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Abstract

We study the design of service exchange platforms in which long-lived anonymous users exchange

services with each other. The users are randomly matched into pairs of clients and servers repeatedly, and

each server can choose whether to provide high-quality or low-quality services to the client with whom

it is matched. Since the users are anonymous and incur high costs (e.g. exert high effort) in providing

high-quality services, it is crucial that the platform incentivizes users to provide high-quality services.

Rating mechanisms have been shown to work effectively as incentive schemes in such platforms. A

rating mechanism labels each user by a rating, which summarizes the user’s past behaviors, recommends

a desirable behavior to each server (e.g., provide higher-quality services for clients with higher ratings),

and updates each server’s rating based on the recommendation and its client’s report on the service

quality. Based on this recommendation, a low-rating user is less likely to obtain high-quality services,

thereby providing users with incentives to obtain high ratings by providing high-quality services.

However, if monitoring or reporting is imperfect – clients do not perfectly assess the quality or

the reports are lost – a user’s rating may not be updated correctly. In the presence of such errors,

existing rating mechanisms cannot achieve the social optimum. In this paper, we propose the first

rating mechanism that does achieve the social optimum, even in the presence of monitoring or reporting

errors. On one hand, the socially-optimal rating mechanism needs to be complicated enough, because the

optimal recommended behavior depends not only on the current rating distribution, but also (necessarily)

on the history of past rating distributions in the platform. On the other hand, we prove that the social

optimum can be achieved by “simple” rating mechanisms that use binary rating labels and a small set of

(three) recommended behaviors. We provide design guidelines of socially-optimal rating mechanisms,

and a low-complexity online algorithm for the rating mechanism to determine the optimal recommended

behavior.

We would like to thank Yu Zhang for very insightful initial discussions on rating mechanisms, and Prof. William Zame and

Simpson Zhang (Department of Economics, UCLA) for their helpful comments that lead to the improvement of this paper.
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I. INTRODUCTION

Service exchange platforms have proliferated as the medium that allows the users to exchange

services valuable to each other. For instance, emerging new service exchange platforms include

crowdsourcing systems (e.g. in Amazon Mechanical Turk and CrowdSource) in which the

users exchange labor [1][2], online question-and-answer websites (e.g. in Yahoo! Answers and

Quora) in which the users exchange knowledge [2], peer-to-peer (P2P) networks in which the

users exchange files/packets [3][4][5], and online trading platforms (e.g. eBay) where the users

exchange goods [6]. In a typical service exchange platform, a user plays a dual role: as a

client, who requests services, and as a server, who chooses to provide high-quality or low-

quality services. Common features of many service exchange platforms are: the user population

is large and users are anonymous. In other words, each user interacts with a randomly-matched

partner without knowing its partner’s identity (However, the platform does know the identify

of the interacting users.). The absence of a fixed partner and the anonymity of the users create

incentive problems – namely the users tend to “free-ride” (i.e., receive high-quality services

from others as a client, while providing low-quality services as a server). In addition, a user

generally may not be able to perfectly monitor1 its partner’s action, which makes it even harder

to incentivize the users to provide high-quality services.

An important class of incentive mechanisms for service exchange platforms are the rating

mechanisms2 [2]–[13], in which each user is labeled with a rating based on its past behaviors in

the system. A rating mechanism consists of a rating update rule and a recommended strategy3.

The recommended strategy specifies what is the desirable behavior under the current system

state (e.g. the current rating profile of the users or the current rating distribution). For example,

the rating mechanism may recommend providing high-quality services for all the users when the

1The monitoring discussed throughout this paper is a user’s observation on its current partner’s actions. Each user knows

nothing about the ongoing interactions among the other pairs of users.
2Note that the rating mechanisms studied in this paper focus on dealing with moral hazard problems, namely the server’s

quality of service is not perfectly observable. They are different from the rating mechanisms dealing with adverse selection

problems, namely the problems of identifying the users’ types. See [6, Sec. I] for detailed discussions on the above two classes

of rating mechanisms.
3Different terminologies have been used in the existing literature. For example, [6][7] used “reputation” for “rating”, and [7]

used “social norm” for “recommended strategy”.
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majority of users have high ratings, while recommending to provide high-quality services only

to high-rating users when the majority have low ratings. Then, based on each client’s report

on the quality of service, the rating mechanism revises each server’s rating according to the

rating update rule. Generally speaking, the ratings of the users who comply with (resp. deviate

from) the recommended behaviors go up (resp. down). Hence, each user’s rating summarizes

its past behavior in the system. By keeping track of all the users’ ratings and recommending

them to reward (resp. punish) the users with high (resp. low) ratings, the rating mechanism gives

incentives to the users to obtain high ratings by rewarding them indirectly, through recommending

other users to provide them with high-quality services.

Existing rating mechanisms have been shown to work well when monitoring and reporting

are perfect. However, when monitoring and reporting are subject to errors, existing rating

mechanisms cannot achieve the social optimum [2]–[13]. The errors, which are often encountered

in practice, may arise either from the client’s own incapability of accurate assessment (for

instance, the client, who wants to translate some sentences into a foreign language, cannot

accurately evaluate the server’s translation), or from some system errors (for example, the client’s

report on the server’s service quality is missing due to network errors)4. In the presence of errors,

the server’s rating may be wrongly updated. Hence, even if the users follow the recommended

desirable behavior, the platform may still fall into some “bad” states in which many users have

low ratings due to erroneous rating updates. In these bad states, the users with low ratings receive

low-quality services, resulting in large performance loss compared to the social optimum. This

performance loss in the bad states is the major reason for the inefficiency of the existing rating

mechanisms.

In this paper, we propose the first rating mechanisms that can achieve the social optimum even

under imperfect monitoring. A key feature of the proposed rating mechanism is the nonstationary

recommended strategy, which recommends different behaviors under the same system state,

depending on when this state occurs (for example, the rating mechanism may not always

recommend punishing users with low ratings in the bad states). Note, importantly, that the

4Note that the errors in this paper are not caused by the strategic behaviors of the users. In other words, the clients report

the service quality truthfully, and do not misreport intentionally to manipulate the rating mechanism for their own interests. If

the clients may report strategically, the mechanism can let the platform to assess the service quality (still, with errors) to avoid

strategic reporting.
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rating mechanism does not just randomize over different behaviors with a fixed probability in

a state. Instead, it recommends different behaviors in the current state based on the history of

past states. We design the recommended strategy carefully, such that the punishments happen

frequently enough to provide sufficient incentives for the users, but not too frequently to reduce

the performance loss incurred in the bad states. The more patient the users are (i.e. the larger

discount factor they have), the less frequent are the punishments. As a result, the designed rating

mechanism can asymptotically achieve the social optimum as the users become increasingly

patient (i.e. as the discount factor approaches 1). This is in contrast with the existing rating

mechanisms with stationary recommended strategies, whose performance loss does not vanish

even as the users’ patience increases. Another key feature of the proposed rating mechanism

is the use of differential punishments that punish users with different ratings differently. In

Section IV, we show that the absence of any one of these two features in our mechanism will

result in performance loss that does not vanish even when the users are arbitrarily patient.

We prove that the social optimum can be achieved by simple rating mechanisms, which

assign binary ratings to the users and recommend a small set of three recommended behaviors.

We provide design guidelines of the rating update rules in socially-optimal rating mechanisms,

and a low-complexity online algorithm to construct the nonstationary recommended strategies.

The algorithm essentially solves a system of two linear equations with two variables in each

period, and can be implemented with a memory of a fixed size (although by the definition of

nonstationary strategies, it appears that we may need a memory growing with time to store the

history of past states), because we can appropriately summarize the history of past states (by

the solution to the above linear equations).

The rest of the paper is organized as follows. In Section II, we discuss the differences

between our work and related works. In Section III, we describe the model of service exchange

systems with rating mechanisms. Then we design the optimal rating mechanisms in Section V.

Simulation results in Section VI demonstrate the performance improvement of the proposed

rating mechanism. Finally, Section VII concludes the paper.
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TABLE I. RELATED WORKS ON RATING PROTOCOLS.

Rating update error Recommended strategy Discount factor Performance loss

[2][3] → 0 Stationary < 1 Yes

[4][5] > 0 Stationary < 1 Yes

[6] > 0 Stationary/Nonstationary < 1 Yes

[7]–[12] = 0 Stationary → 1 Yes

[13] → 0 Stationary → 1 Yes

This work > 0 Nonstationary < 1 No

II. RELATED WORKS

A. Related Works on Rating Protocols

Rating mechanisms were originally proposed by [7] for a large anonymous society, in which

users are repeatedly randomly matched to play the Prisoners’ dilemma game. Assuming perfect

monitoring, [7] proposed a simple rating mechanism that can achieve the social optimum: any

user who has defected will be assigned with the lowest rating forever and will be punished by its

future partners. Subsequent research has been focusing on extending the results to more general

games (see [8][9][10][12]), or on discovering alternative mechanisms (for example, [11] showed

that cooperation can be sustained if each user can observe its partner’s past actions). However, all

these works assumed perfect monitoring and were aimed at dealing with the incentive problems

caused by the anonymity of users and the lack of fixed partnership; they did not study the impact

of imperfect monitoring. Under imperfect observation/reporting, the system will collapse under

their rating mechanisms because all the users will eventually end up with having low ratings

forever due to errors.

Some works [2][3][13] assumed imperfect monitoring, but focused on the limit case when the

monitoring tends to be perfect. The conclusion of these works is that the social optimum can be

achieved in the limit case when the monitoring becomes “almost perfect” (i.e., when the rating

update error goes to zero).

Only a few works [4]–[6] analyzed rating mechanisms under imperfect monitoring with fixed

nonzero monitoring errors. For a variety of rating mechanisms studied in [4]–[6], the performance

loss with respect to the social optimum is quantified in terms of the rating update error. These

results confirm that existing rating mechanisms suffer from (severe) performance loss under

rating update errors. Note that the model in [6] is fundamentally different than ours. In [6], there
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is only a single long-lived seller (server), while all the buyers (clients) are short-lived. Under

this model, it is shown in [6] that the rating mechanism is bounded away from social optimum

even when nonstationary strategies are used. In contrast, we show that under our model with

long-lived servers and clients, we can achieve the social optimum by nonstationary strategies

with differential punishments. In the following, we discuss the intuitions of how to achieve the

social optimum under our model.

There are two sources of inefficiency. One source of inefficiency comes from the stationary

recommended strategies, which recommends the same behavior under the same state [2]–[5][7]–

[13]. As we have discussed earlier, the inefficiency of the existing rating mechanisms comes

from the punishments triggered in the “bad” states. Specifically, to give incentives for the users

to provide high-quality services, the rating mechanism must punish the low-rating users under

certain rating distributions (i.e. under certain “bad” states). When the users are punished (i.e.

they are provided with low-quality services), the average payoffs in these states are far below the

social optimum. In the presence of rating update errors, the bad states happen with a probability

bounded above zero (the lower bound depends only on the rating update error). As a result, the

low payoffs occur with a frequency bounded above zero, which incurs an efficiency loss that

cannot vanish unless the rating update error goes to zero.

Another source of inefficiency is the lack of differential punishments. As will be proved in

Section IV, the rating mechanisms with no differential punishment have performance loss even

when nonstationary recommended strategies are used.

This paper is the first to propose a class of rating mechanisms that achieve the social optimum

even when update errors do not tend to zero. Our mechanisms rely on (explicitly-constructed)

nonstationary strategies with differential punishments. The key intuitions of why the proposed

mechanism achieves social optimum are as follows. First, nonstationary strategies punish the

users in the bad states only when necessary, depending on the history of past states. In this way,

nonstationary strategies can lower the frequency of punishment in the bad states to a level just

enough to provide sufficient incentives for the users to provide high-quality services. In addition,

differential punishment further reduces the loss in social welfare by transferring payoffs from

low-rating users to high-rating users, instead of lowering everyone’s payoff with non-differential

punishment.

In Table I, we compare the proposed work with existing rating mechanisms.
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B. Related Works in Game Theory Literature

Our results are related to folk theorem results for repeated games [17] and stochastic games

[18]. However, these existing folk theorem results [17][18] cannot be directly applied to our

model. First, the results in [17] are derived for repeated games, in which every stage game is the

same. Our system is modeled as a stochastic game, in which the stage games may be different

because of the rating distributions.

Second, there do exist folk theorems for stochastic games [18], but they also do not apply to

our model. The folk theorems [18] apply to standard stochastic games, in which the state must

satisfy the following properties: 1) the state, together with the plan profile, uniquely determines

the stage-game payoff, and 2) the state is known to all the users. In our model, since each user’s

stage game payoff depends on its own rating, each user’s rating must be included in the state and

be known to all the users. In other words, if we model the system as a standard stochastic game

in order to apply the folk theorems, we need to define the state as the rating profile of all the

users (not just the rating distribution). Then, the folk theorem states that the social optimum can

be asymptotically achieved by strategies that depend on the history of rating profiles. However, in

our model, the players do not know the full rating profile, but only know the rating distribution.

Hence, the strategy can use only the information of rating distributions.5 Whether such strategies

can achieve the social optimum is not known according to the folk theorems; we need to prove

the existence of socially optimal strategies that use only the information of rating distributions.

In addition, our results are fundamentally different from the folk theorem results [17][18] in

nature. First, [17][18] focus on the limit case when the discount factor goes to one, which is not

realistic because the users are not sufficiently patient. More importantly, the results in [17][18]

are not constructive. They focus on what payoff profiles are achievable, but cannot show how

to achieve those payoff profiles. They do not determine a lower bound on discount factors that

admit equilibrium strategy profiles yielding the target payoff profile, and hence cannot construct

equilibrium strategy profiles. By contrast, we do determine a lower bound on discount factors that

admit equilibrium strategy profiles yielding the target payoff profile, and do construct equilibrium

5We insist on restricting to strategies that depend only on the history of rating distributions because in practice, 1) the platform

may not publish the full rating profile due to informational and privacy constraints, and 2) even if the platform does publish

such information, it is impractical to assume that the users can keep track of it.
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TABLE II. RELATED MATHEMATICAL FRAMEWORKS.

Standard MDP Extended MDP [2][3][14][15] Self-generating sets [16]–[18] This work

# of users Single Multiple Multiple Multiple

Value function Single-valued Single-valued Set-valued Set-valued

Incentive constraints No Yes Yes Yes

Strategies Stationary Stationary Nonstationary Nonstationary

Discount factor < 1 < 1 → 1 < 1

Constructive Yes Yes No Yes

strategy profiles.

C. Related Mathematical Frameworks

Rating mechanisms with stationary recommended strategies can be designed by extending

Markov decision processes (MDPs) in two important and non-trivial ways [2][3][14][15]: 1)

since there are multiple users, the value of each state is a vector of all the users’ values, instead

of a scalar in standard MDPs, and 2) the incentive compatibility constraints of self-interested

users need to be fulfilled (e.g., the values of “good” states, in which most users have high ratings,

should be sufficiently larger than those of “bad” states, such that users are incentivized to obtain

high ratings), while standard MDPs do not impose such constraints.

In this paper, we make a significant step forward with respect to the state-of-the-art rating

mechanisms with stationary strategies: we design rating mechanisms where the recommended

strategies can be nonstationary. The proposed design leads to significant performance improve-

ments, but is also significantly more challenging from a theoretical perspective. The key challenge

is that nonstationary strategies may choose different actions under the same state, resulting in

possibly different current payoffs in the same state. Hence, the value function under nonstationary

strategies are set-valued, which significantly complicates the analysis, compared to single-valued

value functions under stationary strategies6.

The mathematical framework of analyzing nonstationary strategies with set-valued value func-

tions was proposed as a theory of self-generating sets in [16]. It was widely used in game theory

6In randomized stationary strategies, although different actions may be taken in the same state after randomization, the

probability of actions chosen is fixed. In the Bellman equation, we need to use the expected payoff before randomization which

is fixed in the same state, instead of the realized payoffs after randomization. Hence, the value function is still single-valued.
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Fig. 1. Illustration of the rating mechanism in one period.

to prove folk theorems in repeated games [17] and stochastic games [18]. We have discussed

our differences from the folk theorem results [17][18] in the previous subsection.

In Table II, we compare our work with existing mathematical frameworks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

1) The Rating Mechanism: We consider a service exchange platform with a set of N users,

denoted by N = {1, . . . , N}. Each user can provide some services (e.g. data in P2P networks,

labor in Amazon Mechanic Turk) valuable to the other users. The rating mechanism assigns each

user i a binary label θi ∈ Θ , {0, 1}, and keep record of the rating profile θ = (θ1, . . . , θN).

Since the users usually stay in the platform for a long period of time, we divide time into periods

indexed by t = 0, 1, 2, . . .. In each period, the rating mechanism operates as illustrated in Fig. 1,

which can be roughly described as follows:

• Each user requests services as a client.

• Each user, as a server, is matched to another user (its client) based on a matching rule.

• Each server chooses to provide high-quality or low-quality services.

• Each client reports its assessment of the service quality to the rating mechanism, who will

update the server’s rating based on the report.

Next, we describe the key components in the rating mechanism in details.
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Public announcement: At the beginning of each period, the platform makes public announce-

ment to the users. The public announcement includes the rating distribution and the recommended

plan in this period. The rating distribution indicates how many users have rating 1 and rating 0,

respectively. Denote the rating distribution by s(θ) = (s0(θ), s1(θ)), where s1(θ) =
∑

i∈N θi is

the number of users with rating 1, and s0(θ) = N − s1(θ) is the number of users with rating 0.

Denote the set of all possible rating distributions by S. Note that the platform does not disclose

the rating profile θ for privacy concerns. The platform also recommends a desired behavior in

this period, called recommended plan. The recommended plan is a contingent plan of which

service quality the server should choose based on its own rating and its client’s rating. Formally,

the recommended plan, denoted by α0, is a mapping α0 : Θ × Θ → {0, 1}, where 0 and 1

represent “low-quality service” and “high-quality service”, respectively. Then α0(θc, θs) denotes

the recommended service quality for a server with rating θs when it is matched to a client with

rating θc. We write the set of recommended plans as A = {α|α : Θ × Θ → {0, 1}}. We are

particularly interested in the following three plans. The plan αa is the altruistic plan:

αa(θc, θs) = 1,∀θc, θs ∈ {0, 1}, (1)

where the server provides high-quality service regardless of its own and its client’s ratings. The

plan αf is the fair plan:

αf(θc, θs) =

 0 θs > θc

1 θs ≤ θc

, (2)

where the server provides high-quality service when its client has higher or equal ratings. The

plan αs is the selfish plan:

αs(θc, θs) = 0,∀θc, θs ∈ {0, 1}, (3)

where the server provides low-quality service regardless of its own and its client’s ratings. Note

that we can consider the selfish plan as a non-differential punishment in which everyone receives

low-quality services, and consider the fair plan as a differential punishment in which users with

different ratings receive different services.

Service requests: The platform receives service requests from the users. We assume that there

is no cost in requesting services, and that each user always have demands for services. Hence,

all the users will request services.

August 9, 2021 DRAFT



11

Matching: The platform matches each user i, as a client, to another user m(i) who will serve

i, where m is a matching m : N → N . Since the platform cannot match a user to itself,

we write the set of all possible matchings as M = {m : m bijective, m(i) 6= i,∀i ∈ N}. The

mechanism defines a random matching rule, which is a probability distribution µ on the set of

all possible matchings M . In this paper, we focus on the uniformly random matching rule, which

chooses every possible matching m ∈M with the same probability. The analysis can be easily

generalized to the cases with non-uniformly random matching rules, as long as the matching

rules do not distinguish users with the same rating.

Clients’ ratings: The platform will inform each server of its client’s rating, such that each

server can choose its service quality based on its own and its client’s ratings.

Reports: After the servers serve their clients, the platform elicits reports from the clients

about their service quality. However, the report is inaccurate, either by the client’s incapability

of accurate assessment (for instance, the client, who wants to translate some sentences into a

foreign language, cannot accurately evaluate the server’s translation) or by some system error

(for example, the data/file sent by the server is missing due to network errors). We characterize

the erroneous report by a mapping R : {0, 1} → ∆({0, 1}), where ∆({0, 1}) is the probability

distribution over {0, 1}. For example, R(1|q) is the probability that the client reports “high

quality” given the server’s actual service quality q. In this paper, we focus on reports of the

following form

R(r|q) =

 1− ε, r = q

ε, r 6= q
, ∀r, q ∈ {0, 1}, (4)

where ε ∈ [0, 0.5) is the report error probability.7 Note, however, that reporting is not strategic:

the client reports truthfully, but with errors. If the clients report strategically, the mechanism can

let the platform to assess the service quality (still, with errors) to avoid strategic reporting. For

simplicity, we assume that the report error is symmetric, in the sense that reporting high and low

qualities have the same error probability. Extension to asymmetric report errors is straightforward.

7We confine the report error probability ε to be smaller than 0.5. If the error probability ε is 0.5, the report contains no useful

information about the service quality. If the error probability is larger than 0.5, the rating mechanism can use the opposite of

the report as an indication of the service quality, which is equivalent to the case with the error probability smaller than 0.5.
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Fig. 2. Illustration of the rating update rule. The circle denotes the rating, and the arrow denotes the rating update with

corresponding probabilities.

Rating update: Given the clients’ reports, the platform updates the servers’ ratings according

to the rating update rule, which is defined as a mapping τ : Θ×Θ× {0, 1} ×A → ∆(Θ). For

example, τ(θ′s|θc, θs, r, α0) is the probability of the server’s updated rating being θ′s, given the

client’s rating θc, the server’s own rating θs, the client’s report r, and the recommended plan α0.

We focus on the following class of rating update rules (see Fig. 2 for illustration):

τ(θ′s|θc, θs, r, α0) =



β+
θs
, θ′s = 1, r ≥ α0(θc, θs)

1− β+
θs
, θ′s = 0, r ≥ α0(θc, θs)

1− β−θs , θ′s = 1, r < α0(θc, θs)

β−θs , θ′s = 0, r < α0(θc, θs)

.

In the above rating update rule, if the reported service quality is not lower than the recommended

service quality, a server with rating θs will have rating 1 with probability β+
θs

; otherwise, it will

have rating 0 with probability β−θs . Other more elaborate rating update rules may be considered.

But we show that this simple one is good enough to achieve the social optimum.

Recommended strategy: The final key component of the rating mechanism is the recommended

strategy, which determines what recommended plan should be announced in each period. In

each period t, the mechanism keeps track of the history of rating distributions, denoted by

ht = (s0, . . . , st) ∈ St+1, and chooses the recommended plan based on ht. In other words,

the recommended strategy is a mapping from the set of histories to its plan set, denoted by

π0 : ∪∞t=0S
t+1 → A. Denote the set of all recommended strategies by Π. Note that although the
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TABLE III. GIFT-GIVING GAME BETWEEN A CLIENT AND A SERVER.

high-quality low-quality

request (b,−c) (0, 0)

rating mechanism knows the rating profile, it determines the recommended plan based on the

history of rating distributions, because 1) this reduces the computational and memory complexity

of the protocol, and 2) it is easy for the users to follow since they do not know the rating profile.

Moreover, since the plan set A has 16 elements, the complexity of choosing the plan is large.

Hence, we consider the strategies that choose plans from a subset B ⊆ A, and define Π(B) as

the set of strategies restricted on the subset B of plans.

In summary, the rating mechanism can be represented by the design parameters: the rating

update rule and the recommended strategy, and can be denoted by the tuple (τ, π0).

2) Payoffs: Once a server and a client are matched, they play the gift-giving game in Table III

[2]–[7][11][13], where the row player is the client and the column player is the server. We

normalize the payoffs received by the client and the server when a server provides low-quality

services to 0. When a server provides high-quality services, the client gets a benefit of b > 0 and

the worker incurs a cost of c ∈ (0, b). In the unique Nash equilibrium of the gift-giving game,

the server will provide low-quality services, which results in a zero payoff for both the client

and the server. Note that as in [2]–[7][11][13], we assume that the same gift-giving game is

played for all the client-server pairs. This assumption is reasonable when the number of users is

large. Since b can be considered as a user’s expected benefit across different servers, and c as its

expected cost of high-quality service across different clients, the users’ expected benefits/costs

should be approximately the same when the number of users is large. This assumption is also

valid when the users have different realized benefit and cost in each period but the same expected

benefit b and expected cost c across different periods.

Expected payoff in one period: Based on the gift-giving game, we can calculate each user’s

expected payoff obtained in one period. A user’s expected payoff in one period depends on its

own rating, the rating distribution, and the users’ plans. We write user i’s plan as αi ∈ A, and

the plan profile of all the users as α = (α1, . . . , αN). Then user i’s expected payoff in one period

is ui(θi, s,α). For illustration, we calculate the users’ expected payoffs under several important
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scenarios, assuming that all the users follow the recommended plan (i.e. αi = α0, ∀i ∈ N ).

When the altruistic plan αa is recommended, all the users receive the same expected payoff in

one period as

ui(θi, s, α
a · 1N) = b− c, ∀i, θi, s,

where α · 1N is the plan profile in which every user chooses plan α. Similarly, when the selfish

plan αs is recommended, all the users receive zero expected payoff in one period, namely

ui(θi, s, α
s · 1N) = 0, ∀i, θi, s.

When the fair plan αf is recommended, the users receive expected payoffs in one period as

follows

ui(θi, s, α
f · 1N) =


s0−1
N−1
· b− c, θi = 0

b− s1−1
N−1
· c, θi = 1

. (5)

Under the fair plan, the users with rating 1 receive a payoff higher than b − c, because they

get high-quality services from everyone and provide high-quality services only when matched

to clients with rating 1. In contrast, the users with rating 0 receive a payoff lower than b − c.

Hence, the fair plan αf can be considered as a differential punishment.

Discounted average payoff: Each user i has its own strategy πi ∈ Π. Write the joint strategy

profile of all the users as π = (π1, . . . , πN). Then given the initial rating profile θ0, the

recommended strategy π0 and the joint strategy profile π induce a probability distribution over

the sequence of rating profiles θ1,θ2, . . .. Taking the expectation with respect to this probability

distribution, each user i receives a discounted average payoff Ui(θ0, π0,π) calculated as

Ui(θ
0, π0,π) = Eθ1,θ2,...

{
(1− δ)

∞∑
t=0

δtui
(
θti , s(θt),π(s(θ0), . . . , s(θt)

)}
where δ ∈ [0, 1) is the common discount factor of all the users. The discount factor δ is the rate

at which the users discount future payoffs, and reflects the patience of the users. A more patient

user has a larger discount factor. Note that the recommended strategy π0 does affect the users’

discounted average payoffs by affecting the evolution of the rating profile (i.e. by affecting the

expectation operator Eθ1,θ2,...).
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3) Definition of The Equilibrium: The platform adopts sustainable rating mechanisms, which

specifies a tuple of rating update rule and recommended strategy (τ, π0), such that the users find

it in their self-interests to follow the recommended strategy. In other words, the recommended

strategy should be an equilibrium.

Note that the interaction among the users is neither a repeated game [17] nor a standard

stochastic game [18]. In a repeated game, every stage game is the same, which is clearly not true

in the platform because users’ stage-game payoff ui(θi, s,α) depends on the rating distribution

s. In a standard stochastic game, the state must satisfy: 1) the state and the plan profile uniquely

determines the stage-game payoff, and 2) the state is known to all the users. In the platform, the

user’s stage-game payoff ui(θi, s,α) depends on its own rating θi, which should be included in

the state and be known to all the users. Hence, if we were to model the interaction as a standard

stochastic game, we need to define the state as the rating profile θ. However, the rating profile

is not known to the users in our formulation.

To reflect our restriction on recommended strategies that depend only on rating distributions,

we define the equilibrium as public announcement equilibrium (PAE), since the strategy depends

on the publicly announced rating distributions. Before we define PAE, we need to define the

continuation strategy π|ht , which is a mapping π|ht : ∪∞k=0Hk → A with π|ht(hk) = π(hthk),

where hthk is the concatenation of ht and hk.

Definition 1: A pair of a recommended strategy and a symmetric strategy profile (π0, π0 ·1N)

is a PAE, if for all t ≥ 0, for all h̃t ∈ Ht, and for all i ∈ N , we have

Ui(θ̃
t, π0|h̃t , π0|h̃t · 1N) ≥ Ui(θ̃

t, π0|h̃t , (πi|h̃t , π0|h̃t · 1N−1)), ∀πi|h̃t ∈ Π,

where (πi|h̃t , π0|h̃t · 1N−1) is the continuation strategy profile in which user i deviates to πi|h̃t
and the other users follow the strategy π0|h̃t .

Note that in the definition, we allow a user to deviate to any strategy πi ∈ Π, even if the

recommended strategy π0 is restricted to a subset B of plans. Hence, the rating mechanism is

robust, in the sense that a user cannot gain even when it uses more complicated strategies. Note

also that although a rating mechanism can choose the initial rating profile θ0, we require a

recommended strategy to fulfill the incentive constraints under all the initial rating profiles. This

adds to the flexibility in choosing the initial rating profile.

PAE is stronger than the Nash equilibrium (NE), because PAE requires the users to not deviate
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following any history, while NE requires the users to not deviate following the histories that

happen in the equilibrium. In this sense, PAE can be considered as a special case of public perfect

equilibrium (PPE) in standard repeated and stochastic games, where the strategies depend only

on the rating distribution.

B. The Rating Protocol Design Problem

The goal of the rating mechanism designer is to choose a rating mechanism (τ, π0), such

that the social welfare at the equilibrium is maximized in the worst case (with respect to

different initial rating profiles). Maximizing the worst-case performance gives us a much stronger

performance guarantee than maximizing the performance under a given initial rating profile.

Given the rating update error ε, the discount factor δ, and the subset B of plans, the rating

mechanism design problem is formulated as:

W (ε, δ,B) = max
τ,π0∈Π(B)

min
θ0∈ΘN

1

N

∑
i∈N

Ui(θ
0, π0, π0 · 1N)

s.t. (π0, π0 · 1N) is a PAE. (6)

Note that W (ε, δ,B) is strictly smaller than the social optimum b − c for any ε, δ, and B.

This is because to exactly achieve b− c, the protocol must recommend the altruistic plan αa all

the time (even when someone shirks), which cannot be an equilibrium. However, we can design

rating mechanisms such that for any fixed ε ∈ [0, 0.5), W (ε, δ,B) can be arbitrarily close to the

social optimum. In particular, such rating mechanisms can be simple, in that B can be a small

subset of three plans (i.e. B = Aafs , {αa, αf , αs}).

IV. SOURCES OF INEFFICIENCY

To illustrate the importance of designing optimal, yet simple rating schemes, as well as the

challenges associated with determining such a design, in this section, we discuss several simple

rating mechanisms that appear to work well intuitively, and show that they are actually bounded

away from the social optimum even when the users are arbitrarily patient. We will illustrate

why they are inefficient, which gives us some insights on how to design socially-optimal rating

mechanisms.
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A. Stationary Recommended Strategies

1) Analysis: We first consider rating mechanisms with stationary recommended strategies,

which determine the recommended plan solely based on the current rating distribution. Since

the game is infinitely-repeatedly played, given the same rating distribution, the continuation

game is the same regardless of when the rating distribution occurs. Hence, similar to MDP, we

can assign value functions V π0
θ : S → R, ∀θ for a stationary strategy π0, with V π0

θ (s) being

the continuation payoff of a user with rating θ at the rating distribution s. Then, we have the

following set of equalities that the value function needs to satisfy:

V π0
θi

(s) = (1− δ) · ui(π0(s), π0(s) · 1N) (7)

+ δ ·
∑
θ′i,s
′

Pr(θ′i, s
′|θi, s, π0(s), π0(s) · 1N) · V π0

θ′i
(s′), ∀i ∈ N ,

where Pr(θ′i, s
′|θi, s, π0(s), π0(s) · 1N) is the transition probability. We can solve for the value

function from the above set of equalities, which are similar to the Bellman equations in MDP.

However, note that obtaining the value function is not the final step. We also need to check the

incentive compatibility (IC) constraints. For example, to prevent user i from deviating to plan

α′, the following inequality has to be satisfied:

V π0
θi

(s) ≥ (1− δ) · ui(π0(s), (α′, π0(s) · 1N−1)) (8)

+ δ ·
∑
θ′i,s
′

Pr(θ′i, s
′|θi, s, π0(s), (α′, π0(s) · 1N−1)) · V π0

θ′i
(s′), ∀i ∈ N .

Given a rating mechanism with a stationary recommended strategy π0, if its value function

satisfies all the IC constraints, we can determine the social welfare of the rating mechanism.

For example, suppose that all the users have an initial rating of 1. Then, all of them achieve the

expected payoff V π0
1 (0, N), which is the social welfare achieved under this rating mechanism.

Note that given a recommended strategy π0, it is not difficult to compute the value function

by solving the set of linear equations in (7) and check the IC constraints according to the

set of linear inequalities in (8). However, it is difficult to derive structural results on the value

function (e.g. whether the state with more rating-1 users has a higher value), and thus difficult to

know the structures of the optimal recommended strategy (e.g. whether the optimal recommended

strategy is a threshold strategy). The difficulty mainly comes from the complexity of the transition
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probabilities Pr(θ′i, s
′|θi, s, π0(s), π0(s) · 1N). For example, assuming π0(s) = αa, we have

Pr(1, s′|1, αa, αa · 1N) = x+
1 ·∑min{s1−1,s′1−1}

k=max{0,s′1−1−(N−s1)}
(
s1−1
k

)
(x+

1 )k(1− x+
1 )s1−1−k( N−s1

s′1−1−k

)
(x+

0 )s
′
1−1−k(1− x+

0 )N−s1−(s′1−1−k)
,

where x+
1 , (1− ε)β+

1 + ε(1− β−1 ) is the probability that a rating-1 user’s rating remains to be

1, and x+
0 , (1− ε)β+

0 + ε(1− β−0 ) is the probability that a rating-0 user’s rating goes up to 1.

We can see that the transition probability has combinatorial numbers in it and is complicated.

Hence, although the stationary strategies themselves are simpler than the nonstationary strategies,

they are harder to compute, in the sense that it is difficult to derive structural results for rating

mechanisms with stationary recommended strategy. In contrast, we are able to develop a uni-

fied design framework for socially-optimal rating mechanisms with nonstationary recommended

strategies.

2) Inefficiency: We measure the efficiency of the rating mechanisms with stationary recom-

mended strategies using the “price of stationarity” (PoStat), defined as

PoStat(ε,B) =
limδ→1W

s(ε, δ,B)

b− c
, (9)

where W s(ε, δ,B) is the optimal value of a modified optimization problem (6) with an additional

constraint that π0 is stationary.

Note that PoStat(ε,B) measures the efficiency of a class of rating mechanisms (not a spe-

cific rating mechanism), because we optimize over all the rating update rules and stationary

recommended strategies restricted on B. PoStat is a number between 0 and 1. A small PoStat

indicates a low efficiency.

Through simulation, we can compute PoStat(0.1, Aafs) = 0.720. In other words, even with

differential punishment αf , the performance of stationary strategies is bounded away from social

optimum. We compute the PoStat in a platform with N = 5 users, the benefit b = 3, the cost

c = 1, and ε = 0.1. Under each discount factor δ, we assign values between 0 and 1 with a 0.1

grid to β+
θ , β

−
θ in the rating update rule, namely we try 114 rating update rules to select the optimal

one. For each rating update rule, we try all the 3N+1 = 729 stationary recommended strategies

restricted on Aafs. In Table IV, we list normalized social welfare under different discount factors.

As mentioned before, the inefficiency of stationary strategies is due to the punishment exerted

under certain rating distributions. For example, the optimal recommended strategies discussed
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TABLE IV. NORMALIZED SOCIAL WELFARE OF STATIONARY STRATEGIES RESTRICTED ON Aafs .

δ 0.7 0.8 0.9 0.99 0.999 0.9999

Normalized welfare 0.690 0.700 0.715 0.720 0.720 0.720

TABLE V. MINIMUM PUNISHMENT PROBABILITIES OF RATING MECHANISMS RESTRICTED ON Aafs WHEN ε = 0.1.

δ 0.7 0.8 0.9 0.99 0.999 0.9999 0.99999

Minimum β−1 0.8 0.8 0.6 0.6 0.3 0.3 0.3

above recommend the selfish or fair plan when at least one user has rating 0, resulting in

performance loss. One may think that when the users are more patient (i.e. when the discount

factor is larger), we can use milder punishments by lowering the punishment probabilities

β−1 and β−0 , such that the rating distributions with many low-rating users happen with less

frequency. However, simulations on the above strategies show that, to fulfill the IC constraints, the

punishment probabilities cannot be made arbitrarily small even when the discount factor is large.

For example, Table V shows the minimum punishment probability β−1 (which is smaller than β−0 )

of rating mechanisms restricted on Aafs under different discount factors. In other words, the rating

distributions with many low-rating users will happen with some probabilities bounded above zero,

with a bound independent of the discount factor. Hence, the performance loss is bounded above

zero regardless of the discount factor. Note that in a nonstationary strategy, we could choose

whether to punish in rating distributions with many low-rating users, depending on the history of

past rating distributions. This adaptive adjustment of punishments allows nonstationary strategies

to potentially achieve the social optimum.

B. Lack of Differential Punishments

We have discussed in the previous subsection the inefficiency of stationary strategies. Now

we consider a class of nonstationary strategies restricted on the subset of plans Aas. Under this

class of strategies, all the users are rewarded (by choosing αa) or punished (by choosing αs)

simultaneously. In other words, there is no differential punishment that can “transfer” some

payoff from low-rating users to high-rating users. We quantify the performance loss of this class

of nonstationary strategies restricted on Aas as follows.

August 9, 2021 DRAFT



20

Proposition 1: For any ε > 0, we have

lim
δ→1

W (ε, δ, Aas) ≤ b− c− ζ(ε), (10)

where ζ(ε) > 0 for any ε > 0.

Proof: The proof is similar to the proof of [6, Proposition 6]; see Appendix A.

The above proposition shows that the maximum social welfare achievable by (π0, π · 1N) ∈

Π(Aas) × ΠN(Aas) at the equilibrium is bounded away from the social optimum b − c, unless

there is no rating update error. Note that the performance loss is independent of the discount

factor. In contrast, we will show later that, if we can use the fair plan αf , the social optimum can

be asymptotically achieve when the discount factor goes to 1. Hence, the differential punishment

introduced by the fair plan is crucial for achieving the social optimum.

V. SOCIALLY OPTIMAL DESIGN

In this section, we design rating mechanisms that asymptotically achieve the social optimum at

the equilibrium, even when the rating update rule ε > 0. In our design, we use the APS technique,

named after the authors of the seminal paper [16], which is also used to prove the folk theorem

for repeated games in [17] and for stochastic games in [18]. We will briefly introduce the APS

technique first. Meanwhile, more importantly, we will illustrate why we cannot use APS in

our setting in the same way as [17] and [18] did. Then, we will show how we use APS in a

different way in our setting, in order to design the optimal rating mechanism and to construct

the equilibrium strategy. Finally, we analyze the performance of a class of simple but suboptimal

strategies, which sheds light on why the proposed strategy can achieve the social optimum.

A. The APS Technique

APS [16] provides a characterization of the set of PPE payoffs. It builds on the idea of self-

generating sets described as follows. Note that APS is used for standard stochastic games, and

recall from our discussion in Section II that the state of the standard stochastic game is the

rating profile θ. Then define a set Wθ ⊂ RN for every state θ ∈ ΘN , and write (Wθ′)θ′∈ΘN as

the collection of these sets. Then we have the following definitions [16][18][19]. First, we say a

payoff profile v(θ) ∈ RN is decomposable on (Wθ′)θ′∈ΘN given θ, if there exists a recommended
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plan α0, an plan profile α∗, and a continuation payoff function γ : ΘN → ∪θ′∈ΘNWθ′ with

γ(θ′) ∈ Wθ′ , such that for all i ∈ N and for all αi ∈ A,

vi = (1− δ)ui(θ, α0,α
∗) + δ

∑
θ′

γi(θ
′)q(θ′|θ, α0,α

∗) (11)

≥ (1− δ)ui(θ, α0, αi,α
∗
−i) + δ

∑
θ′

γi(θ
′)q(θ′|θ, α0, αi,α

∗
−i).

Then, we say a set (Wθ)θ∈ΘN is a self-generating set, if for any θ, every payoff profile v(θ) ∈

Wθ is decomposable on (Wθ′)θ′∈ΘN given θ. The important property of self-generating sets is

that any self-generating set is a set of PPE payoffs [16][18][19].

Based on the idea of self-generating sets, [17] and [18] proved the folk theorem for repeated

games and stochastic games, respectively. However, we cannot use APS in the same way as

[17] and [18] did for the following reason. We assume that the users do not know the rating

profile of every user, and restrict our attention on symmetric PA strategy profiles. This requires

that each user i cannot use the continuation payoff function γi(θ) directly. Instead, each user

i should assign the same continuation payoff for the rating profiles that have the same rating

distribution, namely γi(θ) = γi(θ
′) for all θ and θ′ such that s(θ) = s(θ′).

B. Socially Optimal Design

As mentioned before, the social optimum b − c can be exactly achieved only by servers

providing high-quality service all the time, which is not an equilibrium. Hence, we aim at

achieving the social optimum b−c asymptotically. We define the asymptotically socially optimal

rating mechanisms as follows.

Definition 2 (Asymptotically Socially Optimal Rating Mechanisms): Given a rating update er-

ror ε ∈ [0, 0.5), we say a rating mechanism (τ(ε), π0(ε, ξ, δ) ∈ Π) is asymptotically socially

optimal under ε, if for any small performance loss ξ > 0, we can find a δ(ξ), such that for any

discount factor δ > δ(ξ), we have

• (π0(ξ, δ), π0(ξ, δ) · 1N) is a PAE;

• Ui(θ
0, π0, π0 · 1N) ≥ b− c− ξ, ∀i ∈ N , ∀θ0.

Note that in the asymptotically socially optimal rating mechanism, the rating update rule

depends only on the rating update error, and works for any tolerated performance loss ξ and for

any the discount factor δ > δ. The recommended strategy π0 is a class of strategies parameterized
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by (ε, ξ, δ), and works for any ε ∈ [0, 0.5), any ξ > 0 and any discount factor δ > δ under the

rating update rule τ(ε).

First, we define a few auxiliary variables first for better exposition of the theorem. Define

κ1 , b
N−2
N−1

b−c − 1 and κ2 , 1 + c
(N−1)b

. In addition, we write the probability that a user with

rating 1 has its rating remain at 1 if it follows the recommended altruistic plan αa as:

x+
1 , (1− ε)β+

1 + ε(1− β−1 ).

Write the probability that a user with rating 1 has its rating remain at 1 if it follows the

recommended fair plan αf as:

xs1(θ) ,

[
(1− ε)s1(θ)− 1

N − 1
+
N − s1(θ)

N − 1

]
β+

1 +

(
ε
s1(θ)− 1

N − 1

)
(1− β−1 ).

Write the probability that a user with rating 0 has its rating increase to 1 if it follows the

recommended plan αa or αf :

x+
0 , (1− ε)β+

0 + ε(1− β−0 ).

Theorem 1: Given any rating update error ε ∈ [0, 0.5),

• (Design rating update rules): A rating update rule τ(ε) that satisfies

◦ Condition 1 (following the recommended plan leads to a higher rating):

β+
1 > 1− β−1 and β+

0 > 1− β−0 ,

◦ Condition 2 (Enough “reward” for users with rating 1):

x+
1 = (1− ε)β+

1 + ε(1− β−1 ) >
1

1 + c
(N−1)b

,

◦ Condition 3 (Enough “punishment” for users with rating 0):

x+
0 = (1− ε)β+

0 + ε(1− β−0 ) <
1− β+

1
c

(N−1)b

,

can be the rating update rule in a asymptotically socially-optimal rating mechanism.

• (Optimal recommended strategies): Given the rating update rule τ(ε) that satisfies the

above conditions, any small performance loss ξ > 0, and any discount factor δ ≥ δ(ε, ξ)

with δ(ε, ξ) defined in Appendix B, the recommended strategy π0(ε, ξ, δ) ∈ Π(Aafs)

constructed by Table VI is the recommended strategy in a asymptotically socially-optimal

rating mechanism.
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Proof: See Appendix C for the entire proof. We provide a proof sketch here.

The proof builds on the theory of self-generating sets [16], which can be considered as

the extension of Bellman equations in dynamic programming to the cases with multiple self-

interested users using nonstationary strategies. We can decompose each user i’s discounted

average payoff into the current payoff and the continuation payoff as follows:

Ui(θ
0, π0,π)

= Eθ1,...

{
(1− δ)

∞∑
t=0

δtui
(
θti , s(θt),π(s(θ0), . . . , s(θt)

)}

= (1− δ)·ui
(
θ0
i , s(θ0),π(s(θ0))

)︸ ︷︷ ︸
current payoff at t=0

+δ · Eθ2,...

{
(1− δ)

∞∑
t=1

δt−1ui
(
θti , s(θt),π(s(θ0), . . . , s(θt))

)}
︸ ︷︷ ︸

continuation payoff starting from t=1

.

We can see that the continuation payoff starting from t = 1 is the discounted average payoff

as if the system starts from t = 1. Suppose that the users follow the recommended strategy.

Since the recommended strategy and the rating update rule do not differentiate users with the

same rating, we can prove that the users with the same rating have the same continuation payoff

starting from any point. Hence, given π0 and π = π0 · 1N , the decomposition above can be

simplified into

vπ0θ (s) = (1− δ) · u (θ, s, α0 · 1N) + δ ·
1∑

θ′=0

∑
s′

q(θ′, s′|θ, s, α0 · 1N) · vπ0θ′ (s
′), (12)

where q(θ′, s′|θ, s, α ·1N) is the probability that the user has rating θ′ and the rating distribution

is s′ in the next period given the user’s current rating θ, the current rating distribution s, and

the action profile α ·1N , and vπ0θ (s) is the continuation payoff of the users with rating θ starting

from the initial rating distribution s.

The differences between (12) and the Bellman equations are 1) the “value” of state s in

(12) is a vector comprised of rating-1 and rating-0 users’ values, compared to scalar values in

Bellman equations, and 2) the value of state s is not fixed in (12), because the action α0 taken

under state s is not fixed in a nonstationary strategy (this is also the key difference from the

analysis of stationary strategies; see (7) where the action taken at state s is fixed to be π0(s)).

In addition, for an equilibrium recommended strategy, the decomposition needs to satisfy the
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Rating-0 users’ 
continuation payoff

(0, 0)

(b-c, b-c)

Payoffs of the 
altruistic action

Payoffs of the 
selfish action

Rating-1 users’ 
continuation payoff

Payoffs of the 
fair action

0 1
1 1

,
1 1

s s
b c b c

N N

  
  

  

(0, 0)

…
…...

Rating-0 users’ 
continuation payoff

Rating-1 users’ 
continuation payoff

(a) Feasible payoffs in one state
     (rating distribution (s0,s1))

(b) Common feasible payoffs in 
      all the states (rating distributions)

Feasible payoffs
under (N-1,1)

Feasible payoffs
under (s0,s1)

Feasible payoffs
under (1,N-1)

Fig. 3. Illustration of how to build the self-generating set. The left figure shows the set of feasible payoffs in one state (i.e. under

the rating distribution (s0, s1)). The right figure shows the sets of feasible payoffs in different states (i.e. rating distributions)

and their intersection, namely the set of common feasible payoffs in all the states (i.e. under all the rating distributions).

(0, 0)

(b-c, b-c)

Rating-1 users’ 
continuation payoff

Rating-0 users’ 
continuation payoff

The dashed triangle:
the common feasible payoffs 

under all the states

Fig. 4. Illustration of the self-generating set, which is a triangle within the set of common feasible payoffs in Fig. 3.

following incentive constraints: for all α,

vπ0θ (s) ≥ (1− δ) · u (θ, s, (α, α0 · 1N−1)) + δ ·
1∑

θ′=0

∑
s′

ρ(θ′, s′|θ, s, (α, α0 · 1N−1)) · vπ0θ′ (s
′). (13)

To analyze nonstationary strategies, we use the theory of self-generating sets. Note, however,

that [16] does not tell us how to construct a self-generating set, which is exactly the major
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difficulty to overcome in our proof. In our proof, we construct the following self-generating set.

First, since the strategies depend on rating distributions only, we let W(θ) = W(θ′) for any θ

and θ that have the same rating distribution. Hence, in the rest of the proof sketch, we write

the self-generating set as {W(s)}s, which is illustrated in Fig. 3 and Fig. 4. Fig. 3 shows how

to construct the self-generating set. The left of Fig. 3 shows the feasible payoffs in one state,

and the right shows the common feasible payoffs in all the states (we consider the common

feasible payoffs such that we can use the same W(s) under all the states s). The self-generating

set is a subset of the common feasible payoffs, as illustrated in Fig. 4. When the users have

different ratings (i.e. 1 ≤ s0 ≤ N − 1), the set W(s) is the triangle shown in Fig. 4, which is

congruent to the triangle of common feasible payoffs (shown in dashed lines), and has the upper

right vertex at (b− c− ε0, b− c− ε1) with ε0, ε1 ≤ ξ. We have the analytical expression for the

triangle in Appendix C. When all the users have the same rating (i.e. s0 = 0 or s0 = N ), only

one component in v(s) is relevant. Hence, the sets W((N, 0)) and W((0, N)) are line segments

determined by the ranges of v0 and v1 in the triangle, respectively.

In addition, we simplify the decomposition (12) and (13) by letting the continuation payoffs

vπ0θ′ (s
′) = vπ0θ′ for all s′. Hence, for a given s and a payoff vector v(s), the continuation payoffs

v′ = (v′0, v
′
1) can be determined by solving the following two linear equations: v0(s)=(1− δ)u (0, s, α01N)+δ

∑1
θ′=0 q(θ

′|0, α01N)v′θ′

v1(s)=(1− δ)u (1, s, α01N)+δ
∑1

θ′=0 q(θ
′|1, α01N)v′θ′

(14)

where q(θ′|θ, α0) is the probability that the next rating is θ′ for a user with rating θ under the

plan profile α0 · 1N .

Based on the above simplification, the collection of sets {W(s)}s in Fig. 4 is a self-generating

set, if for any s and any payoff vector v(s) ∈ W(s), we can find a plan α0 such that the

continuation payoffs v′ calculated from (14) lie in the triangle and satisfy the incentive constraints

in (13).

In summary, we can prove that the collection of sets {W(s)}s illustrated in Fig. 4 is a self-

generating set under certain conditions. Specifically, given a performance loss ξ, we construct the

corresponding {W(s)}s, and prove that it is a self-generating set under the following conditions:

1) the discount factor δ ≥ δ(ε, ξ) with δ(ε, ξ) defined in Appendix B, and 2) the three conditions

on the rating update rule in Theorem 1. This proves the first part of Theorem 1.

August 9, 2021 DRAFT



26

(0, 0)

(b-c, b-c)

Rating-1 users’ 
continuation payoff

Rating-0 users’ 
continuation payoff

Payoff of 
altruistic plan

Decompose by 
altruistic plan

Continuation payoffs
(in different states)

(0, 0)

Rating-1 users’ 
continuation payoff

Rating-0 users’ 
continuation payoff

Payoff of 
fair plan

Continuation payoff
to decompose Decompose by 

fair plan

Continuation payoffs
(in different states)

(a) Decomposition in period 0
(b) Decomposition in period 1

(when users have different 
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to decompose

Fig. 5. The decomposition of payoffs. The left figure shows the decomposition in period 0, when the payoff to decompose is

the target payoff (b− c− ε0, b− c− ε1); the right figure shows the decomposition in period 1, when the payoff to decompose

is the continuation payoff starting from period 1 and when the users have different ratings.

The corresponding recommended strategy can be determined based on the decomposition of

payoffs. Specifically, given the current rating distribution s and the current expected payoffs

v(s) ∈ W(s), we find a plan α0 such that the continuation payoffs v′ calculated from (14) lie in

the triangle and satisfy the incentive constraints. The decomposition is illustrated in Fig. 5. One

important issue in the decomposition is which plan should be used to decompose the payoff. We

prove that we can determine the plan in the following way (illustrated in Fig. 6). When the users

have different ratings, choose the altruistic plan αa when v(s) lies in the region marked by “a”

in the triangle in Fig. 6-(b), and choose the fair plan αf otherwise. When the users have the same

rating 0 or 1, choose the altruistic plan αa when v0(s) or v1(s) lies in the region marked by “a”

in the line segment in Fig. 6-(a) or Fig. 6-(c), and choose the selfish plan αs otherwise. Note

that we can analytically determine the line that separates the two regions in the triangle and the

threshold that separates the two regions in the line segment (analytical expressions are omitted

due to space limitation; see Appendix D for details). The above decomposition is repeated, and is

used to determine the recommended plan in each period based on the current rating distribution

s and the current expected payoffs to achieve v(s). The procedure described above is exactly
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Fig. 6. Illustration of how to choose the plan in order to decompose a given payoff. Each self-generating set is partitioned

into two parts. In each period, a recommended plan (the altruistic plan “a”, the fair plan “f”, or the selfish plan “s”) is chosen,

depending on which part of the self-generating set the expected payoffs fall into.

the algorithm to construct the recommended strategy, which is described in Table VI. Due to

space limitation, Table VI is illustrative but not specific. The detailed table that describes the

algorithm can be found in Appendix D.

Theorem 1 proves that for any rating update error ε ∈ [0, 0.5), we can design an asymptotically

optimal rating mechanism. The design of the asymptotically optimal rating mechanism consists

of two parts. The first part is to design the rating update rule. First, we should give incentives

for the users to provide high-quality service, by setting β+
θ , the probability that the rating goes

up when the service quality is not lower than the recommended quality, to be larger than 1−β−θ ,

the probability that the rating goes up when the service quality is lower than the recommended

quality. Second, for a user with rating 1, the expected probability that its rating goes up when it

complies should be larger than the threshold specified in Condition 2 (x+
s1
> x+

1 implies that x+
s1

is larger than the threshold, too). This gives users incentives to obtain rating 1. Meanwhile, for a

user with rating 0, the expected probability that its rating goes up when it complies, x+
0 , should

be smaller than the threshold specified in Condition 3. This provides necessary punishment for

a user with rating 0. Note that Conditions 2 and 3 imply that x+
1 > x+

0 . In this way, a user will

prefer to have rating 1.

The second part is to construct the equilibrium recommended strategy. Theorem 1 proves

that for any feasible discount factor δ no smaller than the lower-bound discount factor δ(ε, ξ)
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TABLE VI. ALGORITHM TO CONSTRUCT RECOMMENDED STRATEGIES.

Require: b, c, ε, ξ; τ(ε), δ ≥ δ(ε, ξ); θ0

Initialization: t = 0, ε0 = ξ, ε1 = ε0/(1 + κ2
κ1

), vθ = b− c− εθ , θ = θ0.

repeat

if s1(θ) = 0 then

if (v0, v1) lies in region “a” of the horizontal line segment in Fig. 6-(a)

choose recommended plan αa

else

choose recommended plan αs

end

elseif s1(θ) = N then

if (v0, v1) lies in region “a” of the vertical line segment in Fig. 6-(c)

choose recommended plan αa

else

choose recommended plan αs

end

else

if (v0, v1) lies in region “a” of the triangle in Fig. 6-(b)

choose recommended plan αa

else

choose recommended plan αf

end

end

determine the continuation payoffs (v′0, v
′
1) according to (14)

t← t+ 1, determine the rating profile θt, set θ ← θt, (v0, v1)← (v′0, v
′
1)

until ∅

defined in Appendix B, we can construct the corresponding recommended strategy such that

each user can achieve an discounted average payoff of at least b − c − ξ. Now we show how

to construct the recommended strategy. Note that determining the lower-bound discount factor

δ(ε, ξ) analytically is important for constructing the equilibrium (π0, π0 ·1N), because a feasible

discount factor is needed to determine the strategy. In [17] and [18], the lower bound for the

discount factor cannot be obtained analytically. Hence, their results are not constructive.

The algorithm in Table VI that constructs the optimal recommended strategy works as follows.

In each period, the algorithm updates the continuation payoffs (v0, v1), and determines the

recommended plan based on the current rating distribution and the continuation payoffs. In

Fig. 6, we illustrate which plan to recommend based on where the continuation payoffs locate

in the self-generating sets. Specifically, each set W(s) is partitioned into two parts (the partition
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lines can determined analytically; see Appendix D for the analytical expressions). When all the

users have rating 0 (or 1), we recommend the altruistic plan αa if the continuation payoff v0

(or v1) is large, and the selfish plan αs otherwise. When the users have different ratings, we

recommend the altruistic plan αa when (v0, v1) lies in the region marked by “a” in the triangle

in Fig. 6-(b), and the fair plan αf otherwise. Note that the partition of W(s) is different under

different rating distributions (e.g., the region in which the altruistic plan is chosen is larger

when more users have rating 1). Fig. 6 also illustrates why the strategy is nonstationary: the

recommended plan depends on not only the current rating distribution s, but also which region

of V(s) the continuation payoffs (v0, v1) lie in.

Complexity: Although the design of the optimal recommended strategy is complicated, the im-

plementation is simple. The computational complexity in each period comes from 1) identifying

which region the continuation payoffs lie in, which is simple because the regions are divided by

a straight line that is analytically determined, and 2) updating the continuation payoffs (v0, v1)

by (14), which can be easily done by solving a set of two linear equations with two variables.

The memory complexity is also low: because we summarize the history of past states by the

continuation payoffs (v0, v1), the protocol does not need to store all the past states.

C. Whitewashing-Proofness

An important issue in rating mechanisms is whitewashing, namely users with low ratings

can register as a new user to clear its history of bad behaviors. We say a rating mechanism is

whitewashing-proof, if the cost of whitewashing (e.g. creating a new account) is higher than

the benefit from whitewashing. The benefit from whitewashing is determined by the difference

between the current continuation payoff of a low-rating user and the target payoff of a high-

rating user. Since this difference is relatively small under the proposed rating mechanism, the

proposed mechanism is robust to whitewashing.

Proposition 2: Given the performance loss tolerance ξ > 0, the proposed rating mechanism

is whitewashing-proof if the cost of whitewashing is larger than
(

1− 1
κ1
− 1

κ2

)
· ξ.

Proof: We illustrate the proof using Fig. 7. In Fig. 7, we show the self-generating set again,

and point out the target payoff of a rating-1 user and the lowest continuation payoff of a rating-0

user. The difference between these two payoffs is the highest benefit that a rating-0 user can
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Benefit from 
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Fig. 7. Illustration of the target payoff of a rating-1 user and the lowest continuation payoff of a rating-0 user.

get by whitewashing. Simple calculation tells us that the difference is
(

1− 1
κ1
− 1

κ2

)
· ξ, which

completes the proof of Proposition 2.

VI. SIMULATION RESULTS

We compare against the rating mechanism with threshold-based stationary recommended

strategies. In particular, we focus on threshold-based stationary recommended strategies that

use two plans. In other words, one plan is recommended when the number of rating-1 users

is no smaller than the threshold, and the other plan is recommended otherwise. In particular,

we consider threshold-based stationary recommended strategies restricted on Aaf , Aas, and Afs,

and call them “Threshold AF”, “Threshold AS”, and “Threshold FS”, respectively. We focus

on threshold-based strategies because it is difficult to find the optimal stationary strategy in

general when the number of users is large (the number of stationary strategies grows exponen-

tially with the number of users). In our experiments, we fix the following system parameters:

N = 10, b = 3, c = 1.

In Fig. 8, we first illustrate the evolution of the states and the recommended plans taken under

the proposed rating mechanism and the rating mechanism with the Threshold AF strategy. The

threshold is set to be 5. Hence, it recommends the altruistic plan when at least half of the users

have rating 1, and recommends the fair plan otherwise. We can see that in the proposed strategy,

the plans taken can be different at the same state. In particular, in “bad” states (6,4) and (7,3)

at time slot 3 and 5, respectively, the proposed rating mechanism may recommend the fair plan

(as a punishment) and the altruistic plan (i.e. do not punish because the punishment happens
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Fig. 8. Evolution of states and recommended plans taken in different rating mechanisms.
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Fig. 9. Price of stationarity of different stationary rating mechanisms under different rating update errors.

in time slot 3), while the stationary mechanism always recommends the fair plan to punish the

low-rating users.

Then in Fig. 9, we show the price of stationarity of three representative stationary rating

mechanisms: the one with the optimal Threshold AF strategy, the one with the optimal Threshold

AS strategy, and the one with the optimal Threshold FS strategy. We can see from Fig. 9 that

as the rating update error increases, the efficiency of stationary rating mechanisms decreases,

and drops to 0 when the error probability is large (e.g. when ε > 0.4). In contrast, the proposed

rating mechanism can achieve arbitrarily close to the social optimum.

In Fig. 10, we illustrate the lower-bound discount factors under different performance loss

tolerances and rating update errors. As expected, when the performance loss tolerance becomes

larger, the lower-bound discount factor becomes smaller. What is unexpected is how the lower-

August 9, 2021 DRAFT



32

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.94

0.95

0.96

0.97

0.98

0.99

1

Performance loss tolerance ξ

Lo
w

er
−

bo
un

d 
di

sc
ou

nt
 fa

ct
or

 δ(
ε,

xi
)

 

 
rating update error = 0.1
rating update error = 0.2
rating update error = 0.3
rating update error = 0.4

Fig. 10. Lower-bound discount factors under different performance loss tolerances and rating update errors.

bound discount factor changes with the rating update error. Specifically, the lower-bound discount

factor decreases initially with the increase of the error, and then increases with the error. It is

intuitive to see the discount factor increases with the rating update error, because the users need

to be more patient when the rating update is more erroneous. The initial decrease of the discount

factor in the error can be explained as follows. If the rating update error is extremely small, the

punishment for the rating-0 users in the optimal rating update rule needs to be very severe (i.e.

a smaller β+
0 and a larger β−0 ). Hence, once a user is assigned with rating 0, it needs to be more

patient to carry out the severe punishment (i.e. weigh the future payoffs more).

Finally, we illustrate the robustness of the proposed mechanisms with respect to the estimation

of rating update errors. Suppose that the rating update error is ε. However, the designer cannot

accurately measure this error. Under the estimated error ε̂, the rating mechanism will construct

another recommended strategy. In Fig. 11, we illustrate the performance gain/loss in terms of

social welfare under the estimated error ε̂, when the rating update error is ε. We can see that

there is less than 5% performance variance when the estimation inaccuracy is less than 50%.

The performance variance is larger when the rating update error is larger.
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VII. CONCLUSION

In this paper, we proposed a design framework for simple binary rating mechanisms that can

achieve the social optimum in the presence of rating update errors. We provided design guidelines

for the optimal rating update rules, and an algorithm to construct the optimal nonstationary

recommended strategy. The key design principles that enable the rating mechanism to achieve

the social optimum are the differential punishments, and the nonstationary strategies that reduce

the performance loss while providing enough incentives. We also reduced the complexity of

computing the recommended strategy by proving that using three recommended plans is enough

to achieve the social optimum. The proposed rating mechanism is the first one that can achieve the

social optimum even when the rating update errors are large. Simulation results demonstrated

the significant performance gain of the proposed rating mechanism over the state-of-the-art

mechanisms, especially when the rating update error is large.
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APPENDIX A

PROOF OF PROPOSITION 1

A. The Claim to Prove

In order to prove Proposition 1, we quantify the performance loss of strategies restricted to

Aas. The performance loss is determined in the following claim:
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Claim: Starting from any initial rating profile θ, the maximum social welfare achievable at

the PAE by (π0, π · 1N) ∈ Π(Aas)× ΠN(Aas) is at most

b− c− c · ρ(θ, α∗0, S
∗
B)
∑
s′∈S∗B

q(s′|θ, α∗0, αa · 1N), (15)

where α∗0, the optimal recommended plan, and S∗B, the optimal subset of rating distributions, are

the solutions to the following optimization problem:

minα0 minSB⊂S

{
ρ(θ, α0, SB)

∑
s′∈SB

q(s′|θ, α0, α
a · 1N)

}
(16)

s.t.
∑

s′∈S\SB

q(s′|θ, α0, α
a · 1N) >

∑
s′∈S\SB

q(s′|θ, α0, αi = α0, αa · 1N), ∀i ∈ N ,

∑
s′∈S\SB

q(s′|θ, α0, α
a · 1N) >

∑
s′∈S\SB

q(s′|θ, α0, αi = α1, αa · 1N), ∀i ∈ N ,

∑
s′∈S\SB

q(s′|θ, α0, α
a · 1N) >

∑
s′∈S\SB

q(s′|θ, α0, αi = α01, αa · 1N), ∀i ∈ N ,

where ρ(θ, α0, SB) is defined as

ρ(θ, α0, SB) , max
i∈N

max

{ sθi−1

N−1∑
s′∈S\SB q(s

′|θ, α0, αa · 1N)− q(s′|θ, α0, αi = α0, αa · 1N)
, (17)

s1−θi
N−1∑

s′∈S\SB q(s
′|θ, α0, αa · 1N)− q(s′|θ, α0, αi = α1, αa · 1N)

,

1∑
s′∈S\SB q(s

′|θ, α0, αa · 1N)− q(s′|θ, α0, αi = α01, αa · 1N)

}
,

where α0 (resp. α1) is the plan in which the user does not serve rating-0 (resp. rating-1) users,

and α01 is the plan in which the user does not serve anyone.

The above claim shows that

W (ε, δ, Aas) ≤ b− c− c · ρ(θ, α∗0, S
∗
B)
∑
s′∈S∗B

q(s′|θ, α∗0, αa · 1N)

for any δ. By defining

ζ(ε) , c · ρ(θ, α∗0, S
∗
B)
∑
s′∈S∗B

q(s′|θ, α∗0, αa · 1N),

we obtain the result in Proposition 1, namely limδ→1W (ε, δ, Aas) ≤ b − c − ζ(ε). Note that

ζ(ε) is indeed a function of the rating update error ε, because ε determines the state transition
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function q(s′|θ, α∗0, αa ·1N), and thus affects ρ(θ, α0, SB). Note also that ζ(ε) is independent of

the discount factor δ.

In the expression of ζ(ε), ρ(θ, α0, SB) represents the normalized benefit from deviation

(normalized by b− c). The numerator of ρ(θ, α0, SB) is the probability of a player matched to

the type of clients whom it deviates to not serve. The higher this probability, the larger benefit

from deviation a player can get. The denominator of ρ(θ, α0, SB) is the difference between the

two state transition probabilities when the player does and does not deviate, respectively. When

the above two transition probabilities are closer, it is less likely to detect the deviation, which

results in a larger ρ(θ, α0, SB). Hence, we can expect that a larger ρ(θ, α0, SB) (i.e. a larger

benefit from deviation) will result in a larger performance loss, which is indeed true as will be

proved later.

We can also see that ζ(ε) > 0 as long as ε > 0. The reason is as follows. Suppose that ε > 0.

First, from (17), we know that ρ(θ, α0, SB) > 0 for any θ, α, and SB 6= ∅. Second, we can see

that
∑
s′∈S∗B

q(s′|θ, α∗0, αa · 1N) > 0 as long as S∗B 6= ∅. Since S∗B = ∅ cannot be the solution to

the optimization problem (16) (because S∗B = ∅ violates the constraints), we know that ζ(ε) > 0.

B. Proof of the Claim

We prove that for any self-generating set (Wθ)θ∈ΘN , the maximum payoff in (Wθ)θ∈ΘN ,

namely maxθ∈ΘN maxv∈Wθ maxi∈N vi, is bounded away from the social optimum b−c, regardless

of the discount factor. In this way, we can prove that any equilibrium payoff is bounded away

from the social optimum. In addition, we analytically quantify the efficiency loss, which is

independent of the discount factor.

Since the strategies are restricted on the subset of plans Aas, in each period, all the users will

receive the same stage-game payoff, either (b− c) or 0, regardless of the matching rule and the

rating profile. Hence, the expected discounted average payoff for each user is the same. More

precisely, at any given history ht = (θ0, . . . ,θt), we have

Ui(θ
t, π0|ht , π|ht · 1N) = Uj(θ

t, π0|ht , π|ht · 1N), ∀i, j ∈ N , (18)

for any (π0, π · 1N) ∈ Π(Aas)×ΠN(Aas). As a result, when we restrict to the plan set Aas, the

self-generating set (Wθ)θ∈ΘN satisfies for any θ and any v ∈ Wθ

vi = vj, ∀i, j ∈ N . (19)
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Given any self-generating set (Wθ)θ∈ΘN , define the maximum payoff v̄ as

v̄ , max
θ∈ΘN

max
v∈Wθ

max
i∈N

vi. (20)

Now we derive the upper bound of v̄ by looking at the decomposability constraints.

To decompose the payoff profile v̄ · 1N , we must find a recommended plan α0 ∈ Aas, a plan

profile α · 1N with α ∈ Aas, and a continuation payoff function γ : ΘN → ∪θ′∈ΘNWθ′ with

γ(θ′) ∈ Wθ′ , such that for all i ∈ N and for all αi ∈ A,

v̄ = (1− δ)ui(θ, α0, α · 1N) + δ
∑
θ′

γi(θ
′)q(θ′|θ, α0, α · 1N) (21)

≥ (1− δ)ui(θ, α0, αi, α · 1N−1) + δ
∑
θ′

γi(θ
′)q(θ′|θ, α0, αi, α · 1N−1).

Note that we do not require the users’ plan α to be the same as the recommended plan α0,

and that we also do not require the continuation payoff function γ to be a simple continuation

payoff function.

First, the payoff profile v̄ · 1N cannot be decomposed by a recommended plan α0 and the

selfish plan αs. Otherwise, since γ(θ′) ∈ Wθ′ , we have

v̄ = (1− δ) · 0 + δ
∑
θ′

γi(θ
′)q(θ′|θ, α0, α

a · 1N) ≤ δ
∑
θ′

v̄i · q(θ′|θ, α0, α
a · 1N) = δ · v̄ < v̄,

which is a contradiction.

Since we must use a recommended plan α0 and the altruistic plan αa to decompose v̄ · 1N ,

we can rewrite the decomposability constraint as

v̄ = (1− δ)(b− c) + δ
∑
θ′

γi(θ
′)q(θ′|θ, α0, α

a · 1N) (22)

≥ (1− δ)ui(θ, α0, αi, α
a · 1N−1) + δ

∑
θ′

γi(θ
′)q(θ′|θ, α0, αi, α

a · 1N−1).

Since the continuation payoffs under different rating profiles θ,θ′ that have the same rating

distribution s(θ) = s(θ′) are the same, namely γ(θ) = γ(θ′), the continuation payoff depends

only on the rating distribution. For notational simplicity, with some abuse of notation, we write

γ(s) as the continuation payoff when the rating distribution is s, write q(s′|θ, α0, αi, α
a·1N−1) as

the probability that the next state has a rating distribution s′, and write ui(s, αa, αi, α
a ·1N−1) as

the stage-game payoff when the next state has a rating distribution s. Then the decomposability
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constraint can be rewritten as

v̄ = (1− δ)(b− c) + δ
∑
s′

γi(s
′)q(s′|θ, α0, α

a · 1N) (23)

≥ (1− δ)ui(s, α0, αi, α
a · 1N−1) + δ

∑
s′

γi(s
′)q(s′|θ, α0, αi, α

a · 1N−1).

Now we focus on a subclass of continuation payoff functions, and derive the maximum payoff

v̄ achievable under this subclass of continuation payoff functions. Later, we will prove that we

cannot increase v̄ by choosing other continuation payoff functions. Specifically, we focus on a

subclass of continuation payoff functions that satisfy

γi(s) = xA, ∀i ∈ N , ∀s ∈ SA ⊂ S, (24)

γi(s) = xB, ∀i ∈ N , ∀s ∈ SB ⊂ S, (25)

where SA and SB are subsets of the set of rating distributions S that have no intersection, namely

SA ∩ SB = ∅. In other words, we assign the two continuation payoff values to two subsets of

rating distributions, respectively. Without loss of generality, we assume xA ≥ xB.

Now we derive the incentive compatibility constraints. There are three plans to deviate to, the

plan α0 in which the user does not serve users with rating 0, the plan α1 in which the user does

not serve users with rating 1, and the plan α01 in which the user does not serve anyone. The

corresponding incentive compatibility constraints for a user i with rating θi = 1 are[∑
s′∈SA

q(s′|θ, α0, α
a · 1N)− q(s′|θ, α0, αi = α0, αa · 1N)

]
(xA − xB) ≥ 1− δ

δ

s0

N − 1
c,

[∑
s′∈SA

q(s′|θ, α0, α
a · 1N)− q(s′|θ, α0, αi = α1, αa · 1N)

]
(xA − xB) ≥ 1− δ

δ

s1 − 1

N − 1
c,

[∑
s′∈SA

q(s′|θ, α0, α
a · 1N)− q(s′|θ, α0, αi = α01, αa · 1N)

]
(xA − xB) ≥ 1− δ

δ
c. (26)

Similarly, the corresponding incentive compatibility constraints for a user j with rating θj = 0
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are[∑
s′∈SA

q(s′|θ, α0, α
a · 1N)− q(s′|θ, α0, αj = α0, αa · 1N)

]
(xA − xB) ≥ 1− δ

δ

s0 − 1

N − 1
c,

[∑
s′∈SA

q(s′|θ, α0, α
a · 1N)− q(s′|θ, α0, αj = α1, αa · 1N)

]
(xA − xB) ≥ 1− δ

δ

s1

N − 1
c,

[∑
s′∈SA

q(s′|θ, α0, α
a · 1N)− q(s′|θ, α0, αj = α01, αa · 1N)

]
(xA − xB) ≥ 1− δ

δ
c. (27)

We can summarize the above incentive compatibility constraints as

xA − xB ≥
1− δ
δ

c · ρ(θ, α0, SA), (28)

where

ρ(θ, α0, SB) , max
i∈N

max

{ sθi−1

N−1∑
s′∈S\SB q(s

′|θ, α0, αa · 1N)− q(s′|θ, α0, αi = α0, αa · 1N)
, (29)

s1−θi
N−1∑

s′∈S\SB q(s
′|θ, α0, αa · 1N)− q(s′|θ, α0, αi = α1, αa · 1N)

, (30)

1∑
s′∈S\SB q(s

′|θ, α0, αa · 1N)− q(s′|θ, α0, αi = α01, αa · 1N)

}
. (31)

Since the maximum payoff v̄ satisfies

v̄ = (1− δ)(b− c) + δ

xA ∑
s′∈S\SB

q(s′|θ, α0, α
a · 1N) + xB

∑
s′∈SB

q(s′|θ, α0, α
a · 1N)

 , (32)

to maximize v̄, we choose xB = xA − 1−δ
δ
c · ρ(θ, α0, SB). Since xA ≥ v̄, we have

v̄ = (1− δ)(b− c) + δ

(
xA −

1− δ
δ

c · ρ(θ, α0, SB)
∑
s′∈SB

q(s′|θ, α0, α
a · 1N)

)
(33)

≤ (1− δ)(b− c) + δ

(
v̄ − 1− δ

δ
c · ρ(θ, α0, SB)

∑
s′∈SB

q(s′|θ, α0, α
a · 1N)

)
, (34)

which leads to

v̄ ≤ b− c− c · ρ(θ, α0, SB)
∑
s′∈SB

q(s′|θ, α0, α
a · 1N). (35)

Hence, the maximum payoff v̄ satisfies

v̄ ≤ b− c− c · min
SB⊂S

{
ρ(θ, α0, SB)

∑
s′∈SB

q(s′|θ, α0, α
a · 1N)

}
, (36)
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where SB satisfies for all i ∈ N ,∑
s′∈S\SB

q(s′|θ, α0, α
a · 1N) >

∑
s′∈S\SB

q(s′|θ, α0, αi = α0, αa · 1N),

∑
s′∈S\SB

q(s′|θ, α0, α
a · 1N) >

∑
s′∈S\SB

q(s′|θ, α0, αi = α1, αa · 1N),

∑
s′∈S\SB

q(s′|θ, α0, α
a · 1N) >

∑
s′∈S\SB

q(s′|θ, α0, αi = α01, αa · 1N). (37)

Following the same logic as in the proof of Proposition 6 in [6], we can prove that we cannot

achieve a higher maximum payoff by other continuation payoff functions.

APPENDIX B

ANALYTICAL EXPRESSION OF δ(ε, ξ)

The lower-bound discount factor δ(ε, ξ) is the maximum of three critical discount factors,

namely δ(ε, ξ) , max{δ1(ε, ξ), δ2(ε, ξ), δ3(ε, ξ)}, where

δ1(ε, ξ) , max
θ∈{0,1}

c

c+ (1− 2ε)(β+
θ − (1− β−θ ))(ξ κ2

κ1+κ2
)
,

δ2(ε, ξ) , max
s1∈{1,...,N−1}: s1

N−1
b+

N−s1
N−1

c>ξ
κ2

κ1+κ2

{
ξ κ2
κ1+κ2

−
(

s1
N−1

b+ N−s1
N−1

c
)

(ξ κ2
κ1+κ2

)
(
x+
s1
− x+

0

)
−
(

s1
N−1

b+ N−s1
N−1

c
)} ,

and

δ3(ε, ξ) , max
θ∈{0,1}

b− c+ c
x+θ

(1−2ε)[β+
θ −(1−β−θ )]

b− c+
c·x+θ

(1−2ε)[β+
θ −(1−β−θ )]

−
(1+κ1)(ξ

κ2
κ1+κ2

)−z2
κ1

− z3

, (38)

where z2 , −κ1(b − c) + κ1(1 − 1/κ2)ξ + ξ κ1
κ2
/(1 + κ2

κ1
), and z3 , z2/(κ1 + κ2). Note that

(1+κ1)(ξ
κ2

κ1+κ2
)−z2

κ1
+z3 < 0. We can see from the above expressions that δ1(ε, ξ) < 1 and δ2(ε, ξ) <

1 as long as ξ > 0. For δ3(ε, ξ), simple calculations tell us that ξ appears in the denominator in

the form of − (2κ1+κ2)κ2
(κ1+κ2)2κ1

· ξ. Since κ1 > 0 and κ2 > 0, we know that − (2κ1+κ2)κ2
(κ1+κ2)2κ1

< 0. Hence,

δ3(ε, ξ) is increasing in ξ. As a result, δ3(ε, ξ) < 1 as long as ξ is small enough.

Note that all the critical discount factors can be calculated analytically. Specifically, δ1(ε, ξ) and

δ3(ε, ξ) are the maximum of two analytically-computed numbers, and δ2(ε, ξ) is the maximum

of at most N − 1 analytically-computed numbers.
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APPENDIX C

PROOF OF THEOREM 1

A. Outline of the proof

We derive the conditions under which the set (Wθ)θ∈ΘN is a self-generating set. Specifically,

we derive the conditions under which any payoff profile v ∈ Wθ is decomposable on (Wθ′)θ′∈ΘN

given θ, for all θ ∈ ΘN .

B. When users have different ratings

1) Preliminaries: We first focus on the states θ with 1 ≤ s1(θ) ≤ N − 1, and derive the

conditions under which any payoff profile v ∈ Wθ can be decomposed by (α0 = αa, αa ·1N) or

(α0 = αf , αf · 1N). First, v could be decomposed by (αa, αa · 1N), if there exists a continuation

payoff function γ : ΘN → ∪θ′∈ΘNWθ′ with γ(θ′) ∈ Wθ′ , such that for all i ∈ N and for all

αi ∈ A,

vi = (1− δ)ui(θ, αa, αa · 1N) + δ
∑
θ′

γi(θ
′)q(θ′|θ, αa, αa · 1N) (39)

≥ (1− δ)ui(θ, αa, αi, α
a · 1N−1) + δ

∑
θ′

γi(θ
′)q(θ′|θ, αa, αi, α

a · 1N−1).

Since we focus on simple continuation payoff functions, all the users with the same future rating

will have the same continuation payoff regardless of the recommended plan α0, the plan profile

(αi, α · 1N−1), and the future state θ′. Hence, we write the continuation payoffs for the users

with future rating 1 and 0 as γ1 and γ0, respectively. Consequently, the above conditions on

decomposability can be simplified to

vi = (1− δ) · ui(θ, αa, αa · 1N) (40)

+ δ

γ1
∑
θ′:θ′i=1

q(θ′|θ, αa, αa · 1N) + γ0
∑
θ′:θ′i=0

q(θ′|θ, αa, αa · 1N)


≥ (1− δ) · ui(θ, αa, αi, α

a · 1N−1)

+ δ

γ1
∑
θ′:θ′i=1

q(θ′|θ, αa, αi, α
a · 1N−1) + γ0

∑
θ′:θ′i=0

q(θ′|θ, αa, αi, α
a · 1N−1)

 .

First, consider the case when user i has rating 1 (i.e. θi = 1). Based on (??), we can calculate

the stage-game payoff as ui(θ, αa, αa ·1N) = b− c. The term
∑
θ′:θ′i=1 q(θ

′|θ, αa, αa ·1N) is the
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probability that user i has rating 1 in the next state. Since user i’s rating update is independent

of the other users’ rating update, we can calculate this probability as∑
θ′:θ′i=1

q(θ′|θ, αa, αa · 1N) = [(1− ε)β+
1 + ε(1− β−1 )]

∑
m∈M :θm(i)=1

µ(m) (41)

+ [(1− ε)β+
1 + ε(1− β−1 )]

∑
m∈M :θm(i)=0

µ(m) (42)

= (1− ε)β+
1 + ε(1− β−1 ) = x+

1 . (43)

Similarly, we can calculate
∑
θ′:θ′i=0 q(θ

′|θ, αa, αa · 1N), the probability that user i has rating 0

in the next state, as∑
θ′:θ′i=0

q(θ′|θ, αa, αa · 1N) = [(1− ε)(1− β+
1 ) + εβ−1 ]

∑
m∈M :θm(i)=1

µ(m) (44)

+ [(1− ε)(1− β+
1 ) + εβ−1 ]

∑
m∈M :θm(i)=0

µ(m) (45)

= (1− ε)(1− β+
1 ) + εβ−1 = 1− x+

1 . (46)

Now we discuss what happens if user i deviates. Since the recommended plan αa is to exert

high effort for all the users, user i can deviate to the other three plans, namely “exert high effort

for rating-1 users only”, “exert high effort for rating-0 users only”, “exert low effort for all the

users”. We can calculate the corresponding stage-game payoff and state transition probabilities

under each deviation.

• “exert high effort for rating-1 users only” (αi(1, θi) = 1, αi(0, θi) = 0):

ui(θ, α
a, αi, α

a · 1N−1) = b− c ·
∑

m∈M :θm(i)=1

µ(m) = b− c · s1(θ)− 1

N − 1
(47)

∑
θ′:θ′i=1

q(θ′|θ, αa, αi, α
a · 1N−1) (48)

= [(1− ε)β+
1 + ε(1− β−1 )]

∑
m∈M :θm(i)=1

µ(m) + [(1− ε)(1− β−1 ) + εβ+
1 ]

∑
m∈M :θm(i)=0

µ(m)

= [(1− ε)β+
1 + ε(1− β−1 )]

s1(θ)− 1

N − 1
+ [(1− ε)(1− β−1 ) + εβ+

1 ]
s0(θ)

N − 1
.
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43∑
θ′:θ′i=0

q(θ′|θ, αa, αi, α
a · 1N−1) (49)

= [(1− ε)(1− β+
1 ) + εβ−1 ]

∑
m∈M :θm(i)=1

µ(m) + [(1− ε)β−1 + ε(1− β+
1 )]

∑
m∈M :θm(i)=0

µ(m)

= [(1− ε)(1− β+
1 ) + εβ−1 ]

s1(θ)− 1

N − 1
+ [(1− ε)β−1 + ε(1− β+

1 )]
s0(θ)

N − 1
.

• “exert high effort for rating-0 users only” (αi(1, θi) = 0, αi(0, θi) = 1):

ui(θ, α
a, αi, α

a · 1N−1) = b− c ·
∑

m∈M :θm(i)=0

µ(m) = b− c · s0(θ)

N − 1
(50)

∑
θ′:θ′i=1

q(θ′|θ, αa, αi, α
a · 1N−1) (51)

= [(1− ε)(1− β−1 ) + εβ+
1 ]

∑
m∈M :θm(i)=1

µ(m) + [(1− ε)β+
1 + ε(1− β−1 )]

∑
m∈M :θm(i)=0

µ(m)

= [(1− ε)(1− β−1 ) + εβ+
1 ]
s1(θ)− 1

N − 1
+ [(1− ε)β+

1 + ε(1− β−1 )]
s0(θ)

N − 1
.

∑
θ′:θ′i=0

q(θ′|θ, αa, αi, α
a · 1N−1) (52)

= [(1− ε)β−1 + ε(1− β+
1 )]

∑
m∈M :θm(i)=1

µ(m) + [(1− ε)(1− β+
1 ) + εβ−1 ]

∑
m∈M :θm(i)=0

µ(m)

= [(1− ε)β−1 + ε(1− β+
1 )]

s1(θ)− 1

N − 1
+ [(1− ε)(1− β+

1 ) + εβ−1 ]
s0(θ)

N − 1
.

• “exert low effort for all the users” (αi(1, θi) = 0, αi(0, θi) = 0):

ui(θ, α
a, αi, α

a · 1N−1) = b (53)

∑
θ′:θ′i=1

q(θ′|θ, αa, αi, α
a · 1N−1) (54)

= [(1− ε)(1− β−1 ) + εβ+
1 ]

∑
m∈M :θm(i)=1

µ(m) + [(1− ε)(1− β−1 ) + εβ+
1 ]

∑
m∈M :θm(i)=0

µ(m)

= (1− ε)(1− β−1 ) + εβ+
1 .
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44∑
θ′:θ′i=0

q(θ′|θ, αa, αi, α
a · 1N−1) (55)

= [(1− ε)β−1 + ε(1− β+
1 )]

∑
m∈M :θm(i)=1

µ(m) + [(1− ε)β−1 + ε(1− β+
1 )]

∑
m∈M :θm(i)=0

µ(m)

= (1− ε)β−1 + ε(1− β+
1 ).

Plugging the above expressions into (40), we can simplify the incentive compatibility con-

straints (i.e. the inequality constraints) to

(1− 2ε)
[
β+

1 − (1− β−1 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c, (56)

under all three deviating plans.

Hence, if user i has rating 1, the decomposability constraints (40) reduces to

v1 = (1− δ) · (b− c) + δ ·
[
x+

1 γ
1 + (1− x+

1 )γ0
]
, (57)

where v1 is the payoff of the users with rating 1, and

(1− 2ε)
[
β+

1 − (1− β−1 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c. (58)

Similarly, if user i has rating 0, we can reduce the decomposability constraints (40) to

v0 = (1− δ) · (b− c) + δ ·
[
x+

0 γ
1 + (1− x+

0 )γ0
]
, (59)

and

(1− 2ε)
[
β+

0 − (1− β−0 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c. (60)

For the above incentive compatibility constraints (the above two inequalities) to hold, we need

to have β+
1 − (1−β−1 ) > 0 and β+

0 − (1−β−0 ) > 0, which are part of Condition 1 and Condition

2. Now we will derive the rest of the sufficient conditions in Theorem 1.

The above two equalities determine the continuation payoff γ1 and γ0 as below
γ1 = 1

δ
· (1−x+0 )v1−(1−x+1 )v0

x+1 −x
+
0

− 1−δ
δ
· (b− c)

γ0 = 1
δ
· x

+
1 v

0−x+0 v1

x+1 −x
+
0

− 1−δ
δ
· (b− c)

. (61)

Now we consider the decomposability constraints if we want to decompose a payoff profile

v ∈ Wθ using the fair plan αf . Since we focus on decomposition by simple continuation payoff
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functions, we write the decomposition constraints as

vi = (1− δ) · ui(θ, αf , αf · 1N) (62)

+ δ

γ1
∑
θ′:θ′i=1

q(θ′|θ, αf , αf · 1N) + γ0
∑
θ′:θ′i=0

q(θ′|θ, αf , αf · 1N)


≥ (1− δ) · ui(θ, αf , αi, α

f · 1N−1)

+ δ

γ1
∑
θ′:θ′i=1

q(θ′|θ, αf , αi, α
f · 1N−1) + γ0

∑
θ′:θ′i=0

q(θ′|θ, αf , αi, α
f · 1N−1)

 .

Due to space limitation, we omit the details and directly give the simplification of the above

decomposability constraints as follows. First, the incentive compatibility constraints (i.e. the

inequality constraints) are simplified to

(1− 2ε)
[
β+

1 − (1− β−1 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c, (63)

and

(1− 2ε)
[
β+

0 − (1− β−0 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c, (64)

under all three deviating plans. Note that the above incentive compatibility constraints are the

same as the ones when we want to decompose the payoffs using the altruistic plan αa.

Then, the equality constraints in (62) can be simplified as follows. For the users with rating

1, we have

v1 = (1− δ) ·
(
b− s1(θ)− 1

N − 1
c

)
+ δ ·

[
x+
s1(θ) · γ

1 + (1− x+
s1(θ)) · γ

0
]
, (65)

where

xs1(θ) ,

[
(1− ε)s1(θ)− 1

N − 1
+

s0(θ)

N − 1

]
β+

1 +

(
ε
s1(θ)− 1

N − 1

)
(1− β−1 ). (66)

For the users with rating 0, we have

v0 = (1− δ) ·
(
s0(θ)− 1

N − 1
b− c

)
+ δ ·

[
x+

0 γ
1 + (1− x+

0 )γ0
]
. (67)

The above two equalities determine the continuation payoff γ1 and γ0 as below
γ1 = 1

δ
·

(1−x+0 )v1−(1−x+
s1(θ)

)v0

x+
s1(θ)

−x+0
− 1−δ

δ
·
(
b− s1(θ)−1

N−1
c
)

(1−x+0 )−
(
s0(θ)−1
N−1

b−c
)

(1−x+
s1(θ)

)

x+
s1(θ)

−x+0

γ0 = 1
δ
·
x+
s1(θ)

v0−x+0 v1

x+
s1(θ)

−x+0
− 1−δ

δ
·
(
b− s1(θ)−1

N−1
c
)
x+0 −

(
s0(θ)−1
N−1

b−c
)
x+
s1(θ)

x+
s1(θ)

−x+0

. (68)
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2) Sufficient conditions: Now we derive the sufficient conditions under which any payoff

profile v ∈ Wθ can be decomposed by (α0 = αa, αa · 1N) or (α0 = αf , αf · 1N). Specifically,

we will derive the conditions such that for any payoff profile v ∈ Wθ, at least one of the two

decomposability constraints (40) and (62) is satisfied. From the preliminaries, we know that the

incentive compatibility constraints in (40) and (62) can be simplified into the same constraints:

(1− 2ε)
[
β+

1 − (1− β−1 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c, (69)

and

(1− 2ε)
[
β+

0 − (1− β−0 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c. (70)

The above constraints impose the constraint on the discount factor, namely

δ ≥ max
θ∈Θ

c

c+ (1− 2ε)
[
β+
θ − (1− β−θ )

]
(γ1 − γ0)

. (71)

Since γ1 and γ0 should satisfy γ1 − γ0 ≥ ε0 − ε1, the above constraints can be rewritten as

δ ≥ max
θ∈Θ

c

c+ (1− 2ε)
[
β+
θ − (1− β−θ )

]
(ε0 − ε1)

, (72)

where is part of Condition 3 in Theorem 1.

In addition, the continuation payoffs γ1 and γ0 should satisfy the constraints of the self-

generating set, namely

γ1 − γ0 ≥ ε0 − ε1, (73)

γ1 +
c

(N − 1)b
· γ0 ≤ z2 , (1 +

c

(N − 1)b
)(b− c)− c

(N − 1)b
ε0 − ε1, (74)

γ1 − b
N−2
N−1

b− c
· γ0 ≤ z3 , −

b
N−2
N−1

b−c − 1

1 + c
(N−1)b

· z2. (75)

We can plug the expressions of the continuation payoffs γ1 and γ0 in (61) and (68) into

the above constraints. Specifically, if a payoff profile v is decomposed by the altruistic plan,

the following constraints should be satisfied for the continuation payoff profile to be in the

self-generating set: (for notational simplicity, we define κ1 , b
N−2
N−1

b−c − 1 and κ2 , 1 + c
(N−1)b

)

1

δ
· v

1 − v0

x+
1 − x+

0

≥ ε0 − ε1, (αa-1)

1

δ
·
{

(1− κ2x
+
0 )v1 − (1− κ2x

+
1 )v0

x+
1 − x+

0

− κ2 · (b− c)
}
≤ z2 − κ2 · (b− c), (αa-2)

1

δ
·
{

(1 + κ1x
+
0 )v1 − (1 + κ1x

+
1 )v0

x+
1 − x+

0

+ κ1 · (b− c)
}
≤ z3 + κ1 · (b− c). (αa-3)
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The constraint (αa-1) is satisfied for all v1 and v0 as long as x+
1 > x+

0 , because v1−v0 > ε0−ε1,

|x+
1 > x+

0 | < 1, and δ < 1.

Since both the left-hand side (LHS) and the right-hand side (RHS) of (αa-2) are smaller than

0, we have

(αa-2)⇔ δ ≤
(1−κ2x+0 )v1−(1−κ2x+1 )v0

x+1 −x
+
0

− κ2 · (b− c)

z2 − κ2 · (b− c)
(76)

The RHS of (αa-3) is larger than 0. Hence, we have

(αa-3)⇔ δ ≥
(1+κ1x

+
0 )v1−(1+κ1x

+
1 )v0

x+1 −x
+
0

+ κ1 · (b− c)

z3 + κ1 · (b− c)
. (77)

If a payoff profile v is decomposed by the fair plan, the following constraints should be

satisfied for the continuation payoff profile to be in the self-generating set:

1

δ
·

{
v1 − v0

x+
s1(θ) − x

+
0

−
s1(θ)
N−1

b+ s0(θ)
N−1

c

x+
s1(θ) − x

+
0

}
≥ ε0 − ε1 −

s1(θ)
N−1

b+ s0(θ)
N−1

c

x+
s1(θ) − x

+
0

, (αf-1)

1

δ
·

(1− κ2x
+
0 )v1 − (1− κ2x

+
s1(θ))v

0

x+
s1(θ) − x

+
0

−
(1− κ2x

+
0 )
(
b− s1(θ)−1

N−1
c
)
− (1− κ2x

+
s1(θ))

(
s0(θ)−1
N−1

b− c
)

x+
s1(θ) − x

+
0


≤ z2 −

(1− κ2x
+
0 )
(
b− s1(θ)−1

N−1
c
)
− (1− κ2x

+
s1(θ))

(
s0(θ)−1
N−1

b− c
)

x+
s1(θ) − x

+
0

, (αf-2)

1

δ
·

(1 + κ1x
+
0 )v1 − (1 + κ1x

+
s1(θ))v

0

x+
s1(θ) − x

+
0

−
(1 + κ1x

+
0 )
(
b− s1(θ)−1

N−1
c
)
− (1 + κ1x

+
s1(θ))

(
s0(θ)−1
N−1

b− c
)

x+
s1(θ) − x

+
0


≤ z3 −

(1 + κ1x
+
0 )
(
b− s1(θ)−1

N−1
c
)
− (1 + κ1x

+
s1(θ))

(
s0(θ)−1
N−1

b− c
)

x+
s1(θ) − x

+
0

. (αf-3)

Since v1−v0
x+
s1(θ)

−x+0
> ε0 − ε1, the constraint (αf-1) is satisfied for all v1 and v0 if v1 − v0 ≥

s1(θ)
N−1

b+ s0(θ)
N−1

c. Hence, the constraint (αf-1) is equivalent to

δ ≥
v1 − v0 −

(
s1(θ)
N−1

b+ s0(θ)
N−1

c
)

(ε0 − ε1)(x+
s1(θ) − x

+
0 )−

(
s1(θ)
N−1

b+ s0(θ)
N−1

c
) , for θ s.t.

s1(θ)

N − 1
b+

s0(θ)

N − 1
c ≥ v1 − v0. (78)

For (αf-2), we want to make the RHS have the same (minus) sign under any state θ, which

is true if

1− κ2x
+
0 > 0, 1− κ2x

+
s1(θ) < 0,

1− κ2x
+
s1(θ)

1− κ2x
+
0

≥ −(κ2 − 1), s1(θ) = 1, . . . , N − 1, (79)
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which leads to

x+
s1(θ) >

1

κ2

, x+
0 <

1

κ2

, x+
0 <

1− x+
s1(θ)

1− κ2

, s1(θ) = 1, . . . , N − 1, (80)

⇔ N − 2

N − 1
x+

1 +
1

N − 1
β+

1 >
1

κ2

, x+
0 < min

{
1

κ2

,
1− β+

1

1− κ2

}
. (81)

Since the RHS of (αf-2) is smaller than 0, we have

(αf-2)⇔ δ ≤

(1−κ2x+0 )v1−(1−κ2x+s1(θ))v
0

x+
s1(θ)

−x+0
−

(1−κ2x+0 )
(
b− s1(θ)−1

N−1
c
)
−(1−κ2x+s1(θ))

(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+0

z2 −
(1−κ2x+0 )

(
b− s1(θ)−1

N−1
c
)
−(1−κ2x+s1(θ))

(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+0

. (82)

For (αf-3), since
1+κ1x

+
s1(θ)

1+κ1x
+
0

< 1 + κ1, the RHS is always smaller than 0. Hence, we have

(αf-3)⇔ δ ≤

(1+κ1x
+
0 )v1−(1+κ1x

+
s1(θ)

)v0

x+
s1(θ)

−x+0
−

(1+κ1x
+
0 )

(
b− s1(θ)−1

N−1
c
)
−(1+κ1x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+0

z3 −
(1+κ1x

+
0 )

(
b− s1(θ)−1

N−1
c
)
−(1+κ1x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+0

. (83)

We briefly summarize what requirements on δ we have obtained now. To make the continuation

payoff profile in the self-generating under the decomposition of αa, we have one upper bound on

δ resulting from (αa-2) and one lower bound on δ resulting from (αa-3). To make the continuation

payoff profile in the self-generating under the decomposition of αf , we have two upper bounds

on δ resulting from (αf-2) and (αf-3), and one lower bound on δ resulting from (αf-1). First,

we want to eliminate the upper bounds, namely make the upper bounds larger than 1, such that

δ can be arbitrarily close to 1.

To eliminate the following upper bound resulting from (αa-2)

δ ≤
(1−κ2x+0 )v1−(1−κ2x+1 )v0

x+1 −x
+
0

− κ2 · (b− c)

z2 − κ2 · (b− c)
, (84)

we need to have (since z2 − κ2 · (b− c) < 0)

(1− κ2x
+
0 )v1 − (1− κ2x

+
1 )v0

x+
1 − x+

0

≤ z2, ∀v1, v0. (85)

The LHS of the above inequality is maximized when v0 = z2−z3
κ1+κ2

and v1 = v0 + κ1z2+κ2z3
κ1+κ2

. Hence,

the above inequality is satisfied if

(1− κ2x
+
0 )
(
z2−z3
κ1+κ2

+ κ1z2+κ2z3
κ1+κ2

)
− (1− κ2x

+
1 ) z2−z3

κ1+κ2

x+
1 − x+

0

≤ z2 (86)

⇔
(

1− x+
1 − x+

0 (κ2 − 1)

x+
1 − x+

0

κ1

κ1 + κ2

)
z2 ≤ −

1− x+
1 − x+

0 (κ2 − 1)

x+
1 − x+

0

κ2

κ1 + κ2

z3. (87)
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Since x+
0 <

1−β+
1

1−κ2 <
1−x+1
1−κ2 , we have

z2 ≤ −
κ2

κ1

z3. (88)

To eliminate the following upper bound resulting from (αf-2)

δ ≤

(1−κ2x+0 )v1−(1−κ2x+s1(θ))v
0

x+
s1(θ)

−x+0
−

(1−κ2x+0 )
(
b− s1(θ)−1

N−1
c
)
−(1−κ2x+s1(θ))

(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+0

z2 −
(1−κ2x+0 )

(
b− s1(θ)−1

N−1
c
)
−(1−κ2x+s1(θ))

(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+0

, (89)

we need to have (since z2 −
(1−κ2x+0 )

(
b− s1(θ)−1

N−1
c
)
−(1−κ2x+s1(θ))

(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+0
< 0)

(1− κ2x
+
0 )v1 − (1− κ2x

+
s1(θ))v

0

x+
s1(θ) − x

+
0

≤ z2, ∀v1, v0. (90)

Similarly, the LHS of the above inequality is maximized when v0 = z2−z3
κ1+κ2

and v1 = v0 +

κ1z2+κ2z3
κ1+κ2

. Hence, the above inequality is satisfied if

(1− κ2x
+
0 )
(
z2−z3
κ1+κ2

+ κ1z2+κ2z3
κ1+κ2

)
− (1− κ2x

+
s1(θ))

z2−z3
κ1+κ2

x+
s1(θ) − x

+
0

≤ z2 (91)

⇔

(
1− x+

s1(θ) − x
+
0 (κ2 − 1)

x+
s1(θ) − x

+
0

κ1

κ1 + κ2

)
z2 ≤ −

1− x+
s1(θ) − x

+
0 (κ2 − 1)

x+
s1(θ) − x

+
0

κ2

κ1 + κ2

z3. (92)

Since x+
0 <

1−β+
1

1−κ2 <
1−x+

s1(θ)

1−κ2 , we have

z2 ≤ −
κ2

κ1

z3. (93)

To eliminate the following upper bound resulting from (αf-3)

δ ≤

(1+κ1x
+
0 )v1−(1+κ1x

+
s1(θ)

)v0

x+
s1(θ)

−x+0
−

(1+κ1x
+
0 )

(
b− s1(θ)−1

N−1
c
)
−(1+κ1x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+0

z3 −
(1+κ1x

+
0 )

(
b− s1(θ)−1

N−1
c
)
−(1+κ1x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+0

, (94)

we need to have (since z3 −
(1+κ1x

+
0 )

(
b− s1(θ)−1

N−1
c
)
−(1+κ1x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+0
< 0)

(1 + κ1x
+
0 )v1 − (1 + κ1x

+
s1(θ))v

0

x+
s1(θ) − x

+
0

≤ z3, ∀v1, v0. (95)
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Again, the LHS of the above inequality is maximized when v0 = z2−z3
κ1+κ2

and v1 = v0 + κ1z2+κ2z3
κ1+κ2

.

Hence, the above inequality is satisfied if

(1 + κ1x
+
0 )
(
z2−z3
κ1+κ2

+ κ1z2+κ2z3
κ1+κ2

)
− (1 + κ1x

+
s1(θ))

z2−z3
κ1+κ2

x+
s1(θ) − x

+
0

≤ z3 (96)

⇔

(
1− x+

s1(θ) + x+
0 (κ1 + 1)

x+
s1(θ) − x

+
0

κ1

κ1 + κ2

)
z2 ≤ −

1− x+
s1(θ) + x+

0 (κ1 + 1)

x+
s1(θ) − x

+
0

κ2

κ1 + κ2

z3. (97)

Since 1− x+
s1(θ) + x+

0 (κ1 + 1) > 0, we have

z2 ≤ −
κ2

κ1

z3. (98)

In summary, to eliminate the upper bounds on δ, we only need to have z2 ≤ −κ2
κ1
z3, which is

satisfied since we define z3 , −κ1
κ2
z2.

Now we derive the analytical lower bound on δ based on the lower bounds resulting from

(αa-3) and (αf-1):

(αa-3)⇔ δ ≥
(1+κ1x

+
0 )v1−(1+κ1x

+
1 )v0

x+1 −x
+
0

+ κ1 · (b− c)

z3 + κ1 · (b− c)
, (99)

and

δ ≥
v1 − v0 −

(
s1(θ)
N−1

b+ s0(θ)
N−1

c
)

(ε0 − ε1)(x+
s1(θ) − x

+
0 )−

(
s1(θ)
N−1

b+ s0(θ)
N−1

c
) , for θ s.t.

s1(θ)

N − 1
b+

s0(θ)

N − 1
c ≥ v1 − v0.(100)

We define an intermediate lower bound based on the latter inequality along with the inequalities

resulting from the incentive compatibility constraints:

δ′ = max

{
max

s1∈{1,...,N−1}: s1
N−1

b+
N−s1
N−1

c>ε0−ε1

ε0 − ε1 −
(

s1
N−1

b+ N−s1
N−1

c
)

(ε0 − ε1)
(
N−s1
N−1

β+
1 + s1−1

N−1
x+

1

)
−
(

s1
N−1

b+ N−s1
N−1

c
) ,

max
θ∈{0,1}

c

c+ (1− 2ε)(β+
θ − (1− β−θ ))(ε0 − ε1)

}
.(101)

Then the lower bound can be written as δ = max {δ′, δ′′}, where δ′′ is the lower bound that we

will derive for the case when the users have the same rating. If the payoffs v1 and v0 satisfy the

constraint resulting from (αa-3), namely satisfy

(1 + κ1x
+
0 )v1 − (1 + κ1x

+
1 )v0

x+
1 − x+

0

≤ δz3 − (1− δ)κ1 · (b− c), (102)

then we use αa to decompose v1 and v0. Otherwise, we use αf to decompose v1 and v0

August 9, 2021 DRAFT



51

C. When the users have the same rating

Now we derive the conditions under which any payoff profile in W1N and W0N can be

decomposed.

If all the users have rating 1, namely θ = 1N , to decompose v ∈ W1N , we need to find a

recommended plan α0 and a simple continuation payoff function γ such that for all i ∈ N and

for all αi ∈ A,

vi = (1− δ)ui(θ, α0, α0 · 1N) + δ
∑
θ′

γi(θ
′)q(θ′|θ, α0, α0 · 1N) (103)

≥ (1− δ)ui(θ, α0, αi, α0 · 1N−1) + δ
∑
θ′

γi(θ
′)q(θ′|θ, α0, αi, α0 · 1N−1).

When all the users have the same rating, the altruistic plan αa is equivalent to the fair plan αf .

Hence, we use the altruistic plan and the selfish plan to decompose the payoff profiles.

If we use the altruistic plan αa to decompose a payoff profile v, we have

v1 = (1− δ)(b− c) + δ(x+
1 γ

1 + (1− x+
1 )γ0), (104)

and the incentive compatibility constraint

(1− 2ε)
[
β+

1 − (1− β−1 )
]

(γ1 − γ0) ≥ 1− δ
δ

c. (105)

Setting γ1 = γ0 + 1−δ
δ

c

(1−2ε)[β+
1 −(1−β−1 )]

and noticing that γ0 ∈
[

(1+κ1)(ε0−ε1)−z3
κ1

, κ1z2+(κ2−1)z3
κ1+κ2

]
,

we get an lower bound on v1 that can be decomposed by αa

v1 = (1− δ)(b− c) + δ

(
γ0 + x+

1

1− δ
δ

c

(1− 2ε)
[
β+

1 − (1− β−1 )
]) (106)

≥ (1− δ)

(
b− c+ c

x+
1

(1− 2ε)
[
β+

1 − (1− β−1 )
])+ δ

(1 + κ1)(ε0 − ε1)− z3

κ1

(107)

If we use the selfish plan αs to decompose a payoff profile v, we have

v1 = δ(x+
1 γ

1 + (1− x+
1 )γ0). (108)

Since the selfish plan is NE of the stage game, the incentive compatibility constraint is sat-

isfied as long as we set γ1 = γ0. Hence, we have v1 = δγ0. Again, noticing that γ0 ∈[
(1+κ1)(ε0−ε1)−z3

κ1
, κ1z2+(κ2−1)z3

κ1+κ2

]
, we get an upper bound on v1 that can be decomposed by αs

v1 = δγ0 ≤ δ
κ1z2 + (κ2 − 1)z3

κ1 + κ2

. (109)
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In order to decompose any payoff profile v ∈ W1N , the lower bound on v1 that can be

decomposed by αa must be smaller than the upper bound on v1 that can be decomposed by αs,

which leads to

(1− δ)
(
b− c+ c

x+1
(1−2ε)[β+

1 −(1−β−1 )]

)
+ δ (1+κ1)(ε0−ε1)−z3

κ1
≤ δ κ1z2+(κ2−1)z3

κ1+κ2

⇒ δ ≥
b−c+c

x+1

(1−2ε)[β+1 −(1−β−1 )]

b−c+c
x+1

(1−2ε)[β+1 −(1−β−1 )]
+
κ1z2+(κ2−1)z3

κ1+κ2
− (1+κ1)(ε0−ε1)−z3

κ1

. (110)

Finally, following the same procedure, we derive the lower bound on δ when all the users

have rating 0, namely θ = 0N . Similarly, in this case, the altruistic plan αa is equivalent to

the fair plan αf . Hence, we use the altruistic plan and the selfish plan to decompose the payoff

profiles.

If we use the altruistic plan αa to decompose a payoff profile v, we have

v0 = (1− δ)(b− c) + δ(x+
0 γ

1 + (1− x+
0 )γ0), (111)

and the incentive compatibility constraint

(1− 2ε)
[
β+

0 − (1− β−0 )
]

(γ1 − γ0) ≥ 1− δ
δ

c. (112)

If we use the selfish plan αs to decompose a payoff profile v, we have

v1 = δ(x+
0 γ

1 + (1− x+
0 )γ0). (113)

Note that when θ = 0N , if we substitute β+
0 , β−0 , x−0 with β+

1 , β−1 , x−1 , respectively, the

decomposability constraints become the same as those when θ = 1N . Hence, we derive a

similar lower bound on δ

δ ≥
b− c+ c

x+0
(1−2ε)[β+

0 −(1−β−0 )]

b− c+ c
x+0

(1−2ε)[β+
0 −(1−β−0 )]

+ κ1z2+(κ2−1)z3
κ1+κ2

− (1+κ1)(ε0−ε1)−z3
κ1

. (114)

Finally, we can obtain the lower bound on δ when the users have the same rating as

δ′′ = max
θ∈{0,1}

b− c+ c
x+θ

(1−2ε)[β+
θ −(1−β−θ )]

b− c+ c
x+θ

(1−2ε)[β+
θ −(1−β−θ )]

+ κ1z2+(κ2−1)z3
κ1+κ2

− (1+κ1)(ε0−ε1)−z3
κ1

. (115)

Together with the lower bound δ′ derived for the case when the users have different ratings,

we can get the lower bound δ specified in Condition 3 of Theorem 1.
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APPENDIX D

COMPLETE DESCRIPTION OF THE ALGORITHM
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TABLE VII. THE ALGORITHM OF CONSTRUCTING THE EQUILIBRIUM STRATEGY BY THE RATING MECHANISM.

Require: b, c, ε, ξ; τ(ε), δ ≥ δ(ε, ξ); θ0 (inputs to the algorithm)

Initialization: t = 0, ε0 = ξ, ε1 = ε0/(1 + κ2
κ1

), vθ = b− c− εθ , θ = θ0. (set the target payoffs)

repeat

if s1(θ) = 0 then

if v0 ≥ (1− δ)
[
b− c+

(1−ε)β+
0 +ε(1−β−

0 )

(1−2ε)(β+
0 −(1−β−

0 )
c

]
+ δ ε0−ε1−z3

κ1
then

αt0 = αa (determine the recommended plan)

v0 ← v0

δ
− 1−δ

δ

[
b− c+

(1−ε)β+
0 +ε(1−β−

0 )

(1−2ε)(β+
0 −(1−β−

0 )
c

]
,v1 ← v0 + 1−δ

δ

[
1

(1−2ε)(β+
0 −(1−β−

0 )
c

]
(update the continuation payoff)

else

αt0 = αs (determine the recommended plan)

v0 ← v0

δ
, v1 ← v0 (update the continuation payoff)

end

elseif s1(θ) = N then

if v1 ≥ (1− δ)
[
b− c+

(1−ε)β+
1 +ε(1−β−

1 )

(1−2ε)(β+
1 −(1−β−

1 )
c

]
+ δ ε0−ε1−z3

κ1
then

αt0 = αa (determine the recommended plan)

v1 ← v1

δ
− 1−δ

δ

[
b− c+

(1−ε)β+
1 +ε(1−β−

1 )

(1−2ε)(β+
1 −(1−β−

1 )
c

]
, v0 ← v1 − 1−δ

δ

[
1

(1−2ε)(β+
1 −(1−β−

1 )
c

]
(update the continuation payoff)

else

αt0 = αs (determine the recommended plan)

v1 ← v1

δ
, v0 ← v1 (update the continuation payoff)

end

else

if 1+κ1x
+
0

x+1 −x
+
0

v1 − 1+κ1x
+
1

x+1 −x
+
0

v0 ≤ δz3 − (1− δ)κ1(b− c) then

αt0 = αa (determine the recommended plan)

v1′ ← 1
δ

(1−x+0 )v1−(1−x+1 )v0

x+1 −x
+
0

− 1−δ
δ

(b− c), v0′ ← 1
δ

x+1 v
0−x+0 v

1

x+1 −x
+
0

− 1−δ
δ

(b− c) (update the continuation payoff)

v1 ← v1′, v0 ← v0′

else

αt0 = αf (determine the recommended plan)

v1′ ← 1
δ

(1−x+0 )v1−(1−x+
s1(θ)

)v0

x+
s1(θ)

−x+0
− 1−δ

δ

(b− s1(θ)−1
N−1

c)(1−x+0 )−(
s0(θ)−1

N−1
b−c)(1−x+

s1(θ)
)

x+
s1(θ)

−x+0
(update the continuation payoff)

v1′ ← 1
δ

x+0 v
1−x+

s1(θ)
v0

x+0 −x
+
s1(θ)

− 1−δ
δ

(b− s1(θ)−1
N−1

c)x+0 −(
s0(θ)−1

N−1
b−c)x+

s1(θ)

x+0 −x
+
s1(θ)

v1 ← v1′, v0 ← v0′

end

end

t← t+ 1, determine the rating profile θt, set θ ← θt

until ∅
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