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Matching the profiles of a user across multiple online sawé!
works brings opportunities for new services and applicetias
well as new insights on user online behavior, yet it raisemss
privacy concerns. Prior literature has proposed methodsatich
profiles and showed that it is possible to do it accuratelypising
evaluations that focused on sampled datasets only. Indipisrpwe
study the extent to which we cagliably match profilesn practice
across real-world social networks, by exploitipgblic attributes
i.e., information users publicly provide about themselvesday’'s
social networks have hundreds of millions of users, whidchds
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tos, and friends. Reliability refers to the extent to whidffiedent
profiles belonging to the same user can be matched across soci
networks, while avoiding mistakenly matching profiles lmgjimg

to different users. Matching schemes need to be highlyhiglia
because incorrectly matched profiles communicate an imatu
portrait of a user and could have seriously negative coresemgs

for the user in many application scenarios. For examplek&po
has been recently sued over providing inaccurate infoomatbout

a person which caused “actual harm” to the person employment
prospects[4]. We focus on publicly available profile atités be-

completely new challenges as a reliable matching schemé mus cause data aggregators today can crawl and leverage socmaif

identify the correct matching profile out of the millions afgsible
profiles. We first define a set of properties for profile attiésy
Availability, Consistency, non-Impersonability, and Bisninabil-
ity (ACID)—that are both necessary and sufficient to detaenthe
reliability of a matching scheme. Using these properties,pno-

tion for matching profiles.
Recently, a number of schemes have been proposed for match-
ing profiles across different social networks [[22] 28, [34,[AP,

[14] (we review them in[§9.) The potential of these schemes to

reliably match profiles in practice, however, has not bgetemat-

pose a method to evaluate the accuracy of matching schemes irically studied. Specifically, it is not clear how or what propertiés

real practical cases. Our results show that the accuracyaic+ p
tice is significantly lower than the one reported in prioeféture.
When considering entire social networks, there is a norigibte
number of profiles that belong to different users but havélairat-
tributes, which leads to many false matches. Our paper diytds
on the limits of matching profiles in the real world and iliges
the correct methodology to evaluate matching schemes listiea
scenarios.

1. INTRODUCTION

Internet users are increasingly revealing informatiorualddferent
aspects of their personal life on different social netwogksites.
Consequently, there is a growing interest in the potentialal-
gregating user information across multiple sites, by matghiser
accounts across the sites, to develop a more complete podfile
individual users than the profile provided by any single.sker
instance, companies like PeekYoul[26] and Spokéo [3] dffep-
ple search”services that can be used to retrieve publicly visible
information about specific users that is aggregated frorasaca
multitude of websites. Some companies are mining data pdste
job applicants on different social networking sites as patiack-
ground checks[31], while others allow call centers to pplkocial
profiles when their customers cdll[30]. The many applicatiof
matching profiles across social networking sites also raeey le-
gitimate and serious concerns about the privacy of userebate
on the relative merits of leveraging profile matching tegheis for
specific applications is out of the scope of this paper.

In this paper, our goal is to investigate trediability of tech-
niques for matching profiles acroksge real-world online social
networks, such as Facebook and Twitter, using quiylicly avail-
able profile attributes, such as names, usernames, locatimm

profile attributes affect the reliability of the matchindiemes. Fur-
thermore, the training and testing datasets for evalusti@gnatch-
ing schemes are often opportunistically generated anddbesti-
tute only a small subset of all user profiles in social netwoltkis
unclear whether the reliability results obtained over sdatasets
would hold over all user profiles in real-world social nethk&r
where there are orders of magnitude more non-matching @sofil
than matching profiles (i.e., there is a huge class imba)ance

Ouir first contribution lies in defining a set of properties jfoo-
file attributes—Availability, Consistency, non-Impersbility, and
Discriminability (ACID)—that are both necessary and sigiit to
determine the reliability of a matching schemEl (§3). Analgzhe
ACID properties of profile attributes reveals the significahal-
lenges associated with matching profiles reliably in pcacti&3).
First, data in real-world social networks is oftanisy— users do
not consistently provide the same information across wffesites.
Second, with hundreds of millions of profiles, there is a tdnal
chance that there exist multiple profiles with very simildributes
(e.g., same name, same location) leading to false matchealyF
attackers create profiles attempting to impersonate ogespfun-
damentally limiting the reliability of any profile matchirsgheme.

Another key contribution lies in our method for carefully- se
lecting the training and testing datasets for matching leofi§5).
When we evaluate the main types of matching schemes in #re lit
ature (based on binary classifiers) using a small random Isamp
of Twitter and Facebook profiles (similar to how these scleme
were evaluated originally), the schemes achieve over 9Q%4lire
and 95% precision [§8.1). Unfortunately, when we evaluagse
schemes over datasets sampled carefully to preserve takiligt
that the schemes would have achieved over the larger datasit
Facebook database), their performance drops signific&S).
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We could obtain only a 19% recall for a 95% precision.

We then investigate if we could improve the reliability of tcia
ing schemes in scenarios where we know that theat isost one
matching profile(see EF). In such scenarios, we propose a new
matching scheme and show that it is indeed possible to ineprov
the recall to 29% at 95% precision. This is still consideydbler
than the high recall (90%) reported in the literature.

Thus, we discover a fundamental limitation in matching pesfi
across existing social networks using public attributes further
confirm the inherent limits of reliably matching profiles iraptice,
we compare the reliability of automated matching scheméb wi
that of human Amazon Mechanical Turk (AMT) workers. Under
similar conditions, AMT workers are able to match only 40% of
the profiles with a 95% precision. Our analysis is the firstighh
light that achieving high reliability in matching profilesrass large
real-world social networks comes at a significant cost (imseof
reduced recall).

2. PROBLEM DEFINITION

In this section, we define the problem of matching profiles, we
present the constraints we have to consider and discuss feow w
approach the problem.

The profile matching problem: We consider that two profiles in
two social networks match if they belong to/are managed by th
same user. The profile matching problem is: given a praflle
in one large social network N, find all its matching profilesn
another large social network V., if at least one exists. We will
denote bya? generic profiles inSN» and bya? matching profiles
of a'. For conciseness, we will also writé-matcha' if a2 is a
matching profile ofz' anda®-non-matche' otherwise.

Note that we address here the problem of matchnatvidual
profiles, which is different from the problem of matching ten-
tire social networks or databases. The difference is thadaveot
assume that we have access to all the dai&nNh but only to one
profile. For example, we cannot match profiles by exploitiaty p
terns in the graph structure SfV; and SN2, and we cannot opti-
mize the matching of a profile if N; based on the matchings of
other profiles inSN:. Thus, we cannot take advantage of some
methods proposed for de-anonymizing social graphis[[23 ahé]
entity matching[[9].

Our problem formulation is motivated by practical scenario

From attribute values, we defindeatureas the similarity between
the values of profiles i Ny andSNa: s(v', v?).

Matching scheme as a binary classifier:Most previous works
solved the matching problem by building binary classifidratt
given two profilesa! and a?, determine whethes! and a? are
matching or not[[21, 29, 38, 27.134,]122| 25] 20]. The binargsila
fier takes as input a feature vectffa', a?) that captures the simi-
larity between each attribute of a pair of profiles, *); and then
outputs the probability of a' anda? to match. By selecting a cut-
off threshold forp the classifier returns 1 (i.e., matching profiles) if
pis larger than the threshold; and O otherwise. We say thatelma
ing scheme outputstaue matchwhen the matched profiles belong
to the same user and outputéatse matchwhen the matched pro-
files belong to different users. The threshold’s choice ttuiss
the standard tradeoff between increasing the number ohtateh
and decreasing the number of false matches.

This solution works well for the generic case of our matching
problem. Given a profila', we can use the binary classifier to
check, for every pair of profilega', o) such thata®> € SNa,
whether it is matching or not. We can then output any praffle
that the binary classifier declares as matching. In this pape
test such approach when we represerit o) with five features,
each corresponding to the similarity score betweéranda? for
each of the five profile attributes: real name, screen naroatitm,
photo, and friends.

For the special case of our matching problem, the previous ap
proach is vulnerable to output many false matches. For #ssg,c
instead of independently judging whetheachpair (a*, a?) is a
match or not, we can compare (for a giveh) the probabilities
p for all pairs (a',a?) to judge which profile is most likely the
matching profile ofz'. We discuss this case in more detail i §7.

Reliability of a profile matching scheme: In this paper our fo-
cus is on the reliability of matching schemes. réiable match-

ing schemeshould ensure that the profile it finds indeed matches
with high probability, i.e., the matching scheme does neehmany
false matches. If there is no clear matching profile&SiN for o,
then the scheme should return nothing.

Many previous studies used the true and the false positigg¢ga
evaluate their matching schemes. The true positive rateipér-
centage of matching profiles that are identified, while theefaos-
itive rate is the percentage of non-matching profiles thatfaise

There are many people search engines such as Spokeo that allo matches. The goal is to have a high true positive rate and talew

users to search for data about a particular person. Thegeeser
gather data about a person by matching the profiles a persanha
multiple social networks.

We are particularly interested in two instantiations of pneb-
lem that are motivated by practical scenarios: (1)dbeeric case
— a profile can have multiple matching profilesStv.; and (2) the
special case- a profile can havat most onenatching profile. This
case is suited for matching social networks such as Facebook
LinkedIn that enforce users to have only one profile.

Features: In this paper, we investigate the extent to which we can
match profiles by exploiting thattributesusers publicly provide in
their profiles such as theieal names, screen namgka. username
— name that appears in the URL of the profilcation, profile
photos,andfriends Using this information we can ideally match
any person that maintains the same persona on differera! swti
works. Also, we choose these attributes because they antieds
to find people online and they are present and usually renusalicp
across different social networks even if users make all thigier
content, such as their posts and photos, private. For prdfileesp.
a?), we denote by (resp.v?) the value of a considered attribute.

positive rate. These metrics are, however, a misleadirigatat of
the reliability of a matching scheme because they are ntadtor
scenarios with high class imbalance, i.e., the number otinirag
profiles is much lower than the number of non-matching prefile
For example, a matching scheme with a 90% true positive oat f
1% false positive rate might seem reliable, however, if weitis a
scenario where we have 1,000 matching and 999,000 non-mgtch
profiles, the matching scheme would output 900 true matchés a
9,990 false matches, which is clearly unreliable. In reaftd/so-
cial networks, the class imbalance is even higher (e.g.eémh
matching profile we have over 1 billion non-matching profilles
Facebook) thus the scheme would output even more false egatch
This paper argues that better metrics to evaluate the il@lyadf
a matching scheme are the precision and recall. The reddléis
percentage of matching profiles that are identified, whigepre-
cision the percentage of all pairs returned by the matchthgree
which are true matches. The goal is to have a high recall aigha h
precision. In the previous example, we would have 90% réaall
a 8% precision, which shows the low reliability of the schejmet
of all matched profiles only 8% are true matches). Thus, tls¢ be



way to show the reliability of a matching scheme is to evalutst
precision and recall with realistic class imbalance. Inrtrst of the
paper, byreliable we mean a precision higher than 95%.

3. THE ACID FRAMEWORK

The natural question that arises when investigating thahiéty

of matching schemes is: what does the reliability depen@sldm
doubtedly, the reliability depends on the attributes wesaber for
matching and on their properties. Thus, given an attribwteat
properties should the attribute have in order to enable iahiel
profile matching? We propose a set of four properties to hafp c
ture the quality of different attributes to match profildsailability,
Consistency, non-Impersonability, and Discriminabi(iyCID).
Availability: At first, to enable finding the matching profile, an
attribute should have its value available in both socialvoeits.

If only 5% of users provided information about their “age’t@ss
two sites, then “age” has limited utility in matching profile To
formalize this notion, we model the attribute values:bfand each
a® € SN as random variables and we define the availability of an
attribute as:

A = Pr (v' andv® availablda®-matcha') .

Consistency: It is crucial that the selected attribute is consistent
across matching profiles, i.e., users provide the same dasiat-
tribute values across the different profiles they manageméatby,

we define the consistency of an attribute as:

C = Pr (s(v',v”) > th|a®-matcha’, v' andv” availablg

whereth is a threshold parameter.

non-Impersonability: If an attribute can be easily impersonated,
i.e., faked, then attackers can compromise the reliabdftghe
matching by creating fake profiles that appear to be matahitty

the victim’s profiles on other sites. Some public attribuiike
“name” and “profile photo” are easier to copy than others such
as “friends”. To formalize this notion, we introduce the atoin
a’-impersonates! to denote that profile? has been created by
an attacker impersonating profite. We denote the probability
that there exists at least one profilé impersonating:' by p;
Pr(a* is impersonatedand the probability that there is no profile
impersonating:' by p,.r = 1 — p;. The difficulty to manipulate
an attribute is characterized by its non-Impersonabiléfireed as:

nI:Pr( m

a2:a2-impersonatex !

s(v',0?) < th).

Discriminability: Even without impersonations, in order to enable
finding the matching profile, an attribute needs to uniqueéntify

a profile inSN>. A highly discriminating attribute would have a
unique and different value for each profile, while a less rifisc
inating attribute would have similar values for many prafilé-or
example, “name” is likely to be more discriminating thantiger”.
Formally, we define the discriminability of an attribute as:

max
a?:a2-non-matche!

D= Pr( s(v',v%) < thla' not impersonate)i
In practice, it is impossible to estimafe unless we are able to
identify impersonating profiles. Instead, we estimate:

max
a?:a2-non-matcha !

D:Pr( s(v',v?) <th).

D represents the “effective discriminability” taking inteccunt
possible impersonations. Since impersonators createnaohing
profiles as similar as possible to the original profile, ieiasonable

to assume thaD < D. Moreover, by application of Bayes for-
mula, we can show thdd < D/p,r so that, ifp; is not too large,
D gives a good estimate @b. If we assume that the impersonating
profiles are independent from the other non-matching pefile
can also prove thab = D - (pnr + nl - pr). This clearly shows
thatD is close taD if either the attribute is hard to impersonate (
close to one) or the proportion of impersonator is smadlgmall).

The ACID properties are clear and intuitive properties tielp
understand the potential of an attribute to perform rediabhtch-
ing, as the following theorem formalizdk.

THEOREM 1. Consider a classifier based on a given attribute
that classifies as matching profilessifv', v?) > th. The perfor-
mance of the classifier is characterized by the followingltss

(i) We have
recall = C - A.

(i) Assume that, for each profile' € SNy, there is at most one
matching profile inSN». Then,

. recall
precision <

recall +1— D’
(iii) Assume thatp; > 0. Then,precision = recall = 1 iif

In TheorenTdL, the threshold parametérmust be the same as
the one in the definitions of, nI and D. Theoren{lld) shows
that the classifier’s recall is simply the product of coresisty and
availability. TheoreniII({i) gives a simple upper bound of the pre-
cision as a function of the effective discriminability (whiitself
is a function of the discriminability and of the impersoriapi see
above). This upper bound gives a good order of magnitudenéor t
precision; moreover, for high precision (which is what wenjgi
given the small number of false positives, the true prenistwould
be close to the bound. Finally, TheorEhtiil} confirms that a high
value of all four ACID properties isecessarandsufficientto ob-
tain high precisiorandrecall.

PropertiesA, C andnI are independent of the network scale,
however, the discriminability very largely depends on tleéxork
scale since having more non-matching pairs decreasesdhalpl-
ity that none of them has a high similarity score. This implieat
we must estimate the precision and the recall of a matchingrse
using datasets that accurately capture the ACID propeafigso-
file attributes of the entire social network. Otherwise, fihecision
and the recall will be incorrect.

In practice different attributes satisfy the propertiedifferent
extent and the challenge is to combine different attributiéls im-
perfect properties to achieve a reliable matching. The sestion
analyzes the ground truth for several large social netwtrks-
derstand the limits of matching profiles across differetassi

4. LIMITS OF MATCHING PROFILES

To understand the limits of matching profiles, we analyzeNGED

properties of profile attributes (screen name, real nanuatiton,
profile photo, and friends) across six popular social neta/@Face-
book, Twitter, Google+, LinkedIn, Flickr, and MySpace)rdtiwe
present our method to gather ground truth of matching peoéited
we then analyze each property separately.

4.1 Ground truth of matching profiles

Gathering ground truth of matching profiles spanning midtgo-
cial networks is challenging and many previous works mdpual

The proof can be found in the Appendi} A.



Table 1: Number of ground truth matching profiles obtained with Fdien
Finder (DATASET FF) and Google+ (BTASET G+) for different combina-
tions of social networks.

| DATASET FF | DATASET G+

TWITTER - FACEBOOK 4,182 76,332
LINKED IN - FACEBOOK 2,561 20,145
TWITTER - FLICKR 18,953 35,208
LINKEDIN - TWITTER 2,515 20,439

Table 2:Availability of attributes for DA\TASET FF.
Legend: Tw = Twitter, Fb = Facebook, FI = Flickr, Lnk = Linked|

| Screen Namd Real Name] Profile Photo] Location | Friends
100% 100% 69% 54% 86%
100% 100% 98% 52% 60%
100% 30% 29% 11% 40%
100% 100% 57% 99% 0%

100% 100% 69% 30% 43%
100% 100% 56% 54% 0%
100% 30% 24% 8% 32%
100% 100% 44% 54% 0%

Tw
FB
FL
L NK

FB-Tw
FB - LNK
Tw - FL
LNK-Tw

labeled profiles[[18._33. 27]. Below we describe two automati
methods that we used to obtain our ground truth.

We first obtained ground truth data by exploiting “Friendd&r’
mechanisms on many social networks that allow a user to find he
friends by their emails. We used a list of email addressdsated
by colleagues for an earlier study analyzing spam e@iﬂiﬂjese
email addresses were collected on a machine instructedntb se

more likely to provide their location information on Linkedthan
they are on Facebook or Twitter. The differences in avditsiare
presumably due to the different ways in which users use thiese
For our purposes, it highlights the additional informattore could
learn about a user by linking her profiles on different sites.

Second, we find that screen name and real name are consjderabl
more available than location or friends. However, the aslity of
the less available attributes is not negligible — for examialcation
and friends are available for more than 30% of matching @®fi
Twitter and Facebook.

Third, when we compare the availability usingASeT FF and
DATASET G+ (not shown), we observe that the availability of at-
tributes for profiles in the BTASET FF is much lower than the
availability for profiles in the BRTASET G+ (e.g., profile photo
is available for only 69% of Twitter users inADASET FF while
it is available for 96% of users &AseT G+)fI Thus, users in
DATASET G+ are more likely to complete their profiles and conse-
quently there is a higher bound on the recall to match them.

4.3 Attribute consistency

We now study the extent to which users provide consisteribatée

values for their profiles on different social networks. Samsers
deliberately provide different attribute values eithetr @iconcerns
for privacy or out of a desire to assume online personasrdifte

spam by a large bot network. Since spammers target the public fom their offline persona. It would be very hard to match pesfi

at large we believe that this list of emails catch a repredimet set
of users. To combat abuse, some social networks limit thebeum
of queries one can make with their “Friend Finder” mecharash
employ techniques to make an automated matching of an email t
a profile ID impossible. Hence, we were only able to colleet th
email-to-profile ID matching for Twitter, Facebook, Linkadand
Flickr. Table[1 summarizes the number of matching profiles we
obtained using the Friend Finder mechanisma{BsET FF)H

Some previous works obtained ground truth from users tHat wi
ingly provide links to their profiles in different social meirks.
Such users might not represent users in general becauseainey
their profiles to be linked and probably expend the effort eéegk
their profiles synced. To be able to compare our results agpia-
vious works we collected BrAseT G+ (see TablEl1) by exploiting
the fact that Google+ allows users to explicitly list theipfiles
in other social networks on their profile pages. Due to space con-
straints, for the rest of the paper, we show by default thaltes
for profiles in DATASET FF and occasionally, for comparison, we
show the results are forAFASET G+.

4.2 Attribute availability

The availability of attributes depends on the social nekwéor
example Twitter does not ask users about their age whileldeate
does. The availability also depends on whether users chimose
input the information and make it public. Users might chomslet
their location public on Twitter while make it private on [Edook.
Table[2 shows the breakdown of attribute availability pesialo
network and pairs of social networks. The availability pecial
network characterizes the behavior of users, while thdahiéity
for pairs of social networks corresponds to the definitiod af §3.
First, we find that the availability of the attributes varemsid-
erably across the different social networks. For exampersiare

2The local IRB approved the collection.

3To test the representativeness ofRSET FF, we compare the distribu-
tion of properties such as account creation date, numbaeailofiers, and
number of tweets of Twitter profiles in our dataset with thexsgroperties
of random Twitter profiles. We found that the pairs of digitibns for each
property matched fairly closely.

of such users by exploiting their public attributes.

Other users may input slightly different values for an htite
across sites. For example, a user might specify her workeplac
as International Business Machines on one site and Interzét
Business Machines Corporation on another site.

Similarity metrics for profile attributes: We borrow a set of stan-
dard metrics from prior work in security, information rewal, and
vision communities to compute similarity between the valo¢
attributes: the Jaro distan¢e [10] to measure the simylagtween
names and screen names; the geodesic distance to meassine-the
ilarity between locations; the phadh [2] and SIETI[19] aithons

to detect whether two photos are the same; and the numbenof co
mon friends between two profiles. Please check our Appdndix B
for a full description of these metrics.

Similarity thresholds for attribute consistency: Clearly the more
similar two values of an attribute, the greater the chanee tte
values are consistent, i.e., they refer to the same enétig,doname

or photo or location. Here, we want to show consistency tesoit

a “reasonable” threshold beyond which we can declare wigh hi
confidence that the attribute values are consistent (i@ of

the tradeoff between consistency and discriminability[3). 8The
best to judge whether two attribute values are consistenthar
mans. Thus, we gathered ground truth data by asking Amazen Me
chanical Turk (AMT) users to evaluate whether pairs of laiie
values are consistent or not. We randomly select 100 padals ea
of matching and non-matching Twitter and Facebook profilesf
DATASET FF and asked AMT users to annotate which attribute val-
ues are consistent and which are not. We followed the guielli
to ensure good quality results from AMT worker$ [7].

For each attribute, we leverage the AMT experiment to séfect
similarity thresholds to declare two values as consist&mecifi-
cally, we select similarity thresholds, such that more t8@% of
the consistent values, as identified by AMT workers, andtless
10% of the inconsistent values have high similarities. Not,
we only use these thresholds to evaluate whether attrilaliies in

4For more results on BrAseT G+, we refer the reader to 1],



Table 3: Consistency of attributes for users imfASET FF; 1 in paren-
thesis, the consistency only when information is availdhléoth social
networks.

|| Screen Namgd Real Name| Location | Profile Photo| Friends

b - Tw 38% T1% | 23% (779)] 8% (12%) |34% (79%)
Fb - Lnk 71% 97% | 44% (83%)| 11% (23%)| 0%
Tw-Fl 40% | 25% (84%) 5% (67%) | 5% (22%) |13% (42%)
Tw - Lnk 36% 83% | 39% (71%)| 13% (31%) | 0%

matching profiles are consistent and we do not use them te actu
ally match profiles. Thus, while it is important that the nréjoof
consistent values pass the threshold, it is not criticadifis incon-
sistent values also pass the threshold. Incidentallyeperiment
also shows that the similarity metrics we choose are candistith
what humans think it is similar. Note that, it is unpractitaluse
AMT workers to estimate the threshold for friends, thus wenma
ally choose it be at least two friends in common to avoid noise

Attribute consistency in matching profiles: Table[3 shows the
proportion of users who provide consistent values for arbate
in a pair of social networks out of all users.This proportoamre-
sponds to the recall we can achieve using the attribute dgiven
threshold used, as shown in the previous section. In pasisth
we also provide the equivalent proportion of users with =iast
values only when the attribute value is available in bothaowet-
works (corresponding to the definition 6f). This proportion bet-
ter illustrates how likely users are to provide consistees, i.e.,
shows the users’s attempt to maintain synched profiles.

First, we find that a large fraction of users provides sinia
namesacross different social networks. Put differently, mosras
are not attempting to maintain distinct personas on diffesées.
This trend bodes well for our ability to match the profiles afszr.

inability D, whereas the y value for the distribution of matching
profiles represents the complementary of the recallC' - A.

For thereal nameandscreen nameve see a clear distinction be-
tween distributions of matching and non-matching profitefig-
ure[d. The highest similarity of non-matching profiles isiard
0.75 while a number matching profiles have similarities acbl.
This suggests that these attributes have a high discrintitgaBor
photq the two distributions are generally similar. The photosioe
not appear to have a very good overall discriminability lbsea
there are not many Facebook matching profiles that use the sam
profile photo with the Twitter profile. However, for similtigs
large than 0.10, when the profile photos are consistente taer
not many non-matching profiles. As expected, lieation does
not have a good discriminability; even in a small datasetetlaee
Facebook non-matching profiles with the same location a$lite
ter profile. Finally,friendshave a good discriminability between
matching and non-matching profiles, i.e., it is uncommonaaeh
non-matching profiles with many common friends.

We do not have access to the whole Facebook dataset to evaluat
the discriminability of all attributes over an entire sdaiatwork,
however, we exploit the Facebook Graph Search to estimate th
discriminability of real names and screen names. For eagtiefw
profile we use Facebook Graph Search to retrieve all the esofil
with the same or similar names and screen names. This proce-
dure samples the non-matching profiles with the highestasiity;
therefore it preserves the discriminability of the entiogial net-
work. Figure[Th anf1b also presents the discriminabilityeai
names and screen names over the entire Facebook (entirex- As
pected, the CDF of similarity score for non-matching prefile
much lower than it was at small scale. Furthermore, for 60%h®f

Second, we computed the percentage of matching profiles in Twitter profiles, there is a non-matching Facebook profil tias

Twitter and Facebook for which all public attributes in TelBl are
inconsistent. We find that there are 7% of such users. These us
are likely assuming different personas on different sited i is
very hard, if not impossible, to match their profiles usindyahe
public attributes that we consider in this paper. Thus, we aa
most hope to match profiles for 93% of users. This percentgge r
resents an upper bound on the recall for matching profileschais
public attributes.

Third, the consistency differs between different sociawoeks.
Twitter and Facebook have one of the lowest consistency&ohn e
attribute while Facebook and LinkedIn have the highest isens
tency. Thus, users are more likely to maintain synched pofil
across Facebook and LinkedIn than other pairs of socialor&sy

4.4 Attribute discriminability

The previous section showed that a large fraction of useses ¢tan-
sistent attribute values between their profiles. Howebhernumber
of profiles that we can match reliably is smaller becausébats
values might not uniquely identify a single person.

To evaluate the discriminability of attributes, for eachiffer
profile we compare the similarity of the matching Faceboakiler
with the similarity of the most similar non-matching Facekro-
file. Figure[d shows the CDF of similarity scores imfSET FF
(sample). Zero means no similarity and one means perfedt sim
larity; except for location, where zero means perfect sinty be-
cause it corresponds to the distance between locationsveFtieal
lines represent the similarity thresholds for consisténibaite val-
ues used in the previous subsection. Given a threshold, we
perfect discriminability if there are no non-matching plesiwith
higher similarities. Concretely, for a given similarityréishold (x
value), the y value for the distribution for the most simiten-
matching profile represents an estimate of the (effectii&rin-

ha

exactlythe same real name and for 25% exactly the same screen
name. Even worse, the CDFs of Figliré 1a for non-matching pro-
files are even below the CDFs for matching profiles which means
that in many cases there are non-matching profiles that hare e
more similar names with the Twitter profile than the matctpngr

file. These results show that names and screen names arbyactua
not so discriminating in practice and consequently showsdifx
ficulty of reliably finding the matching profile in real-workbcial
network. This also shows the risk of evaluating matchingesoh
over a sampled dataset because attributes have a much Higher
criminability than over entire social networks.

4.5 Attribute impersonability

In most social networks a user is not required to prove thabhe
line identity matches her offline person. Since there is aflger-
sonal data publicly available, it is very easy for attackersreate
fake profiles that impersonate honest users. Because dachst
could be a very big source of unreliability for matching sties,
we show evidence that such attacks indeed exist and theyaese m
frequent than previously assumed.

To search for potential cases of impersonation we start aith
initial set of 1.4 million random profiles in Twitter. We fintiat,
strikingly, a large fraction of profiles could fmtentialvictims of
impersonation attacks: 18,662 Twitter profiles have at leasther
Twitter profile with consistent profile attributes. This gé/a rough
estimate ofp; of 1%. It is beyond the scope of this paper to thor-
oughly investigate such attacks but i §7 we propose a wayat@m
matching schemes less vulnerable to impersonation attacks

5. TRAINING & TESTING MATCHING
SCHEMES
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Figure 1:CDF of similarity scores for the matching Facebook profiled for the most similar non-matching Facebook profile WrBseT FF (sample) and

the entire Facebook (entire).

In this section, we focus our attention on the datasets usadin
and evaluate (test) matching schemes. To estimate wellrdte-p
sion and recall in practice, we should test for each prafllehe
accuracy of finding the matching profilé$ out of all the profiles
a’? € SN». If we consider large social networks like Facebook,
Twitter, or Google+,S N has hundreds of millions of profiles. Ob-
taining such complete datasets is impractical, thus, we t@sam-
ple a number of profiles in the network.

Most previous studies sampled datasets by picking mataridg
non-matching profiles at random. Such random sampling fails
capture the precision and recall of matching schemes irtipeac
because it severely over-estimates the discriminabifipttoibutes
found in the original social network (as seen[in_§4.4) andettoze
it severely over-estimates precision. To estimate welt¢fiability
of a matching scheme in practice, the sampled dataset nepods-t
serve the precision and recall of the original social nekvatieast
for high values of precision. The key to ensure this is to daralp
potential false matches, i.e., all profiles that could be mistakenly
matched by the matching scheme. Thus, we build two datadgts:
a reliability non-preserving sampled datasietr comparison with
previous techniques (as this is the standard evaluatiohadgtand
(2) areliability preserving sampled datas#tat strives to capture
all possible false matches in a social network to bettemest the
reliability of matching schemes in practice.

We generate a reliability preserving sampled dataset faclma
ing Twitter and Facebook. Although building such datasebtber
social networks is possible, the process is strenuouseddstve
take two of the most popular social networks to show the &mit
tions for matching profiles across real-world social netsor

Reliability-non-preserving sampling: We randomly sample 850
matching Twitter-Facebook profiles fromaDASET FF and we use
them to build 722,500 pairwise combinations of Twitter-&laaok
profiles (850 positive and 721,650 negative examples). Wehea
resulting dataset theARIDOM-SAMPLED. The RANDOM-SAMPLED
dataset preserves the availability and consistency dbatés in the
original social network, but it does not preserve the disrabil-
ity and non-impersonability. Thus, the dataset does naigpve the
precision of the original social network. Note that, dataseich as
DATASET G+, which have been used in previous work, do not even
preserve the availability and consistency of attributesabee they
are biased towards a particular kind of users (as sedn iy, $#ace
they do not preserve recall.

Reliability-preserving sampling: To preserve the reliability over
the original social network, our sampling strategy is to glenmon-
matching profiles that have a reasonably high similarity‘tand
ignore non-matching profiles that have a very small chancead€h-
ing. We note the set of most similar profiles @ in SN as
C(a') C SNa>. A comprehensiv€(a') includes all the Facebook
profiles which could be potential false matches.

Given that our analysis il &4.3 shows that most Twitter-Baok
matching profiles have consistent real names or screen navaes

hope to build a comprehensivé(a') by exploiting the Facebook
search API, which allows searching for people by name. Foh ea
Twitter profile,a' (we sample the same Twitter profiles fromiR>oM-
SAMPLED), we generate’(a') using the Facebook search API to
find profiles with the same or similar real name or screen nane a
a'. The resulting dataset, which we calllBLATED -L ARGE, con-
tains over 270,000 combinations of profiles', a*) wherea® €
C(a"). Thus, for each Twitter profile the dataset contains in aver-
age 320 Facebook profiles with similar names.

Our analysis shows that the matching profileadfis in C(a')
(i.e.,a* € C(a")) for 70% of Twitter profiles. This implies that for
70% of cases we selected at least all non-matching profildgs wi
higher name similarity than the matching profile. Additiipa
the median similarity of the least similar real namedGtia') is
0.5, while the median similarity of matching profiles is Q.9his
means that we also catch many Facebook profiles with loweenam
similarity than the matching profiles. Thus, the only pokesfhlse
matches that we miss are the ones that have very differergsiam

Note that the reliability preserving sampling does not dartipe
matching profile when there is little chance for it to matah30%
of the cases). We actually tried to train and test matchihgses
with or without including the unsampled matching profileshe
EMULATED-LARGEand the reliability did not differ significantly.

Our sampling strategy ensures that the discriminability iam-
personability of real names and screen names found in the rea
world datasets are preserved. It might over-estimate, hemwéhe
discriminability of location, friends, and profile photasce we do
not sample irC'(a") profiles with similar location, friends or pho-
tos if they do not also have similar names or screen namesu-Eva
ating matching schemes ov€(a") rather than allS N> could lead
to an under-estimation of the false matches. Thus, the gioeci
we obtain over this dataset is an upper bound on the predision
practice. This implies that the limits of reliably matchisghemes
in practice can only be worse than what we show in this paper. W
believe, however, that our sampling strategy gives a veogddgdea
of the precision and recall in the real-world datasets bezdoere
will be very few false matches (if any) with very dissimilaames
even if they have similar location, photo or friends.

Another limitation of the dataset is that it does not contaires
where a profilez* has multiple matching profiles ifiN.. This is a
consequence of our method to gather ground trdth {84.1 ptigit
gives a single matching profile ifiN, for eacha'. The implica-
tions of this limitation on our evaluation is that there ntigh some
matching profiles that we consider as false matches whehegs t
are not. Since Facebook enforces the policy that usersdlooly
have one profile, we believe there are not many such casefand t
reliability we measure is likely close to the real-worldiadility.

In practice, there are Twitter users that do not have a match-
ing Facebook profile, but our datasets do not contain suokscas
To evaluate how matching schemes perform in such scenars,
test in §F the reliability of matching schemes when we rentbee
matching profile from EULATED -LARGE.



6. GENERIC MATCHING PROBLEM

This section evaluates the reliability of matching scheb@ased on
classifiers aimed at solving the generic case of the matqbriolg-
lem (see [ER). We build classifiers that are conceptuallylainid
what previous works have done. The primary difference betwe
different previous matching schemes is the features andtttasets
they used to train and test classifiers, however, they alknagk-
tional classifier such as SVM and Naive Bayes. The goal of this
section is not to build a matching scheme that is better thewvip
ous ones but to investigate the limits of such schemes iripeac

We first emulate the methodology employed by previous works:
we train and test matching schemes withN® OM-SAMPLED, us-
ing all attributes. Since some profile attributes have a Higbrim-
inability in the dataset, it is straightforward to build a teting
scheme with high reliability. On top of this, there is litdifer-
ence between the reliability of naive classification teqbes and
more sophisticated ones.

We then investigating the reliability of matching schenresriac-
tice by testing them over MULATED-LARGE. As expected, the
precision of the previously built matching schemes dra#ificle-
creases to a point that makes them unusable. Thereaften-we i
vestigate the reasons behind such poor reliability and \atuate
different strategies to increase the precision and recgiractice.
The resulting schemes are able to achieve a good precision, b
the recall is still low. These results show the inherent cifty of
matching profiles reliably in today’s large social networks

6.1 Evaluation overranbom-SAMPLED

We use the RNDOM-SAMPLED dataset to train and test four clas-
sification techniques to match profiles: Naive Bayes, Denisrees,
Logistic Regression, and SVM. We splitARDOM-SAMPLED in
two: 70% for training and 30% for testing.

There are two important aspects to handle when trainingielas
fiers to match profiles:1( classes are very imbalancedthere are
much more non-matching profiles than matching profiles. iBusv
works handled this problem by balancing the training instarby
under-sampling the majority clags [13]. We also adopt thiht
niqgue and we randomly sample 850 non-matching profiles from
the RANDOM-SAMPLED; (2) features have missing valuesome
attribute values may be unavailable hence the similarityevas
missing (e.g., users may choose to omit their location otgho
Thus, we must either work with classification techniques #ra
robust to missing values (e.g., Naive Bayes) or identifylods to
impute the missing values.

We use 10-fold cross validation on the training data to ealu
the four classifiers with different combinations of paraengtand
different methods for imputing the missing feature valu&g. call
the four resulting classifiers with the best optimized pagtars the
LINKER-NB, LINKER-SVM, LINKER-LR and LINKER-DT.

We investigate the tradeoff between precision and recalihfe
different classifiers in Figule_Ra. Our results show thatKER-

N B out of the box, without imputing the missing values andkeR-
SVM and LINKER-DT when we replace missing values with -1
achieve the highest reliability with a recall over 90% for 0
precision. LNKER-LR achieves a lower recall, only 85% for the
same precision. Thus, as expected, even out of the boxfclassi
cation techniques such as Naive Bayes are able to achieygha hi
precision and recall over R\DOM-SAMPLED.

Analysis of matched pairs: To understand what pairs of profiles
the classifiers are matching, we analyze in Téble 4 the dihila
ity and consistency of attributes for theue matchesthe false

matches and themissed matcheghe pairs of matching profiles

T —

Y —LINKER NB
0.8 0.8k \ ---LINKER SVM
- TN -~ LINKER LR
S0.6 So0.6f: 3 ~LINKER DT
Q0 i) H 5
8 3 i i
£ 0.4{—LINKER NB Soaft H
---LINKER SVM i H
0.2 LINKER LR 0.2p: R
QIZZLINKER DT o [
0 0.5 1 0 0.5 1
Recall Recall
(2) RANDOM-SAMPLED (b) EMULATED-LARGE
L s
;‘*“.‘ " —LINKER NB+
08 i ---LINKER SVM+| 038 |
- kY == LINKER LR+ | _ Y
0.6 H —LINKER DT+ | S 0.6 B
0 K2 °
8 o
& 0.4 & 0.4
0.2 0.2 TOPMATCH
o X o - GUARD
0 0.5 1 0 0.5 1

Recall Recall

(C) EMULATED-LARGE:
mized classifiers

opti-(d) EMULATED-LARGE: special
case

Figure 2: Precision and recall tradeoff for matching Twitter to Face-
book profiles using different classifiers when evaluatedr d&@NDOM -
SAMPLED and BMULATED-L ARGE.

Table 4:Fraction of true, missed and false matches that have aleatdl
consistent attributes in ARANDOM-SAMPLED.

Fraction of available and consistent attributes
Feature All True Missed False

Matches | Matches| Matches| Matches
Real Name 0.77 0.91 0.20 0.62
Screen Name| 0.38 0.46 0.07 0.09
Location 0.23 0.25 0.14 0.00
Profile Photo 0.08 0.10 0.01 0.00
Friends 0.34 0.34 0.22 0.38

that arenot detected by the classifier). We useNKER-SVM with

a threshold on the probability (outputted by the classifier) cor-
responding to a 95% precision (and 90% recall) to selectrties t
missed and false matches. The table shows that the only imgitch
profiles the LNKER-SVM is not able to identify are the ones that
do not have available and consistent attributes: only 20%hef
missed matches have consistent names and 53% of missecesatch
do not haveany consistent and available attribute (not shown in the
table). The table also shows that theNkER-SVM easily mis-
takes non-matching profiles form matching profiles if theyehai-
ther consistent names or friends. While in this datasetishimt
problematic, in practice this will lead to many false maghe

6.2 Evaluation overemuLATED-LARGE

Figure[2h presents the tradeoff between precision andl iebah
we evaluate using BULATED-LARGE the four LINKER classi-
fiers trained on RNDOM-SAMPLED. The figure shows that when
matching profiles in practice the reliability of all four skifiers
drops significantly compared toARDOM-SAMPLED (presented in
Figurd24). The best classifier on thafbom-SAMPLED, LINKER-
NB, achieve only a 4.5% precision for a 23% recall when tested
EMULATED-LARGE. The only classifier that achieves a satisfying
95% precision is INKER-SVM, however, the recall is only 15%.

These results confirm our intuition that the reliability ahatch-
ing scheme over RNDOM-SAMPLED fails to capture the reliability
of the matching scheme in practice. Worse, the matchingnsehe
that has the best reliability when testing witAROOM-SAMPLED
(i.e., the UNKER-NB) can be amongst the worst in practice.

Optimizing the binary classifiers

LINKER -NB: We investigate the reasons for the low precision of
LINKER-NB in EMULATED-LARGE. The results in Figurigl1 show
that matching profiles often have consistent names wher@as n



matching profiles (from sample) most often do not; there isuah
clear distinction for the other attributes. Since Naive &ags-
sumes that features are independent, the probability wWaapto-
files match will be mainly determined by their name similariin

a large social network, however, multiple users can haveahnee
name, which will cause INKER-NB to output many false matches.

One way to make the classification more accurate is to use two
classifiers in cascade instead of one. The first classifiedsveat
profiles that are clear non-matches (most of which havereiffie
names). Then, the second classifier takes the output of #te fir
and disambiguates the matching profiles out of profiles viritiilar
names. We call this improved classifieNKER-NB+. For more
details about this approach please refef o [11].

Another approach to make the classification more accurdte is
use methods based on joint probabilities such as quadiiatidrd-
inant analysis. We prefer to move to SVM which also considers
features jointly and is not restricted to quadratic bouredar
LINKER -SVM: LINKER-SVM has a much higher precision in
EMULATED-LARGEthan LNKER-NB. Intuitively, this is because,
as opposed to Naive Bayes, SVM considers the featuresyj@int
hence can distinguish between pairs of profiles with highenaim-
ilarity that match and pairs of profiles with high name simifia
that do not match based on other features. Neverthelesg; pre
ous work has shown that SVM performs suboptimally when using
under-sampling to deal with imbalanced datasets [6]. Byeund
sampling the majority class, we are missing informativagetints
close to the decision boundary.

To improve the reliability of INKER-SVM, we take advantage
of the fact that MULATED-LARGE contains negative examples
close to the decision boundary, to enrich our training se.bild
a training set that contains 850 positive examples, 850tivega
examples from RNDOM-SAMPLED plus 850 negative examples
from EMULATED -LARGE. We call the resulting classifier theNKER-
SVM+. Note that if we only use for training negative examples
from EMULATED-LARGE and not from RNDOM-SAMPLED, the
resulting classifier will only be able to distinguish the oiang
profiles out of profiles that look similar and will not be abtedis-
tinguish the matching profile out of profiles that are cleady sim-
ilar, i.e., it will only work on datasets such asiBLATED-L ARGE
and not in practice. For INKER-LR and LNKER-DT we apply
the same retraining technique.

Evaluation of optimized classifiers: Figure[2¢ shows the tradeoff
between precision and recall when usinglkER-SVM+, LINKER-
NB+, LINKER-LR+, LINKER-DT+ on EMULATED-LARGE. We
can see that INKER-SVM+ is able to achieve a 19% recall (4%
improvement over the INKER-SVM) for a 95% precisiofi. Also,
LINKER-NB+ achieves a 23% recall for a 88% precision, consid-
erably better than INKER-NB. Nevertheless, the recall is signifi-
cantly lower compared with the recall obtained when testiity
RANDOM-SAMPLED. Thus, even more sophisticated techniques
trained to match profiles in real-word settings fail to maadarge
fraction of profiles.

Analysis of matched pairs: To understand the low recall we ob-
tain in EMULATED-LARGE, we analyze again the availability and
consistency of attributes. The precision aNKER-SVM+ has a
sudden drop, to go from a recall of 19% to 33%, the precisi@sgo
from 95% to 0.02%. To analyze the drop, we split the pairs of
profiles in BMULATED-LARGE in true, missed, and false matches
using first a threshold corresponding to a 95% precision é&t@do
recall) and then with a threshold corresponding to a 0.0286ipr

5In DATASET G+, LINKER-SVM+ has 50% recall and 95% precision.

Table 5:Fraction of true, missed and false matches that have aleatdl
consistent attributes inNEULATED -L ARGE.

Fraction of available and consistent attributes
95% precision and 19% recall| 0.02% precision and 33% recall
Feature True Missed False True Missed False
Matches ‘ Matches ‘ Matches | Matches | Matches ‘ Matches
Real Name 0.94 0.73 0.86 0.94 0.69 1.00
Screen Name|  0.60 0.33 0.57 0.64 0.26 0.89
Location 0.32 0.21 0.14 0.41 0.15 0.01
Profile Photo 0.14 0.07 0.57 0.16 0.04 0.07
Friends 0.91 0.17 0.57 0.68 0.14 0.00

sion (and a 33% recall), see Table 5.

Contrarily to our expectation, for most attributes butiids, the
availability and consistency of true matches at 0.02% preciis
actually slightly higher than the one at 95% precision. Cthly
availability and consistency of friends decreases from @1 %b6%
precision to 68% at 0.02% precision. This means that, to g fr
19% to 33% recall we mainly started to match profiles that do no
have friends in common. The consequence is that while at 95%
precision, the false matches needed to have friends in comato
0.02% precision, false matches no longer need to have fiend
common. This makes the matching scheme have orders of magni-
tude more false matches at 33% recall than at 19% recall. ,Thus
even if the features are highly available and consistenhey are
not discriminable enough, they will allow for many false ofss
which limits the precision and recall we can achieve in pcact

The results suggest that when matching profiles in practice,
maintain a high precision, we need features that are higisly d
criminable. Indeed, if we exclude friends (one of the mostdim-
inable attributes) from the features we use for the classifin, we
can only achieve a 11% recall for a 90% precision.

7. SPECIAL MATCHING PROBLEM

The previous section showed that even fine tuned classifiekaik
nerable to output many false matches in practice. Worsgique
matching schemes are not able to protect against impeisorait
tacks. In this section, we propose ways to mitigate both e$e¢h
problems in the special case where we know that there exists
most one matching profii@ SV,.

The TOPMATCH : The straw man approach is, for each profile

to simply return the profile i/ (') with the highest probability

to be the matching profile given byilkErR-SVM+, provided that

p is larger than a threshold. We call the most similar profile th
TOPMATCH. This approach reduces the number of false matches
since the matching scheme outputs at most one false matgh. Fi
ure[2d displays the tradeoff between precision and rec#diiodd

for different probability thresholds on theof the TOPMATCH. It
shows thatroPMATCH largely improves recall for a given preci-
sion: TOPMATCH in EMULATED -LARGE achieves to a 26% recall
for a 95% precision.

The GUARD: The strategy of outputting thHEOPMATCH consider-
ably increases the recall compared to approachdd in §6. \owe
is still vulnerable to output false matches in practice wieiitter
users who do not have a Facebook profile. WorseTthemATCH
is vulnerable to impersonation attacks that also hinderehabil-
ity of the matching scheme. We propose next a simple soltiian
mitigates both of these problems by comparing the protighi
be the matching profile of the most similar profiled{a'), p1s:,
and the probability of the second most similar profie,s. The
high level idea is that, to be sure that the most similar pafil
C(a") is the matching profilep: s, should be much higher than the
probability p of any profile inC'(a'), i.e.,pis: > pand.

Intuitively, there are two possible scenarios wherettheMATCH



is a false match: The firstis if an attacker creates an impetsty
profile on.S N, that is more similar than the true matching profile.
It might be possible to detect these cases as pathandpz,q will

be high andpis: — p2nq) Will be very small. The second is when
the true matching profilé? is in C'(a') but a non-matching profile

matching profile the list of 10 Facebook profiles.

In the first version of the experiment, AMT workers were able
to match 40% of the Twitter profiles to their matching profidesl
4% are matched to the wrong Facebook profile. This means that
AMT workers achieve a 40% recall for a 96% precision, which is

a®> € C(a') is chosen as output because the classifier assigns it abetter than the GARD, but far from a 100% recall. In the second

higher probabilityp of being the matching profile (due to the lack
of attribute availability and/or consistency). Anotheseas when

a2 does not exist, forcing the scheme to choose the non-matchin
profile that is the most similar ta' as the output. We might de-
tect these cases @ss: andp2,q Will not be very high (none of the
profiles inC(a") are very similar taa') and (p1s: — pana) Wil

be again very small (none of the profilesdi(a') is much more
similar than the rest).

To incorporate the above logic, we design theA&D which is
a binary classifier that takes as input: andp2,q and outputs the
probability that theroPMATCH is the matching profile. Figuie Rd
shows that the GARD increases the recall of the matching scheme
to 29% for a 95% precision. Although 29% recall is a big imgrov
ment over the recall previously obtained, the recall isIstiV. This
shows that in practice, it is hard to achieve a high recalleéfwant
to have a high precision.

The matching schemes ihl§6 decide independently for each pai
(a', a®) wherea® € C(a") whether it is a match or not. In con-
trast, the strength of the @RD is that it exploits the structure
of C(a') for a givena'. In particular, sinceC'(a') depends on
a*, for a given probabilityp to be the matching profile af!, the
TOPMATCH profile a? will be declared a match for som# if its
attribute values are sufficiently unique, whereas the seheii
return nothing for othew' if the attribute values are too common
(e.g., Jennifer Clark that lives in New York). This reducessid-
erably the false matches and, as we have shown, increasetha lo
matching recall for a given precision.

Reliability in the absence of a matching profile: To test the re-
liability of the matching scheme in the absence of a matchig
file, we take the MULATED-LARGEand we remove the matching
profiles from the dataset. Then, we evaluate thea@D over the
resulting dataset. Ideally, theUARD should not return any profile
as there is no matching profile in the dataset. Indeed, therR®
only returns a false match for 1% of the Twitter profiles. Wenma
ually investigate the 1% cases: in half the returned prdiikefalse
match; in the other half it is actually a profile that corrasg® to
the same person (the returned profiles are either impe@msnait
people that maintain duplicate profiles on Facebook). Thhes,
GUARD is reliable when there is no matching profileSmV,.

8. EVALUATION AGAINST HUMANS

In this section, we confirm the inherent difficulty to obtaitigh
recall in matching profiles in practice by comparing our tesswith
results obtained by asking human workers to match profiles.

For this we designed an AMT experiment. We randomly select
200 Twitter-Facebook matching profiles froomtAsSET FF (that
are not used for training the matching schemes). In eacyrassi
ment, we give AMT workers a link to a Twitter profile as well as
links to the 10 most similar Facebook profiles (we shufflerthei
sition) and we ask AMT workers to choose the matching profile.
We allow workers to choose that they are unable to identiéy th
matching profile. For each assignment we ask the opinionreéth
different workers. We present the results for majority agnent
(two out of three workers decided on the same answer). Welesi
two versions of the experiment: in the first one if the matghpno-
file is notinC(a'), the matching profile will not be in the list of 10
Facebook profiles; and a second version, where we alwayfieut t

version of the experiment, AMT workers were able to match 58%
of Twitter profiles. Thus, even humans cannot achieve alrelcale
to 100% to match profiles in practice.

9. RELATED WORKS

We review three primary lines of related research: one Biopgp
schemes to match user profiles across different social mkesywo
one focusing on how anonymized user graphs or databasescan b
deanonymized to infer user identities; and another abotthiray
entities across databases.

Matching profiles using private user data: Balduzzi et al. [[8]
match profiles on different social networks using the “Fdi&mder”
mechanism that social networks provide for users to fina fiends
using their email addresses. In fact, this is what we uselftaio-

ing our ground truth. Many sites, however, view Friend Finate
leaking users’ private data and have since limited the nurobe
queries a user can make which severely limits the numberaf pr
files one can match. In contrast, we are interested in uratetisty
the limits of matching profiles by only using public attribatthat
anyone can access without assuming that we have accessdo mor
private data such as the emails of users.

Matching profiles using public user data: A number of previ-
ous studies proposed matching schemes that leveragecedife-
tributes of public user data to match profiles, but withowstssnat-
ically understanding their limitations in real-world salchetworks.
As a result, previous works overlooked a number of methagolo
ical aspects: 1) Most works did not train and test their match-
ing schemes on sampled datasets that preserve the reyiaddili
the original social network. Consequently, the reliabitf these
schemes drops significantly when evaluated in real-worldaso
networks [28( 2P, 29, 33, 27, 118,]136. 352) (Most works used at-
tributes without analyzing their properties and their t&1b match
profiles in practice, consequently, some of these studiesatts
tributes with low availability and thus can only match a drfraic-
tion of profiles across a limited number of social networkz, [14]

or use attributes that are prone to give many false matchesa:
tice [21]. On the contrary, we propose a framework to analyze
attributes and evaluate their potential to match profilgsractice.
(3) Most studies used biased sets of ground truth users thiat wil
ingly publish links to their profiles on different social netrks.
Our analysis reveals that such datasets have attributiesréhanore
available and consistent, consequently, the reliab#isyits of such
schemes are overly optimistic [25.]20.] 36]. Other studie
sume that all profiles that have the same screen name are-match
ing [17,[14]. In &% we showed that 20% of profiles with the eam
screen name in Twitter and Facebook are actually not majchife
further split these studies according to the type of attebwsed.

The closest to our work are a number of schemes that leverage
information in theprofiles of usersimilar to the attributes we use
in this paper[[22["28,20."25] 5.134.133.129] 24] 27, [18,[36, 35,
[34,[17]. Most schemes work by training classifiers to distisiy
between matching and non-matching profiles. We simulateskth
approaches in[36 and we saw that, because they did not conside
the problems that come with matching in practice, the matchi
schemes are very unreliable when evaluated in real-wordthlso
networks. A few studies attempted to perform profile matghim
practice [20["25,15]. These studies, however, just pointgdiuat



profile matching in practice yields a large number of falsé¢aimes.
In contrast, we conduct a systematic analysis of the cadsash
false matches and possible ways to eliminate them.

Other schemes use attributes extracted fum@r activities(i.e.,
the content users generate instead of attributes of thde)r{fd,
[21,[14]. These schemes reveal how even innocuous actiaties
users can help identify a user across social networks. Hewev
these schemes explore attributes with either low avaitglait low
discriminability, which makes them hard to use in practiéthaut
sacrificing reliability.

De-anonymizing user identities:De-anonymizing user identities

and matching user profiles share common methods. In fact, our

work here is inspired by one of the seminal papers of Swe&#y [
which explored the uniqueness of attributes such as datatbf b
postal code, and gender to de-anonymize medical recordS ofty
izens. Other studies[23.115] showed the feasibility to dergmize
the friendship graph of a social network at large-scale gusie
friendship graphof another social network as auxiliary informa-
tion. The structure of the social graph is certainly a pouldiéa-
ture. Nevertheless, in this work, we explicitly assume thatcan-
not have access to the entire graph structure of the sodiabries
since we only use public APIs to collect data. We leave agédutu
work how to exploit partial graphs that can be obtained tho&iBIs

to improve matching schemes based on binary classifiers.

Entity matching: There is a large body of research in the database [11]

and information retrieval communities on matching ergiteross
different data sources|[9]. Conceptually there are manylaiities
between matching profiles across social networks and nmafem-
tities (e.g. the way we compute the similarities betweeribaiies
or the adoption of a supervised way to detect matches). Hewev
matching profiles has some specific constraints (e.g., niogadbdle

to access all records ifiN,) that the entity matching community,
to our knowledge, overlooked.

10. CONCLUSION

In this paper, we conducted a systematic and detailed igesisn
of the reliably of matching user profiles across real-wontdire
social networks like Twitter and Facebook. Our analysisdgd a
number of methodological and measurement contributions.

To understand how profile attributes used by matching sckeme
affect the overall matching reliability, we proposed a feawork
that consist of four properties Availability, Consistency, Imper-
sonability, and Discriminability ACID). Our analysis showed that
most people maintain the same persona across differerat st
works — thus it is possible to match the profiles of many users,
however, in practice there can be a non negligible number®f p
files that belong to different users but have similar attetualues,
which leads to false matches.

We showed that the reliability of matching schemes thatraieed
and tested on reliability non-preserving sampled datasetst in-
dicative of their reliability in practice. In fact, tradithal matching
schemes based on binary classifiers can only achieve a 1%#b rec
for a 95% precision to match Twitter to Facebook profiles iacpr
tice. To avoid these pitfalls we illustrated the right asptions we
can make about the matching problem and the correct methgglol
to evaluate matching schemes in realistic scenarios.

Finally, we proposed a matching scheme that is able to nétiga
impersonation attacks and reduce the number of false mstohe

achieve a 29% recall for a 95% precision. Our matching scheme

exploits a special case of the matching problem, namelythieaée
exists at most one matching profile. Although we cannot claim
that 29% is a high recall, humans cannot do much better (thigy o
detect 40% of matching profiles).
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APPENDIX
A. PROOFS FROM SECTION 3

A.1 Effective discriminability formula

In this section, we justify that, if we assume that the impeed-
ing profiles are independent from the other non-matchinglpso
we haveD = D - (pnr + nl - pr). We first apply the complete
probability formula:

ﬁ:Pr( s(v',v?) <th)

ax
a?:a2-non-matche!

max
a?:a2-non-matche!

:Pr( s(v',v?) < thla' not impersonate)jpnl

max  s(v',v%) <th|a' impersonatedip;.
a?:a2-non-matche !

@)

Then, we observe that theax on all non-matching profile is smaller
thanth iif both themax on all non-matching profile that are not im-
personating:’ and the max on the impersonatorsadfare smaller
thanth. Thatis:

—|—Pr(

Pr( max s(v',v?) < thl|a' impersonate)l

a?:a2-non-matcha !

= Pr( max
a2 :a2-non-matcha 1

a2 -non-impersos 1

s(v',v?) < th,

@)

max s(v',v?) < th’a1 impersonate)i.
a?:a2-impersonatez !

If the impersonating profiles are independent from the ottoer-

matching profiles, then the joint probability equals theduet of

probabilities:

Pr( max s(v',v%) < thla' impersonate>1
a?:a2-non-matche !

1 2
:Pr( s(v,v7) < th
a2:a2-non-matcha 1
«12—non—impersoa1

Pr(
a2

=D - nl;

at impersonate)i-

max
:a2-impersonatex !

s(v',v%) < thla' impersonate)i

recall = Pr (s(v', v%) > th|a2-matcha1) .
Then, we have
recall =Pr (s(vl7 v”?) > th|a®-matchea', v' andv® availablg
- Pr(v* andv” availabléa®-matchea)
+ Pr(s(v',v*) > th|a®-matcha',v" or v* not availablg
- Pr(v* orv® not availablén®-matcha ).
By convention,s(v',v?) = 0 if v orv? not available (a pair is
never declared a match by the classifier if either value isimgs.

Therefore Pr (s(v',v®) > th|a*-matcha', v" or v® not availablg =
0 and we haverecall = C - A by definition ofC and A.

To show(ii), first recall the definition of precision:
precision = Pr (a2-matchal|s(vl7 v?) > th).

To ease the equations reading, we simplify the notatiarf ehatche'
into simply match and similarly fos?>-non-matche'. By applica-
tion of Bayes formula, we compute

precision
B Pr(match s(v', v?) > th)
~ Pr(match s(v!,v2) > th) + Pr(non-matchs(v!, v2) > th)
recall - Pr(match
recall - Pr(match + Pr(non-matchs(vt,v2) > th)

Let no denote the number of profiles SV, By the assump-
tion of Theorenf i), we havePr(match < 1/n2, so that, since
Pr(non-matchs(v',v?) > th) > 0, we get

recall

iston < .
preasion = e call + na - Pr(non-matchs(vt, v?) > th)

Moreover, by definition ofD, we have

1-D
Pr(non-matchs(v', v®) > th) > —,
2
which gives
. recall
precision < ————
recall +1 — D

and concludes the proof of Theor&ii)-

We now show(iii) , by making three observations:

a. First, observe that, frorti), we directly get thatecall = 1 iif
A=C=1.

5Note thatn. includes impersonating profiles and hence formally
is a random variable. Rigorously, we should condition onviilae

of no and then take the expectation; however the result would be
unchanged hence we omit this detail for a lighter presemtati



b. Second, observe thatecision = 1iif D = 1. Indeed, we have
precision = 1 iif Pr(a*-non-matcha’, s(v',s?) > th) = 0,
which is equivalent tdPr (max 2.2 non-matchat S(v°, v%) > th) =
0 and hence td = 1.

c. Third, observe thaD = nl = 1 implies D = 1 and that, if
pr > 0, the converse holds too. We show the two separately.
(=) : Assume thatD = nI = 1. The result follows from the fol-
lowing facts: if D = 1 then the first term of{1) multiplying,; is
1; and from[(2), ifD = 1 andD = 1 andn/ = 1, then the second
term of [A) multiplyingp; is 1. Therefore,D = 1.

(<) : Assume thaD = 1 andp; > 0. If D < 1, then both terms
of (@) multiplying p,; andp; are strictly smaller than one which
contradictsD = 1. ThereforeD = 1. If nI < 1, the second term
of (@) multiplying p; is strictly smaller than one which contradicts
D = 1sincep; > 0. Thereforen] = 1.

The combination of these three observations implies Thmegle
(iii) . (In fact, these three observations give more detailedteesn

the impact of ACID on precision and recall than what is summa-
rized in Theoren]4ii) .)

B. ATTRIBUTE SIMILARITY METRICS

Name similarity: Previous work in the record linkage community
showed that thdaro string distancés the most suitable metric to
compare similarity between names both in the offline andnenli
worlds [10,[28]. So we use the Jaro distance to measure the sim
larity between real names and screen names.

Photo similarity: Estimating photo similarity is tricky as the same
photo can come in different formats. To measure the sinylari
of two photos while accounting for image transformations,wse
two matching techniquesi)(perceptual hashinga technique orig-
inally invented for identifying illegal copies of copyritgd content
that works by reducing the image to a transformation-resilffin-
gerprint” containing its salient characteristids [2] amnd) GIFT, a
size invariant algorithm that detects local features inmage and
checks if two images are similar by counting the number oélloc
features that match between two imades [19]. We use twaréliffe
algorithms for robustness. The perceptual hashing teaknipes
not cope well with some images that are resized, while thd SIF
algorithm does not cope well with computer generated images

Location similarity: For all profiles, we have the textual represen-
tations of the location, like the name of a city. Since saoéivorks
use different formats for this information, a simple texttampar-
ison will be inaccurate. Instead, we convert the locatiofatd
tude/longitude coordinates by submitting them to the Biij [&]].
We then compute the similarity between two locations as thesh
geodesic distance between the corresponding coordinates.

Friends similarity: The similarity score is the number of com-
mon friends between two profiles. We consider that two pefile
have a common friend if there is a profile with the same screen
name or real name in both friend lists. A more complex but po-
tentially more accurate method would have been to apply ahmat
ing scheme for each friend recursively taking other featieside
screen name and real name into account. As we will see, howeve
given two small lists of profiles on different social netwsrkeal
names and screen names alone can accurately identify mgtchi
profiles. Complementary, we could divide the number of commo
friends by the total number of friends. Preliminary resshlswed

no particular improvement in doing so.
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