A Reference Model for Simulating Agile Processes

lan J. De Silva
desilva@cs.umn.edu

Sanjai Rayadurgam
rsanjai@cs.umn.edu

Mats P. E. Heimdahl
heimdahl@cs.umn.edu

Department of Computer Science and Engineering
University of Minnesota, Twin-Cities
200 Union St. S.E., Minneapolis, MN 55455, USA

ABSTRACT

Agile development processes are popular when attempting
to respond to changing requirements in a controlled manner;
however, selecting an ill-suited process may increase project
costs and risk. Before adopting a seemingly promising agile
approach, we desire to evaluate the approach’s applicability
in the context of the specific product, organization, and staff.
Simulation provides a means to do this. However, in order to
simulate agile processes we require both the ability to model
individual behavior as well as the decoupling of the process
and product. To our knowledge, no existing simulator nor
underlying simulation model provide a means to do this. To
address this gap, we introduce a process simulation reference
model that provides the constructs and relationships for
capturing the interactions among the individuals, product,
process, and project in a holistic fashion—a necessary first
step towards an agile-process evaluation environment.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; 1.6.m [Simulation
and Modeling]: Miscellaneous; K.6.3 [Management of
Computing and Information Systems]: Software Man-
agement—Software process

Keywords

Reference Model, Process Evaluation, Agent-based Simula-
tion, Agile, Process Modeling

1. INTRODUCTION

Agile development processes are intended to allow compa-
nies to respond to market change in a controlled manner [1].
However, we do not yet fully understand which agile tech-
niques or activities are successful and why they are successful;
little data and few models are available to support investigat-
ing and evaluating these techniques. This lack of information
makes process selection particularly difficult. Rather than
blindly adopting some favored or fashionable Agile process,

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ICSSP’15, August 24-26, 2015, Tallinn, Estonia

ACM. 978-1-4503-3346-7/15/08...
http://dx.doi.org/10.1145/2785592.2785615

which could lead to goal violation (e.g., unexpected budget
overruns, schedule delays, or missing functionality), it would
be highly desirable to be able to evaluate candidate processes
before adoption, considering the specific project context—i.e.
the people, product, and project—in the evaluation. Our
long-term goal is to reduce the risks associated with pro-
cess adoption through a priori process evaluation within an
environment that accounts for project context. Simulation
provides a sufficient basis for such an environment as it can
capture the dynamic behaviors of the system.

There are a number of existing process simulation en-
vironments; however, these environments generally fail to
separate the product from the process within their simulation
model and many treat the individual as a simple information
processor—ignoring individual and non-process-compliant
behavior. Because we wish to evaluate processes, we need
to extricate the process under evaluation from product con-
cerns. Moreover, agile techniques particularly emphasize
the importance of people in determining the success of a
software development effort [5]. We, therefore, desire to ex-
plicitly characterize individual behavior beyond simple data
processing and message generation. We hypothesize that
if people, and by extension, individual behaviors are truly
important to project outcomes, then modeling and simu-
lating individual behavior in conjunction with the process,
product, and project will improve the accuracy of predicted
outcomes. As agents provide a natural and intuitive analogy
for individuals [7,11], we focus on agent-based simulation.

As a prerequisite for simulation—both for developing the
simulation engine and for modeling a process—we require a
reference model that describes the base constructs and rela-
tionships that we wish to model. In this paper, we present
an agent-based reference model describing the interactions
among the people, product, process, and project, thereby lay-
ing the groundwork for a simulation-based process evaluation
environment.

The paper is structured as follows. In section 2 we lay
out the requirements for our reference model—including the
desired outputs for a simulation engine implementing the
model. We then discuss the current approaches to simulation
as they relate to our requirements (section 3). Section 4
describes a small scenario that we will use to construct the
reference model in section 5. We discuss the reference model
as it relates to our requirements in section 6, and close by
describing the next steps in section 7.

2. MODEL REQUIREMENTS

In order to develop a process evaluation environment we
require a reference model that captures the essential simula-
tion model constructs and their relationships. The reference
model can then be implemented by a simulation engine and
transformed into a grammar for simulatable input models.
Figure 1 illustrates how the reference model fits into our
plan to create a process evaluation environment. In this
section, we lay out our criteria for the reference model—the
ability to model agility and the independence of the process
specification—as well as our desired simulation outputs.

Evaluation Environment
Defines Constructs
and Relationships For Reference
Model
Implemented
B
A4 \ 4 Y
Simulation Simulation Simulation
Inputs Engine Ouputs

Figure 1: The reference model constructed here de-
fines a grammar for simulation inputs and a high-
level design for a concrete simulation engine.

2.1 Modeling Agility

As the mantra goes, “the only thing you can count on is
change”. This is no less true for software development. Agile
processes—as lightweight, iterative and incremental software
development processes—provide a means for addressing in-
evitable requirement changes in a structured manner. These
processes emphasize (1) individuals and their interactions;
(2) early and frequent customer feedback elicitation; (3) low
process ceremony—Ilow control over the team resulting in
less documentation and higher levels of informal communi-
cation [14]—with a focus on delivering working software [1].
The objective of this work is to define a reference model suit-
able for expressing simulatable agile process models. Such a
reference model must capture these aspects of agile processes.

Any experienced software developer will tell you that in-
process requirements change—be it arrivals, removals, or
small changes—generally causes rework. Thus, to model
requirements changes, we must model more than just the
change. We must model the potential effects of rework on
the project deliverables and duration.

Trusting the team empowers individual team members to
perform their job however they see fit. To capture this and
team interactions, we require a rich behavioral component
within the simulation model; one that allows us to model the
behaviors exhibited by each individual composing the team
even if the behaviors deviate from the process. Indeed, this
behavioral component must support heterogeneous entities
to allow us to model stakeholders embedded in the team—i.e.
the product owner on some scrum teams [6]. Further, because
agile processes emphasize low process ceremony, many agile
processes prescribe fewer steps and/or do not define a total
ordering of these steps.

83

Eliciting early and frequent customer feedback is primar-
ily a process concern. However, customer feedback drives
requirements change as well as requirement prioritization.
Both aspects must be captured in the reference model.

In order to elicit feedback faster and reduce process cer-
emony, agile processes emphasize “working software over
comprehensive documentation” [1]. This necessitates model-
ing the project deliverables in some way.

2.2 Process Specification Independence

We desire to represent both the product and process within
our reference simulation model. Often, models combine soft-
ware development process activities with the product’s work
packages into a single concept, called tasks [3,12, 15, 30].
These tasks are incorporated into a single task network (de-
pendency network) regardless of if they represent an activity
or a work package. This coupling has a number of conse-
quences for simulation modeling. First, with tasks capturing
both process and product work, process changes can trigger
changes in the overall task dependency network, resulting
in increased modeling costs and a greater opportunity for
model errors. Second, agile processes may not prescribe the
exact flow of process activities, leaving activity sequencing
to the individual. By coupling process and product work, we
inhibit the modeling of individual process activity sequencing
and prevent the modeling of individual deviation from the
prescribed process. Third, to model changing specifications
in a simulation—one of our requirements for modeling ag-
ile processes—the simulation engine must generate all tasks
that the process prescribes for the work specification and
determine where to fit each of them in the project network.
This requires detailed process knowledge that cannot simply
be encoded within the project network.

We, therefore, desire a simulation model that decouples
the process and product work, breaking direct dependencies
between them.

2.3 Desired Simulation Outputs

Given that we want to compare processes through simu-
lation, we need to identify the specific metrics we wish to
predict in order to create a suitable reference model.

Project success is often measured with relation to project
cost, schedule, scope, and quality—i.e. did the project finish
on-time, on-budget, and with all features present as spec-
ified [2]. Indeed, these constraints—often called the triple
constraint! —are commonly used to rebalance a project when
the project deviates from the plan. However, these concepts
are ambiguously defined.

Minimally, we require metrics to cover each of the aspects
of the triple constraint. For our schedule metric, we use the
duration of the project from the time of the start of the
project to its end. Cost is commonly measured in total effort
across all individuals, however, since pay is not constant, we
wish to include the disaggregated effort—each individual’s
time expended on the project. Scope metrics are difficult
to define because they rely on quantifying the amount of
functionality provided by the software product. Often, scope
is estimated using source lines of code, which varies signifi-
cantly due to a number of factors including style, language,
and operational definitions [13]. Because point systems, such
as function points, provide a consistent mechanism for quanti-

1Quality either replaces or is treated as part of the scope
depending on the author.

fying functionality without the need for complete knowledge
of the target technologies [13], we select these as the basis
for the scope metric.

Product quality is particularly difficult to assess. Because
processes are viewed as mechanism for ensuring product
quality [10,13] and process quality is easier to assess, process
quality is often used as an indirect measure of product quality.
However, there is an ever-growing body of literature that
challenges the credibility of using process quality metrics
as indirect product quality measures [22,24]. Rather than
predicting quality using indirect metrics, we wish to predict
the product quality directly. To this end, we require that our
simulation output include a product quality metric. While
there are a number of metrics for product quality, defect
density—the ratio of the number of defects to the number of
opportunities to introduce errors—is the metric we choose
due to its widespread use [13]. In measuring the defect
density we define the number of defects as the number of
unfixed defects in the product deliverables at the end of the
simulation. The number of opportunities for errors is, at its
essence, the scope of the product, be it source lines of code
or function points. For consistency, we reuse our previously
defined scope metric here.

The metrics defined thus far align with the definitions used
in literature [7,19,25]. Although several authors define addi-
tional metrics—including the number of generated errors [19]
and process productivity [25]—these metrics can be derived
from the metrics we defined earlier and could be trivially
included in the simulator output if desired.

Thus, our set of outputs are the project duration, effort,
disaggregated effort, product functionality, and defect den-
sity.

3. EXISTING APPROACHES

There are numerous approaches to a priori process eval-
uation. One such example, Martin and Raffo’s hybrid-
simulation, is used to evaluate the impact of process changes
on project duration, effort, and quality [19]. Their model
captures a process as a procedural workflow with develop-
ment artifacts moving through it. In this model, the process
activities and product work packages are separated; work
packages (one type of artifact in this model) flow into activi-
ties and are transformed into new artifacts. Another example
is the system dynamics process model used to provide sup-
port in balancing new function development and support
activities [16]. This approach models development actions
as flows between levels (or stocks of completed tasks) with
an information network that computes simulation variables
based on the values at certain points in the flow. Both dis-
crete event simulation as well as Martin and Raffo’s hybrid
approach require full prescription of the process sequence,
making it difficult to model situations where there are multi-
ple possible activity orderings to achieve the same outcome.
Systems dynamics approaches abstract out the individual
completely, preventing analyses that depend on individual
behavior [18].

To compare the impacts of team composition and pro-
cess adoption on the outcomes of an engineering design
project, the integrated product team (IPT) work defines
both a multi-agent simulation model and simulator that in-
corporate the individual, team, product, and process into a
single model [7,30]. The objective of this model is to sup-
port comparison through sensitivity analysis, not to predict

84

project outcomes. This model defines three types of agents:
those that complete tasks, those that assign tasks, and those
that answer questions. Tasks, which may be process activities
or work packages, are arranged into a dependency network,
where a task cannot be executed until its predecessors are
complete. As discussed earlier, this coupling of process and
product concerns is undesirable. Further, in the IPT model,
task quality is estimated, but rework is not modeled. This
failure to explicitly capture an important reality of projects
poses a risk to the accuracy of their predictions, as finding
and fixing defects is a key component of the development
process.

The virtual design teams (VDTs) simulator [12] attempts
to capture the emergent behavior and communication of
design teams using a hybrid discrete event simulator and
multi-agent system. The VDT model treats human actors
(agents) as information processors that, as a result of the
activity they are performing, generate outgoing messages,/pro-
cess exceptions. Based on its individual properties, an actor
selects a message (including task assignments) to process.
Tasks are richer in this model, including not only task depen-
dencies but properties to aid in the model’s computations.
One such computation triggers rework of the task by the
actor. However, rework is isolated to only the actor’s current
task excluding all previously completed artifacts. In fact,
VDT only measures the process quality, not the product
quality [12], providing only indirect quality estimates. There
have been many versions of the VDT model, and, like the
IPT model, these models do not separate the product from
the process [17].

Another agent-based simulator, TEAm Knowledge-based
Structuring (TEAKS), attempts to support team configura-
tion by predicting team performance [20]. In this simulation,
behavior selection is based on fuzzy logic over behavior-
influencing characteristics such as personality trends, emo-
tional state, and social traits [20] as well as the assigned
task’s difficulty and type [21]. This model focuses on the
agent interactions rather than accurate estimations [21], and
it is unclear what they do to model the agent’s environ-
ment. Like VDT and IPT, there is no separation of process-
from product- tasks. Further, the tasks are fixed on input,
precluding the explicit modeling of requirements arrivals.

The Articulator project is an effort to create a meta-
mdoel and agent-based simulation to evaluate processes
and predict project outcomes [23]. The Articulator’s meta-
model—composed of three primary components: non-human
resources, agents, and tasks—integrates people, process, prod-
uct, and project concerns within a single model. The com-
ponents of this meta-model decompose into a number of
elements. At the lowest level, a task is a fully-specified
action that may describe organizational work or a process
activity [23]. Thus, it too fails to separate out the pro-
cess from the product. The Articulator specifies goal-based
agents who select actions by reasoning over predicates at
three levels—the domain, task, and strategy spaces—and
generating new facts. This limits the model as it cannot
express agent preferences toward particular actions [28].

In this section, we have reviewed a number of simulation
approaches, none of which satisfy our requirements. The
hybrid-simulation and system dynamics models require full
prescription of the process activities thereby prohibiting
individual process deviation. The articulator meta-model
and the models underlying the IPT, VDT, TEAKS simulators

fail to separate the product from the process. We, therefore,
aim to construct a new reference model that can satisfy our
requirements for modeling agility while providing process
specification independence.

4. A MOTIVATING SCENARIO

Before we construct our reference model, we present a brief
motivating scenario, based on one of the author’s experience,
of a process and target context that we wish to model and
ultimately simulate. We will use this scenario to aid us in
constructing the reference model.

A team is going to start a mobile app development project
and desires to evaluate a set of processes to determine which
is going to best fit their needs. The project is time con-
strained. The product’s requirements decomposition is par-
tially depicted in Figure 2. In this illustration, smaller boxes
represent work packages—a specification of a small piece of
function—and the larger boxes represent non-overlapping
groupings of those work packages that will, together, deliver
value to the customer upon completion—e.g. stories for most
agile teams. In our discussion, work packages do not include
process activities.

InitialUl Content
contentMenu
initialView » settingsMenu contentView
!
navBar
Figure 2: The abbreviated work package depen-

dency network (arrows point to successors).

The team is composed of an inexperienced project manager,
a stakeholder that represents the customer, one experienced
developer with an affinity for test driven development (TDD),
one experienced developer with strong testing skills, and two
inexperienced developers.

Having seen scrum [27] work for other teams, the project
manager wishes to model and evaluate this process. To reduce
resistance to process adoption, he plans to allow individuals
to continue to use their preferred personal processes and roles
with a common definition of “done”. Thus, one developer
would act as a tester for others, one would follow TDD, and
the remaining developers would determine their own activity
sequencing, often using the tester to verify their code.

S. REFERENCE MODEL

Given our previous requirements and the motivating sce-
nario, we construct our reference model from the underlying
structures of the scenario we wish to model.

In the reference model’s requirements discussion, we de-
scribed an initial set of constructs that we wish to include as
well as some high-level relationships among them. Because
we wish to model the behaviors of heterogeneous individuals,
we introduce autonomous agents to our reference model. We
choose this representation because both agents and humans
are (1) bounded problem-solving entities, (2) situated in an

85

environment with limited observability of the environment,
(3) autonomous, and (4) reactive [7,11]. Further, agents
provide a way to encapsulate behavior and decision-making,
isolating changes and reducing coupling. This does not pre-
vent us from representing entire teams as agents, but in this
work we focus on modeling only individuals.

As a consequence of modeling individuals, we must also
model interactions. We model such interactions as messages
passed from an originating agent to one or more other agents.
The VDT model, in addition to communication constructs,
defines the concept of a communication channel. The channel
introduces a number of properties for communications that
capture if the communication will interrupt the recipient
and enable reasoning about message priority [12]. This
mechanism can also introduce communication delays and
provide a way to model globally-distributed teams, therefore
we include a communication channel construct in our model.

Because we use agents to represent individuals, we require
some concept of an action that an agent can perform, provid-
ing a mechanism for the agent to do any number of things,
such as generate messages. The agent, then, must be able to
choose an action and execute it, exhibiting a behavior. Addi-
tional details about the workings of the agent are beyond the
scope of this work as our focus is to describe the essential
modeling constructs and relationships for process models.

To aid us in decoupling work packages from process activi-
ties, we define a number of constructs. The first, artifacts,
represent the deliverables of the project. Work packages
specify the smallest unit of useful function that may be
added to one or more artifacts. Work packages may be de-
pendent on other work packages, forming a partial ordering.
Process activities describe how to perform work specified
by a work package, essentially enabling an agent to trans-
form a work package into a small piece of function within a
given artifact. They too are partially ordered according to
their dependencies. Agents, while executing an activity, may
generate defects and messages to other agents. The VDT
model computes the frequency of communication among
agents working on interdependent tasks based on the task’s
degree of interdependency and uncertainty [12]. We have
addressed interdependencies, however we require complexity
information for each work package in order to model both
communication generation and how long an agent, executing
an activity, will take to transform a work package.

Thus far, we have defined messages, communication chan-
nels, agents, work packages, activities, artifacts, and func-
tions as basic constructs that we need to create a process
model and its execution context—i.e. the people, prod-
uct, and project concerns. When attempting to construct
a model for the scenario described in the previous section,
it becomes immediately apparent that these constructs are
insufficient to describe a model that can capture individual
personal processes (for TDD), shared/co-dependent personal
processes (for the tester role), work grouping (for grouping
work and earning value), the team process (for the overall
scrum process), and knowledge (for skills). The remainder
of this section focuses on describing how we can apply our
constructs and relationships—defining additional ones as
required—to model these concerns.

5.1 Modeling Individual Processes

Test driven development (TDD) is a development practice
that is summed up as Think, Red, Green, Refactor (Fig-

ure 3) [29]. In this process, the developer thinks through
the function, develops a test case that fails on execution,
develops just enough of the code to ensure the test suite
passes, executes the test, then refactors the code ensuring
all tests continue to pass. At the end of this process, the
function is complete and the process continues for the next
function.

[New Feature]

Think —>» Red Green |—>»| Refactor J

|

[

Y

Figure 3: The TDD process [29].

In this process, the developer works on a single work
package, however, there are numerous activities required
to complete the work package and thereby complete the
function. We already include an activity as a construct
within our reference model. Activities are partially ordered
by dependency and may be executed more than once for a
given work package.

An interesting implication of this case is that the analysis
performed in the refactoring activity may trigger rework in
other, completed functions. With TDD, this occurs in the
refactor activity. Moreover, the agent may not have sufficient
skills to perform the necessary rework. Because we cannot
always contain the rework, we need a way to model it in some
way. The defect construct supports this, but should rework
that does not result in an error impact the quality metric?
Rather than limiting concrete model expressiveness, we defer
this decision to the modeler and include a rework construct
to support either choice; defining a defect as a particular type
of rework. Because both work packages and rework specify
work to be performed, we endow the rework construct with
much of the same attributes as a work package. Additionally,
defects (and potentially rework) may be latent or found.
Latent defects are attached to the generated function until
found. Only found defects are available for fixing.

The TDD process also highlights the fact that activities
produce different types of function. For example, the red (test
case implementation) activity in TDD generates automated
unit tests for the product, but does not add function to the
product itself. It would not be correct to attach the test
case implementation of the work package to the product
artifact, since the test suite may undergo different process
rigors as the product artifact. Instead, we wish to add the
test code to a separate artifact. We could accomplish this
by specifying the target artifact on the work package, but
this has the potential to couple the process and product.
Instead, we indirectly reference the artifact by storing the
target artifact type in the activity and, when needed, using it
to find the particular artifact. The newly generated function
object—the automated test cases in our example—is then
attached to the found artifact—the test suite.

5.2 Modeling Shared Processes

Some teams split activities among team members to lever-
age particular skills/affinities or reduce confirmation bias
in verification and validation activities. Thus, we need to
add a mechanism to represent this in our model. Assume

86

we have an activity dependency network as depicted in Fig-
ure 4. In this network, no activity may begin until all of its
predecessor activities have completed. Assume Understand
Work Package Specification must be performed by every-
one who works on this work package. Further, assume all
activities that do not cross the dotted line must be performed
by the same agent or else it must be redone by someone else
(as may be the case when there is low ceremony or if new
developers are added to the team).

We wish to model a set of activities that must be performed
by the same person. A natural way to represent this through
roles. Roles restrict the type of agent that may perform an
activity on a given work package. Further, roles may be
reassigned as required, resulting in lost effort.

Supplementing the existing model with roles does not
prohibit us from allowing an agent to be both a tester and
developer. We wish to allow the process to define if this is
permissible or not, but specifying roles allows us to define
allowable agent-activity assignments in interesting ways—
such as an activity that must be performed by each agent
working on the work package. We illustrate this with the
role annotations in Figure 4.

5.3 Modeling Value Groups

Many agile teams use stories to describe a feature from the
user’s perspective [4]. Stories are composed of small tasks,
and, upon completion of all tasks, the story is marked as
complete. Only when the story is marked as complete may
the team claim credit for completing the feature. At this
point, the product’s functionality is considered to increase—
similar to the 0/100 rule in earned value management [15].
Thus, in order to model the increase of product functionality
(and value), we require a construct that allows us to group
work packages into value groups.

5.4 Modeling Team Processes

Scrum is a popular agile process that allows for a large
amount of flexibility (Figure 5). In this process, the team
performs work in a fixed-time iteration (sprint) to incremen-
tally develop a product. For each sprint, the team plans the
sprint (the planning meeting/kick-off); executes the plan,
holding regular scrum meetings to briefly exchange status;
demo the product and gather customer feedback (the sprint
review); and analyze the successes and failures of the previous
iteration (the sprint retrospective) [27].

We observe that there are different behaviors exhibited
and activities performed within each process context as de-
termined by the developer’s role. Further, we observe that
each context is composed of a set of child contexts or specific
activities. For a developer that uses TDD for his develop-
ment process, the develop context is composed of the TDD
activities: Think, Red, Green, Refactor. The sprint, itself
a context, is composed of other contexts—i.e. develop and
each of the meetings. Like activities, contexts at the same
level are partially ordered. Each context may specify a set
of roles defined for contexts/activities contained within it as
well as role assignment constraints. As stated earlier, roles
restrict the activities that may be performed by an agent
in that role. We expand this so roles can also be used to
restrict which contexts may be entered by an agent.

Let’s discuss roles further through an illustrative example.
In the scrum process there are three roles defined for the
team—the product owner, scrum master, and developer—

Unit Test Integrate

Y

Product Product

®

3 Design | Implement
2 Product ”| Product
>
Understand Work

444444 Package

Specification
% Specify Specify
2 Logical » Concrete

Execute

Implement

Tests

Tests
Q)

Tests
®

Tests
O,

Figure 4: Example activity dependency network (arrows point to successors). The role annotations are shown
for a tester (°T’) and developer (°D’). ’*!’ indicates that the activity must be performed by every agent.

with external stakeholders interacting with the team at cer-
tain points [27]. Let’s say that a team is about to start
a scrum meeting. Upon entering the scrum meeting the
developers all behave in the same way, each answering the
three status questions. This is itself a new behavior for de-
velopers specific to the scrum meeting context. The scrum
master also has different responsibilities within the meeting
context. Stakeholders, including the product owner, are gen-
erally required to remain quiet if they are permitted to join
the meeting at all. We, therefore, see effectively three roles
within the scrum meeting context: developer, scrum master,
and stakeholder, each with context-specific actions they may
perform. These context-specific actions are different from
the behaviors exhibited outside of the scrum meeting con-
text. There are a number of ways to model this behavior
change—including using the parent definitions, overriding
the parent roles, or replacing the parent’s roles—each with
their own merits. Thus, we want child contexts to support
role overriding, accessing parent roles, or removing all parent
roles from the agent.

In scrum, there are two artifacts (databases) that help
the team track the product’s stories and record plans: the
product backlog and sprint backlog [27]. Both decentralize
work assignments, empowering developers to retrieve work
packages according to pre-established guidelines. It is con-
ceivable that there could be other databases, such as a defect
tracking system, to record/store work packages during the
simulation. To address this in simulation models, we intro-
duce an additional construct, the backlog, that may contain
value groups, work packages, discovered rework, or found
defects. In scrum, backlogs may belong to subsets of the
team—i.e. certain individuals have responsibilities over the
backlog—however, we leave assigning and enforcing such
responsibilities as a detail of the input model.

5.5 Modeling Knowledge

Within the sprint, developers work on work packages from
the sprint backlog, stopping regularly to participate in the
scrum meeting. Scrum does not define specific development
activities or any form of partial ordering of the activities to
be performed when completing a work package. This is left
to the team to define should they choose to do so. There
are a natural set of activities that developers must perform
when developing a function for a given type of artifact as
well as a natural partial ordering of those activities.

Further, the scrum process does not define how work pack-
ages are assigned to individuals. The team could assign them

87

Sprint
s Sprint Execution

.’/\/__) Planning Yy

5| Meeting Scrum

"1 Meetin LEEIED
Start |_> g
New k_)
Sprint

False |_‘
@ Sprint Sprint
Retrospective Review

: True

Figure 5: The scrum process. Initial set-up has been
omitted.

during the sprint kick-off meeting or individuals could select
work packages according to some team-specific high-level prin-
ciples, such as completing the highest priority work packages
first. Work packages may also be assigned according to the
combination of resource constraints and qualifications [27].
Resource constraints, or the availability of resources, can
be captured as part of each agent. However, when is someone
qualified to work on a work package? For software developers
and other intellectual workers, fitness for work is based on the
individual’s quality of knowledge within a number of different
knowledge domains. While there are a number of ways to
classify knowledge [8,26], software development literature
generally focuses on declarative knowledge—knowledge based
in fact, either semantic knowledge or experiential (episodic)
knowledge [26]—and procedural knowledge. Indeed, the
process constructs within our reference model encode one
form of procedural knowledge. To allow expression of the
quality of that procedural knowledge, we wish to include
within the agent the ability to deviate from the modeled
process and independently sequence activities and contexts.
However, in the authors’ experience, there are a number of
knowledge domains that must be modeled including product
domain information, product information (e.g. specifica-
tions and current progress), and organizational structure—
declarative knowledge—as well as skills—procedural knowl-
edge. The reference model, thus far, contains a means to
model some product information in the form of work packages
and their dependencies. Organizational knowledge should
be included within the agent as it describes not just the
static structure of the organization, but also the inter-agent
relationships and varies by agent. Modeling information
and procedures that are required to complete an activity for

a work package—including skills, product knowledge, and
domain knowledge—requires a new construct to represent
this knowledge. We know that an agent requires knowledge
to perform work; the quality (or level) of which determines
the speed to complete work and quality of the resultant
product. However, simply adding knowledge requirements
to work packages and activities increases coupling. If, for
example, we add skills knowledge to the work package, then
we must specify all required skills for any possible activity
that could be performed on the work package. Similarly, if
we add application/application-domain knowledge or specific
technological skills to the activity, we have effectively tied
the activity to the project and cannot reuse the construct
with different products. In order to separate the product
and process, we need to associate knowledge requirements
with the work product, activity, and target artifact; we at-
tach domain and application knowledge requirements to the
work package, foundational skill requirements (e.g. behavior
driven development, architecture, or programming skills) to
the activity, and specific technology skill requirements (e.g.
specific languages or libraries) to the artifact. However, as
a reference model, this is simply guidance to those who use
this to build a concrete model.

In addition to simply requiring certain pieces of knowledge,
the work packages in the IPT model have a difficulty level that
must match the knowledge quality (competency-level) of the
agent [7]. Using this mechanism, the simulation can ensure
the sufficiency of the agent’s knowledge. We incorporate this
into the reference model as it will further improve simulation
output accuracy, capturing the amount of time spent by the
agent acquiring the necessary quality of knowledge. The
specifics of agent knowledge acquisition is left to future work.

Attaching knowledge to artifacts poses an additional prob-
lem: what happens if there are artifacts that require different
skill sets, such as a server written in Java and a client written
in .Net? We don’t want to attach these to the same artifact,
but in the current model our only choices are to either create
two artifacts of the same type, or specify them as two separate
types. The former leads to ambiguity for the activity when
trying to attach a completed function to an artifact. The
later leads to activity duplication, again tying the process to
the product. Rather than introducing ambiguity or greater
coupling, we can introduce a new construct, the artifact set,
that allows us to group related artifacts. With this construct,
the Java server and its related test artifact would be defined
in one set, the .Net server and its related test artifact would
be in a second set. An integration testing artifact can be
defined as needed in a third set or as part of the test artifact
of either of the other two sets. To ensure product and process
separation, the work package must indicate the artifact set
that the activities should target.

5.6 Putting it All Together

In developing the reference model, we have explored a
number of relationships necessary to model our motivating
scenario. For clarity we illustrate many of these constructs
and relationships in Figure 6. Using the constructs defined
in our reference model, we show an example of the input
model in Listing 1.

Let’s walk through how a simulation of our scenario’s
model might progress. For ease of discussion, we assume
that the simulation progresses when the simulation clock
“ticks”. When the simulation starts, each of the six agents

88

Agent: aCleverTester
OrganizationStructure:
Knowledge:

testing , level 5
java7, level 3
jUnit4 , level 4
androidSDK, level 2
androidStudio, level 3

Product: someApp

ArtifactSet: myArtifactSet
Artifact: app
Type: application
Knowledge: // Skills
java'T
androidSDK
androidStudio
Artifact: testSuite
Type: test
Knowledge: // Skills
java'’
androidSDK
androidStudio
jUnit4
ValueGroup: initialUI
Value: 5
WorkPackage: initialView
ValueGroup: initialUI
ArtifactSet: myArtifactSet
Complexity: 3
Prerequisites: —
Knowledge: — // Domain Knowledge

Process: scrum
Backlog: productBacklog
Backlog: sprintBacklog
Context: develop

Parent: sprint
Prerequisites:
<Agent>.Role =— teamMember

notEmpty (sprintBacklog)
Activities:
implementTests
Roles:
developer
tester
Pausable:
Properties:
exitOn (sprintTimeout)
pauseOn (scrumMeetingTime)

true

Activity: implementTests
Role: Tester
ArtifactType: test
Knowledge: // General Skills
testing
Prerequisites:
exists(<WorkPackage>. ArtifactSet

ArtifactType: application ,
Function: <WorkPackage>.name)
complete (specifyTests)
Generates: functions

Listing 1: A subset of our scenario’s input expressed
using the reference model.

executes>

/ Legend \

dependency

association

Backlog

aggregation

| Rework | |Work Package

composition

requires

assumes

CommChannel

f

inheritance

‘

name | class

L | Activity

Agent competencylLevel

Defect

Value Group class (added

| requiredLevel Knowledge

Iy

requiredLevel for clarity) /

Figure 6: The constructs and relationships in the reference model. The work construct above represents the
objects required by the agent to complete some work—that is, perform an activity on a work package.

assume a role for the scrum context: the four developers—
including aCleverTester—assume the developer role, the
project manager assumes the scrum master role, and the
customer representative assumes the product owner role.
The scrum project is initialized—causing the product owner
to populate the product backlog—and the sprint kick-off
meeting is held—populating the sprint backlog. Assume the
team communicates with each other and decides that when
they enter the Sprint Execution context, they will start
with the Develop child-context.

As a team, they enter the sprint context and the developer
agents enter the Develop context per the context prerequi-
sites. At scheduled times, the agents suspend existing actions
and enter the Scrum Meeting context.

Since there is only one work package that is available for
work (i.e. not blocked by prerequisites), two agents work
on it (Figure 2). Assume these agents are aCleverTester,
who takes on the role of tester, and one of the inexperienced
developers takes on the developer role. Each of these agents
work on the activities defined for their role (Figure 4), includ-
ing both of them executing the Understand Work Package
Specification activity. Let’s fast forward a bit. Upon com-
pletion of an activity, aCleverTester selects an activity to
perform by looking at the available activities for its role and
determines which one it can perform, based on the prereq-
uisites. aCleverTester notices that all of the prerequisites
have been satisfied for the Implement Tests activity, so it
performs the Implement Tests activity for the initialView
work package. As part of the simulation, aCleverTester
determines its outputs for the current tick based upon its
knowledge levels compared to the required knowledge levels,
the rules in the activity (e.g. find defect/rework, generate la-
tent defect/rework), the work package’s properties, and other
properties of the agent. If we assume the simulation pro-
gresses in discrete time intervals (ticks), then the output of
the agent at the end of a tick could be nothing (i.e. continue
to perform the activity for the work package), the newly com-
pleted function for the artifact (in this case the TestSuite),
or other required objects—messages sent to other agents
to improve knowledge, generate rework items, and discov-
ered defects in any of the previously completed function—to
complete the work. Generated defects and, potentially, the
generated rework are added to the sprint backlog so other
agents may work on it.

While working on the project, each agent tracks the amount
of time it spent on this project, in terms of ticks, meanwhile

&9

gaining development skill and domain knowledge. Upon
function completion, the work package is marked complete.
The process dictates when to award credit for value group
completion and in our scenario, this is done either during
the scrum meeting or upon exiting the Sprint context.

Because no other work packages are available and all roles
for the available work package have been assigned, the other
developer agents idle. This time is not counted toward
their time on the project. However, when there is work
available for the idling agents and the agents are available,
the agents perform work according to their own activity
ordering. If the modeler wishes to model preference for
particular activity orderings—i.e. strategies—our reference
model would support this.

In order to simulate requirements changes, we include a
special type of agent that generates work package changes
(including addition and removal) according to some specified
criteria and arrival rate. Change requests, modeled as a type
of communication, may include information about a change
to an existing work package, changes to the dependency
structure, and/or a new work package, depending on the
change. It is up to the specific implementation to determine if
the generator agent holds onto change requests until queried,
if the agent deposits them into a backlog that other agents can
pull from, or if the agent notifies others of changes without
solicitation. The product owner enacts these changes to the
existing work packages in the product backlog if they have
not been moved to the sprint backlog, otherwise, it schedules
rework to change completed or in-progress work packages
that result in the loss of product functionality. Because we
are using agents, it is possible to model behaviors in which
the product owner agent ignores the prescribed rules and
pushes the changes on the team mid-sprint, however defining
agent behavior is left to future work.

In a scrum process, the sprint retrospective allows the team
to improve the process based on the team’s observation of
previous sprints. While this allows for process enhancement
in real projects, this is beyond the scope of both our model
and planned evaluation environment. However, this meeting
does consume time and can have non-tangible effects on the
team, thus we still include it in the model and allow the
particular agent implementation to model the non-tangible
effects, such as morale improvements.

The simulation progresses in much the same way we have
described here, and, according to some pre-specified condi-
tion, the simulation terminates. The simulator then computes

and returns the project duration, effort, disaggregated effort,
product functionality, and defect density.

Computing the duration and effort metrics is straight-
forward. As mentioned, our functionality metric increases
when all work packages within a value group are completed.
As work packages change, we alter the amount of functionality
provided by the product, as necessary. There are a number
of ways to quantify scope decreases. One such method is to
reduce it proportional to the loss of complexity within the
value group. We allow this to be defined in the input model.
Defect density is computed by summing up the number of
unfixed defects—those defects still associated with artifact
functions at the end of the simulation—and dividing it by
the scope.

6. DISCUSSION

In this paper we set out to construct an agent-based refer-
ence model suitable for describing process simulation models.
These models must include constructs that represent the
processes as well as the target context—the people, product,
and project. At the outset we outlined some requirements
for the reference model. The reference model must explicitly
support modeling agility and process-product independence.

6.1 Modeling Agility

While our reference model was built around a specific
scenario that we wish to model, we believe the constructs
and relationships that comprise the reference model are suit-
able for modeling an arbitrary agile process as the reference
model has a means for capturing (1) individual behavior and
interactions, (2) in-process requirements changes, (3) trust
and low-process ceremony, and (4) incrementally-developed
product deliverables.

Our reference model allows implementing models to rep-
resent individual behavior using agents as abstractions of
people. While our reference model does not prescribe the
agent’s behavior, it does capture the agent’s relationships to
other model constructs. The specific agent representation
will dictate the behaviors the agent may or may not express;
however the established relationships constrain the otherwise
unbounded behavior of the agent.

In our discussion about applying the reference model to
our motivational scenario, we described how we could model
in-process requirements change through a generator agent.
Further, we described how an agent can perform work with
low process prescription and ceremony, empowering the agent
to perform activities in whichever order it chooses. We also
provide a means for agents to communicate or otherwise
acquire knowledge when its own knowledge is insufficient to
complete an activity for a work package.

Because artifacts are composed of functions in our reference
model, we have the means to model incremental product
development and function removal.

6.2 Process Specification Independence

Driven by our desire to provide a means for process experi-
mentation, we set out to decouple the process from the prod-
uct within the simulation model. With our reference model,
we achieve this by breaking direct dependencies among ac-
tivities and work packages. The work package’s artifact set
and the activity’s artifact type properties together provide a
means to look up the target artifact of the activity. If the
specified artifact exists, it will receive the function once pro-

90

duced; if it doesn’t exist, the activity will be skipped. In this
way, we separate the base product and process constructs.

Greater care is required to break coupling caused by knowl-
edge requirements. Earlier, we proposed a division of knowl-
edge requirements that we believe will break the knowledge
coupling by associating knowledge with the constructs that
need it the most. In our reference model, we propose associat-
ing (1) domain and application knowledge requirements with
work packages, (2) foundational skills (e.g. testing ability)
with activities, and (3) specific technology skills (e.g. lan-
guages or libraries) with artifacts. Artifacts, representing the
project deliverables, are encoded using specific technologies.
In contrast, activities may be used by multiple processes and
work packages by multiple activities making both constructs
poor candidates for specifying specific technology knowledge
requirements. Work packages, describing the properties of
the work to be performed, require domain and application
knowledge to understand them. Activities, describing how
to complete a task in a technology independent way, require
generalized knowledge to complete the specified steps. Thus,
we have a partitioning of the knowledge in our model that
supports process-product independence.

We believe these constructs and relationships sufficiently
break the direct dependencies between the specific process
and product concerns allowing a modeler to change the details
of one without altering the other.

7. NEXT STEPS

The reference model presented here lays the groundwork
for holistic process modeling for simulation. Given our par-
ticular focus on agile process modeling, we defined our con-
structs around a specific scenario we wish to model. However,
this technique only provides ad hoc validation of the refer-
ence model. Other approaches do not validate their base
constructs and relationships, rather they evaluate the simula-
tion’s effectiveness. Given enough models, this demonstrates
their underlying model’s expressiveness; unfortunately, this
fails to measure the quality of their grammar in terms of com-
pleteness. We wish to create a grammar from our reference
model and systematically evaluate it. Ontological evaluation,
using the Bunge-Wand-Weber (BWW) approach [9], shows
promise as a method for evaluating both grammar expres-
siveness and completeness deserving of further investigation.

This work describes the base constructs and the nature
of the relationships; however, it does not specify the exact
quality of those relationships such as when an activity should
complete or when a rework item should be generated. Ad-
ditional work is required to determine the quality of the
relationships described here. A few authors [7,12] do this
for their simulation frameworks by developing a theory to
describe their model’s relationships and validating it through
comparison to similar theories as well as empirical studies.
These studies include surveys to discover the model parame-
ters, case studies to compare simulation outputs to reality,
and testing with a human expert oracle to analyze differences
in the output from a known good case.

Thus far, we have treated agents as black boxes, describing
behavior and externally visible properties in relation to other
model constructs. However, agents are a key simulation
component and must be fully modeled. Minimally, we require
a behavior model supporting agent reasoning as well as a
learning model. There are a number of different ways this
has been done in literature; from agents that generate plans

using knowledge collected about the world to agents that
select the next action to perform based on their prediction of
the utility (or desirability) of the resultant world [28]. While
more work is necessary to determine which form of agent will
best suit process simulation, we suspect that a utility-driven
agent will be a better fit as the agent can easily handle plan
deviations.

In this work we constructed an agent-based reference model
describing what we believe are the constructs and interactions
essential to process modeling for simulation. This model will
serve as the basis for a process evaluation environment that
will enable further research into agility and will aid project
managers in selecting the right process for their context—i.e.
the desired product, the team developing the product, and
the project constraints.

8. ACKNOWLEDGEMENTS

We would like to thank Gregory Gay, for the insightful
reviews of the early reference model.

9. REFERENCES

[1] Manifesto for agile software development.
http://agilemanifesto.org/, 2001.

Chaos manifesto 2013: Think big, act small. Technical
report, The Standish Group International, Inc., 2013.
A Guide to the Project Management Body of Knowledge
(PMBOK® Guide). Project Management Institute,
Incorporated, Newtown Square, PA, 5 edition, 2013.
State of Agile Survey, 9th Annual.
http://www.versionone.com/pdf/state-of-agile-
development-survey-ninth.pdf, 2015.

A. Cockburn. Characterizing people as non-linear,
first-order components in software development.
Technical Report HaT Technical Report 1999.03,
Humans and Technology, Oct. 1999.

[6] M. Cohn. Scrum methodology and project management.

http://mountaingoatsoftware.com/agile/scrum.

R. Crowder, M. Robinson, H. Hughes, and Y.-W. Sim.
The development of an agent-based modeling
framework for simulating engineering team work. IEEE
T Syst Man Cy A, 42(6):1425 —1439, Nov. 2012.

M. Gorman. Types of knowledge and their roles in
technology transfer. J Technol Transfer, 27(3):219-231,
2002.

P. Green and M. Rosemann. Integrated process
modeling: an ontological evaluation. Inform Syst,
25(2):73-87, 2000.

W. Humphrey. Managing the software process.
Addison-Wesley, Reading, MA, 1989.

[11] N. Jennings. On agent-based software engineering.
Artificial intelligence, 117(2):277-296, 2000.

Y. Jin and R. Levitt. The virtual design team: A
computational model of project organizations.
Computational & Mathematical Organization Theory,
2(3):171-195, Sept. 1996.

S. Kan. Metrics and Models in Software Quality
Engineering. Addison-Wesley, Toronto, 2 edition, 2003.
K. Knoernschild. Software Process - Maturity,
Formality, Ceremony. http:
//apsblog.burtongroup.com/2008/11/software-
process---maturity-formality-ceremony.html,
Nov. 2008.

[9]

[10]

[12]

[13]

[14]

91

[15] E. Larson and C. Gray. Project Management: The
Managerial Process. McGraw Hill, New York, 5 edition
edition, Mar. 2010.

M. Lehman, G. Kahen, and J. Ramil. Simulation
process modelling for managing software evolution. In
S. Acunia and N. Juristo, editors, Software Process
Modeling, number 10 in Int Ser Softw Egr, pages
87-109. Springer US, Jan. 2005.

R. Levitt. The Virtual Design Team: Designing Project
Organizations as Engineers Design Bridges. J Organ
Des, 1(2):14, Aug. 2012.

R. Martin and D. Raffo. A model of the software
development process using both continuous and
discrete models. Software Process: Improvement and
Practice, 5(2-3):147-157, 2000.

R. Martin and D. Raffo. Application of a hybrid
process simulation model to a software development
project. J Syst Software, 59(3):237-246, 2001.

J. Martinez-Miranda, A. Aldea, R. Banares-Alcéntara,
and M. Alvarado. TEAKS: simulation of human
performance at work to support team configuration. In
Proc 5th Int Joint Conf on Auton Agent Multi-Ag,
AAMAS ’06, pages 114-116, New York, NY, USA,
2006. ACM.

J. Martinez-Miranda and J. Pavén. Modelling Trust
into an Agent-Based Simulation Tool to Support the
Formation and Configuration of Work Teams. In

Y. Demazeau, J. Pavén, J. M. Corchado, and J. Bajo,
editors, 7th Int Conf Pract Appl Agents and Multi-Ag,
number 55 in Advances in Intelligent and Soft
Computing, pages 80-89. Springer Berlin Heidelberg,
2009.

J. McDermind. Software safety: Where’s the Evidence.
In Proc 6th Aust Worksh Saf Crit Sys and Softw,
volume 3 of SCS ’01. ACM, 2001.

P. Mi and W. Scacchi. A knowledge-based environment
for modeling and simulating software engineering
processes. IEEE T Knowl Data En, 2(3):283 —289, Sept.
1990.

M. Neil and N. Fenton. Predicting software quality
using Bayesian belief networks. In Proceedings of the
21st Annual Software Engineering Workshop, pages
217-230. NASA Goddard Space Flight Centre, 1996.
L. Putnam and W. Myers. Five core metrics. Dorset
House Publishing New York, 2003.

P. Robillard. The Role of Knowledge in Software
Development. Commun ACM, 42(1):87-92, Jan. 1999.
K. Rubin. Essential Scrum: A practical guide to the
most popular Agile process. Addison-Wesley, 2012.

S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, Upper Saddle River,
NJ, 3 edition, 2010.

J. Shore. The Art of Agile Development: Test-Driven
Development, Mar. 2010.

Y.-W. Sim, R. Crowder, M. Robinson, and H. Hughes.
An agent-based approach to modelling integrated
product teams undertaking a design activity. In Proc
ASME Int Des Eng Tech Conf Comput Inf Eng Conf,
2009, volume 2, pages 227-236, San Diego, CA, Sept.
2009. ASME.

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]
[26]
27]

(28]

29]

(30]

http://agilemanifesto.org/
http://www.versionone.com/pdf/state-of-agile-development-survey-ninth.pdf
http://www.versionone.com/pdf/state-of-agile-development-survey-ninth.pdf
http://mountaingoatsoftware.com/agile/scrum
http://apsblog.burtongroup.com/2008/11/software-process---maturity-formality-ceremony.html
http://apsblog.burtongroup.com/2008/11/software-process---maturity-formality-ceremony.html
http://apsblog.burtongroup.com/2008/11/software-process---maturity-formality-ceremony.html

	Introduction
	Model Requirements
	Modeling Agility
	Process Specification Independence
	Desired Simulation Outputs

	Existing Approaches
	A Motivating Scenario
	Reference Model
	Modeling Individual Processes
	Modeling Shared Processes
	Modeling Value Groups
	Modeling Team Processes
	Modeling Knowledge
	Putting it All Together

	Discussion
	Modeling Agility
	Process Specification Independence

	Next Steps
	Acknowledgements
	References

