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Abstract 

In this paper we propose and evaluate the Adaptive++ technique, a 
novel runtime-only data prefetching strategy for software-based dis- 
tributed shared-memory systems (software DSMs). Adaptive++ im- 
proves the performance of regular parallel applications running on 
software DSMs by using the past history of memory access faults 
to adapt between repeated-phase and repeated-stride prefetching 
modes. Adaptive++ does not issue prefetches during periods when 
the application is not exhibiting one of these two types of behavior 
and is thus behaving irregularly. Through detailed execution-driven 
simulations of several applications, we show that our prefetching 
technique is very successful at reducing the data access overheads 
of regular applications running on the TreadMarks software DSM. 
Adaptive++ also reduces the overhead of applications that are not 
strictly regular but that exhibit periods of regularity. In terms of 
overall performance, our results show that Adaptive++ can provide 
speedup improvements as significant as 34% on 16 processors. A 
direct comparison against two runtime-only prefetching techniques 
proposed thus far shows that Adaptive++ is consistently competitive 
in terms of performance, while being able to optimize a larger set of 
applications. Our main conclusion is that Adaptive++ should defi- 
nitely be considered by software DSM designers as an effective way 
of tolerating the overhead of remote data accesses. 

1 Introduction 

Software-based distributed shared-memory systems (software 
DSMs) combine the ease of shared-memory programming with the 
low cost of message-passing architectures. However, these systems 
often exhibit high remote data access latencies when running real 
parallel applications. Prefetching strategies can conceivably be used 
to reduce these latencies by performing the operations involved in 
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accesses to remote data in advance of the actual data accesses. How- 
ever, prefetching effectively in software DSMs can be quite complex 
for two main reasons: (1) it is often difficult to predict future data ac- 
cesses and (2) prefetches generate significant overhead when issued 
unnecessarily. In fact, prefetching effectively in software DSMs is 
somewhat harder than in their hardware counterparts; the relatively 
simple techniques proposed for hardware DSMs [13] are usually not 
effective for software DSMs. 

In order to reduce the remote data access overhead in software 
DSMs while avoiding these two problems, in this paper we pro- 
pose and evaluate the Adaptive++ technique, a novel prefetching 
technique that issues prefetches only when access faults can be pre- 
dicted with reasonable confidence. More specifically, Adaptive++ 
is a nmtime-only data prefetching strategy that improves the per- 
formance of regular applications without requiring the intervention 
of sophisticated users or compilers. The technique uses the past 
history of memory access faults to adapt between repeated-phase 
and repeated-stride prefetching modes. Adaptive++ does not issue 
prefetches when the application is not exhibiting one of these two 
types of behavior and is thus behaving irregularly. 

Through detailed execution-driven simulations of several applica- 
tions, we show that our technique is very successful at reducing the 
data access overheads of regular applications running on the Tread- 
Marks software DSM [2]. Our results show that these applications 
can achieve data access overhead reductions of as much as 58%. 
Adaptive++ also reduces the overhead of applications that are not 
strictly regular but that exhibit periods of regularity. For these ap- 
plications data access overhead reductions are more modest but still 
substantial. In terms of overall performance, our results demonstrate 
that Adaptive++ can provide speedup improvements as significant as 
34% on 16 processors. 

Adaptive++ is not the first runtime-only prefetching technique 
proposed thus far in the literature; the techniques of Bianchini et 
al. (B+) [3], Karlsson and Stenstrom (KS) [7], and Amza et al. 
(Dynamic Aggregation) [1] are the best-known previous proposals. 
The KS technique is similar in flavor but not directly comparable to 
Adaptive++. A direct comparison of Adaptive++ against the other 
two strategies shows that our technique performs as well or better 
than B+ for all applications in our suite. In addition, Adaptive++ 
performs better than Dynamic Aggregation for regular applications, 
while achieving performance comparable to that of Dynamic Ag- 
gregation for non-regular applications. In essence, our comparison 
shows that Adaptive++ is consistently competitive in terms of per- 
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Figure 1: Run Times under TreadMarks on 16 processors. 

formance, while being able to optimize a larger set of applications 
than the other techniques. 

Our main conclusion is that Adaptive++ should definitely be con- 
sidered by software DSM designers as an effective way of tolerating 
the overhead of remote data accesses. Furthermore, we believe that 
it is unlikely that any runtime-only technique can deal with irregular 
behavior satisfactorily. Tackling this type of behavior automatically 
requires the use of sophisticated compilers that can insert prefetches 
in the source code of the applications. However, prefetching com- 
pilers for software DSMs have received little attention to date and 
are beyond the scope of this paper. 

The remainder of this paper is organized as follows. The next 
section motivates the paper by describing the main characteristics 
of TreadMarks and showing that remote data fetch overheads sig- 
nificantly degrade the performance of applications running on top 
of it. Section 3 describes our Adaptive++ prefetching technique. 
Section 4 describes our simulation methodology and the prefetching 
techniques we compare performance against. Section 5 presents our 
experimental results. In section 6 we describe related work. Finally, 
section 7 draws our conclusions. 

2 Overheads in Software DSMs 

Several software DSMs use virtual memory protection bits to en- 
force coherence at the page level. In order to minimize the impact 
of false sharing, these DSMs only guarantee memory consistency at 
synchronization points, and allow multiple processors to write the 
same page concurrently. 

TreadMarks is an example of a system that enforces consistency 
lazily. In TreadMarks, page invalidation happens at lock acquire 
points, while the modifications (diffs) to an invalidated page are col- 
lected from previous writers at the time of the first access (fault) to 
the page. The modifications that the faulting processor must col- 
lect are determined by dividing the execution in intervals associated 
with synchronization operations and computing a vector timestamp 
for each of the intervals. A synchronizationoperation initiates a new 
interval. The vector timestamp describes a partial order between the 
intervals of different processors. Before the acquiring processor can 
continue execution, the diffs of intervals with smaller vector times- 
tamps than the acquiring processor’s current vector timestamp must 
be collected. The previous lock holder is responsible for comparing 

the acquiring processor’s current vector timestamp with its own vec- 
tor timestamp and sending back write notices, which indicate that a 
page has been modified in a particular interval. When a page fault 
occurs, the faulting processor consults its list of write notices to find 
out the diffs it needs to bring the page up-to-date. It then requests 
the corresponding diffs and waits for them to be (generated and) sent 
back. After receiving all the diffs requested, the faulting processor 
can then apply them in turn to its outdated copy of the page. A more 
detailed description of TreadMarks can be found in [8]. 

The main overheads in TreadMarks (and most other software 
DSMs) are related to communication latencies and coherence ac- 
tions. As a result of these overheads, the speedups achieved by most 
of our applications running on top of TreadMarks range between 4 
and 8 on 16 processors, which is somewhat low but not at all uncom- 
mon for applications running on software DSMs. Two applications 
exhibit speedups that are not within this range: Em3d and Ocean. 
Em3d achieves superlinear speedup as a result of its terrible cache 
behavior on 1 processor. Ocean does not perform well at all, achiev- 
ing a speedup of about 2 on 16 processors. 

Figure 1 presents a detailed view of the execution time perfor- 
mance of our applications running on top of TreadMarks on 16 pro- 
cessors. The bars in the figure show normalized execution time bro- 
ken down into busy time, data fetch latency, synchronization time, 
IPC overhead, and other overheads. The latter category is comprised 
by TLB miss latency, write buffer stall time, interrupt time, and the 
most significant of these overheads, cache miss latency. The busy 
time represents the amount of useful work performed by the compu- 
tation processor. Data fetch latency is a combination of coherence 
processing time and network latencies involved in fetching pages 
and diffs as a result of page access violations. Synchronization time 
represents the delays involved in waiting at barriers and lock ac- 
quires/releases, including the overhead of interval and write notice 
processing. IPC overhead accounts for the time the processor spends 
servicing requests coming from remote processors. 

Figure 1 shows that most applications running on top of Tread- 
Marks suffer severe remote data fetch and synchronization over- 
heads. Prefetching techniques can be used to alleviate the data fetch 
overhead. Note however that prefetching cannot completely elim- 
inate this overhead, since prefetching does not overlap the time to 
apply diffs and generate twins with useful computation. We find that 
the actual potential performance improvements prefetching can pro- 
vide range from 9% to 32% for our applications, assuming that the 
synchronization overheads are not affected by prefetching. Given 
that prefetching may reduce the overhead of barriers by reducing 
load imbalance and may reduce the overhead of locks by speeding 
up critical sections, performance gains achievable via prefetching 
may be even greater. In order to approach these improvements, we 
propose the prefetching technique described next. 

3 The Adaptive + + Technique 

3.1 Description 

Adaptive++ predicts near-future remote data accesses and issues 
prefetches for these data prior to the actual accesses. It relies solely 
on runtime information on data accesses (the history of remote ac- 
cesses of each node) and is intended to optimize the performance 
of regular applications. These applications exhibit two main types 
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of behavior: (1) the set of remote data accesses performed during a 
phase of execution (delimited by consecutive barrier events) is re- 
peated during a subsequent phase, or (2) the stride between the dif- 
ferent remote accesses during a phase is repeated in other phases. 
Adaptive++ does not issue prefetches when the application is not 
exhibiting one of these behaviors, i.e. when “unexpected” remote 
accesses must be performed. Thus, in order to tackle regular ap- 
plications, our technique adapts between two modes of operation: 
repeated-phase and repeated-stride modes. 

The exact implementation of each of these modes is obviously de- 
pendent on the underlying software DSM. To make the description 
of the technique more concrete, in the following we detail the im- 
plementation of Adaptive-!-+ for TreadMarks, while describing the 
different execution modes and the concept of “expected” remote ac- 
cesses in the context of this implementation. 

Repeated-Phase Mode. To determine which pages to 
prefetch for in this mode of operation, our technique maintains 
two lists: previous-list and before-previous-list. 
previous- list contains the ids of the pages that experienced 
faults outside of critical sections in the previous phase of execution, 
while before-previous-list records the faults that occurred 
outside of critical sections during the phase before the previous one. 
One of these lists is to be chosen as the expected set of faults, i.e. 
a prediction of the page faults that will likely be experienced by the 
processor in the next phase. 

On the third barrier synchronization episode, the similarity be- 
tween the previous-list and before-previous-list 
lists determines which list is to be chosen on barrier events. Sim- 
ilar lists determine that the list corresponding to the previous phase 
is to be chosen on every subsequent barrier episode. When the lists 
are not similar, the one corresponding to the phase before the last 
is to be chosen every time. Two lists are deemed similar if more 
than 50% of their page ids belong to both lists. Note that this strat- 
egy only tries to determine the similarity between two consecutive 
phases, and assume that similar phases alternate if the phases are dis- 
similar. The reason why we do this is that it is rare for applications 
to exhibit similar phases that are not consecutive or alternating. 

Repeated-Stride Mode. Pages to prefetch for are chosen dif- 
ferently under the repeated-stride mode of operation, although this 
mode also involves the two lists of page faults and chooses the one 
to use based on their similarity. This mode uses the most frequent 
page fault stride of the chosen list to determine the pages to prefetch 
for in the next phase. The ordered list of expected faults is com- 
prised by a11 the pages that are a multiple of this stride away from 
the page faulted on when the stride is first detected during the phase, 

Note that in repeated-stride mode Adaptive++ may issue 
prefetches for pages that were not accessed before and so prefetches 
may be issued for whole pages as well as their diffs. In repeated- 
phase mode Adaptive++ only issues prefetches for pages that have 
been touched before, so it only issues prefetches for diffs. 

Picking a Mode. The decision of which mode to apply to a phase 
is taken during the barrier episode that starts the phase. The decision 
is based on the technique that is most likely to be adequate for the 
phase. If no technique seems appropriate, prefetching is avoided at 
least until the next barrier episode. 

The metric that determines a technique’s potential to succeed is 
different for each mode of operation. For the repeated-phase mode, 
the metric is the percentage of useful prefetches (the ones that pre- 

vented remote operations on faults) this mode issued (if it was the 
chosen mode in the previous phase) or would have issued (if it was 
not the chosen mode in the previous phase). For the repeated-stride 
mode, the metric is the frequency of the most common page ac- 
cess stride observed in the chosen list of faults. On every barrier 
event, the mode to be used in the next phase is the one that leads to 
the largest value of its metric. In case of a tie, the repeated-phase 
mode is the one of choice. Picking a mode to use obviously involves 
some overhead, which our detailed simulations show is almost al- 
ways completely overlapped with the barrier overhead. 

Issuing Prefetches. In the repeated-phase mode, a user-defined 
number of pages (24 pages in our experiments) whose ids belong 
in the expected list is prefetched for right after a barrier crossing 
point. In addition, the repeated-phase mode tries to issue prefetches 
for another user-defined number of pages (4 pages in our experi- 
ments) following the faulting page in expected, provided that the 
fault occurred outside of critical sections. Prefetches are only is- 
sued for: a) pages that are not already valid in the local memory; b) 
pages for which the same prefetches have not been completed (i.e. 
the required data is not in the local memory); and c) pages for which 
the same prefetches have been issued but are still outstanding. No 
action is taken on faults occurring inside of critical sections or on 
pages that are not in expected. 

In contrast with the repeated-phase mode, no prefetches are is- 
sued at the barrier point in the repeated-stride mode, since at that 
point it is still not possible to determine the expected set of 
faults. On faults outside a critical section, the repeated-stride mode 
tries to issue prefetches for yet another user-defined number of 
pages (4 pages in our experiments) following the faulting page in 
expected. Again, prefetches are only issued on faults to pages 
found in expected, provided that conditions a, b, and c are met. 

Receiving Prefetch Replies. The prefetch replies are saved until 
an actual access to the page is made by the processor, at which point 
any diffs that had not been prefetched (or that are yet to be received) 
are collected, all the diffs (prefetched and otherwise) are applied to 
the outdated version of the page, and the page is made valid. Note 
that an access fault is experienced by the node, even if all the nec- 
essary diffs had been received. Prefetches are issued on this type of 
fault as well as on faults for which no diffs were prefetched, if the 
faulting page belongs in the expected list of faults. Adaptive++ 
waits for all prefetch replies to have been received before crossing a 
subsequent synchronization point. 

Complete and detailed justifications for each of the design deci- 
sions behind the Adaptive++ technique can be found in [4]. 

4 Methodology 

4.1 Simulation and Workload 

Our simulator consists of two parts: (1) a front end, MINT [12], 
that simulates the execution of the computation processors; and (2) 
a back end that simulates the software DSM protocol (TreadMarks 
and various prefetching extensions to it) and the memory system 
(finite-sized TLBs, write buffers, and caches, network transfer costs 
including contention effects, and memory access costs including 
contention effects) in great detail. We simulate a network of work- 
stations with 16 nodes. Each node consists of a computation pro- 
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System Constant Name 
Number of processors 
TLB size 
TLB fill service time 
All interrupts 
Page size 
Total cache per processor 
Write buffer size 
Cache line size 
Memory setup time 
Memory access time 
PC1 setup time 
PC1 access time 
Network path width 
Messaging overhead 
Switch latency 
Wire latency 
List processing 
Page twinning 

Diff creation and application 

Default Value 
16 

128 entries 
100 cycles 

4000 cycles 
4K bytes 

256K bytes 
4 entries 
32 bytes 

18 cycles 
1.25 cycles/word 

I8 cycles 
3 cycles/word 
16 bits (bidir) 

400 cycles 
4 cycles 
2 cycles 

6 cycles/element 
5 cycles/word + 

memaccesses 
7 cycles/word + 

memaccesses 

Table 1: Default Values for Parameters. 1 cycle = 51 ns. 

cessor, a write buffer, a first-level direct-mapped data cache (all in- 
structions are assumed to take 1 cycle), local memory, and a mesh 
network router (using wormhole routing). Table 1 summarizes the 
default parameters used in our simulations. 

We report results for six representative parallel programs: Em3d, 
Water-nsquared, FFT, Radix, Ocean, and SOR. Em3d is from UC 
Berkeley. Water-nsquared, FFf, Radix, and Ocean are from the 
Splash-2 suite [14]. SOR is from the University of Rochester. 

Em3d simulates electromagnetic wave propagation through 3D 
objects. We simulate 40064 electric and magnetic objects, each con- 
nected randomly to 24 other objects with a 0.1% probability that 
neighboring objects reside in different nodes. The interactions be- 
tween objects are simulated for 40 iterations. Water-nsquared is a 
molecular dynamics simulation computing inter- and intra-molecule 
forces for a set of water molecules. Interactions are computed using 
an O(n2) algorithm. The algorithm is run for 10 steps and the input 
size used is 5 12 molecules. FFT performs a complex 1 -D FFf that 
is optimized to reduce interprocessor communication. The data set 
consists of 1M data points to be transformed, and another group of 
1M points called roots of units. Each of these groups of points is 
organized as a 256 x 256 matrix. Ocean studies large-scale ocean 
movements based on eddy and boundary currents. We simulate a 
258 x 258 ocean grid. Radix is an integer radix sort kernel. The 
algorithm is iterative, performing one iteration per digit of the 4M 
keys. SOR performs successive over-relaxation of a 256 x 640 ma- 
trix of doubles for 100 iterations. 

The applications in our suite exhibit widely varying page fault 
behaviors that should provide for interesting comparisons; from the 
highly-regular Em3d, SOR, and FFT, to the highly-irregular Radix, 
and the mixed Ocean and Water-nsquared. For SOR and Em3d, 
Adaptive++ runs in repeated-phase mode all the time, while for FFf 
it runs in repeated-stride mode just about all the time. For the other 
applications Adaptive++ applies both modes of operation. 

4.2 Comparable Prefetching Techniques 

The B+ Technique. B+ is a straightforward prefetching tech- 
nique that we proposed in [3]. B+ uses page invalidations to guide 
prefetching. The technique assumes that a page that has been re- 
cently accessed by a processor and is later invalidated by another 
one will likely be referenced again in the near future. Thus, the B+ 
technique prefetches diffs for each of the pages invalidated at syn- 
chronization points, provided that the page is currently valid at the 
local node. Prefetches are issued right after lock acquire and barrier 
events. Just like in Adaptive++, in B+ all prefetch replies must have 
been received before crossing a subsequent synchronization point. 

B+ differs from Adaptive++ in several important ways: a) B+ 
issues prefetches after lock acquire and barrier points, while Adap- 
tive++ does not prefetch after lock acquires and does prefetch on ac- 
cess faults; b) B+ is driven by page invalidations, while both Adap- 
tive++ modes of operation are driven by the actual access faults; c) 
B+ does not stop prefetching for irregular applications, while Adap- 
tive++ does; and d) B+ cannot deal with cold start faults, while 
Adaptive++ can tackle regular cold start accesses. 

The Dynamic Aggregation Technique. This technique groups 
pages based on the access faults experienced by processors, so that 
the system’s fetch unit can be enlarged without incurring the harm- 
ful effects of false sharing. Prefetching takes place because a group 
of pages is fetched together on an access fault to any of the pages 
in the group. Only the faulting page is turned valid when the re- 
quested data arrive however, so that changes in fault behavior can 
be tracked. After having fetched a group of pages, the group is de- 
stroyed. Again, all prefetch replies in Dynamic Aggregation must 
be received before crossing a subsequent synchronization point. 

Page groups are computed at each synchronization point based 
on the access faults’experienced by the processor prior to the syn- 
chronization. A fault occurs on every first access to an invalid page. 
All access faults form a fault sequence that is divided into groups in 
such a way that a group is completely filled before the next is cre- 
ated. The maximum size of page groups is defined by the user. After 
a large number of experiments with different maximum group sizes, 
we determined that the best value of this parameter for our applica- 
tions is 5, i.e. we issue prefetches for 4 pages on an access fault that 
requires remote communication. 

Besides prefetching, Dynamic Aggregation also improves perfor- 
mance by combining multiple diff requests to the same processors, 
thus reducing the number of messages involved in fetching diffs to 
validate the pages of a group. B+ and Adaptive++ also combine as 
many prefetch requests as possible. 

Dynamic Aggregation differs from Adaptive++ in two important 
ways: a) it only issues prefetches on access faults that require re- 
mote communication, while Adaptive++ also prefetches on faults 
that do not require additional remote communication, and after bar- 
rier events in repeated-phasemode; and b) it does not deal with cold 
start faults, while Adaptive++ does. 

5 Experimental Results 

5.1 Prefetching Effectiveness 

Coverage. We start to evaluate the effectiveness of the prefetch- 
ing techniques we study by assessing the prefetching coverage they 
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Figure 2: Prefetch Coverage. 

achieve for our applications. The coverage is defined as the per- 
centage of the access faults for which prefetches are actually issued. 
Figure 2 presents the number of access faults experienced by our 
applications under each of the prefetching techniques we study: B+, 
Dynamic Aggregation (“DA”), and Adaptive++ (“A++“). The num- 
bers of faults are normalized according to the B+ results. Note that 
some applications experience different numbers of faults under the 
different prefetching techniques since the timing of events affects 
their data access and sharing behavior. 

Each bar in the figure is broken down into access faults for which, 
by the time of the faults, the required data (pages and/or diffs) had 
already been collected (“hit”), the required data had been prefetched 
but did not return in time (“late”), prefetches had been issued but 
were invalidated since then (“inv”), and no prefetch had been issued 
(“no”). The access faults in the two latter classes require communi- 
cation that is exposed to the application, i.e. overhead that is in the 
critical path of the execution. The coverage factor is defined as the 
sum of the three first categories. 

Figure 2 shows that B+ achieves a high coverage factor for SOR, 
Em3d, and Ocean. These are exactly the applications for which in- 
validations better represent the set of future access faults. For FFI’, 
Radix, and Water-nsquared less than 50% of the invalidations ac- 
tually lead to access faults. The B+ results for Ocean and Water- 
nsquared are interesting in that a large percentage of access faults 
corresponds to pages for which data had been previously prefetched, 
but that nevertheless required communication. This effect suggests 
that issuing prefetches as soon as they seem required does not always 
reduce the number of faults that must involve communication. 

Dynamic Aggregation is more conservative in terms of issuing 
prefetches, since (a) prefetches are not issued for pages that cannot 
be found in any group; and (b) at least one access fault requiring 
remote communication must be experienced for a group of pages to 
be prefetched. As a result, Dynamic Aggregation achieves a lower 
coverage factor than B+ for all applications in our suite. For SOR 
and Em3d, the coverage factor of Dynamic Aggregation is lower 
than that of B+ because of(b). For the other applications, both (a) 
and (b) lower the Dynamic Aggregation coverage factors. 

Adaptive++ is also a conservative prefetching technique in that 
(c) it does not issue prefetches for pages faulted on inside of critical 
sections; and (d) it does not issue prefetches when the faulting page 
was not expected to experience a fault. Adaptive++ covers many 
fewer access faults than B+ for three of our applications, as a re- 

sult of (c) and (d). For SOR and Em3d, the two techniques cover 
about the same number of faults, since the applications contain no 
locks and phases repeat consistently. Adaptive++ covers more faults 
than Dynamic Aggregation for four of our applications (Em3d, SOR, 
FFT, and Water-nsquared), again mostly as a consequence of (b). 
For the other applications, Dynamic Aggregation covers more faults 
than Adaptive++ mostly because of(c). 

The coverage numbers for FFT and Radix deserve further dis- 
cussion. For FFT, Adaptive++ is the only application to achieve a 
relatively high coverage factor (55%), as this application is domi- 
nated by cold start faults with a most common stride of 4 between 
access faults. The other techniques cannot deal effectively with cold 
start faults, achieving a little more than 20% coverage. 

The Radix results are interesting in that no prefetching technique 
achieved more than a 10% coverage factor. The problem with Radix 
is that its access behavior is so irregular that past invalidations, ac- 
cess faults, and fault strides cannot be used to predict future faults 
effectively. 

Utilization. Considering coverage information alone is not 
enough to evaluate a prefetching technique however. Techniques 
that prefetch aggressively naturally achieve high coverage factors, 
but sometimes at the cost of issuing a large number of useless 
prefetches, i.e. prefetches for data that will not be subsequently used. 
This is exactly the problem with the B+ technique. 

Figure 3 presents the number and usefulness of the prefetches 
issued by the prefetching techniques for each of our applications. 
Again, the numbers of prefetches are normalized according to the 
B+ results. Each bar in the figure is broken down into useful and 
useless prefetches. Note that the useful prefetches correspond to the 
prefetches issued to cover the three categories of faults that comprise 
the coverage factor. 

The results in the figure show that the B+ technique generates a 
significant percentage of useless prefetches for FFf and Radix. The 
technique is particularly ineffective for these applications since their 
invalidations are a terrible predictor of future page faults. In addi- 
tion, note that for Ocean and Water-nsquared B+ issues many more 
prefetches than the other techniques. This is due to two factors. 
The first is that the coverage achieved by B+ is somewhat greater 
than that of the other techniques. The second factor is more sub- 
tle: several useful prefetches are issued for most “inv” access faults 
(figure 2) exhibited by B+. 

Dynamic Aggregation and Adaptive++ are more conservative 
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Figure 3: Prefetch Utilization. 

APP~ B+ Dynamic Adaptive++ 
Aggregation 

SOR 40% 23% 40% 
Em3d 56% 40% 58% 
FFT 17% 12% 49% 
Ocean 19% 23% 23% 
Radix -58% -6% 1% 
Water-nsq -2% 9% 22% 

Table 2: Data Access Overhead Reduction. 

prefetching techniques and only issue prefetches when they have 
a high confidence that the prefetches will be useful. As a result, 
both techniques exhibit very low useless prefetch percentages in 
all cases, except Radix. Unfortunately, in attempting to avoid use- 
less prefetches, these techniques may end up issuing a significantly 
smaller number of useful prefetches than B+. This problem is most 
serious for Dynamic Aggregation, which always issues many fewer 
prefetches than B+. 

Effectiveness. In order to assess the effectiveness of a prefetch- 
ing technique both its coverage factor and its percentage of use- 
less prefetches must be considered. An effective technique is one 
that covers most access faults with a relatively small number of 
prefetches and a relatively small percentage of useless prefetches. 
Such a technique can significantly reduce the data access overhead 
of the application. 

The data just presented demonstrates that B+ is not an effective 
technique, as it either issues too many prefetches (Ocean and Water- 
nsquared) or issues an excessive percentage of useless prefetches 
(FFT and Radix). Dynamic Aggregation is more effective than B+, 
but is not as effective as Adaptive++. The difference in effectiveness 
between Adaptive++ and Dynamic Aggregation is most glaring for 
FFT, but is also significant for Em3d and SOR. 

Data Access Overheads. The effectiveness of each prefetching 
technique reflects itself directly on the data access overhead reduc- 
tions the technique provides. Table 2 presents the percentage re- 
ductions in data access overhead provided by each prefetching tech- 
nique to the applications in our suite. The table shows that only 
in two cases (SOR and Em3d) are the reductions provided by B+ 
greater than 20%. In fact, for Radix and Water-nsquared the data ac- 
cess overhead entailed by B+ is actually increased, as a result of its 
terrible effectiveness for these applications. Dynamic Aggregation 

usually does not reduce data access overheads as much as B+ for the 
applications where B+ works well. However, Dynamic Aggregation 
never severely worsens the data access overhead. 

Adaptive++ is able to reduce data access overheads more signif- 
icantly and consistently than B+ and Dynamic Aggregation. Dif- 
ferences with respect to B+ are most significant for FFT, Radix, 
and Water-nsquared. Differences with respect to Dynamic Aggre- 
gation are most significant for Em3d, SOR, and FFI’. The reductions 
provided by Adaptive++ average 49% for the regular applications, 
while averaging 32% when both the regular and the mixed appli- 
cations are considered. The same averages for B+ are only 38% 
and 12%, respectively. For Dynamic Aggregation these averages 
are only 25% and 18%, respectively. 

5.2 Network llaffic 

Another important aspect in the evaluation of Adaptive++ and in 
its comparison against B+ and Dynamic Aggregation is the com- 
munication traffic generated by TreadMarks (“Tmk”), B+, Dynamic 
Aggregation (“DA”), and Adaptive++ (“A++“). Table 3 presents the 
total amount of data and the total number of messages transferred on 
16 processors in the presence of each prefetching technique. 

As one would expect, the table shows that TreadMarks trans- 
fers the least amount of data among the different systems in most 
cases. Prefetching techniques increase the amount of data ex- 
changed mostly as a result of useless prefetches and prefetches for 
pages that end up invalidated simply because they were fetched too 
early. Among the different prefetching techniques, B+ is the one 
that usually consumes the most communication bandwidth, as it in- 
volves the largest number of these two types of prefetches. The other 
prefetching techniques also increase the amount of data traffic some- 
what, but increases are usually less significant. 

Note however that the most important metric when assessing the 
communication behavior of software DSMs is the number of mes- 
sages transferred, since the overhead of starting and receiving mes- 
sages in such systems is usually much more significant than vari- 
ations in the amount of data transferred per message. Two fac- 
tors greatly influence the number of messages transferred by each 
prefetching technique: a) the technique’s ability to combine mes- 
sages to the same node; and b) the number of useless prefetches the 
technique generates. All three techniques can combine messages, 
especially B+ and Adaptive++, which at certain synchronization 
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SOR 

Data (in MBytes) Messages (in thousands) 
Tmk 1 B+ ( DA 1 A++ Tmk 1 B+ 1 DA 
31.5 1 31.8 1 31.5 1 32.2 17.1 1 11.4 ( 14.4 

-z- 
11.6 
21.7 
141.8 
515.6 
135.1 
247.7 

Table 3: Network Traffic. 

FF-l- 1 8% 1 8% 34% 
Ocean I -12% I 10% 7% 
Radix -26% -4% 0% 
Water-nsq -11% -1% -2% 

Table 4: Speedup Improvements wrt TreadMarks. 

points prefetch for a potentially large numbers of pages. Dynamic 
Aggregation has fewer opportunities to combine messages, since its 
prefetches are always issued only for the pages of a relatively small 
group. Nevertheless, Dynamic Aggregation (and Adaptive++) does 
not issue a large number of useless prefetches. Thus, Adaptive++ 
is the only technique that couples a serious potential for combining 
with a small number of useless prefetches. 

Table 3 confirms these observations. The table shows that B+ 
greatly reduces the number of messages involved in standard Tread- 
Marks as a result of its ability to combine messages. Even when 
the number of useless prefetches B+ issues is large, as for Radix, 
the technique can reduce the number of messages transferred by the 
system. Dynamic Aggregation is indeed the prefetching technique 
that usually involves the largest number of messages due to its lim- 
ited combining potential. Adaptive++ sits in between the two other 
techniques in terms of the number of messages transferred. 

5.3 Overall Performance 

Table 4 presents the speedup improvements (with respect to standard 
TreadMarks on 16 processors) achieved by B+, Dynamic Aggrega- 
tion, and Adaptive++. To complete the performance information on 
the techniques, figure 4 presents the running time breakdownof each 
of our applications under the different prefetching techniques. 

The table shows that B+ improves the speedup of TreadMarks for 
three of our applications, SOR, Em3d, and FFT, by as much as 27%. 
For SOR and Em3d, the set of invalidations received during synchro- 
nization events is a very good representation of future accesses. For 
FIT, only about half of the invalidations received by each processor 
correctly predict future faults, which is enough for B+ to improve 
speedup for this application. 

B+ is not without performance problems however. B+ degrades 
the running time of the other three applications (Ocean, Radix, and 
Water-nsquared) significantly. This effect is most visible for Radix, 

an application for which only a negligible number of the invali- 
dations actually lead to future access faults; prefetching only con- 
tributes to creating traflic that ends up increasing the data access, 
synchronization, and IPC overheads as seen in figure 4. For Ocean 
and Water-nsquared, the poor B+ behavior is caused by waiting at 
relatively frequent synchronization points for a usually large number 
of previous prefetches to complete. 

Dynamic Aggregation improves the speedup of most applications 
as a result of its ability to reduce data access overheads, as can be 
seen in figure 4. The running time improvements provided by the 
technique are not very significant however, at most 9%. Exceptions 
are Radix and Water-nsquared, applications for which Dynamic Ag- 
gregation does not affect performance in any relevant way, as sug- 
gested by the prefetching effectiveness data presented in the previ- 
ous subsection. In contrast with B+, Dynamic Aggregation never 
degrades performance significantly. 

Adaptive++ does not degrade performance either. Moreover, the 
speedupimprovements provided by this technique are at least as sub- 
stantial as any of the other techniques for the regular applications. 
Speedup improvements range from 14% to 34% for these applica- 
tions. In fact, the speedup improvement obtained for FFT is by far 
superior to those provided by B+ and Dynamic Aggregation. For 
the non-regular applications, Adaptive++ behaves about the same as 
Dynamic Aggregation. The running time data for these applications 
show that even though the data access overheads of Adaptive++ 
are usually the lowest among the different prefetching techniques, 
it sometimes leads to higher synchronization and/or 1PC overheads 
than Dynamic Aggregation. The main reason for this effect is that 
Adaptive++ clusters prefetch requests in time by prefetching on all 
access faults. Even though this strategy reduces the data access over- 
head significantly, it may stress the communication and memory 
systems as well as create greater interference on remote processors. 
Nevertheless, our results show that Adaptive++ is indeed beneficial. 

6 Related Work 

Most of the previously published work on reducing the overhead of 
data accesses in software DSMs has been concentrated on update- 
based coherence strategies, e.g. [6, 11, 91. Prefetching and multi- 
threading techniques for software DSMs, on the other hand, have 
received little attention so far [5, 3, 7, 1, lo]. Due to space limita- 
tions, we only focus on runtime-based prefetching techniques here. 
A more complete discussion of the related work can be found in [4]. 
Dynamic aggregation [ 11 has been studied in this paper. 

Karlsson and Stenstrom [7] proposed a prefetching technique 
(called KS here) that is similar in flavor to Adaptive++ in that it is 
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Figure 4: Running Times on 16 Processors. 

dynamic, adaptive, and was implemented for TreadMarks. However, 
Adaptive++ is more general than KS, as the latter technique restricts 
prefetching to producer-consumerdata and resorts to straight (stride- 
one) sequential prefetching when this sharing pattern is not detected. 
In addition, the specific details of the two techniques differ quite a 
bit, since KS was designed for a network of SMP workstations rather 
than a network of uniprocessor workstations like Adaptive++. 

Our previous work [3] proposed the use of simple hardware sup- 
port for aggressively tolerating overheads in software DSMs. We 
evaluated the B+ prefetching technique both under standard Tread- 
Marks and under a modified version of the system that takes ad- 
vantage of the extra hardware. Our experiments detected the per- 
formance problems of B+, but showed that it can profit substantially 
from our hardware support. We believe that Adaptive++ should ben- 
efit from this support even more significantly than B+. 

7 Conclusions 

In this paper we proposed and evaluated a dynamic and adaptive 
prefetching technique for the TreadMarks DSM that is intented to 
optimize regular applications. Simulation results of this system run- 
ning on a network of workstations showed that our prefetching tech- 
nique can deliver speedup performance improvements over standard 
TreadMarks of up to 34% for regular applications running on 16 pro- 
cessors. A comparison against other well-known runtime prefetch- 
ing techniques showed that our strategy achieves the largest reduc- 
tions in data access overhead. As a result, our technique is con- 
sistently competitive in terms of performance, while being able to 
optimize a larger set of applications than the other strategies. The 
main conclusion of this paper is that our technique should definitely 
be considered by software DSM designers as an effective way of 
tolerating the overhead of remote data accesses. 

Acknowledgements 

We would like to thank Leonidas Kontothanassis for contributing 
to our simulation infrastructure. We would also like to thank Cris- 
tiana Amza and Karthick Rajamani for answering several questions 
about the Dynamic Aggregation technique. Finally, we are grateful 
to Cristiana Seidel for comments that helped improve this paper. 

References 
111 

121 

131 

[41 

151 

161 

r71 

181 

191 

1101 

[I11 

[121 

1131 

I141 

C. Amza, A. Cox, K. Rajamani, and W. Zwaenepoel. Tradeoffs Be- 
tween False Sharing and Aggregation in Software Distributed Shared 
Memory. In Proceedings #the 6fh PPoPP, June 1997. 

C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, 
W. Yu, and W. Zwaenepoel. TreadMarks: Shared Memory Computing 
on Networks of Workstations. Computer, 29(2), Feb 1996. 

R. Bianchini, L. I. Kontothanassis, R. Pinto. M. De Maria, M. Abud, 
and C. L. Amorim. Hiding Communication Latency and Coherence 
Overhead in Software DSMs. In Proceedings of the 7th ASPLOS, Ott 
1996. 

R. Bianchini, R. Pinto, and C. L. Amorim. Data Prefetching for Soft- 
ware DSMs. Technical Report ES-463/98, COPPE Systems Engineer- 
ing, Federal University of Rio de Janeiro, March 1998. 

S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. An Integrated Compile- 
Time/Run-Time Software Distributed Shared Memory System. In Pro- 
ceedings of the 7th ASPLOS, Ott 1996. 

S. Dwarkadas, I? Keleher, A.L. Cox, and W. Zwaenepoel. Evaluation of 
Release Consistent Software Distributed Shared Memory on Emerging 
Network Technology. In Proceedings of the 20th ISCA, May 1993. 

M. Karlsson and Per Stenstrom. Effectiveness of Dynamic Prefetch- 
ing in Multiple-Writer Distributed Virtual Shared Memory Systems. 
JPDC, 43(7), July 1997. 

P Keleher, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. TreadMarks: 
Distributed Shared Memory on Standard Workstations and Operating 
Systems. In Proceedings of the 1994 Winter Usenix Conference, Jan 
1994. 

L. Monnerat and R. Bianchini. Efficiently Adapting to Sharing Patterns 
in Software DSMs. In Proceedingsof the 4th HPCA, Feb 1998. 

T. Mowry, C. Chan, and A. Lo. Comparative Evaluation of Latency 
Tolerance Techniques for Software Distributed Shared Memory. In 
Proceedingsof the 4th HPCA, Feb 1998. 

C. B. Seidel, R. Bianchini, and C. L. Amorim. The Affinity Entry 
Consistency Protocol. In Proceedingsof the 1997ICPP. Aug 1997. 

J. E. Veenstra and R. J. Fowler. MINT: A Front End for Efficient Sim- 
ulation of Shared-Memory Multiprocessors. In Proceedings of the 2nd 
MASCOTS, Jan 1994. 

S. Wiel and D. Lilja. When Caches Aren’t Enough: Data Prefetching 
Techniques. Computer, 30(7), July 1997. 

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH2 
Programs: Characterization and Methodological Considerations. In 
Proceedings c$ the 22nd ISCA, May 1995. 

392 


