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ABSTRACT
For many users on social networks, one of the goals when
broadcasting content is to reach a large audience. The prob-
ability of receiving reactions to a message differs for each
user and depends on various factors, such as location, daily
and weekly behavior patterns and the visibility of the mes-
sage. While previous work has focused on overall network
dynamics and message flow cascades, the problem of recom-
mending personalized posting times has remained an under-
explored topic of research.
In this study, we formulate a when-to-post problem, where

the objective is to find the best times for a user to post on
social networks in order to maximize the probability of audi-
ence responses. To understand the complexity of the prob-
lem, we examine user behavior in terms of post-to-reaction
times, and compare cross-network and cross-city weekly re-
action behavior for users in different cities, on both Twitter
and Facebook. We perform this analysis on over a billion
posted messages and observed reactions, and propose mul-
tiple approaches for generating personalized posting sched-
ules. We empirically assess these schedules on a sampled
user set of 0.5 million active users and more than 25 mil-
lion messages observed over a 56 day period. We show that
users see a reaction gain of up to 17% on Facebook and 4%
on Twitter when the recommended posting times are used.
We open the dataset used in this study, which includes

timestamps for over 144 million posts and over 1.1 billion
reactions. The personalized schedules derived here are used
in a fully deployed production system to recommend posting
times for millions of users every day.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences; H.1.2 [Information Systems]: Models and Prin-
ciples—User/Machine Systems; J.4 [Computer Applica-
tions]: Information Systems Applications

Keywords
user modeling; personalization; behavior analysis; recom-
mended systems; online social networks; posting times;

1. INTRODUCTION
Social networks have emerged as major platforms for com-

munication in recent years, with hundreds of millions of in-
teractions created by users every day. Though the underly-
ing mechanisms may vary, a large number of active interac-
tions may be classified under (a) users posting messages, or
(b) users reacting to messages. Posted messages may some-
times be intended for a few friends and family members,
while other times they may be geared towards larger audi-
ences. The latter is especially true for users such as brands,
marketers and public figures, who leverage social media as
platforms for broadcasting messages.
One of the goals while broadcasting messages is to capture

the attention of audience members so that they may react
to the posted message. The probability that an audience
member reacts to a message may depend on several factors,
such as his daily and weekly behavior patterns, his location
or timezone, and the volume of other messages competing
for his attention. The problem of broadcasting messages at
the right time in order to elicit responses from one’s audience
is therefore a complex one with many dimensions.
A large body of research in this area has focused on the

problem of influence maximization and related topics, where
the goal is to target a specific subset of users in order to cre-
ate information cascades in the network. However, the dy-
namics of broadcasting to entire audiences, rather than pick-
ing specific individuals to target, has been an under-explored
topic of study. Further, since each user has a unique audi-
ence, any recommendations for posting times need to be
personalized to be effective, as we show in this study. We
hence formulate a when-to-post problem here, where the ob-
jective is to find the best times for a user to post on social
networks in order to increase audience responses.
Apart from introducing the problem, our contributions

in this work are three-fold. First, in order to understand
the complexity of the when-to-post problem and the factors
that affect it, we perform in-depth user reaction behavior
analysis, which includes:

1. Post-to-reaction behavior: We analyze the delays be-
tween posting and reaction times across different social
networks and user in-degrees.
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2. Cross-network analysis: We examine the similarities
and differences of audience behavior on Twitter and
Facebook.

3. Cross-city analysis: We compare cycles of daily and
weekly user activity in different cities, and present
analysis on how location affects posting schedules.

Second, we formally define the when-to-post problem in
a probabilistic setting, and propose multiple approaches for
recommending personalized posting schedules. Among
these are the First-Degree and the Second-Degree schedules,
and their corresponding weighted counterparts. We empiri-
cally assess these schedules against two global baselines, on
a real-world set of 0.5 million active users observed over a 56
day period. We define a metric called Reaction Gain that
helps us evaluate the effectiveness of the two approaches,
and show that users see an average reaction gain of up to
17% for Facebook and upto 4% for Twitter.
Third, we open a public dataset consisting of anonymized

user ids and timestamp data that could help future research
in this area. This dataset contains timestamps for 144 mil-
lion posts and 1.1 billion reactions from a 120-day period.
We performed our study and analysis on a full produc-

tion system deployed on klout.com. Klout1 is a social media
platform that aggregates and analyzes data from social net-
works [14] such as Twitter, Facebook, Google+ and others.
Our system recommends personalized posting schedules for
millions of users to share content on Twitter and Facebook.

2. RELATED WORK
The subject of user behavior dynamics on social networks

has attracted significant research attention [10, 6, 2]. Wu
et al. [16] categorized Twitter users into elite and casual
users and analyzed the differences in how they generate and
consume information. In their study, they showed that re-
gardless of the type of content, all content had very short life
spans that usually dropped exponentially after a day. An-
other study in [1] also showed that only a few topics lasted
for a long time on social media platforms, while most topics
faded away quickly in the order of 20-40 minutes.
Besides the life span of messages, researchers have also an-

alyzed the effects of timezone and location on user activity
patterns. Kwak et al. [9] analyzed the timezone character-
istics of user audiences on Twitter and reported that the
average timezone difference between a user and her friends
varied with the number of friends. In our study, we further
analyze the impact of audience location on the volume of
responses towards a message.
There have been several studies on modeling the dynamics

of social network events [12, 15]. For example, the work in
[15] used different convolution functions to analyze the flow
of news events and sentiments through Twitter. While the
approach of these studies has been to analyze the overall
temporal characteristics on social media, here we take the
further step of analyzing reaction behavior from the point of
view of each individual user, thereby enabling personalized
recommendations for posting messages.
Another line of related research is in the area of infor-

mation flow and diffusion. Studies such as [11, 13, 5] have
analyzed how factors such as the topological structure of so-
cial networks play a role in information cascades. Yang et
1Klout platform is a part of Lithium Technologies, Inc.

al. [17] presented results on analyzing message flow based
on Twitter mentions, and found that long-term historical
user properties such as the rate of previous mentions were
as important as the tweet content. The authors in [18] stud-
ied the importance of hashtag adoption in determining the
popularity and spread of tweets. The study in [7] proposed
a predictive approach to model dynamics of diffusion in so-
cial networks based on social, semantic and temporal di-
mensions. However, the problem of examining the flow of
messages in the entire network differs significantly from the
one in our study. Here we are instead concerned with the
reactions received by a single user in a short time window.
A large body of research has also focused on influence

maximization [8, 4, 3], which also differs from the when-to-
post problem. Influence maximization aims to find a subset
of users in a social network, such that targeting them with
a message maximizes the propagation or adoption of the
message throughout the network. However, the effects of
broadcasting messages to entire audiences, rather than tar-
geting specific individuals, has not been as well studied. It is
this problem that we propose and analyze here, by examin-
ing the temporal aspects of broadcasting to one’s audience,
in order to get a large volume of responses.

3. PROBLEM SETTING
In this section, we formulate the when-to-post problem

and provide details about the system and dataset used.

3.1 Problem Statement
The actions taken on any social networking site may be

categorized as passive or active in nature. The passive cat-
egory may include actions such as views, while the active
category may broadly be classified into two groups – post
and reaction. Typical post behavior may include creating
and sending messages, sharing photos, or posting news arti-
cles on a social network. Typical reaction behavior includes
resharing, liking, commenting, endorsing or replying to posts
created by other users. We restrict the scope of this study
to the post and reaction behavior of users.
Sometimes the post behavior is used in the context of one-

on-one or personal communication, while other times it may
be geared towards a larger audience. Here we focus on the
latter case, where one of the motivations behind posting is
to reach a large audience and to capture their attention.
In particular, we examine the time-related aspects of this
behavior and frame a when-to-post problem as follows:

Problem Statement: For a user on a social network,
find the best time to post a message within a specified
time period in order to maximize the probability of receiving
audience reactions.

Note that we only consider first-degree reactions such as
replies and retweets on Twitter and comments on Facebook,
and not those caused by an audience member resharing the
original post. In other words, we focus mainly on the reac-
tions a post receives by the user’s immediate audience, and
not on how the post propagates through the network.

3.2 System Overview
We collect user posts from Facebook through the oauth-

token provided by registered users on Klout. We also use
the oauth-token-based approach to collect the friend graph
of users on Facebook and the follower graph for users on
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Twitter. Klout partners with GNIP to collect public data
generated in the Twitter Mention Stream2. For location
analysis, we use the city, state and country information pro-
vided by registered users on the Klout application.
The collected data is written out to a Hadoop cluster3 that

uses HDFS as the file system, HBase as the serving data-
store, and Hive4 to process, query and manage the large
datasets. We implement independent Java utilities with
Hive UDF (User Defined Function) wrappers, with func-
tions to process user locations and timezones, and operators
such as discrete convolution to process time-series vectors.
The combination of Hive Query Language and UDFs allows
us to build map-reduce jobs that can scale up to analyze
billions of messages posted to social platforms every day.
A pipeline run on a 150-node cluster has a cumulative I/O
footprint of 224GB of reads, 78GB of writes, and 9.62 days
of CPU usage. Fig. 1 shows an overview of the system.

Figure 1: System Overview

3.3 Dataset
The dataset used to run experiments and build models has

been opened at https://github.com/klout/opendata. The
corpus has event timestamps for posts that were created be-
tween October 15, 2014 and February 11, 2015 and received
at least one reaction. The dataset was generated from more
than 1 million users apiece from Facebook and Twitter,
with accounts registered on Klout.com. For Facebook the
dataset includes more than 25 million post timestamps and
104 million reaction timestamps, while for Twitter these
numbers are 119 million and 1 billion respectively. In or-
der to preserve privacy, timestamps were slightly perturbed
and user and post ids were anonymized using custom fin-
gerprint functions.

4. BEHAVIOR ANALYSIS
In this section we perform in-depth user behavior anal-

ysis across temporal and local dimensions, such as post-
to-reaction delay, user location and the network of activ-
ity. This analysis provides some interesting observations and
valuable insights into the when-to-post problem.

4.1 Post to Reaction Time Analysis
To start with, we note that there is always an inherent

delay between when a post was created and when a user
2https://gnip.com/sources/twitter
3http://wiki.apache.org/hadoop/
4http://hive.apache.org/
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Figure 2: Cumulative Reactions within first 24 hours

Networks
T24h(p) TW FB FP GP

0.25 00:03 00:25 00:31 00:35
0.50 00:24 01:42 02:12 02:19
0.75 02:24 05:65 07:26 07:36
0.90 08:53 13:14 14:57 15:16

Audience In-Degree (Twitter)
T24h(p) 10-100 100-1K 10K-100K 1M-10M

0.25 00:08 00:03 00:03 00:06
0.50 00:41 00:20 00:20 01:48
0.75 02:53 01:58 03:11 07:52
0.90 08:49 07:50 11:22 16:26

Table 1: T24h(p), Post-to-Reaction Times [hh:mm]

reacts to it. This delay is crucial to consider when we study
the when-to-post problem.
Specifically, we are concerned with the post-to-reaction

delay within a short time window, and we choose this win-
dow to be 24 hours. This is also in accordance with previous
studies such as [16] that have shown that messages on social
media are short-lived with exponential dropoff after a day.
In the limiting case when there is no dropoff and the de-
lay is infinite all posts have the same probability of getting
responses. Thus it is because of this dropoff within a finite
duration that the when-to-post problem becomes important.
Further, since most reactions occur in narrow time windows
for both networks, the goal should be to recommend post-
ing times in narrow time buckets. To examine the speed of
reactions, we define a metric Td(p) as follows:

Definition 1. Let R be the total number of reactions re-
ceived by all posts within a time period d since posting time.
Then Td(p) is defined as the amount of time that passes be-
tween posting time and the time when the cumulative reac-
tion count is equal to a fraction p of R. 2

Along with the reaction counts, we use this metric Td(p)
to further analyze post-to-reaction behavior across differ-
ent dimensions of the problem. Fig. 2 plots the fraction
of cumulative reaction counts occurring within 24 hours of
posting and Table 1 shows the T24h(p) values respectively.
Further, we would also like to understand the probability

distribution of a reaction occurring within a given time win-
dow since the time of post creation. In order to do this, we
define a Post-to-Reaction Filter function as follows:
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Definition 2. Post To Reaction Filter For a time in-
terval d, the post-to-reaction filter function PTR(d) is de-
fined as a discrete probability distribution over the event that
a reaction occurs within time d of creating a post. 2

We estimate the post-to-reaction filter function PTR(d)
by aggregating reaction times across all observed messages
and reactions in a network. This filter function will be used
in Sec. 5 when we derive personalized user schedules.

4.1.1 Reaction Times By Network
Posting and reaction behavior varies on social networks

because of many factors, such as manner of posting, pre-
sentation of posts to users and the set of possible reactions
that a user can perform. We compare post-to-reaction times
across three major social networks – Twitter (TW), Face-
book (FB) and Google+ (GP). We also treat Facebook Fan
Pages (FP) as a separate network, since the dynamics of
posting and reacting on these pages diverge significantly
from personal Facebook pages. The top halves of Fig. 2
and Table 1 show the reaction times for different networks.
We observe that Twitter exhibits a much higher speed of

reactions compared to the Facebook. On Twitter, 25% of
the reactions take place in the first 3 minutes, 50% within
the first half hour, and 90% within the first 9 hours. Other
networks exhibit slightly slower speeds compared to Twit-
ter, with 50% of reactions on Facebook, Facebook Pages
and Google+ taking place within the first 2 hours of post-
ing. Interestingly, we see that the Facebook Pages network
shows more similar reaction times to Google+ rather than
Facebook, indicating that similar responses can be elicited
from users belonging to completely disjoint user sets, if the
underlying dynamics of interactions are similar.
In the rest of this paper, we mainly focus on Twitter

and Facebook, which show significant variations in post-to-
reaction delays. The distribution of post-to-reaction delay
for Twitter is narrower and falls off more quickly compared
to Facebook. The T24h(p) values in Table 1 suggest that a
15 minute bucket can capture the necessary granularity of
reactions, which we choose as the length of our time buckets.
These variations also highlight that social networks op-

erate on different timescales, and the post-to-reaction filter
function needs to be computed separately for each network
during comparison. Next, we consider the dependence of re-
action behavior on the in-degree of users posting messages.

4.1.2 Reaction Times By User In-Degrees
Next, we explore the hypothesis that network sizes of users

may be a factor that affects reaction times. To do so, we
analyze how an audience member’s in-degree affects his re-
action behavior. Fig. 2 (bottom) plots the fractions of 24
hour reaction counts against the time elapsed, for different
sets of in-degrees of audience members on Twitter. Table 1
(bottom) shows the reaction times at various T24h(p) values.
We find that a large section of audience members with in-

degrees between 100 to 100k exhibit similar behavior. More
than 60% of the reactions from such users are created in the
first 1 hour. Users with low in-degrees between 10-100 have
slower response times, perhaps they may not be very active
users. The users with in-degrees of greater than 1M have
the slowest reaction times among all users. This may be at-
tributed to such users being celebrities and brands who may
not react to messages as quickly as other users do, because
of the large volume of messages they see.

Thus, a large portion of audience members show simi-
lar reaction behavior, though they may have differing in-
degrees. We can therefore infer that the when-to-post prob-
lem does not have a large dependency on the network sizes of
audience members, unless these sizes are very small or very
large. This permits us to use a common post-to-reaction
filter function for all users in a given network.

4.2 Network and Location Analysis
User post and reaction behaviors are multi-dimensional

and are highly dependent on the location, network and time-
zone of the user. In this section, we analyze normalized ag-
gregated user audience reaction behaviors S(u), for user co-
horts within and across various cities as well as across Face-
book and Twitter within a given city. For behavior analysis
we use correlation and cosine similarity metrics. Correla-
tion and cosine similarity between finite time series S(u1)
and S(u2) are defined in Equations 1 and 2 respectively.
Cosine similarity reveals the overlap between time series,

while correlation reveals closeness in time dependent pat-
terns between them. We observe metric distributions for 10
to 50 million user pairs, depending on the cohorts compared,
where u1 is selected from the first cohort and u2 from the
second. In addition to the metrics above, we compare the
raw time series to gain further insights into reaction behav-
iors in Figs. 4 and 5.

corr(S(u1),S(u2)) =

N∑
i=1

(su1,i − s̄u1 )(su2,i − s̄u2 )√
N∑

i=1
(su1,i − s̄u1 )2

N∑
i=1

(su2,i − s̄u2 )2

(1)

sim(S(u1),S(u2)) = S(u1) · S(u2)
||S(u1)|| ||S(u2)|| (2)

4.2.1 Network Level Analysis
In this section, we analyze the user reaction profiles across

Twitter and Facebook for users in New York City (NYC).
Fig. 3 top shows expected audience reactions, aggregated
across all users in NYC.
We observe that the daily seasonality is more pronounced

for Twitter than Facebook, with taller peaks and deeper
troughs. Twitter usage seems to peak during working hours
and drops quickly thereafter. Both networks also exhibit
secondary peaks at around 7-8pm daily. The amplitude of
expected reactions on Twitter is around twice that of Face-
book’s, meaning posting on Twitter at the right times can
lead to comparatively larger gains. Also, compared to Twit-
ter, Facebook usage is more consistent throughout the day.
With respect to weekly trends, we find that Twitter activ-

ity falls to almost half of its weekday amplitude on Saturday
and Sunday, whereas Facebook activity seems to be less af-
fected by weekends. It is interesting to note that Facebook
is most consistently used throughout the day on Sundays.
We compare aggregated user audience reaction behaviors
SF B(u1) and ST W (u1) for Facebook and Twitter respec-
tively using Eq. 1 and 2 in Fig. 3 bottom. We observe
that correlation is positive, and relatively uniform in the
0.3 − 0.8 range, which means that daily audience patterns
across Twitter and Facebook are only moderately correlated.
Both the similarity and correlation curves suggests that al-
though audience reactions exhibit some similarity and cor-
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Figure 3: Top: Per-Network Globally Aggregated User Audience
Reaction Behaviors. Bottom: Distribution of Cross-Network Co-
sine Similarity and Correlation Calculated Per-User. Both: All
data plotted for users in New York City.

relation across networks for a given user, there are still sig-
nificant differences. This again reinforces the need for any
recommended schedules to be personalized per network.

4.2.2 Cross-City Analysis
In this section we analyze differences in behavior for mul-

tiple cities across Facebook and Twitter. Figs 4a and 5a
show reaction behaviors, shifted to the local timezone of the
city, for Facebook and Twitter respectively.
Observing the Facebook reactions in Fig. 4a, we notice

that the US cities of San Francisco and New York exhibit
similar shapes, where reactions peak at the beginning of
work hours. For Paris, the reactions peak in the second
half of working hours, while for London most reactions are
expected towards the end of working hours. Finally, the
pattern for Tokyo is quite different from the rest with two
peaks, both occurring off working hours.
The Twitter reactions in Fig. 5a have similar patterns

as Facebook. The notable difference is that Twitter reac-
tions for US cities have more pronounced daily peaks, while
for London, Paris and Tokyo the behavior seems more con-
sistent throughout the day. All the curves show significant
drops on weekends, and Saturday has noticeably lower activ-
ity than Sunday. We also observe that New York schedules
lag slightly as compared to San Francisco, which may be
explained due to lifestyle differences in the two cities.
In addition to the visual analysis, we also analyze simi-

larity and correlations for reaction behaviors between cities,
calculated according to Eq. 1 and 2. The time series com-
pared in this case are the reactions aggregated across users
in two cities, denoted by S(C1) and S(C2). Figures 4b-4e, 5b-
5e show these distributions for Facebook and Twitter within
the same city and across different cities.
Interestingly in US cities (New York and San Francisco)

cross-city correlation and similarity for both Facebook and
Twitter are not very different from their within city metrics.
Globally Twitter reaction behavior compared to Facebook
seems to be more correlated and similar. On Facebook, be-
havior correlation and similarity within city are lowest for
London and Tokyo, and have high deviation. This indicates
that users within these cities exhibit more diverse behavior
patterns compared to US cities. Therefore a city level model
built for London may not apply to all users within the city.

5. PERSONALIZED SCHEDULES
The analysis in the previous section highlights the im-

portance of having personalized posting schedules. Here we
present multiple approaches to derive such schedules.

5.1 Notation and Definitions
To start with, we simplify the computation by bucketizing

time within a period P into discrete time intervals ti. Based
on the analysis in Sec. 4, we use 15 minute time intervals
within a period of one week for a total of 4 × 24 × 7 = 672
buckets, though the methods described here are applicable
to any time interval and period. Because the number of
reactions in one bucket in each period is usually small for
most users, we aggregate the actions from multiple periods
into the same bucket. For example, all the actions taken by
a user between 00:00 to 00:15 on Mondays, in a 90 day time
window, will be grouped into the first bucket t1.
We also define the following sets associated with a user:

Definition 3. For a user u, the set Uout(u) is defined as
the set of all users who are connected to u, and can poten-
tially react to the posts created by u.

Definition 4. For a user u, the set Uin(u) is defined as
the set of all users to whom u is connected, and whose posts
can be potentially be reacted upon by u.

Note that though we treat the above sets as separate enti-
ties in order to differentiate between the post and reaction
behavior, we do not assume that they are disjoint sets. 5

Let N be the number of time buckets within the time pe-
riod P under consideration. To represent the actions associ-
ated with a user with respect to time, we create time-based
action profiles for each user computed from a user’s actions
in the period P , and aggregated into the buckets tk. These
profiles can thus be represented as vectors of length N .
We define four primary action profiles for each user:

• First, for each user u, we define a Created Posts
profile C(u) that represents the posts created by the
user in each time bucket.
• Inversely we can also define a Visible Posts pro-
file V(u), which represents the potentially reactionable
posts from Uin(u) that are visible to the user.
• Based on the posts that a user sees, he may respond
to them in some manner. We can represent these re-
sponses as a Self Reaction profile R(u) for the user.
• Finally, we define an Estimated Audience Reac-
tion profile Q(u) that estimates the number of reac-
tions received by the user from his audience Uout(u) in
each time bucket.

As noted in previous works such as [1] and [15], and as
analyzed in Sec. 4, there is usually a time difference between
when a post is created by a user in Uin(u), and when the
user u may react to it. Thus a specific post may be visible in
the time bucket tk in V(u), but may only be reacted upon in
a later time bucket tk′ in R(u). The post-to-reaction filter
function defined in the previous section represents this lag
in terms of a time interval d, discretized into time buckets
5For some bi-directional relationships such as Facebook
Friends, Uout(u) and Uin(u) are equivalent.
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Figure 4: Facebook - City-Level Reaction Behavior
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of size tk. We can therefore compute a Delayed Reac-
tion Profile for a user by performing a discrete convolution
operation of the original reaction profile with the post-to-
reaction filter function.

Rd(u) = R(u) ∗ PTR(d) (3)
where ∗ is the discrete convolution operator.6
Each element rd,k(u) in the delayed reaction profile repre-

sents the number of reactions that the user u would generate
in the time interval d following the bucket tk. Thus for a
post created by a user in the current time bucket, using
Rd(u) for his audience members provides a better estimate
of anticipated future reactions.
These estimates for qi(u) could be computed in multiple

ways, as described in the following section. Once Q(u) is
known, we can determine a probability mass function which
represents a post schedule for the user. These probabilities
si(u) can be computed as:

si(u) = qi(u)
/ N∑

j=1

qj(u) (4)

Finally, the vector consisting of these probabilities deter-
mine the Post Schedule for the user. Once we have S(u),
we simply pick the buckets with the highest values of si(u),
which are the desired best times to post. Next, we describe
multiple approaches to compute S(u) using the above nota-
tion and definitions, which are summarized in Table 2.

5.2 Recommended Schedule Derivation
To illustrate the when-to-post problem with a concrete

example, consider a simplified social network graph, as rep-
resented in Fig. 6. For the user a0, her audience is made up
of other users bi, so we have: Uout(a0) = {b0, b1, b2, ..., bm}.
When a0 creates a post, it may be potentially seen by all

the members bi of her audience. Let us focus on a particular
audience member b0. This audience member b0 also belongs
to the audience sets of other users ai, and may see posts that
are created by each of them. We can represent this relation-
ship between the users as: Uin(b0) = {a0, a1, a2, ..., an}.

a0 b0

b1

bm

a1

an

Post
Uout(a0) Uin(b0)

Reaction

. ..

...
Figure 6: Simplified representation of a user’s social graph

We would like to derive the post schedule S(a0) for the
user a0. In order to do so, we want to answer the following
question: For the user a0, what is the expected number of re-
actions received from Uout(a0) for a post created in the time
bucket tk? We describe two approaches below to answer this
question and compute the recommended schedule.

5.2.1 First-Degree Reaction Schedule
In this approach, we consider the reactions of a0’s audi-

ence Uout(a0), ignoring the second-degree effects of the other
posting users ai. With respect to Fig. 6, we consider only
6For two functions f , g defined on the set of integers Z, the
discrete convolution of f , g is given by:

(f ∗ g)[n] =
∞∑

m=−∞
f [m] · g[n−m]

the left part of the diagram that represents a0 and Uout(a0)
(including b0), and ignore all other ai.
Since we know the reaction profiles R(bj) for the members

of a0’s first-degree graph, we can accumulate these reaction
counts per time bucket to get the combined audience reac-
tion profile. However, since this does not take into account
the post-to-reaction delay, a better approach is to aggregate
the delayed reaction profiles Rd(bj) for all bj in Uout(a0).
This sum of delayed reactions per bucket gives us the es-

timated audience reaction profile Q(a0) for the user, where
the elements of the vector are given by:

qk(a0) =
m∑

j=0

rd,k(bj) (5)

Thus in this case, the probability of receiving a reaction
in any given time bucket sk(a0) can then be computed from
Q(a0) as per Eq. 4. These probabilities determine the First-
Degree Reaction posting schedule S1(a0).
Note that S1(a0) does not take into account the behav-

ior of an audience member bj with respect to posts from
other users ai. In other words, this approach only takes into
account the first-degree dependency for the user a0. We
therefore describe another approach that takes into account
the second-degree dependency as well.

5.2.2 Second-Degree Reaction Schedule
In Fig. 6, the actions of the users ai represent the second-

degree effects for user a0, since they affect how a0’s first-
degree connection b0 reacts to messages. To consider these
second-degree effects, we define a Second-Degree Reaction
schedule S2(a0), which can be derived by answering the fol-
lowing questions first, before the original one above.

• When do the users ai create posts?
• When does a specific audience member b0 react to the
posts created by ai?
• What is the probability that b0 reacts to a post in a
certain time bucket tk?

The answer to the first question is given by the post cre-
ation profiles C(ai) for each user ai, computed by aggre-
gating the past history of post creation events for the user
into time buckets. To answer the second question, we first
compute the reaction profile R(b0). Again, this profile is
computed by aggregating the past history of reaction events
for b0, which tells us how often he reacts in any given time
bucket. The answer to when b0 reacts with respect to post-
ing times is then given by the delayed reaction profile Rd(b0),
which takes into account the post-to-reaction delay.
For the third question, let p(b0, tk) be the probability that

user b0 reacts to a post in time bucket tk. This event can
be modeled as a Bernoulli random variable Xb0,k, with the
probability of the reaction given by p(b0, tk), thus:

E(Xb0,k) = p(b0, tk) (6)
From the point of view of b0, the probability that he reacts
to some post in the time bucket tk depends on the number
of posts that he sees, and his usual reaction behavior in tk7.
To estimate the number of posts that are potentially vis-

ible to the user b0 in each time bucket, we aggregate the
7Since we are concerned only with the time aspects here, we
assume that the posts seen by the user are equally likely to
be reacted upon in all other aspects.
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Table 2: Notation for Action Profiles

User Action Profile Vector
Notation

Element
Notation

Element Description for user u in time bucket tk

Created Posts C(u) ck(u) aggregated number of posts created by user
Visible Posts V(u) vk(u) aggregated number of posts visible to user
Self Reactions R(u) rk(u) aggregated number of reactions generated by user
Delayed Self Reactions Rd(u) rd,k(u) aggregated number of reactions generated by user in the time

interval d following tk
Estimated Audience Reactions Q(u) qk(u) estimated number of reactions received by user
Post Schedule S(u) sk(u) probability of receiving a reaction on a post created by user

post creation profiles for all ai. The number of posts that
are actually visible to the user may be modeled as a linear
function of the total created posts. Thus for a given time
bucket tk, the number of posts visible to b0 is given by:

vk(b0) = α ·
n∑

i=0

c′k(ai) + β (7)

Where α and β are constants and c′k(ai) is a rescaled version
of ck(ai). These constants may depend on network-specific
factors, and we assume that the factor is globally applicable
to all users in a given network.
With this information, the a priori probability in Eq. 6

can now be computed as:

p(b0, tk) = number of delayed reactions by b0 in tk
number of posts visible to b0 in tk

.

= rd,k(b0)
vk(b0) (8)

Now we turn our attention back to the original user a0.
Let Ya0,k to be the random variable representing the number
of reactions that a0 receives for a post created in a specific
time bucket tk. We would like to find the expected number
of reactions E(Ya0,k), which can be computed as:

E(Ya0,k) = E(
m∑

j=0

Xbj ,k) =
m∑

j=0

E(Xbj ,k)

=
m∑

j=0

p(bj , tk) =
m∑

j=0

rd,k(bj)

(α ·
n∑

i=0
c′k(ai) + β)

(9)

Thus, these expected values computed from the observed
Rd(u) and C(u) give us the estimates for the number of reac-
tions received by a0. The elements of the audience reaction
profile Q(a0) are hence given by:

qk(a0) = E(Ya0,k) (10)
Finally, we can infer the desired posting schedule S2(a0)

for the user a0 as the probability mass function for the dis-
crete random variable Ya0,k. Again, the elements of S2(a0)
are computed from Q(a0) as per Eq. 4.

5.2.3 User Weighted Schedules
In the sums computed above for the first- and second-

degree schedules, all audience members are treated equally.
However, audience members may have differing tendencies
to react to the user’s posts depending on their affinity to the
user. These differences can be accounted for by associating
a weight with each audience member who may react to the
user, computed based on previous actions as follows:

w(a0, bi) = total reactions received by a0 from bi

total overall reactions received by a0
(11)

Eq. 5 can now be modified with this weight as:

qk(a0) =
m∑

j=0

w(bj , a0) · rd,k(bj) (12)

Similarly, the expected number of reactions for the second-
degree schedule in Eq. 9 can also be modified as:

E(Ya0,k) =
m∑

j=0

w(bj , a0) · E(Xbj ,k) (13)

We denote these weighted schedules as S1,w(u) and S2,w(u)
respectively. In Sec. 6 we evaluate the performance of all
four schedules described above.

6. SCHEDULE EVALUATION
In this section, we evaluate the user post schedules derived

above – S1(u), S2(u) and their respective weighted counter-
parts. We evaluate them on empirical observations of real
user behavior over a 56-day period for 0.5 million users and
more than 25 million messages.

6.1 Baseline Schedules
Because there are no previous baselines on the when-to-

post problem, we design two schedules to compare our ap-
proaches with. We consider all users in a given timezone
and aggregate their behavior to create these baseline sched-
ules. Both the baselines are thus uniquely determined for
each timezone and are not personalized per user.
One natural baseline can be created by observing the most

frequently used time buckets for posting, aggregated across
all users in each timezone T . We thus obtain our first base-
line, the Most Frequently Used (MFU) Schedule, denoted as
BSmfu(T ), with bucket values bsmfu

i (T ) computed as:

bsmfu
i (T ) =

∑
u∈UT

ci(u)
/ N∑

i=1

∑
u∈UT

ci(u) (14)

where UT is the set of users in the timezone T .
As explained in Sec. 5, the First-Degree Reaction Sched-

ule for a user is based on his first degree audience behavior.
To generate another baseline for global behavior, we simply
aggregate the first-degree reaction schedules from all users in
the timezone. We call this second baseline schedule Aggre-
gated First-Degree (AFD) Schedule, denoted as BSafd(T ),
whose bucket values are given by:

bsafd
i (T ) =

∑
u∈UT

qi(u)
/ N∑

i=1

∑
u∈UT

qi(u) (15)

where UT is the set of users in the timezone T who have a
first-degree reaction schedule Q(u).
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Once we have the baseline schedules, we pick the buckets
with the highest values of bsi(T ) as the best recommended
times to post for users in timezone T .

6.2 Evaluation metrics
For the purposes of evaluation of schedules, we propose a

ReactionGain metric, which we compute as below.
Let U be the user sample set under consideration, ob-

served over M days. Let us first consider a single user u in
this sample. For this user u, we can rank the posting time
buckets as recommended by a schedule S(u) over a period
of 24 hours, with the first bucket being the best time to post
and the last one being the worst.
For the kth ranked bucket as per S(u) we compute the

average reactions per message, RPM(u, k):

RP M(u, k) =
( M∑

j=1

rk,j(u)
)/( M∑

j=1

ck,j(u)
)

(16)

where rk,j(u) and ck,j(u) are respectively the reactions re-
ceived and the posts created by the user in the time bucket
corresponding to the k-th rank, on the j-th day. As before,
we compute rk,j(u) as the reactions received in the first 24
hours after the posting time.
We similarly define RPM(u) as the ratio of all the re-

actions received to all the posts created by the user in the
same 56-day period, across all the time buckets. We now
compute the ReactionGain, RG(u, k), for the k-th bucket
for the user as:

RG(u, k) = RPM(u, k)
RPM(u) (17)

This ratio tells us the increase or decrease in reactions re-
ceived by the user when she posts in a specific bucket, com-
pared to the average reactions per message she receives.
Finally, we compute the global average reaction gain for

each bucket RGavg(k) as the average of RG(u, k) values over
all the users in the sampled population U who created posts
in that bucket. We use this average reaction gain metric to
evaluate the schedules below.

6.3 Real-world Evaluation
We evaluate real user behavior and measure schedule per-

formance based on how many reactions were received when
the recommended times were used.
In our experiments, we sampled 0.25 million active users

each from Twitter and Facebook from the dataset described
in Sec 3.3. For each sampled user u, we compute S1(u),
S2(u) and their corresponding weighted schedules as de-
scribed in Sec. 5, for a 63-day time period. We empirically
chose the α and β parameters to be both 1.0, and ck(ai)
rescaled to c′k(ai) with the mean. We then evaluate the rec-
ommended times on 25 million messages generated by the
sampled users in a 56-day time period, with no overlap over
the time period used to derive schedules.
To compare the performance of the top posting times rec-

ommended by the schedules, we compute the average reac-
tion gain RGavg(k) for the bucket rank k, for each schedule.
Fig. 7 plots these values for the top 32 buckets for a week-
day8, for both Facebook and Twitter.
8We exclude weekends here since they show diverging be-
havior compared to weekdays, as shown in Sec. 4, but a
similar analysis can also be performed for weekends.
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Figure 7: Average Reaction Gain for Ranked Buckets

We observe from Fig. 7 that the First-Degree Weighted
Schedule outperforms all the others on both Facebook and
Twitter. On Facebook, this schedule shows a reaction gain
of more than 17% in the highest bucket, and on Twitter the
highest gain is 4%. The second best schedule on Facebook
is the First-Degree Schedule, while that on Twitter is the
Second-Degree Weighted Schedule. Both the MFU and the
AFD baseline schedules show a reaction gain that is slightly
above 1.0 on Facebook, and mostly below 1.0 on Twitter,
showing that users who post according to these schedules
see little to no increase in reactions received.
Both the second-degree schedules on Facebook show only

a small reaction gain, very similar to the baseline schedules.
The superior performance of the first-degree schedules on
Facebook suggests that second-degree effects on this network
are less dominant. This may stem from the inherent nature
of the interactions on Facebook, and the manner in which
users are shown posts that they could react upon.
On Twitter, we observe that the weighted schedules for the

first degree as well as second degree perform better than the
baselines and the non-weighted ones. Thus the mutual rela-
tionships between a user and his audience members play an
important role on Twitter in determining the expected reac-
tions. This observation highlights the importance of treating
each edge in a user graph differently.
Note that a good recommended schedule should show a

decreasing trend in reaction gains from the higher to the
lower ranked buckets, such that posting at the higher recom-
mended times leads to higher reaction gains. The baseline
schedules fall short in this regard, and show a decreasing
trend only in the first 10 buckets on Twitter, and none at all
on Facebook. The global baseline schedules thus prove to be
less effective in magnitude of reaction gains, as well as order-
ing of buckets, validating our hypothesis that personalized
recommendations show better performance.
As an example of recommended schedules, Fig. 8 shows

the reaction profiles and schedules for a sample user on Twit-
ter. The purple curve in Fig. 8 shows the probability distri-
bution of post-to-reaction delay on Twitter, which is plot-
ted by aggregating reactions observed in a 63-day period.
Note that this function falls off steeply in the first few hours
from posting time, and almost vanishes after 12 hours. The
dashed curve plots the aggregated audience reactions for the
user, without the post-to-reaction delay. The red and the
blue curves show the First-Degree Weighted Schedule and
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Figure 8: Example Schedules and Filter Function

the Second-Degree Weighted Schedule respectively. The rec-
ommended best times to post over one day and one week
are the peaks in the plot.

7. CONCLUSION AND FUTURE WORK
In this study, we introduce and formulate a when-to-post

problem to find the best times to post on social networks in
order to increase the number of received reactions.
We analyze various factors that affect audience reactions

on a dataset containing over a billion reactions on hundreds
of millions of messages. We find that a majority of reac-
tions occur within the first 2 hours of posting times on most
networks. Audience behavior differs significantly on differ-
ent networks, with Twitter having larger reaction volumes
in shorter time windows as compared to Facebook. We also
perform location analysis and find interesting similarities
and differences between cities in terms of reaction patterns.
Future studies could also study other factors such as content
and topical relevance of posted messages.
Further, we present multiple approaches for deriving per-

sonalized posting schedules for users, and compare them to
two baselines. We evaluate these schedules on empirical data
from 0.5 million real-world users and 25 million messages ob-
served over a 56-day period. We find that the First-Degree
Weighted Schedule performs the best among all, providing
a reaction gain of 17% on Facebook and 4% on Twitter.
Both first-degree schedules perform better on Facebook and
both weighted schedules perform better on Twitter. These
schedules are deployed on a full production system that rec-
ommends posting times to millions of users daily.
We hope that this study and the accompanying dataset

provided enables further research in this area.
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