Polychrnopolus [13], the unit was
a task which may consist of a entire loop. These loops
might be scheduled by guided-self scheduling across the
available processors so that the iterations of a doall
loop can be run in parallel. Iterations from different
consecutive loops are not executed in parallel, but com-
puted in lock step by using a barrier. Put differently,
the nodes in the dataflow graph is at the granular-
ity of entire loops. The granularity of parallelism in
the DUDE runtime system is somewhere between the
h e grain computation in dataflow machines and coarse
grain macro-dataflow approach in. Another dimension
along which to compare the different work is the extent
to which the user is involved in synchronizing the the
units of computation. Cilk and Mentat requires the
user to explicitly state the interaction and synchroniza-
tion between the units of parallelism while this is not
necessary in our runtime system. A more complete
comparison of our work with other data-driven model
can be found in [17, 181 which studied the locality
and paralllelism of the runtime system. This paper
describes the performance of a dependence-driven ex-
ecution in multiprogrammed environment where there
are more processes than

We focus a little on the Chores runtime system which
is most similar to our own work along the dimensions
mentioned * In the Chores runtime system, a per-
processor worker (a user-level thread) grabs chunks of
work from a central queue using the guided self-scheduling
method. Since Chores uses a guided self-scheduling
to schedule loops, the system requires that a multi-

2. During runtime, dynamically determine the schedul-
ing granularity depending on the amount of iter-
ations left to do.

3. Assign iterations to processors at this granularity.

4. When iterations are completed, determine which
new iterations can be enabled. If new iterations
can be enabled, see if the total set of enabled

dimensional iteration space be collapsed into a single
dimension. For example, to schedule the loop in a two
dimensional wavefront application (as required in the
mean value analysis), the Chores system linearizes the
iteration space as space as shown in figure 10. In this
example, the element (it j) represents the computation
of performance measures for a queuing network where i
is a class 1 customer and j is a class 2 customer. Each
element (i , j) can only be readied (enabled) when both
(i - 1 , j) and (i , j - 1) are completed. Initially, ody
(0,O) is ready for computation.

Enabkd Iterations Completed Iterations 'c Untouched Iterations

Figure 10: A linearization and dependencies of a two-
dimensional space for MVA

As in our runtime system, new iterations are enabled
as dependencies on them are satisfied. However, the set
of enabled iterations must always be a contiguous range.
This means that new iterations can only be enabled if
these iterations extend either the upper bound or the
lower bound of the range of enabled iterations; no holes
can be created. The single contiguous range require-
ment is necessary to apply guided-self scheduling.

3 Experimental Results

To compare the effect of multiprogramming on various
methods, we measured total execution time of three
applications on a 16 processor SGI Origin under various
loads: 1) on an idle machine 2) on a machine with 8 of
the 16 processors used for a different job and 3) on a ma-
chine with Merent tasks using all 16 processors. These
experiments correspond to a multiprogramming level of
1.0, 1.5, and 2.0, respectively. Ideally, we would ex-
pect that a multiprogramming level of 1.5 would cause
the application to take 50% longer to execute and a
multiprogramming level of 2.0 would cause it to take
100% longer with respect to the speed of the application
running on an idle machine. However, because of the
overhead associated with context switches, and loss of
memory locality, this is often not the case. The appli-
cations consisted of Red/Black SOR (size 2048~2048)~
Multigrid solver (size 2048x2048), and the Mean Value
Analysis. On an idle machine, MVA and Multigrid
have a highly dynamic fluctuation in workload, whereas
Red/Black SOR suffers little fiom load imbalances.

In the performance graphs shown in this section,
we show, for each method, the absolute time elapsed
to execute the application at the three levels of multi-

I Multi- I Multi- 6oo 1 Multi- - 500

E 400

300

'0

a
v1

.-
; 200 .-

100

0

F

Figure 11: Execution Times for Red/Black SOR (size
= 2048x2048)

1600
1400

1000
E 800
a 600 E g 400

200

$ 1200
m

rn
.-

0 . . , , . , . . , .

Figure 12: Execution Times for Multi-Grid (size =
2048x2048)

programming. The darker shaded portion of each bar
shows the 95% confidence interval. In some bars, the
confidence intervals are not large enough to be seen.

3.1 Red/Black SOR

Figure 11 shows the comparison of the performance of
the Red/Black SOR (with matrix size of 2048x2048)
using four methods: DUDE, Affinity scheduling, Static
scheduling, and Guided-self scheduling. In the case
of DUDE, we saw a 57% slowdown when running at
a multiprogramming level of 1.5 and a slowdown of
270% at a multiprogramming level of 2.0. However,
these slowdowns were very small in comparison to the
slowdown observed in other methods. The Figure 11
also indicates that the 95% confidence interval for DUDE
is much lower than the other methods.

3.2 Multi-Grid

Figure 12 compares the performance for the Multigrid
Solver. A multiprogramming level of 1.5 caused DUDE
to slowdown by 154%, whereas a level of 2.0 caused a
slowdown of 374%. Again, the 95% confidence interval
indicates that there is little variance when using DUDE.

f

Figure 13: Execution Times for Mean Value Analysis

3.3 Mean Value Analysis

The performance results for this application are shown
in figure 13. When at a multiprogramming level of
1.5, DUDE suffered a slowdown of 174% while a mul-
tiprogramming level of 2.0 caused a slowdown of 400%.
These degradations in performance are small in com-
parison to the other methods.

3.4 Summary

Performance can severely degrade in a multiprogrammed
environment. Applications that have static behavior
when run on an idle machine can exhibit highly dy-
namic load imbalances when run on multiprogrammed
environment. The conventional solution to these prob-
lems is to have the application interact with the oper-
ating system kernel. Since this requires an extension
to the kernel, and requires applications to be aware
of these extensions, these conventional solutions are
difficult to use. In this section, we showed that it
is possible to improve the performance of applications
running on a multiprogrammed environment without
using kernel extensions.

4 Conclusion

Performance can severely degrade in a multiprogrammed
environment. Applications that have static behavior
when run on an idle machine can exhibit highly dy-
namic load imbalances when run on multiprogrammed
environment. The conventional solution to these prob-
lems is to have the application interact with the oper-
ating system kernel. Since this requires an extension
to the kernel, and requires applications to be aware of
these extensions, these conventional solutions are diffi-
cult to use. In this section, we showed that, by overlap-
ping the computations of consecutive phases of a data
parallel program, it is possible to improve the perfor-
mance of applications running on a multiprogrammed
environment without using kernel extensions.

References

[I] T.E. Anderson, E.D. Lazowska, and H.M. Levy. Sched-
uler activations: Effective kernel support for the user-

level management of parallelism. A C M Trans. Comput.

[2] Derek L. Eager and John Zahorjan. Chores: Enhanced
run-time support for shared memory parallel comput-
ing. A C M . Trans on Computer Systems, ll(1):l-32,
February 1993.

[3] D. Gannon and J.K. Lee. Object oriented parallelism.
In Proceedings of 1991 Japan Society for Parallel
Processing, pages 13-23, 1991.

[4] A. S. Grimshaw. Easy to use object-oriented parallel
programming with mentat. IEEE Computer, pages 39-
51, May 1993.

[5] A. S. Grimshaw, W. T. Strayer, and P. Narayan.
Dynamic object-oriented parallel processing. IEEE
Parallel and Distributed Technology: Systems and Ap-
plications, pages 33-47, May 1993.

[6] Dirk Grunwald. A user's guide to a.w.e.s.i.m.e: An
object oriented parallel programming and simulation
system. Technical Report CU-CS-552-91, University of
Colorado, Boulder, 1991.

[7] J. Gurd, C.C. Kirkham, and A.P.W. Boehm. The
manchester prototype dataflow computer. Communi-
cation of the ACM, 28:34-52, January 1985.

[8] J. Gurd, C.C. Kirkham, and A.P.W. B o t h .
The Manchester Dataflow Computing System, pages

[9] High Performance Fortran Forum HPFF. Draft high
performance fortran specificition, version 0.4. In
Proceedings of 1991 Japan Society f o r Parallel Pro-
cessing, page Available from anonymous ftp site ti-
tan.cs.rice.edu, 1992.

[IO] L. Kontothanassis and R. Wisniewski. Using scheduler
information to achieve optimal barrier synchronization
performance. In Proceedings of the Fourth ACM
Symposium on Principles and Practice of Parallel
Programming, May 1993.

[ll] L. Kontothanassis, R. Wisniewski, and Michael L.
Scott. Scheduler-conscious synchronization. ACM
TOCS, 15(1), 1997.

[12] E.P Markatos and T. J. LeBlanc. Load Balancing vs
Locality Management in Shared Memory Multiproces-
sors. In Intl. Conference on Parallel Processing, pages
258-257, St. Charles, Illinois, August 1992.

[13] Jose Moreira and Constantine Polychronopoulos. Au-
toscheduling in a shared memory multiprocessor. In
Proceedings of the IEEE/USP International Workshop
on High Performance Computing Compilers and Tools
for Parallel Processing, March 1994.

[14] John Ousterhout. Scheduling techniques for concurrent
systems. In Proceedings of Distributed Computing
Systems, pages 22-30, Oct 1990.

[15] Hanan Samet. The Design and Analysia of Spatial Data
Structures. Addison-Wesley, 1990.

[IS] A. Tucker and A. Gupta. Process controland scheduling
issues for multiprogrammed shared-memory multipro-
cessors. In Proceedings of the 12th Symposium on Op-
erating Systems Principles, pages 159-166, Dec 1989.

[17] Suvas Vajracharya and Dirk Grunwald. Dependence-
driven run-time system. In Proceedings of Language
and Compilers for Parallel Computing, pages 168-176,
1996.

Loop re-
ordering and pre-fetching at runtime. In High Perfor-
mance Networking and Computing, November 1997.

[19] Michael Wolfe. High Performance Compilers for Par-

Syst., 10(1):52-79, February 1992.

516,517,519,520,529. North-Holland, 1987.

[18] Suvas Vajracharya and Dirk Grunwald.

allel Computing. Addison- Wesley, 1995. -

http://tan.cs.rice.edu

