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Abstract Barrier synchronizations can be very ezpensivc 
o n  multiprogramming environment because n o  process can 
go past a barrier until all the processes have arrived. If a 
process participating at a b a m e r  i s  swapped out by the op- 
erating system, the rest of participating processes end up  
waiting for  the swapped-out process. This paper presents 
a compile-time/run-time system that uses a dependence- 
driven ezecution t o  overlap the ezecution of computations 
separated by barriers so that the processes do not spend most  
of the time idling at the synchronization point. 

Keywords: Run-time systems, multiprogramming, loop schedu 
ing, dependence-driven execution, barrier synchronization, 
coarse-grain datdow. 

The parallel execution of a sequence of loop nests is 
typically broken into phases, each phase consisting of a 
simple loop separated by a barrier synchronization to 
ensure that the data dependencies between phases or a 
collective operation are respected. A barrier synchro- 
nization insists that all the participating processes be 
collectively done with a particular phase of a computa- 
tion before the next phase is begun. This is undesirable 
in that the barrier synchronization causes the compu- 
tation to stall while waiting for the slowest process. 
On multiprogammed multiprocessors, a participating 
process may be swapped out to run a process from a dif- 
ferent job, making the problem worse. Figure 1 shows 
that the swapped out processes effectively lengthen the 
time required to achieve a barrier. 

Much of the work on multiprogammed environment 
has been done on the operating system or combination 
of user space/operating system. Several researchers [I, 
2, 10, 111 have focused on ways to establish some co- 
operation between the application and the operating 
system kernel. By extending the kernel to communicate 
with the application, the kernel can avoid preempting a 
task that is in a critical section. However, because these 
methods require modification to the operating system 
and more importantly, because they require that the 
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Figure 1: Performance Degradation in Multipro- 
pammed Multiprocessors 

applications handshake with the O.S. scheduler, many 
commercial operating systems do not support scheduler 
activations and scheduler-conscious synchronisation. 

Others have focused on various multiprogramming 
policies for scheduling kernel processes such as unsyn- 
chronbed timesharing (time-slicing), synchronized time- 
sharing (co-scheduling) [14], and space-sharing (hard- 
ware partitions) [16]. It is extremely difficult to find 
a single policy that can maximize utilization, ensure 
fairness, and, at the same time, keep the overheads low. 

We take an approach that is not incompatible with 
the above methods. We are presenting a user-level loop 
scheduling method that adapts to dynamic increases 
or decreases in the available number of CPUs with- 
out requiring modifications to the operating system. 
This makes the runtime system that we are proposing 
portable and easy to use, and makes no assumptions 
about the policies or the kinds of extra services that 
the operating system supports. 

The loop scheduling method proposed here extends 
traditional loop scheduling methods such as static, affin- 
ity and dynamic loop schedulers by using symbolic data 
dependence information. Having dependence informa- 
tion allows the run-time system to schedule the entire 
loop structure consisting of several simple loops. To 
illustrate, let us turn to figure 1 once more. Using 
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a dependence-driven execution, some of the processors 
can begin computing phase 2 while the other processors 
are still computing phase 1. This allows us to do useful 
computation while waiting for processes that the opea- 
ating system has swapped out. However, overlapping 
executions of different phases is only legal if the com- 
putation respects the data dependencies between the 
two phases. In our companion papers [18, 171, we &- 
cussed how DUDE system improves memory locality and 
increases parallelism. In this paper, we examine how 
DUDE performs in a multiprogrammed environment. 

1 The DUDE Runtime System 

In this section, we describe DUDE runtime system. DUDE 
is meant to be used either as a target for optimizing 
compilers, or as a set of library calls that programmers 
use directly to  optimize their code. The intent of DUDE 
is to optimize the common case in scientific and engi- 
neering applications which consists of loop nests, each 
loop nest ordinarily implementing a collective operation 
on a multi-dimensional array. 

To enforce dependencies between consecutive loop 
nests (inter-loop dependencies), conventional models of 
data parallel computation insert a barrier synchroniza- 
tion between them, dividing the computation into &s- 
tinct phases such that each loop nest is completed in 
its entirety before the next loop nest is begun. This 
model of computation introduces false dependencies or 
dependencies that were not in the semantics of the 
original program. By using a dependence-driven exe- 
cution, DUDE overlaps the execution of iterations from 
Merent loop nests to increase parallelism and improve 
memory locality. The increased parallelism comes from 
the asynchrony of the model: Processors need not idle, 
while waiting for other processors stuck at a barrier to 
complete a particular phase of the computation; they 
can proceed to the next phase if the dependencies on 
those iterations are satisfied. The improved locality 
that the model offers, comes from applying multiple 
operations (from different loop nests) on an array region 
before that array region leaves the processor’s cache. 

An optimizing system can also use a dependence- 
driven execution to increase the parallelism of a single 
loop nest with dependencies within the iterations of the 
loop (intra-loop dependencies) or a doacross loop. In 
DUDE, the system schedules the iterations within a loop 
nest the moment the dependence constraints on them 
are satisfied, similar to data-driven models. 

The basic model has some similarities to the undcr- 
lying concept of systolic arrays. Like systolic arrays, 
computation in DUDE consists of a large number of 
processing elements (cells) which are of the same type. 
However, for ef3cient computation on general-purpose 
computers, the granularity of computation in DUDE 
is much coarser. In our implementation, these cells 
are actually C++ objects consisting of an operation 
and a descriptor describing a region of data to which 
the operation is applied. Thus, the granularity of the 
processing elements is blocks of iterations. We term 
these objects Iterates, and an array of these Iterates 
makes up an ItemteCollection. 

To describe the runtime system, we first describe 
how the user describes the static loop structure. We 

then explain how the runtime system takes this loop 
description to effect a dependence-driven execution. 

1.1 
The semantics of loops in imperative languages over- 
specify the order in which iterations are to be exe- 
cuted. Since a desirable order may not be known until 
runtime, we want to describe loops with the weakest 
restrictions on the order while preserving the semantics 
of the original loop, such that we do not commit to 
any specific iteration order at compile-time. Although 
the loop structures that appear in a real program can 
be quite complex (conditionals, varied levels of nesting, 
etc.), the constructs that are used to build and define 
the loop structures themselves are quite simple. For this 
reason, we have taken a modular approach to describing 
complex loop structures by providing simple objects as 
building blocks. In DUDE, data, blocks of iterations, 
dependence rules, loop bodies, and loop nest S t N C -  
tures are objects which can be put together to describe 
complex loops. By putting together and specializing 
these objects, the user specializes the system to create 
a “software systolic array” for the application at hand. 
This object-oriented model is based on AWESIME [6] 
and the Chores [2] runtime systems. The following is a 
list of objects in DUDE: 

Static Description of Loops in DUDE 

Data Descriptor: Data Descriptors describe a 
sub-region of the data space. For example, the 
system can divide a matrix into sub-matrices with 
each sub-matrix being defined by a data descrip- 
tor. On a two dimensional sub-matrix, the meth- 
ods on this object, SX(), EX(), SY(), and EY() re- 
trieve the corners of a two-dimensional sub-matrix. 

Dependence Rule: Dependence rules summa- 
rize all dependencies between iterations in a loop 
structure. The rule fires when a completed Iter- 
ate’s ID, I matches the left-hand side of the rule 
to produce a list of Iterates that the system may 
now enable as a result of I having completed. 

Iterate: An Iterate is a tupie <data descriptor, 
operator> representing a non-blocking continua- 
tion which runs on the stack of the worker threads. 
An Iterate defines the granularity of the parallel 
execution of a loop. The user specializes an Iter- 
ate by overloading the default operator with an 
application-specific one consisting of statements 
found in the body of a simple loop. The system 
applies the virtual operator to the data described 
by the descriptor. Each Iterate has a unique ID 
which the system instantiates with the left-hand 
side of a dependence rule to produces candidate 
Iterates (right-hand side of the dependence rule). 

IterateCollection: An IterateCollection, as the 
name implies, is an array of Iterates. An Iter- 
atecollection represents a single loop nest (or a 
collective operation) that performs a simple oper- 
ation on the entire data space. The dimensional- 
ity of an IterateCollection is normally the same as 
that of the data array on which it operates. Figure 
2 shows the relationship between Iterates and It- 
eratecollection. Defined as a template, users can 
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Figure 2: Building Blocks of Loops: Iterates and 
Iteratecollections 

choose different types of IterateCollection tem- 
plates to specify the scheduling behavior that is 
to be applied to the loop nest. The following is 
a list of some of the C++ templates defined in 
DUDE: QuadtreeCollection, MortonSeqColIection, 
AfinityCollection,and StaticCoIlection. 

e LOOP: A LOOP is a template structure used 
to describe a sequence of collective operations by 
putting together one or more IterateCollections. 
The compiler uses the following methods provided 
by the LOOP object to put together Merent It- 
eratecollections: 

- SetOp(n,ItereteCollection)makes the Iterate- 
Collection the nth collective operation in a 
sequence of collective operations. 

- SetDependence(IC1, IC2,dep) deiines the sym- 
bolic dependence dep, from IterateCollection 
IC1 to IC2. The compiler dervies the s y m -  
bolic dependencies from array subscript ex- 
pressions in assignment statement of the two 
loops. Note that if IC1 is the same as IC2, 
then this describes a doacross loop. 

- Ezecute() executes the entire loop nest de- 
scribed by the loop descriptor. 

As shown in figure 2, an Iterate has pointers to both 
the IterateCollection to which it belongs, and to the 
loop descriptor to which the IterateCollection belongs. 
This allows a particular Iterate to derive information 
about the entire loop structure. Endowed with this 
information, an Iterate can determine what is the con- 
tinuation (what is the Iterate in the subsequent Iter- 
ateCollection), what are the loop bounds (to determine 
whether the entire loop should be terminated), and 
what is the scheduling behavior that is to be used in 
choosing the next Iterate to run. Therefore, each Iterate 
has sufficient information to act locally to schedule the 
entire loop structure globally. 

1.2 Generating Symbolic Dependence Rules 

We have described how the system uses dependence 
rules in our runtime system, but we have not described 

Figure 3: Micro and Macro Dependence Rules 

how to the user derives them from the source loop. We 
will restrict our discussion to the loop structure for 
a one-dimensional Red/Black SOR, although a com- 
piler/runtime system can apply a dependence-driven 
execution to more complicated loop structures. We wi l l  
then give an example of how to derive a dependence rule 
for a specific instance of this loop structure. 

1.3 Macro and Micro Dependencies 

We will call dependencies between two iterations, or 
two points in an iteration space, micro-dependencies, 
and dependence between Iterates, macro-dependencies. 
What is the relationship between macro and micro de- 
pendencies? This is an interesting question because 
our implementation requires macro-dependence rules, 
whereas true dependencies are in terms of micro-dependencies. 

* The system can easily derive macro-dependence rules 
from micro-dependencies if the array index sub-expressions 
of statements in the loop body are linear or affine func- 
tions of the induction variables. In fact, since the map- 
ping between iteration space and Iterate space is itself 
linear, the relation between the source and target of 
the dependencies in the Iterate space is isomorphic to 
the relation between dependencies between points in 
the iteration space, as shown in figure 3. Fortunately, 
affine subscript expressions are also the most common 
form of subscripts in loops [19]. For linear subscript 
expressions, we can derive the macro-dependence rule 
directly from the sub-expressions: we simply replace 
the iteration index i which ranges over 1..N, with an 
Iterate index which ranges over 1..N/g where g is the 
granularity of Iterates. 

To illustrate, we now look at the process of deriving 
macro-dependence rules with respect to a one-dimensional 
Red/Black SOR, although this method applies to a p  
plications with more complex dependencies. The loops 
in the Red/Black SOR has following form: 

DO t = 1, T 
DOALL i = 1.B-1 by 2 

A[i] = (A[; - 11 + A[i + 1])/2 

EBDDO 
DOALL i = 2, B by 2 

A[i] = (A[< - 11 + A[i + 1])/2 

ElDDO 
EBDDO 

The micro-dependence rules are: 

id + (2" - 1,i" + 1) 
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DO time-step = 1,lO 

D O J = l , N  

ENDDO 

D O I = l , N  

cRed Oper > i ENDDO 

DO I = 1, N 
DO J = l,N 

<Blk Open 
ENDDO 

ENDDO i ENDDO 

Figure 4: The Butterfly Circuit 

i " - l - + i d O T a - + i  d + 1  

iu + 1 --f iu or i --+ iu - l id  -, id 

Converting to macro-dependence rules and simplil 
ing by removing redundant terms, we have the mac 
dependence rule: 

I d  {I" - 1, I", I" + 1) 

1.4 Non-linear subscript expressions 

Although, linear subscript expressions cover the m 
jority of loops found in real applications, there are 
few important applications that have non-linear expre 
sions. For some important class of loops structures, 1 

can create a library of circuits to implement a depende 
driven execution. For example, a common dependen. 
pattern between consecutive collective operations ob 
large class of applications is the butterfly pattern shov 
in figure 4. This figure also shows that the relationsh 
between micro-dependencies and macro-dependencies 
not one-to-one. Nevertheless, a micro-dependence rule 
can be "hand" generated for this application. The bold 
squares on the right side of the figure indicate a possible 
path of a dependence-driven execution for Iterate IO. 

1.5 Example 

To see how all this fits together, we show how a user 
may describe the Red/Black SOR application, which 
consists of two collective operations-the Red operation 
and Blk operation. Figure 5 shows the original code and 
the inter-loop dependencies. Both the Red and the BZk 
operations in the loop body simply take the average of 
an element's neighboring point creating the dependence 
shown in the figure. Note that since the loops for the 
Red and Blk collective operations are not nested within 
each other, they are not perfectly nested, and hence, 
unimodular transformation does not apply. Further- 
more, because of the backward dependencies in this 
application, loop fusion does not apply either. Figure 6 
shows the application as it would appear when written 
for DUDE. For this application, there are two Iterates, 
the RED and the BLK, with corresponding BLK::main 
and RED::main methods that overload the operator 
to specialize the Iterate for this application. These 
Iterates compose the RedColl and BlkColl collections. 

Figure 5: Multi-Loop Dependencies on Red/Black SOR 

Finally, these collections themselves are combined in 
the loop descriptor to create a sequence of collective 
operation that iterates up to 10 iterations. 

1.6 Execution of loops on the DUDE System 

Having described how a user specifies a loop structure 
to the runtime system, we now turn to how the runtime 
system takes the static specification of a loop struc- 
ture and execute it using a dependence-driven model. 
Figure 7 shows the basic model that the runtime sysr 
tem uses. Initially, the system pushes only the uncon- 
strained Iterates onto the system work queue. This 
allows idle processors to remove an Iterate hom the 
work queue to perform the operation associated with 
that Iterate. The completion of the operation termi- 
nates the activation of that Iterate, which may satisfy 
dependence constraints to other Iterates based on what 
the data dependencies are and what other Iterates have 
completed. The dependence satisfaction engine creates 
works while the scheduler distributes the work for Mer-  
ent processors to complete. This creates a cycle shown 
in figure 7, which the system repeats until the entire 
loop nest is completed. 

Figure 2 shows the structure of the Iterate object. 
Internally, each Iterate contains a counter representing 
the number of dependence arcs which sink into that It- 
erate. When an Iterate completes, the system matches 
the ID of that Iterate to the left-hand side of the de- 
pendence rule, which when fied, produces a list of 
s i n k s  of dependence arcs; that is, it produces a list of 
Iterate ID'S which can be used as indices to the Iter- 
ateCollection. The system then decrements the counter 
associated with the sink Iterate. If the counter becomes 
zero, then the system can enable that sink Iterate for 
execution. 

heads that do not directly contribute to the numerical 
computation. To make the implementation as efficient 
as possible, the system initializes the internal depen- 
dence representation of the entire loop structure, such 
as the dependence counters, prior to the execution of 
any iterations. Thus, the cost of the initialization which 
is done only once, is amortized over several iterations of 
the loop. If the list of sinks emanating from an Iterate 

Dependence-driven execution introduces runtime over- 



void main() { 
RedColl = new IterateColIectioncRED~A,dim,BLOCK,cpus,grain~ 
BlkColl = new IterateCollection&LK>f A,dim,BLOCK,cpus,grain); 
LOOP loop(iterations = 10); 
loop.SetOp(O,RedColl); 
loop.SetOp( 1 ,BlkColl); 
loop.SetDependence(RedColl,BIkColl, 

loop.Execute(); 
“(ij) 3 (i+l,j), (i-l.j), (i,j+l), (i,j-1)”); 

1 

void RED::main() { void BLK::main() ( 

Figure 6: Red/Black SOR on DUDE 

Figure 7: Dependence-driven Execution Model 
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PDE::main { 
for (I = SX(); I <= EX(); I++) 

A[I+l] = 113 * (A[I] + A[I+l] + A[I+2]); 
1 

Figure 8: Iteration order for Hyperbolic 1D pde using 
DUDE 

do not change during the execution of the loop, as in 
static and affinity scheduling, the system can create the 
list for each Iterate in the IterateCollection during loop 
initialization. 

We now continue with the example of Red/Black 
SOR to describe how the system executes the loop spec- 
ification. The Execute() function of loop in figure 6 
starts the system by pushing all of the initially un- 
constrained Iterates onto the system work queue. The 
initially unconstrained Iterates in this example consist 
of Iterates from the RedColl collection. Now the com- 
putation begins. After the initial Iterates have been 
loaded, a worker pops off a (Red) Iterate from the sys- 
tem work queue and applies the maan operator to the 
data described by the descriptor for that Iterate. On 
a parallel execution, workers may steal work from a 
Merent processor to balance the workload. When com- 
pleted, the system determines the list of sinks of the 
dependence arcs for that Iterate based on the depen- 
dence rule. For each sink, the system decrements the 
counter in the destination Iterates which, at this point 
in the execution, are Blk Iterates. If the count is zero, 
the Iterate becomes unconstrained, or enabled, and the 
dependence satisfaction engine pushes these enabled It- 
erates onto the system work queue. 

Continuing, the completion of a Blk Iterate can fur- 
ther enable a Red Iterate from second time step, and 
so forth. This describes a depth-first traversal of the 
iteration space, since a Blk operation can begin before 
all of the Red operations are completed. 

In DUDE, Iterates represent a sub-computation on 
a subregion of data. The fact that the granularity of 
the processing elements, or Iterates, does not consist of 
a single iteration but blocks of iterations, raises some 
questions. What does each Iterate compute? In which 
order should the system computer the iterations w i t h  
an Iterate; that is, what is the intra-Iterate order? In 
which order should the system compute the Iterates 
themselves; that is, what is the inter-Iterate order? The 
intra-1t.erate order is simply the order of the traversal 

used in the original loop except that the loop bounds 
are limited to the data region to which the Iterate has 
been delegated. The inter-Iterate order, however, is 
determined by the dependence-driven execution. 

DUDE system consists of three types of dependence- 
driven loop scheduling methods: static, affinity, and 
dynamic. A description of these schedulers in DUDE 
can also be found in our paper [17]. Depending on 
the application, or based on runtime conditions, the 
user can choose one of these methods by instantiating 
the appropriate IterateCollection template which deter- 
mines the scheduling behavior. In static scheduling, the 
scheduler decomposes data into fixed-sized chunks, and 
distributes the data to different processors prior to the 
execution of loop iterations. In affinity scheduling, the 
system decomposes the data prior to the loop execu- 
tion but the scheduler distributes the decomposed data 
during the execution of the loop. Finally, in dynamic 
scheduling, the scheduler decomposes and distributes 
the data during the execution of the loop. We begin by 
discussing static and affinity scheduling. 

1.7 Static and Affinity Scheduling 

In both static (instantiation of the StaticCollection tem- 
plate) and affinity scheduling (the AfhityCollection 
template), the system associates an Iterate with a home 
CPU. In static scheduling, an Iterate is permanently 
bound to the home CPU for the duration of the pro- 
gram, while in affinity scheduling, the home CPU is the 
preferred place where the Iterate will be executed but 
the Iterate may be stolen by a Merent idle CPU to bal- 
ance the load. The advantage of using static scheduling 
is that having a fixed home for Iterates allows the com- 
piler/runtime system to determine which Iterates need 
to communicate with a remote CPU and which Iterates 
need only local communication within a CPU. Iterates 
that do not need to communicate with another CPU 
also do not need to use locks for accessing local work 
queues. The advantage of affinity scheduling is that 
the scheduler can adapt to the dynamic fluctuation of 
the workload by distributing Iterates to idle processors 
while trying to maintain data locality [12]. 

One of the parameters used in instantiating a Stat- 
icCollection or an AfityCollection is the decompo- 
sition method, which determines how the system di- 
vides the data between the Merent Iterates. The user 
chooses the decomposition method such as by BLOCK 
or CYCLIC similar to decomposition and distribution 
utilities available in HPF [9] and pC++ [3]. One im- 
portant difference, however, is that in the process of 

objects or Iterates, which are tuples consisting of both 
data and operation. 

data decomposition, DUDE takes flat data and creates / 

1.8 Dynamic Scheduling 

In dynamic scheduling, the data decomposition and 
data distribution is determined at run-time by the sched- 
uler. The definition of loop structure and dependence 
specification, however, remains similar to static and 
affinity scheduling. Unlike static and affinity schedul- 
ing, the chunk sizes are not fixed, but vary during run- 
time as the scheduler sees fit to balance the workload. 



Figure 9: A Quadtree 

In DUDE, we use spatial data-structures based on 
the principle of recursive decomposition called quadtrees 
( or its three dimensional version, octree) breakdown 
and coalesce neighboring Iterates. Figure 9 shows an 
example of a quadtree. The tree in the figure represents 
the Iterate space on the left side of the figure. The 
dark portion of the Iterate space (which corresponds 
to dark nodes in the tree) represents the Iterate space 
region that is ready to be executed or enabled. The 
resolution of the decomposition( Le., the depth of the 
tree) can be fixed or varied during run-time. Note that 
the quadtree-representation numbers the nodes such 
that the children of any node compose a contiguous 
block. 

In the quadtree decomposition, each subdivision is a 
block divided into four equal parts. Alternatively, at 
each subdivision, the block could be divided into two 
parts as in a bantree. Samet [15] gives a comprehensive 
description of these data-structures. These structures 
enables efficient indexing into the pools of Iterates be- 
cause the chunk sizes are uniform at any given level. 
Given the level and the index, the system can retrieve 
the Iterates from a pool by simply using random ac- 
cess. Similarly, unification with the left-hand side of 
the firing rules is efficient since, at any given level, the 
unification algorithm is the same as it would be for 
static decomposition where grain sizes are uniform. 

The hierarchical structure is also ideal for dealing 
with the problems of coalescing small chunks. As the 
dependence-driven execution enables a group of neigh- 
boring small chunks of iterations, the system can coa- 
lesce them to create a larger set of contiguous iterations. 
This amounts to setting the parent node when the sys- 
tem has enabled all of its four child nodes at the finer 
resolution. 

We now describe the quadtree scheduling method 
can which consists of the following steps: 

1. Construct a quadtree for the iteration space using 
some minimum granularity; that is, determine the 
granularity of the leaf nodes. 

iterations can be coalesced into large blocks. Co- 
alescing amounts to marking the parent node as 
enabled if all its chil&en are enabled. 

5 .  Go to step two until no new iterations can be 
enabled. 

2 Related Work 

Using dependence information to increase parallelism is 
not a new idea. One issue that distinguises the various 
works is the unit or the granularity of parallelism. A 
very fine granulaity of asynchronuous computation re- 
quires a significanlty different design than for a coarse- 
grain computation. For example, dataflow computers 
such as the Manchester Dataflow Machine [7, 81 relied 
on special hardware to orchestrate parallelism at the 
level arithmetic operations. In Mentat [5, 41, the unit 
of parallelism were functions. In the autoscheduling 
work by Moreira and Polychrnopolus [13], the unit was 
a task which may consist of a entire loop. These loops 
might be scheduled by guided-self scheduling across the 
available processors so that the iterations of a doall 
loop can be run in parallel. Iterations from different 
consecutive loops are not executed in parallel, but com- 
puted in lock step by using a barrier. Put differently, 
the nodes in the dataflow graph is at the granular- 
ity of entire loops. The granularity of parallelism in 
the DUDE runtime system is somewhere between the 
h e  grain computation in dataflow machines and coarse 
grain macro-dataflow approach in. Another dimension 
along which to compare the different work is the extent 
to which the user is involved in synchronizing the the 
units of computation. Cilk and Mentat requires the 
user to explicitly state the interaction and synchroniza- 
tion between the units of parallelism while this is not 
necessary in our runtime system. A more complete 
comparison of our work with other data-driven model 
can be found in [17, 181 which studied the locality 
and paralllelism of the runtime system. This paper 
describes the performance of a dependence-driven ex- 
ecution in multiprogrammed environment where there 
are more processes than 

We focus a little on the Chores runtime system which 
is most similar to our own work along the dimensions 
mentioned * In the Chores runtime system, a per- 
processor worker (a user-level thread) grabs chunks of 
work from a central queue using the guided self-scheduling 
method. Since Chores uses a guided self-scheduling 
to schedule loops, the system requires that a multi- 

2. During runtime, dynamically determine the schedul- 
ing granularity depending on the amount of iter- 
ations left to do. 

3. Assign iterations to processors at this granularity. 

4. When iterations are completed, determine which 
new iterations can be enabled. If new iterations 
can be enabled, see if the total set of enabled 



dimensional iteration space be collapsed into a single 
dimension. For example, to schedule the loop in a two 
dimensional wavefront application (as required in the 
mean value analysis), the Chores system linearizes the 
iteration space as space as shown in figure 10. In this 
example, the element (it j )  represents the computation 
of performance measures for a queuing network where i 
is a class 1 customer and j is a class 2 customer. Each 
element ( i , j )  can only be readied (enabled) when both 
(i - 1 , j )  and ( i , j  - 1) are completed. Initially, ody 
(0,O) is ready for computation. 

Enabkd Iterations Completed Iterations 'c Untouched Iterations 

Figure 10: A linearization and dependencies of a two- 
dimensional space for MVA 

As in our runtime system, new iterations are enabled 
as dependencies on them are satisfied. However, the set 
of enabled iterations must always be a contiguous range. 
This means that new iterations can only be enabled if 
these iterations extend either the upper bound or the 
lower bound of the range of enabled iterations; no holes 
can be created. The single contiguous range require- 
ment is necessary to apply guided-self scheduling. 

3 Experimental Results 

To compare the effect of multiprogramming on various 
methods, we measured total execution time of three 
applications on a 16 processor SGI Origin under various 
loads: 1) on an idle machine 2)  on a machine with 8 of 
the 16 processors used for a different job and 3) on a ma- 
chine with Merent tasks using all 16 processors. These 
experiments correspond to a multiprogramming level of 
1.0, 1.5, and 2.0, respectively. Ideally, we would ex- 
pect that a multiprogramming level of 1.5 would cause 
the application to take 50% longer to execute and a 
multiprogramming level of 2.0 would cause it to take 
100% longer with respect to the speed of the application 
running on an idle machine. However, because of the 
overhead associated with context switches, and loss of 
memory locality, this is often not the case. The appli- 
cations consisted of Red/Black SOR (size 2048~2048)~ 
Multigrid solver (size 2048x2048), and the Mean Value 
Analysis. On an idle machine, MVA and Multigrid 
have a highly dynamic fluctuation in workload, whereas 
Red/Black SOR suffers little fiom load imbalances. 

In the performance graphs shown in this section, 
we show, for each method, the absolute time elapsed 
to execute the application at the three levels of multi- 
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Figure 11: Execution Times for Red/Black SOR (size 
= 2048x2048) 
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Figure 12: Execution Times for Multi-Grid (size = 
2048x2048) 

programming. The darker shaded portion of each bar 
shows the 95% confidence interval. In some bars, the 
confidence intervals are not large enough to be seen. 

3.1 Red/Black SOR 

Figure 11 shows the comparison of the performance of 
the Red/Black SOR (with matrix size of 2048x2048) 
using four methods: DUDE, Affinity scheduling, Static 
scheduling, and Guided-self scheduling. In the case 
of DUDE, we saw a 57% slowdown when running at 
a multiprogramming level of 1.5 and a slowdown of 
270% at a multiprogramming level of 2.0. However, 
these slowdowns were very small in comparison to the 
slowdown observed in other methods. The Figure 11 
also indicates that the 95% confidence interval for DUDE 
is much lower than the other methods. 

3.2 Multi-Grid 

Figure 12 compares the performance for the Multigrid 
Solver. A multiprogramming level of 1.5 caused DUDE 
to slowdown by 154%, whereas a level of 2.0 caused a 
slowdown of 374%. Again, the 95% confidence interval 
indicates that there is little variance when using DUDE. 
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Figure 13: Execution Times for Mean Value Analysis 

3.3 Mean Value Analysis 

The performance results for this application are shown 
in figure 13. When at a multiprogramming level of 
1.5, DUDE suffered a slowdown of 174% while a mul- 
tiprogramming level of 2.0 caused a slowdown of 400%. 
These degradations in performance are small in com- 
parison to the other methods. 

3.4 Summary 

Performance can severely degrade in a multiprogrammed 
environment. Applications that have static behavior 
when run on an idle machine can exhibit highly dy- 
namic load imbalances when run on multiprogrammed 
environment. The conventional solution to these prob- 
lems is to have the application interact with the oper- 
ating system kernel. Since this requires an extension 
to the kernel, and requires applications to be aware 
of these extensions, these conventional solutions are 
difficult to use. In this section, we showed that it 
is possible to improve the performance of applications 
running on a multiprogrammed environment without 
using kernel extensions. 

4 Conclusion 

Performance can severely degrade in a multiprogrammed 
environment. Applications that have static behavior 
when run on an idle machine can exhibit highly dy- 
namic load imbalances when run on multiprogrammed 
environment. The conventional solution to these prob- 
lems is to have the application interact with the oper- 
ating system kernel. Since this requires an extension 
to the kernel, and requires applications to be aware of 
these extensions, these conventional solutions are diffi- 
cult to use. In this section, we showed that, by overlap- 
ping the computations of consecutive phases of a data 
parallel program, it is possible to improve the perfor- 
mance of applications running on a multiprogrammed 
environment without using kernel extensions. 
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