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ABSTRACT
The paper introduces an architecture to support system en-
gineering on the cloud. It employs the main benefits of the
clouds: scalability, parallelism, cost-effectiveness, multi-user
access and flexibility. The architecture includes an open
toolbox which provides tools as a service to support vari-
ous phases of system engineering. The architecture uses the
Open Services for Lifecycle Collaboration (OSLC) technol-
ogy to create a reactive middleware that informs all stake-
holders about any changes in the development artefacts. It
facilitates the interoperability of tools and enables the work-
flow of tools to support complex engineering steps. Another
component of the architecture is a shared repository of arte-
facts. All the artefacts generated during a system engineer-
ing process are stored in the repository, and can be accessed
by relevant stakeholders. The shared repository also serves
as a platform to support a protocol for formal model de-
composition and group work on the decomposed models.
Finally, the architecture includes components for ensuring
the dependability of the system engineering process.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.9 [Management]

1. INTRODUCTION
The complexity of the systems we are building now and
will be building in the near future is the main challenge
for the engineering community. Even though this increase
in complexity is mainly driven by the market needs, there
are other contributing factors such as regulations and stan-
dards. This calls for development and deployment of the
advanced system and software processes that will assist all
of the stakeholders in creating systems that are critical and
dependable. These system processes will need to incorpo-
rate different steps, technologies, tools and services to meet
the ever-changing needs of stakeholders.

Such advanced processes can be dramatically improved if
they rely on an effective supporting architecture (infrastruc-
ture) that brings together and interconnects varying ele-
ments involved in system engineering. It will facilitate trace-
ability, change management and the agile capturing and
maintenance of requirements. This support will also help
with tool integration and collaboration between developers,
and between developers and stakeholders.

By recording the history of all system development and stor-
ing all development artefacts in a dedicated shared reposi-
tory, such architecture will be able to support reactive sys-
tem engineering when a change in any development artefact
is propagated to all relevant parties (artefacts, tools and de-
velopers). This will allow the developers to react to this
change and ensure traceability of all development artefacts
and change management.

The repository of artefacts is the critical element of this
architecture. There are now various types of shared reposi-
tories that support some phases of system engineering, such
as SVN and GitHub. These repositories are mainly focused
on the storing, accessibility and version control of the files
that are kept in them. Our repository is part of a larger ar-
chitecture that does not only support change management
and traceability of system engineering artefacts, but links
the artefacts with the tools/engineering steps in which they
are either produced or used.

This short paper discusses our on-going work on developing
such an architecture. We decided to use the cloud technol-
ogy to support the architecture because of various benefits
that it can bring. Hence, all the components of this architec-
ture are being developed as a REST (Representational State
Transfer) web service, which also ensures interoperability of
these components. The architecture will be typically ac-
cessed by the stakeholders through a client plug-in into the
individual IDEs (e.g. Eclipse-based) they use on their desk-
top computers. The overview of our architecture is shown
in Figure 1.

2. BACKGROUND
Modern systems are getting increasingly complex with a
mixture of products and services that are used in their devel-
opment to meet the changing needs of businesses. This situ-
ation currently poses some challenges to system engineering.
The development process has to adopt dynamic technologies



Figure 1: High-Level Representation of the Cloud-Based Architecture

and development methods to meet these needs. A frame-
work that effectively supports the Open Services for Life-
cycle Collaboration (OSLC) [1] specification can be used to
address the problem of interoperability of products and ser-
vices. OSLC is a new industry-driven standard for tool inte-
gration, that in particular supports requirements and change
management. To further make the system development pro-
cess dynamic and reactive, a shared repository of system
engineering artefacts for various phases of system engineer-
ing is critical. Here, changes made to these artefacts could
be sent as notifications to all stakeholders of the artefacts.
The notification process could be supported through a pub-
lish/subscribe mechanism. The publish/subscribe paradigm
is receiving increased attention for the loosely coupled form
of interaction it provides in large scale settings [12]. In prac-
tice, the subscribers register their interests in a topic or a
pattern of events and then receive events matching their
interest. This idea could be used in system engineering to
support change management and traceability of artefacts. In
general, a dependable architecture that embodies the above
introduced development methods and technologies for sys-
tem engineering can appropriately accommodate the com-
plexity of this process. Provisioning such an architecture
on the cloud should be beneficial, as the cloud computing
provides relatively cheap resources, multi-user access, global
access, scalability, etc.

The OSLC technology and cloud computing are briefly dis-
cussed below. This section is completed by introducing some
closely related architectures for system engineering.

2.1 OSLC
Open Services for Lifecycle Collaboration (OSLC) [1] is a
global forum that develops standards and technologies for

application life-cycle management. The motivation for its
work is the fact that different organisations use different
regulations and standards (management tools and data for-
mats). This makes it difficult to exchange management data
across the organisational boundary. Some obstacles in ex-
changing data may be the variety of data schema, comput-
ing platforms, management tools, and scalability matters.
OSLC provides an interface for interoperability of tools and
data formats. It addresses integration scenarios for a grow-
ing number of domains, including change management, test
management, requirements management, automation, and
performance monitoring. OSLC is important for IT organi-
sations faced with a mix of system environments and appli-
cation models (Cloud, Mobile, Social, Big Data Analytics,
etc.). It can help to provide the capacity for more effective
automation, communication and collaboration in system en-
gineering. Here, different components of a system can imple-
ment different vendor tools that produce different formats
of data and artefacts, and yet can function with no or neg-
ligible conflicts. Also, a workflow of tools can be created to
support system engineering.

2.2 Cloud Computing
Cloud computing[11] is changing the current IT delivery
model for services. The technologies working behind cloud
computing are cluster computing, grid computing, peer-to-
peer (P2P) computing, etc. The cloud platform offers scala-
bility, flexibility, elasticity, on-demand resources utilisation,
etc.

The industry and academia are now widely using the cloud
platform for system development and research to gain its
benefits. An interesting example though not system engi-
neering related, is a joint project between IBM and Microsoft



[15] which aims to instil greater confidence in computations
outsourced to the cloud. Pinocchio, a built system for ef-
ficiently verifying general computations while relying only
on cryptographic assumptions is developed. With Pinoc-
chio, the client creates a public evaluation key to describe
the computation; this setup is proportional to evaluating the
computation once.

There has been some work on supporting software develop-
ment on the cloud. For example, the scalability of the cloud
(Amazon Web Service - EC2) was used to test a complex
set of test cases of the Google Chrome software [14]. The
testing benefited from this as the large-scale software test-
ing typically requires substantial computation and storage
resources. Moreover, this work has greatly benifited from
the use of the cloud as the testing process can be automated
through a workflow requiring minimal human intervention.
Another example is Microsoft Research project (Rise4Fun)
[13] to support system verification using the Z3 SMT solver,
on the cloud. Z3 exposes a number of APIs, but is in itself a
low-level tool. The project provides various ways that lower
the barrier of entry to using Z3. This includes using pro-
gramming language abstractions and exposing Z3 as a web
service on the cloud.

Many desktop applications are being migrated onto the cloud
due to the benefits of cloud computing to support program-
ming on the cloud. Examples of such IDEs are Eclipse Orion
[18], Codenvy [4], CEclipse [20], etc. Cloud or Online IDE is
based on the Browser/Server structure, and allows program-
mers to write their programs through the browser. Cloud
IDEs provide the same basic features as the local IDEs, such
as code syntax highlighting, and compiling. In addition they
support collaborative development, easy setup with just a
web browser and network connection, etc.

2.3 System Engineering Architectures
The two strands of relevant work are the Evidential Tool
Bus [17] and the Open Framework for Software Engineering
Tools (OPHELIA) [8].

With regards to the Evidential Tool Bus [17], the au-
thors propose a tool combination of theorem provers, model
checkers, static analyzers, test generators, etc. where many
tools and methods are used in an ad-hoc combination within
a single analysis. This sort of combination requires an inte-
grating platform - a tool bus - to connect the various tools
together; but the capabilities required go beyond those of
platforms such as Eclipse. In the tool bus, all tools are
co-equals, and are mainly coordinating components of the
tool bus. The entities exchanged among clients of the bus -
proofs, counterexamples, specifications, theorems, abstrac-
tions - have logical content, and the overall purpose of the
bus is to gather and integrate evidence for verification or
refutation.

The OPHELIA [8] platform provides a unified software en-
gineering tools integration technology. The concept behind
the project involves the definition of standardized set of in-
terfaces abstracting functionalities of different kinds of soft-
ware development tools. To maintain implementation lan-
guage independence, CORBA technology is used to define
the interfaces. As part of the Object Management Group

(OMG) work, they have developed a comprehensive dis-
tributed open systems framework known as Common Ob-
ject Request Broker Architecture (CORBA). CORBA is a
standard for object middleware used in the heterogeneous
environment. The main weakness of OPHELIA is of poor
memory management, which is inherited from the CORBA
platform. Also, the use of the CORBA platform as a mid-
dleware for integration introduces overhead costs through
its use or brokers (translators).

3. ARCHITECTURE DESCRIPTION
The overview of the proposed architecture supporting sys-
tem enginering on the cloud (see Figure 1) is now described
briefly in terms of components, connectors, constraints, and
dependability.

Components: The main sub-systems of this architecture
are System and Component Interfaces, Tool and Repository
Coordinators, Tool Box, and Shared Artefacts Repository.
System and Component Interfaces provide globally
unique names of handlers, based on internet domain names.
This is generally specified as a unique Uniform Resource
Identifier (URI). Also, access to system resources is reg-
ulated. All access requests that do not meet the defined
standards are declined and noted. Provisions against ma-
licious attacks are made. Again, the interface determines
the capacity and ordering of resource requests for trans-
actional management purposes. A standard of the rela-
tionships between components are described in the compo-
nent interface(s). This defines the type, means and scope
of transactions between components. The Tool Coordi-
nator manages central updates of tools, defines the rela-
tionships between tools (workflow of tools), manages sys-
tem artefacts manipulation processes (analysis, prediction,
optimisation, scheduling, etc), and facilitates data presenta-
tion in different predefined (standard) formats. Also, the
Repository Coordinator manages search and retrieval
of artefacts. This coordinator ensures the support for re-
active system engineering by notifying all relevant parties
(artefacts, tools and developers) when there is a change in
any development artefact. This process is made possible
through a publish/subscribe mechanism. These coordina-
tors (tool and repository) together ensure real-time moni-
toring, change management, traceability, capacity planning
and fault diagnostics and tolerance. The Tool Box brings
together various tools that support the system engineering
phases. It also provides access to various versions of tools,
provides fail-over support for tools, and facilitates communi-
cation between tools. The Shared Artefacts Repository
stores system engineering artefacts (source code, test cases,
models, patterns, documentations, requirements, etc.), it
employs an efficient indexing process (to facilitate prompt
access to artefacts), and it asynchronously backs its contents
up in a remotely located repository.

Connectors: A connector defines the type of relationships
between the components of a system. The connectors used
in this architecture are Asynchronous Event Notifica-
tion for external requests (from clients such as IDEs and
Tools) to the system interface (API), Peer-to-Peer Asyn-
chronous Event Notification (System Interface (API) to
Repository Coordinator, Search and Retrieval requests to
Repository Coordinator, and Shared Repository to Back-Up



Repository), and Peer-to-Peer Synchronous Procedure
Call (Shared Repository to Back-Up Repository)

Constraints: Some constraints that have been experienced,
and those that can be potentially experienced later are re-
sources (time, budget, etc.), technology constraint, local
standards (development, coding, etc.), public standards (HTTP,
XML, XML Schema, WSDL, WADL, etc.), standard proto-
cols, standard message formats, and skill profile of developer.

Dependability: Components such as the Toolbox system
and the Shared Artefacts Repository system will have
respective modules (Architecture Dependability Mod-
ule) to ensure dependability. These modules will use avail-
ability and reliability metrics to assess the dependability of
these two components. A supervisory dependability compo-
nent (Architecture Dependability Supervisor) shown
in Figure 1 collects availability and reliability data from the
dependability modules, and compares them with those from
the cloud platform metrics. Cloud service providers such
as the Amazon Web Service, make dependability metrics
available for all their users’ virtual machines. These metrics
are mainly classified as availability and reliability metrics
[6]. The dependability data collected by the modules are
obtained and sent synchronously as Procedure Calls to
the dependability supervisor at defined time intervals. This
process further reassures the dependability of the architec-
ture.

The aim of our work is to design, implement and evaluate
a cloud-based architecture (Figure 1) supporting system en-
gineering. Its main novel characteristics are a middleware
for reactive change management and traceability, a shared
artefact repository supporting collaboration, an open sys-
tem engineering toolbox ensuring tool interoperability, and
a support to assess its dependability in run-time.

4. CURRENT WORK
This section reports the ongoing and recently completed
work on developing several critical elements of the general
architecture. The aim has been to conduct proof of concept
designs and to explore possible solutions that will contribute
to the architecture to be developed. We are using the two
Eclipse IDEs in this work: the Rodin toolset for rigorous
development of complex critical systems using Event-B [5]
and the SafeCap IDE [10] developed to assist signalling en-
gineers in designing complex stations and in ensuring their
safety.

4.1 Reactive Middleware
The OSLC technology is being used in the architecture to
create a reactive middleware that collect and interlink sys-
tem engineering artefacts to support traceability and change
management. We have created an OSLC adapter that runs
as a cloud-based web service connected to Rodin using a
plug-in designed to initiate the request for the project ele-
ments. The plug-in adds an embedded HTTP server (jetty)
and implements, with the help of the Lyo framework and
Apache Wink, a RESTful java servlet that serves Rodin
projects and their parts. The developed prototype links
requirements and formal models to the OSLC-based noti-
fication system. It exposes formal Event-B models up to
the level of individual expressions and predicates to external

tools (such as ProR[19] for requirement engineering). Every
major element of a model has its unique identifier and is
made available for other tools to inspect.

4.2 Model Checking Tool
In this project, a model-checker called ProB[9] is wrapped
as a web service based on the REST protocol to become
part of the architecture toolbox. A client plug-in created for
the SafeCap IDE sends specifications of railway signalling
models for verification on the developed web service. The
web service is deployed on Tomcat Server 6.0. The main
CRUD (Create, Read, Update and Delete) operation used
is the POST to receive REQUESTS from client IDEs as new
entries of data (JSON file) into the web service. Another op-
eration, GET is used to facilitate a RESPONSE with POST
to return the verification results to the client.

4.3 Theorem Provers on the Cloud
In this work we have created a theorem prover tool as part
of our architecture toolbox and a plugin that connects the
Rodin IDE to this tool. The tool is using the Why3 software
[3] that brings together a collection of some well-known the-
orem provers (Alt-Ergo, Z3, Yices, Vampire, SPASS, etc.).
The web service is hosted on the Amazon AWS cloud. The
plugin maps Event-B mathematical language into the Why3
notation, the tool uses Why3 to implement subsequent trans-
lation into TPTP and SMT-LIB formats compatible with a
wide range of existing provers.

In this work we have also created and experimented with a
shared artefact repository as part of our architecture (Figure
1). The cloud-based prover service keeps a detailed record
of all artefacts for every proof attempt in the shared arte-
fact repository. These artefacts are mainly proof obliga-
tions, supporting lemmas and translation rules. Provisions
are made to obfuscate sensitive proof obligations. The repos-
itory is a relational database service running on the Amazon
AWS cloud [2]. Here, all queries from the prover service are
made as HTTP requests using the repository’s URI. We plan
to perform some analysis of relative prover performance by
mining this repository to identify the correlation between
prover success, verification time, etc.

5. FUTURE WORK
Our future work will focus on creating an integrated envi-
ronment out of the elements of the architecture being de-
veloped, and on evaluating it using realistic industry-driven
case studies. Some other elements of the architecture that
need to be developed are described below.

Formal Model Decomposition Support: The current
state of methodological and tool support for formal model
decomposition and collaborative development is one of the
main obstacles to the cost-efficient deployment of formal
verification in industry. In case of Event-B, the formal de-
composition approaches are founded on the principle of top-
down development. This enables rigorous proof of property
preservation through the refinement process. Unfortunately,
the way decomposition in Event-B works does not ensure
that the code produced for decomposed parts will work effi-
ciently, and that it will be at the same level of details if the
decomposition is made at earlier steps of design. We believe



it is necessary to step aside from the formalities of decompo-
sition and explore how decomposition may be efficiently in-
tegrated into the development process. To this end, we pro-
pose a decomposition method based on a parallel event com-
position (over disjoint state variable lists) and event fusion
(over intersecting state variable lists)[16]. With this method,
there is no automatic re-composability guarantee and mod-
ellers may disregard formal correctness conditions of model
decomposition. In place of the re-composability proof, we
offer a protocol that guarantees eventual re-composability
and tolerates temporary re-composability conflicts. This
method will be naturally supported by our cloud-based ar-
chitecture: the protocol will be operating over the artefact
repository that will ensure that all relevant artefacts are kept
and shared among the group of developers. As this first step
of this work we have already created an artefact repository
as a web service in which the models elements are extracted
and saved uniquely with the access permissions granted to
the group of stakeholders.

Dependability: With the movement of software engineer-
ing from local computers to the cloud, software develop-
ers need to be assured of the dependability of the engineer-
ing support deployed to the cloud. The contracts provided
by cloud service providers attempt to assure developers of
the cloud performance, availability and reliability. However,
due to their inherent complexity and large scale, production
cloud computing systems are prone to various run-time prob-
lems caused by hardware and software faults, cloud run-time
management decisions and environmental factors [7]. Sys-
tem developers and the cloud service providers need to be
informed about possible violations of the contracts (when
for instance, there is a request timeout due to the devel-
oper specifying a longer timeout than the cloud’s contract
provides). We will introduce both modular and system level
dependability components that will be implemented to mea-
sure in run-time the metrics [6] that are related to the ar-
chitecture performance, reliability and availability. The data
gathered will be compared with those from the cloud plat-
form and the contracts, then a notification will be triggered
to the developer(s) and the cloud service provider.
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