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ABSTRACT
Analytic database workloads are growing in data size
and query complexity. At the same time, computer ar-
chitects are struggling to continue the meteoric increase
in performance enabled by Moore’s Law. We explore
the impact of two emerging architectural trends which
may help continue the Moore’s Law performance trend
for analytic database workloads, namely 3D die-stacking
and tight accelerator-CPU integration, specifically GPUs.
GPUs have evolved from fixed-function units, to pro-
grammable discrete chips, and now are integrated with
CPUs in most manufactured chips. Past efforts to use
GPUs for analytic query processing have not had wide-
spread practical impact, but it is time to re-examine and
re-optimize database algorithms for massively data-parallel
architectures. We argue that high-throughput data-parallel
accelerators are likely to play a big role in future sys-
tems as they can be easily exploited by database sys-
tems and are becoming ubiquitous. Using the simple
scan primitive as an example, we create a starting point
for this discussion. We project the performance of both
CPUs and GPUs in emerging 3D systems and show that
the high-throughput data-parallel architecture of GPUs
is more efficient in these future systems. We show that if
database designers embrace emerging 3D architectures,
there is possibly an order of magnitude performance and
energy efficiency gain.

1. INTRODUCTION
Due to recent technology trends including the

continuation of Moore’s law [16] and the break-
down of Dennard scaling [4], computing has be-
come energy-limited. Although device manufactur-
ers are continuing to add more transistors per chip
(Moore’s law), the threshold voltage of the transis-
tors is not decreasing at the same relative rate (the
breakdown in Dennard scaling) [4]. Unlike in the
past, database designers cannot rely on computer

architects to give increased performance for free; fu-
ture devices with double performance will consume
almost double the energy. Using ITRS projections,
Esmaeilzadeh et al. found that by 2024 we can only
expect a 7.9⇥ average speedup compared to today’s
processors from traditional architectural optimiza-
tions, more than 24⇥ less than if performance had
continued to follow Moore’s law [7].

However, there are two architectural trends that
can help mitigate this bleak projection: 3D-die stack-
ing and tightly-integrated accelerators. With 3D
die-stacking, multiple silicon dies are stacked on top
of one another (see Section 4 for more details). This
allows tightly-integrating accelerators with tradi-
tional CPUs to become more economical and com-
mon. Additionally, 3D die-stacking enables very
high-bandwidth memory systems, up to 1 TB/s in
some projections [1], and decreases the energy for
communication by a factor of 3⇥ [3].

Computer architects are already creating tightly-
integrated general-purpose commodity hardware ac-
celerators. SIMD hardware (short vector units e.g.,
SSE and AVX) is one example of this trend. Now,
like SIMD units, general-purpose graphics process-
ing units (GPGPUs) are moving onto the CPU die
and becoming first-order compute platforms. To-
day 99% of Intel’s and 67% of AMD’s desktop CPUs
ship with an on-die GPU [18], and server chips with
integrated GPUs have been announced [2]. In addi-
tion to tightly integrating GPUs and CPUs physi-
cally, new programming models, like heterogeneous
system architecture (HSA) [19] enable these sys-
tems to be easily programmed.

SIMD units, GPGPUs, and other data-parallel
architectures can have increased performance and
energy e�ciency compared to CPU platforms be-
cause they have lower overhead per processing el-
ement. For instance, in NVIDA’s Kepler GPU ar-
chitecture, 192 processing elements share a fetch,
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decode, and scheduling unit, compared to 8 process-
ing elements sharing a front-end in Intel’s Haswell
architecture. CPUs can waste 90% of the instruc-
tion execution energy on the front-end pipeline [11],
while GPU architecture amortizes this overhead across
tens or hundreds of hardware threads. Addition-
ally, through software-managed caches, large regis-
ter files, data-caches optimized for throughput, and
a high-degree of hardware multithreading, GPUs
can e↵ectively use hundreds of GB/s of main mem-
ory bandwidth, significantly improving performance
and energy for bandwidth-bound applications. Cur-
rent CPU memory systems are optimized for min-
imizing instruction latency with small bu↵ers and
large general-purpose caches. Thus, for data-parallel
applications, CPUs are less e�cient than optimized
for high-throughput data-parallel hardware.

In this work, we focus on the scan operation.
Scans are an important primitive and the workhorse
in high-performance in-memory database systems
like SAP HANA, Oracle Exalytics, IBM DB2 BLU
and Facebook’s Scuba. Scans are data-parallel op-
erations, and a series of scan algorithms have been
developed in the database community to exploit this
parallelism using hardware artifacts such as the par-
allelism within regular ALU words (e.g. [14]), and
SIMD to accelerate scans (e.g. [14, 21, 12, 5, 22]).

However, the parallelism from using CPU SIMD
extensions is limited. SIMD hardware sits in an
architecture design that is not optimized for high-
throughput data processing. The latency-centric
CPU memory hierarchy and execution model limit
the e↵ectiveness of the SIMD units. Using an ar-
chitecture explicitly designed to e�ciently execute
data-parallel applications can significantly increase
the e�ciency of processing database scans.

Figure 1 shows the energy and performance trade-
o↵ between CPU and GPU architectures. Even
though discrete GPUs have more computation re-
sources and higher bandwidth than CPUs, the per-
formance improvement is overwhelmed by overheads
due to copying data and operating system interac-
tion. In fact, the discrete GPU results in higher
response time (4⇥) and energy (6⇥) than a four
core CPU; this behavior validates why GPUs have
largely been ignored by database systems for scan
processing today. However, we find that today’s in-
tegrated GPUs mitigate many of these problems.
But, they only provide a marginal benefit (17%)
over the CPU since they are limited by the same
memory interface. Thus, the benefit of integrated
GPUs is also limited for database scan operations.
However, as we project into the future and exam-
ine 3D die-stacked systems, GPUs, or other highly

Figure 1: Performance and energy of scans on a
multicore CPU, discrete and integrated GPUs, and
a projection on a future high-bandwidth, highly
data-parallel architecture. Lower and to the left
is best.

data-parallel architectures, can provide a large ben-
efit over current CPU platforms (15⇥) and also 3D-
stacked CPU systems (4⇥). Thus, the use of GPU-
like high-throughput hardware can not be ignored
by database designer in the near future—this is the
central message of this paper. We provide initial ev-
idence in support of this position by examining the
implications for the database scan operator. (We
acknowledge that future work is essential to expand
this argument to other data processing operations).

2. GPGPU BACKGROUND
Graphics processing units (GPUs) have recently

become more easily programmable, creating the gen-
eral purpose GPU (GPGPU) computing landscape.
This trend began with 1st-generation discrete GPUs
that are connected to the system via the PCIe bus
which has higher latency and lower bandwidth than
main memory. Now, 2nd-generation integrated GPUs
that share the same silicon chip are becoming main-
stream. With emerging 3D die-stacking technology,
we will soon see 3rd-generation 3D GPUs that com-
bine the high performance of discrete GPUs with
the low latency and simple programming models of
integrated GPUs.

There are three key di↵erences between GPUs
and CPUs that make GPUs, especially future GPUs,
an important platform for database designers to
consider. First, GPGPUs employ very wide data-
parallel hardware. For instance, an AMD HD7970
can operate on 131,072 bits in parallel, compared
to only 256–512 bits in modern CPU’s SIMD hard-
ware. Second, GPGPUs are programmed with SIMT
(single-instruction multiple-thread) instead of SIMD
(single-instruction multiple-data). The SIMT model
simplifies programming the GPU’s wide data-parallel
hardware. For instance, SIMT allows arbitrary con-
trol flow between individual data-parallel lanes.

Finally, and importantly, GPU architecture can
be more energy-e�cient than CPU architecture for
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Figure 2: Flowchart showing how the CPU and
GPU interact in BitWarp.

certain workloads (e.g., database scans). Since many
data-parallel lanes share a single front-end (instruc-
tion fetch, decode, etc.), this per-instruction en-
ergy overhead is amortized. On CPU architectures,
the execution front-end and data movement con-
sumes 20–40⇥ more energy than the actual instruc-
tion [13]. Additionally, all of the parallelism is ex-
plicit for GPUs through the programming model,
while CPUs require high energy hardware (like the
re-order bu↵er and parallel instruction issue) to im-
plicitly generate instruction-level parallelism, which
wastes energy for data-parallel workloads.

As GPU hardware has become more closely inte-
grated with CPU hardware, the GPU programming
models have become more integrated with CPU pro-
gramming models as well. In this paper, we use the
heterogeneous system architecture (HSA) runtime
to program the GPU. HSA presents the program-
mer with a coherent and unified view of memory and
low-latency user-level API for using the GPU [19].

Past GPU APIs have significant overheads be-
cause they assume the discrete GPU model with
high latency and low bandwidth communication be-
tween the CPU and GPU. These overheads can sig-
nificantly a↵ect application performance. We find
that the discrete GPU performance is 16⇥ slower
than its potential because of these overheads.

Figure 2 shows the di↵erence between the tradi-
tional GPU APIs (2a), and new programming mod-
els like HSA (2b). This figure shows the steps re-
quired to execute a full query on these two systems.
The HSA flowchart elides both the operating sys-
tem driver overheads and the data copies. Because
of these changes, not only does the application per-
form better, but it is simpler to program as well.

Multicore CPU

Integrated GPU

DRAM Chip

DRAM Chip

DRAM Chip

DRAM Chip

Package substrate

Figure 3: A potential future 3D architecture. All
components shown would occupy a single socket.

3. BITWARP IMPLEMENTATION
To study scans on GPUs, we leverage previous

work accelerating analytical query processing on the
CPU: the BitWeaving scan algorithm [14]. BitWeav-
ing outperformed state-of-the-art scan algorithms
by leveraging intra-word parallelism on CPU hard-
ware and is similar to some industry solutions. We
have modified the BitWeaving algorithm to execute
e�ciently on the GPU. The main change in the al-
gorithm is increasing the logical execution width to
the size of the GPU’s data-parallel units.

BitWeaving uses a coded columnar layout, pack-
ing multiple codes per word. This mechanism allows
BitWeaving to leverage the 64-bit wide CPU word
to execute the scan predicate on many column codes
in a single cycle. In BitWarp, we leverage the en-
tire 4096-bit lane width of the GPU. BitWeaving in-
cludes two di↵erent algorithms, horizontal and ver-
tical, which refer to the way the codes are packed.
In this work, we focus only on BitWeaving vertical,
as it performs better than horizontal in all cases
on the GPU. BitWeaving vertical packs the codes
such that one bit of each code is in each consecu-
tive word. The paper by Li and Patel details the
algorithm and implementation of BitWeaving [14].

4. 3D ARCHITECTURE
A recent architectural trend is that “Die-stacking

is happening” [3] due to advances in fabrication,
cooling, and other technologies. There are many
wide-ranging implications of die-stacking from de-
vice manufacturing to system design. Die-stacking
has two important consequences for database de-
signers: higher memory bandwidth and increased
compute capability. Some project 1 TB/s of band-
width, more than 40⇥ the bandwidth available to-
day for CPUs [1, 6, 17]! Die-stacking also moves
memory closer to the computation resulting in lower
energy: a 3⇥ reduction for first-generation devices [3].
Also, die stacking allows multiple compute chips
(e.g. CPU and GPU dies) to be packaged together.

Figure 3 shows a potential architecture which lever-
ages 3D die-stacking. In 3D integration, separate
silicon dies are stacked directly on top of one an-
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other and connected by through-silicon vias (TSVs).
TSVs provide a high-bandwidth, low-latency, and
low-energy interconnect. In the architecture in Fig-
ure 3, TSVs connect the CPU and GPU, yielding
performance similar to an integrated die. Addition-
ally, TSVs connect both the CPU and GPU to die-
stacked DRAM. In such a system, we expect per-
formance similar to a discrete GPU, without any
overheads, and power similar to today’s integrated
chip. Figure 3 represents what is in one CPU socket
in a motherboard in future systems. 2.5D integra-
tion (not shown) is similar to 3D integration, except
chips are connected by TSVs in a silicon interposer
instead of directly stacked. 2.5D die-stacking has
similar characteristics to 3D stacking.

In addition to leveraging the high bandwidth of
TSVs, 3D die-stacked architectures also allow CPU
and GPU cores to use manufacturing processes cus-
tomized specifically for CPU or GPU needs. For
current CPU-only chips, hardware manufacturers
optimize their CMOS manufacturing process to re-
duce latency, using faster, less energy-e�cient tran-
sistors and thicker, wider wires that limit band-
width in exchange for lower latency. For current
GPU-only chips, hardware manufacturers optimize
their CMOS processes to increase bandwidth (at
the expense of latency), using slower, lower-leakage
transistors and thinner, narrower wires that maxi-
mize intra-chip bandwidth, but also significantly in-
crease latency. For current integrated architectures—
where the CPU and GPU share the same silicon
die—hardware manufacturers must strike a com-
promise between the incompatible, conflicting de-
mands of CPUs and GPUs. 3D die-stacking allows
the CPU and GPU to be manufactured on separate
chips using appropriately optimized manufacturing
processes, increasing the performance and energy-
e�ciency of both CPUs and GPUs.

Figure 3 shows one of many possible architec-
tures which leverage 3D or 2.5D die-stacking to in-
crease memory bandwidth and integrate a highly
data-parallel architecture. There are many ways
to architect the system to take advantage of these
trends of increased bandwidth and compute capa-
bility. Determining the best system architecture for
3D-stacked systems is an interesting direction for
future work.

5. METHODOLOGY
There are many possible designs for a highly data-

parallel system. Some examples include re-archi-
tecting CPUs by increasing the vector SIMD width
and changing their cache management policies, In-
tel’s Xeon Phi processor which has 72 simple in-

order cores with wide SIMD lanes [9], and GPU
architecture which is an example of a highly data-
parallel architecture that has already shown eco-
nomic viability. Although there are many possi-
ble embodiments, we believe that any highly data-
parallel architecture will share many characteristics
with GPGPUs. These characteristics include:

• Large number of simultaneous threads to gen-
erate the memory-level parallelism needed to
hide memory latency,

• Wide vector execution units that can issue vec-
tor memory accesses, and

• Many execution units to operate on data at
memory-speed.

Additionally, it is likely that programming these de-
vices will be similar to programming current GPG-
PUs. For instance, OpenCL is a flexible language
which can execute on GPUs, CPUs, and other ac-
celerators like the Xeon Phi. We focus on GPGPUs
as an example data-parallel architecture that has
already shown economic viability.

For a constant comparison point, we use AMD
CPU (A10-7850K) and GPU (HD7970) platforms in
our evaluation. We use a four core CPU at 3.7 GHz
and two di↵erent GPUs, an integrated GPU that is
on the same die as the CPU, and a discrete GPU
connected to the CPU via the PCIe bus. The GPUs
have 8 CUs at 720 MHz and 32 CUs at 1125 MHz,
respectively. The theoretical memory bandwidth
for the CPU-GPU chip is 21 GB/s, and the dis-
crete GPU’s memory bandwidth is 264 GB/s. We
use a single-socket system in our evaluation, but in-
tegrated CPU-GPU chips should scale to multiple
sockets similar to CPU-only chips.

We use the discrete GPU as a model to predict
the performance of the future die-stacked system.
According to the projection in [1, 6, 17], 264 GB/s is
a reasonable assumption for the memory bandwidth
in a first-generation die-stacked system, and the 32
CU chip in the discrete GPU will fit into a package
like Figure 3.

6. RESULTS
To measure the e�cacy of the GPU for the scan

operation, we measured the performance, power,
and energy consumed for the CPU and GPU hard-
ware. Figure 4 shows the time per scan over a 1
billion entry column (about 1 GB of data).

The multicore CPU is not an e�cient platform for
performing the scan primitive. Figure 4 shows that
the speedup of four cores over one core is only 60%.
Scan is an embarrassingly parallel operation, so we
expect almost perfect scaling from the scan algo-
rithm. The reason the CPU does not scale linearly
is that the CPU memory system is not designed to
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Figure 4: Performance of scan on 1 billion 10-bit
codes. Averaged over 1000 scans.
support high bandwidth applications. CPU caches
are built for low-latency, not high bandwidth.

The integrated GPU sees a small improvement
over the multicore with SIMD, a 17% speedup. This
improvement is because the integrated GPU’s more
e�cient cache hierarchy. GPUs are designed for
these types of high-bandwidth applications and have
a separate memory controller which can exploit the
memory-level parallelism of the application better
than the CPU.

Figure 5 shows the power and energy consumed
by the CPU and GPU when performing 1000 scans.
The data was obtained by measuring the full system
power; thus, it includes all of the system compo-
nents (e.g., disk, motherboard, DRAM, etc.). The
right side of the figure shows the total energy con-
sumed (power integrated over time).

Figure 5 shows that even though the four core
configuration and the integrated GPU take more
power than the one core CPU, they execute much
faster, resulting in lower overall energy. Addition-
ally, the integrated GPU is more e�cient than the
four core CPU in power and performance.

In the future, it’s likely that the GPU will become
even more energy e�cient compared to the CPU.
Each GPU compute unit (CU) (similar to a CPU
core) has lower power per performance than a CPU
core [13]. Also, each GPU CU is smaller area per
performance than CPU cores. Thus, there can be
many more GPU CUs than CPU cores, exemplified
by our test platform.

6.1 3D Architecture Performance
There are two characteristics of 3D architecture

that significantly a↵ects the performance of the scan
primitive. First, by stacking a GPU die with the
CPU die, each processor type is more highly opti-
mized and can take more total area, thus increas-
ing the overall compute capability of the system.
Second, since the chip-memory interconnect uses
TSVs, the memory bandwidth is orders of magni-
tude higher than current systems. These attributes
together create a higher performance and more en-

Figure 5: Power for 1000 scans and energy per scan.

ergy e�cient system than today’s architectures.
The right side of Figure 4 shows the estimated

performance of the CPU and the GPU in a 3D die-
stacked system. To estimate the CPU’s speedup, we
assume that adding 4⇥ more cores will result in a
4⇥ speedup. This is a very aggressive estimate; the
CPU is unlikely to get perfect speedup when adding
more cores. There is only a 60% speedup from one
to four cores; however, the added bandwidth will
increase the CPU performance too. We err on the
side of overestimating the CPU performance.

To estimate the 3D GPU’s performance, we run
the scan operation on a current discrete GPU with
32 CUs (4⇥ more execution resources than the in-
tegrated GPU) with a bandwidth similar to future
die-stacked systems [6]. We discard all of the over-
heads associated with using the discrete GPU, since
on a die-stacked system, the overheads will be min-
imal, as we found with the integrated GPU.

Using this projection, we find that a die-stacked
GPU system can provide 15.7⇥ higher performance
than today’s non-stacked multicore CPU system.
The 3D GPU is also 3.9⇥ faster than the aggressive
3D CPU estimate.

In addition to the performance gains, 3D die-
stacked DRAM enables lower energy per access by
using smaller and shorter wires than o↵-chip DRAM.
Coupled with the GPU’s e�ciency, it is likely that
the energy benefit of this system is much higher
than the performance benefit.

We predict that to take advantage of the increas-
ing memory bandwidth from 3D die-stacking, data-
base designers must embrace high-bandwidth, highly
data-parallel architectures, and we have shown that
the GPU is a good candidate. Looking forward,
CPU architecture will continue to become more ef-
ficient, including for data-parallel workloads. How-
ever, GPUs will also increase in e�ciency at a sim-
ilar rate. We believe that as these trends come
to fruition, it will become increasingly important
for database designers to leverage high-bandwidth
data-parallel architectures to keep pace with the
highest possible performance.
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7. CONCLUSIONS AND FUTURE WORK
Previous works have shown the huge potential of

using GPUs for database operations (e.g., [8, 10,
15, 20]). However, many of these works have not in-
cluded the large discrete GPU overheads when oper-
ating on large in-memory databases. We show cur-
rent physically and logically integrated GPUs mit-
igate the problems with discrete GPUs and show a
modest speedup and energy reduction over multi-
core CPUs for scan operations.

Looking forward, computer architects are pursu-
ing many interesting avenues to increase the mem-
ory bandwidth significantly, such as 3D die-stacking.
However, conventional multicore CPU architecture
is not well suited to e�ciently use this increased
memory bandwidth. We advocate that to take ad-
vantage of these architectural trends, database de-
signers should look to data-parallel accelerators, of
which the GPU is one example. If database design-
ers embrace these new architectures, there is possi-
bly an order of magnitude performance and energy
e�ciency gain for scans. Examining these issues for
a wider range of database workloads is an interest-
ing direction for future work.
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