
A Declarative and Expressive Approach to Control
Forwarding Paths in Carrier-Grade Networks

Renaud Hartert ∗, Stefano Vissicchio ∗∗, Pierre Schaus ∗, Olivier Bonaventure ∗,
Clarence Filsfils †, Thomas Telkamp †, Pierre Francois ‡

∗ Université catholique de Louvain † Cisco Systems, Inc. ‡ IMDEA Networks Institute
∗ firstname.lastname@uclouvain.be † {cfilsfil,thtelkam}@cisco.com ‡ pierre.francois@imdea.org

ABSTRACT

SDN simplifies network management by relying on
declarativity (high-level interface) and expressiveness
(network flexibility). We propose a solution to sup-
port those features while preserving high robustness and
scalability as needed in carrier-grade networks. Our so-
lution is based on (i) a two-layer architecture separating
connectivity and optimization tasks; and (ii) a central-
ized optimizer called DEFO, which translates high-level
goals expressed almost in natural language into com-
pliant network configurations. Our evaluation on real
and synthetic topologies shows that DEFO improves the
state of the art by (i) achieving better trade-offs for
classic goals covered by previous works, (ii) supporting
a larger set of goals (refined traffic engineering and ser-
vice chaining), and (iii) optimizing large ISP networks
in few seconds. We also quantify the gains of our im-
plementation, running Segment Routing on top of IS-IS,
over possible alternatives (RSVP-TE and OpenFlow).

CCS Concepts

•Networks → Network architectures; Traffic
engineering algorithms; Network management;
Routing protocols; •Theory of computation → Con-
straint and logic programming;

Keywords

SDN; traffic engineering; service chaining; segment
routing; MPLS; ISP; optimization
∗R. Hartert is a research fellow of F.R.S.-FNRS, and S. Vissicchio
is a postdoctoral researcher of F.R.S.-FNRS.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom

c© 2015 ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787495

1. INTRODUCTION

By promising to overcome major problems of tradi-
tional per-device network management (e.g., see [1]),
centralized architectures enabled by protocols like Open-
Flow [2] and segment routing [3] are attracting huge
interest from both researchers and operators. Two fea-
tures are key to this success: declarativity and expres-
siveness. The former improves manageability, promot-
ing abstractions and high-level interfaces to configura-
tion. The latter enables flexibility of network behavior,
e.g., in terms of packet forwarding and modification.

Unfortunately, prior works on Software Defined Net-
working (SDN) do not cover carrier-grade networks, i.e.,
geographically-distributed networks with hundreds of
nodes like Internet Service Provider (ISP) ones. Those
networks have special needs: Beyond manageability and
flexibility, ISP operators also have to guarantee high
scalability (e.g., to support all the Internet prefixes at
tens of Points of Presence) and preserve network per-
formance upon failures (e.g., to comply with Service
Level Agreements). Moreover, the large scale and ge-
ographical distribution of those networks exacerbates
SDN challenges, like controller reactivity, controller-to-
switch communication and equipment upgrade. Con-
sequently, SDN solutions targeting campuses [2], enter-
prises [4] and data-centers (DCs) [5], cannot be easily
ported to carrier-grade networks. Even approaches de-
signed for wide area and inter-DC networks [6, 7, 8] do
not fit. Indeed, they assume that (i) the scale of the
network (e.g., number of devices and geographical dis-
tances) is small, (ii) scalability and robustness play a
more limited role (e.g., because of the small number of
destinations [6]), and (iii) the SDN controller may apply
some control over traffic sources (e.g., [7]).

Nevertheless, carrier-grade networks would also ben-
efit from an SDN-like approach. Currently, network
management (i) relies on protocols with practical limita-
tions, either in terms of expressiveness (as for link-state
IGPs, constrained by the adopted shortest-path routing
model) or of scalability and overhead (like for MPLS
RSVP-TE, based on per-path tunnel signaling); and

15

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2785956.2787495&domain=pdf&date_stamp=2015-08-17

(ii) requires operators to manually fine-tune those pro-
tocols and handle complex interactions between them.
This likely leads to erroneous and sub-optimal network
configurations, as well as deployment obstacles for new
functionalities like service chaining [9].

In this paper, we propose a declarative and expres-
sive approach to program intra-domain forwarding in
carrier-grade networks. We make two sets of contribu-
tions. First, we propose an effective, easily-deployable
centralized architecture, based on a clear separation be-
tween connectivity and optimization tasks. In its real-
ization, we rely on the robustness of a link-state Inte-
rior Gateway Protocol (IGP) for the former tasks and
on the flexibility and scalability of segment routing for
the latter ones. Second, we design and implement a
network controller called DEFO (Declarative and Ex-
pressive Forwarding Optimizer). To support declara-
tivity and expressiveness, DEFO automatically trans-
lates high-level goals of operators into network configu-
rations. For efficiency and scalability, DEFO computes
optimized paths by smartly combining (i.e., stitching
together) paths used for connectivity. Moreover, it sys-
tematically takes advantage of opportunities provided
by typical carrier-grade networks. Notably, it lever-
ages their high physical redundancy [10, 11] by natively
supporting even traffic splitting over multiple (ECMP)
paths1. As a result, DEFO achieves huge optimizations
by spreading the traffic of a small number of flows on
multiple (ECMP) paths.

A more detailed list of contributions follows.

Network architecture. We follow the recent trend to
separate traffic engineering and connectivity tasks [6, 8,
12]. However, in contrast with previous proposals, our
architecture explicitly separates two layers. The under-
lying connectivity layer ensures network-wide reachabil-
ity, robustness and fast failure recovery, by generating
and updating connectivity paths for each pair of nodes
in the network. The overlying optimization layer de-
fines optimized paths for specific flows. When defined,
optimized paths overwrite connectivity ones. DEFO de-
termines optimized paths, while the connectivity layer
is configured by operators. (§2)

High-level controller interface. To support declar-
ativity, DEFO exposes a high-level interface for net-
work configuration, implementing a small Domain Spe-
cific Language (DSL). This interface is based on the
abstractions of forwarding functions and network goals,
enabling the definition of a wide range of objectives for
forwarding paths. Beyond classic traffic engineering,
the DEFO API supports the declaration of refined goals,
including delay-respectful, multi-objective and service
chaining ones. (§3)

Expressive routing model. To overcome limitations
of existing models based on shortest-path routing or

1we restrict to even traffic splitting as it is currently
supported by all IGP-speaking routers.

end-to-end tunneling, we rely on a new model, called
Middlepoint Routing (MR). MR abstracts forwarding
paths as concatenations of middlepoints, i.e., nodes be-
tween which paths are pre-defined. By natively encom-
passing multi-path routing, MR provides a compact rep-
resentation of sets of paths. Moreover, it supports the
definition of optimized paths as combinations of con-
nectivity sub-paths. (§4)

Algorithms for efficient path computation. Com-
puting paths that realize DEFO goals in a carrier-grade
network is far from being easy. As an example, a clas-
sic traffic engineering goal consists in minimizing the
maximally loaded link [13]. Even admitting arbitrary
flow splitting on each node (practically impossible to
achieve), computing an optimal solution for a 100-node
ISP network with the linear program for the correspond-
ing multi-commodity flow problem (MCF) took us more
than one night on a powerful server. To achieve scal-
ability and flexibility, DEFO relies on Constraint Pro-
gramming (CP) [14]. Within CP, we propose efficient
data structures and new heuristics that (i) implement
MR and leverage it to limit the number of decision vari-
ables; (ii) provide building blocks that can be re-used
for multiple goals; and (iii) compute, in few seconds,
excellent solutions to problems harder than MCF. (§4)

Robust and scalable realization. Our proposed
architecture realization leverages existing technologies
and can be implemented today. It relies on a link-state
IGP like IS-IS at the connectivity layer, and Segment
Routing (SR) [3] at the optimization one. SR enables
our approach to be expressive and scalable: It indeed
enables routers to enrich packets with instructions on
intermediate destinations to be traversed, hence pro-
viding a perfect match to our MR model. Further, we
describe our implementation of DEFO. (§5)

Evaluation on real ISP topologies and traffic ma-
trices. By computing excellent solutions to disparate
goals while limiting optimization overhead, DEFO out-
performs state-of-the-art traffic engineering techniques
like [13, 15]. Intuitively, DEFO’s optimization power
comes from the adopted routing model (MR), which
is less constrained than shortest-path routing and na-
tively supports multi-path routing (contrary to end-to-
end tunneling). Given its very limited execution time,
DEFO can readily be used both offline (for offline traf-
fic engineering or what-if analyses) and online (for path
recomputation upon traffic changes or failures). On
the implementation side, our results quantify scalability
gains provided by SR (e.g., thanks to its native support
for multi-path routing) with respect to alternatives like
MPLS and OpenFlow. This also provides the first-of-
its-kind assessment of advantages provided by SR in real
networks. (§6-8)

We finally discuss possible extensions of our proposal
(§9), compare it with related works ((§10), and draw
conclusions (§11).

16

DEFO

Connectivity Layer

Optimization Layer

Operator

e.g. IS-IS

e.g. Segment
 Routing

Physical Layer e.g. Routers

Figure 1: Proposed architecture.

2. ARCHITECTURE

In this section, we detail the role of every component
of our architecture, which is illustrated in Fig. 1.

The right part of the figure highlights that two log-
ical layers are installed on top of the physical network
topology (routers and links). The underlying connec-
tivity layer is responsible for the default forwarding be-
havior and for network-wide connectivity. It defines
connectivity paths between all pairs of routers, hence
for any traffic flow possibly traversing the network. In
contrast, the optimization layer defines exceptions to
this default routing behavior. It implements optimized
paths used for a subset of the traversing flows (e.g., a
subset of router pairs). Optimized paths overwrite con-
nectivity ones: Whenever an optimized path is defined,
the corresponding flows always use it. While connectiv-
ity and optimization layers represent a logic separation,
they can also be implemented by different protocols run-
ning on the routers. This provides a cleaner design and
comes with a set of advantages. For example, it enables
changes in the optimization layer (expected to be fre-
quent) without any impact on the connectivity one. It
also simplifies the assessment of the impact of changes
in the connectivity layer (e.g., consequently to less fre-
quent events like failures). Finally, it ensures that con-
troller failures do not disrupt forwarding paths.

The connectivity layer is configured (possibly once in
the network lifetime) by operators. This choice is moti-
vated by several reasons. First, it maximizes the utility
of the operators’ domain knowledge (expected traffic
matrix, capacity of links, etc.) to provide a good basis
for network optimization. Second, it leaves operators
with a mean to take back the control of the network,
e.g., in the case of major problems on the controller or
for maintenance operations that cannot be supported
by DEFO (e.g., router physical replacement). Third, it
facilitates progressive deployment of our proposal.

DEFO controls the optimization layer to fine-tune
forwarding. It receives high-level goals from operators,
and automatically translates them into optimized paths,
e.g., configurations of the optimization-layer protocol.
Since optimized paths are preferred over connectivity
ones, DEFO decides the actual forwarding paths used
for any traffic flow crossing the network. DEFO can
perform this goal-to-path translation for any change of
connectivity paths, traffic flows or physical topology,
e.g., for online traffic engineering.

function DSL syntax semantics

max load d.load
maximum load of any link
in F (d)

max delay d.delay
maximum delay of source-
destination paths in F (d)

deviations d.deviations
number of deviations from
connectivity paths in F (d)

traversal d passThrough S
true if F (d) crosses any
node in S, false otherwise

sequencing
d passThrough S1 true if F (d) sequentially

crosses nodes in S1 . . . Skthen S2 . . . then Sk

avoid d avoid S
true if no node in S is also
in F (d), false otherwise

d, F (d) and S, S1, . . . , Sk respectively represent any demand,
the forwarding paths for d, and sets of network nodes.

Figure 2: Constructs of the current DEFO DSL.

3. EXPRESSING NETWORK GOALS

DEFO exposes a high-level interface, based on a small
Scala DSL [16]. It enables operators to intuitively de-
clare desired characteristics of forwarding paths.

The central abstractions used in the interface are the
concepts of demand, forwarding function and goal. A
demand is an aggregate of flows. In the following, we fo-
cus on demands at the granularity of source-destination
pairs, for simplicity. A forwarding function maps a set
of links to the value of a parameter (e.g., maximum
load) associated to them. Our DSL includes constructs
for pre-defined forwarding functions. It permits for-
warding functions to be applied to sets of links, to paths
or to demands. In the latter case, a forwarding function
maps a demand to the value of a parameter associated
to the forwarding paths for that demand. Fig. 2 details
the forwarding functions currently supported by DEFO
(when applied to demands). A goal is defined by for-
warding functions applied to demands. Those functions
can be composed as (i) constraints that restrict the set
of forwarding paths for given demands; and (ii) objec-
tive functions specifying parameters to be optimized.

In the following, we show examples of DEFO goal def-
initions. They illustrate both usage of forwarding func-
tions and practically-meaningful compositions of them.
The examples include standard Scala keywords like val
for value declaration and <- for variable assignment in
a loop. Variables storing parameters not determined by
DEFO, like the network topology (topology variable)
or sets of traffic demands (Demands, LowDelayDemands
and SecDemands variables), are dynamically initialized
at runtime, e.g., reading from preconfigured input files
provided by operators or routing daemons.

Classic Traffic Engineering Goals. The use of re-
sources often needs to be optimized in carrier-grade net-
works. For example, the classic MinMaxLoad goal con-
sists in minimizing the load of the maximally loaded
link, e.g., to avoid performance bottlenecks. It can be
declared in DEFO in two lines.

var MaxLoad = max(for(l<-topology.links){yield l.load})
val goal = new Goal(topology){ minimize(MaxLoad) }

17

Tactical Traffic Engineering Goals. To limit traf-
fic disruptions, operators are often reluctant to change
many forwarding paths, and can prefer sub-optimal con-
figurations to an unbounded number of path changes.
DEFO forwarding functions can be combined to express
those tactical goals. As an example, the following code
instructs DEFO to find the best solution bringing all
link utilization under a certain threshold with at most
2 deviations from connectivity paths.

val goal = new Goal(topology){
for(d<-Demands) add(d.deviations <= 2)
for(l<-topology.links) add(l.load <= 0.9 l.capacity)
minimize(MaxLoad)}

Refined Goals. Operators often have to accommodate
specific (e.g., per-customer) needs. In DEFO, goals in-
cluding arbitrary combinations of the forwarding func-
tions in Fig. 2 are supported by adding constraints and
changing the objective function. The following exam-
ple shows how to define a delay-respectful goal, that is,
a variant of MinMaxLoad with constraints on the max-
imum delay experienced by specific demands. In the
example, the latency of every network path is assumed
to be known by DEFO, e.g., as a result of few active
measurements. Our DSL also permits to define other
delay-respectful goals, e.g., with delay constraints ex-
pressed as a percentage of their current values or delays
for given demands in the objective function.

val goal = new Goal(topology){
for(d <- LowDelayDemands) add(d.latency <= 10.ms)
minimize(MaxLoad)}

DEFO also supportsmulti-objective goals [17]. The next
snippet shows a goal in which both the maximum link
load and the average latency have to be optimized.

val goal = new Goal(topology){
minimize(MaxLoad, AvgLatency)}

Support for New Applications. Many operators
have lately shown interest for service chaining, i.e., the
ability to steer packets through a sequence of services.
In the example below, each demand in SecDemands is
forced to pass first through one firewall in FirewallSet
(whose position is assumed to be known by the opera-
tor) and through either IPS1 or IPS2 after.

val goal = new Goal(topology){
for(d <- SecDemands){

add(d passThrough FirewallSet then (’IPS1, ’IPS2))}
minimize(MaxLoad)}

The avoid and passThrough constructs can also be
used to specify anycast goals, in which a set of routers
must be avoided or forcedly used. This meets the needs
of operators that have to comply with political or busi-
ness rules, like preventing or ensuring that given traffic
flows cross a specific country.

Finally, operators can run DEFO to achieve the de-
clared goal, possibly specifying an upper bound for its
computation time.

DEFOptimizer(goal).solve(30.sec)

Note that infeasible goals can be defined in our DSL,
e.g., trying to force a demand through an isolated node
or requiring a link utilization that cannot be achieved
on the given topology and input demands. In our im-
plementation, DEFO discards unsatisfiable constraints,
computes a solution satisfying the other ones, and re-
turns a warning to the operator. Similarly, if DEFO
does not terminate in the specified time, it returns the
best solution found during that time.

4. OPTIMIZED PATH COMPUTATION

In this section, we describe how DEFO computes
forwarding paths. Namely, we detail how it tackles
the challenges posed by the need for (i) supporting a
wide variety of possible input goals (defined by arbitrary
combinations of forwarding functions in Fig. 2), and
(ii) fast computation of solutions to computationally-
hard (translation) problems. First, we present the Mid-
dlepoint Routing model, internally used by DEFO for
a compact representation of paths (§4.1). Then, we
overview DEFO formal representation of input goals in
terms of Middlepoint Routing instances (§4.2). Finally,
we describe the optimization algorithm that it runs to
compute compliant optimized paths (§4.3).

4.1 The Middlepoint Routing Model

DEFO relies on the Middlepoint Routing (MR) model.
MR is similar to the pathlet routing model [18, 19] in
that it represents paths as concatenations of sub-paths.
In contrast to pathlet routing, however, MR is based on
forwarding graphs rather than single paths. This gener-
alization enables to incorporate equal-cost multipath in
the model, and to provide a compact representation of
several distinct paths between any source-destination
pair. Moreover, we use MR to represent forwarding
paths rather than for routing protocol design.

An MR instance represents acyclic paths from any
source s to any destination d as sequences of acyclic
graphs S = G1, . . . , Gn, with n ≥ 1. In S, any pair of
consecutive graphs Gi and Gi+1 (with i = 1, . . . , n− 1)
share a single common node mi, which is the sink of
Gi and the root of Gi+1. We refer to any graph in S
as partial forwarding graph (PFG), and to any shared
node between two consecutive PFGs as middlepoint. Of
course, a PFG can represent a single path. In an MR
instance, a source-destination pair is associated to one
or more sequences S1, . . . ,SN of PFGs. As an illustra-
tion, consider Fig. 3. Circles and arrows respectively
represent routers and corresponding forwarding next-
hops, while dashed squares identify PFGs. The MR
representation of the paths from s to t is then given by
sequences S1 = [G(s,m), G(m,t)] and S2 = [G(s,t)].

18

s t

m

Figure 3: MR representations of s− t paths.

In the specific case of our two-layer architecture, each
PFG represents connectivity paths. Since PFGs are
defined by the connectivity layer, we can simplify the
representation of optimized paths as a set of middle-
point sequences. The right part of Fig. 3 also reports
the simplified MR representation of s − t paths, which
is {[m], []}, under the assumption G(s,t) represents the
connectivity paths from s to t.

Intuitively, DEFO uses the compact representation
of paths provided by MR to limit the number of deci-
sion variables in the forwarding optimization. Indeed,
it associates decision variables to the sequences of mid-
dlepoints to be used for a given traffic flow. In Fig. 3,
for instance, DEFO uses 2 variables (for the two mid-
dlepoint sequences from s to t) instead of 8 (as needed
if variables were associated to single paths) or 23 (as
needed to represent traversed links and paths, like in
classic linear programming formulations). In the fol-
lowing, we explain how DEFO computes the value for
middlepoint sequences.

4.2 Network Goal Formalization

DEFO formalizes an input goal as an (initially empty)
MR instance with associated constraints and optimiza-
tion functions. This formalization is based on the Con-
straint Programming (CP) optimization framework [14].
A CP problem is defined by a set of variables, each
having its own finite domain of possible values, and a
set of constraints that apply to them. Contrary to lin-
ear programming, constraints are implemented by algo-
rithms that preserve consistency between variable do-
mains. For this reason, CP supports high-level, inde-
pendent and easily composable constraints. An objec-
tive function can also be added to a CP problem.

We now describe novel variables, data structures and
constraints used for goal formalization in DEFO. Con-
sistently with §3, we assume that topology, demands
and parameters (like path delays) independent from
DEFO computations are provided as an input. More
details on our CP formalization are reported in [20].

Middlepoint variables model the MR representation
of per-demand forwarding paths. Every input demand
is mapped to a middlepoint variable, representing a set

of middlepoint sequences. We say that a middlepoint
variable is assigned to a value when all the represented
sequences end with the destination of the correspond-
ing demand. If this condition does not hold, we say
that the middlepoint variable is unassigned. For exam-
ple, the forwarding paths for the demand from s to t in
Fig. 3 are represented by an assigned middlepoint vari-
able {[t], [m, t]}. Middlepoint variables represent the
decision variables of the optimizations performed by
DEFO. When forwarding paths need to be optimized,
the middlepoint variables are re-initialized to an empty
value. Then, they are progressively assigned to values
according to the algorithm described in §4.3.

Forwarding function algorithms guarantee the sat-
isfaction of constraints defined on forwarding functions.
Every supported forwarding function implemented by
a specific algorithm, specialized for that function. For
example, the load and delay forwarding functions are
supported by different algorithms. Forwarding function
algorithms (i) extract the value of the associated for-
warding function (for example, the load of the maxi-
mally loaded link for the load forwarding function al-
gorithm) from a set of links or from forwarding paths
corresponding to the value of a middlepoint variable;
(ii) compare the extracted value with a configured thresh-
old, to assess if the represented constraint is satisfied;
and (iii) reduce the domain of middlepoint variables by
excluding values that violate a constraint on the as-
sociated forwarding function. The thresholds checked
by those algorithms are initialized by the constraints
of the input goal. For example, a constraint l.link <
l.capacity defined on a link l initializes the value to be
checked on l by the load forwarding function algorithm
to the link capacity provided by the input topology.

4.3 Middlepoint Selection

We propose an efficient algorithm to solve CP prob-
lems corresponding to DEFO input goals. By assigning
values to middlepoint variables, our algorithms com-
pute which middlepoints to use in the optimized paths
of which traffic flow. The same algorithm can also be
used to compute backup paths (e.g., to be pre-installed
in routers as in well-known fast reroute techniques [21]).

Unfortunately, selecting middlepoints is a hard prob-
lem. Indeed, we proved [20] that middlepoint selection
problems are NP-hard, even if only link capacity con-
straints have to be respected. Additional constraint or
specific objective function can make the corresponding
selection problem even harder. Despite this, our algo-
rithms are required to be efficient and scalable, for the
controller to quickly react to events (failures, demand
and goal changes, etc.) in large-scale networks.

To quickly compute good solutions, we then propose a
heuristic approach, mixing a pure CP solution with a lo-
cal search technique called Large Neighborhood Search
(LNS). Intuitively, we use CP to compute the best solu-
tion in a given portion of the search space, and we rely

19

While all the demands have not been optimized:

1. Select a non-optimized demand D which corre-
sponds to the worst value of the objective func-
tion (e.g., the most bandwidth-consuming one).
Let mD be the middlepoint variable for D;

2. If mD cannot be expanded without violating
some constraint, backtrack by reconsidering the
current value of mD;

3. Otherwise, expand mD as follows:

(a) If the destination of D is a valid expansion
candidate, expand mD to the destination
and store the demand as optimized;

(b) Otherwise, expand mD to a middlepoint n
that locally optimizes the value of the ob-
jective function.

4. Update the domain of other variables.

Figure 4: The first-close heuristic that drives the
construction step in DEFO.

on LNS to heuristically decide the sequence of subspaces
to explore. Starting from a state in which all mid-
dlepoint variables are unassigned, DEFO computations
keep alternating (i) a construction step with inference,
used to identify a current best solution; and (ii) a par-
tial reset step, which resets a random part of the current
best solution. The partial reset step reworks a signifi-
cant part of the current best solution, hence increasing
the likelihood to escape local optima and quickly find
solutions close to the optimum. The price for such effi-
ciency consists in losing the proven optimality of a pure
CP approach: Indeed, the random-based reset step does
not guarantee that the entire search space is explored.

Forwarding Optimization Algorithms. While com-
bining LNS with CP is not completely new [22, 23], we
devised original algorithms to implement both the con-
struction and the partial reset steps in DEFO.

Construction Step. Starting from an empty or par-
tial solution (with some unassigned variables), this step
expands all middlepoint variables, assigning values to
them. Its output is a complete variable assignment com-
pliant with all input constraints.

In DEFO, the construction step is implemented by a
depth-first search combined with branch and bound [24].
This search is driven by the first-close heuristic summa-
rized in Fig. 4. Our heuristic iterates over the non-
optimized demands, i.e., those with unassigned mid-
dlepoint variables. At every iteration, it identifies the
demand with the biggest negative contribution to the
objective function. Then, it first tries to complete the
assignment of the corresponding middlepoint variable
by appending the destination to all its internal middle-
point sequences. This attempt is intended to reduce the
number of middlepoints in optimized paths, hence the
deviations from connectivity paths and the amount of
information to be injected in the optimization layer. If

Middlepoint variable

s

t

a

b
c

d
t

a b

cs d
.4 .3

.3

>1.

>1.
.2.5

.2
.7

Figure 5: Illustration of a construction-step it-
eration (with corresponding domain reduction).
Numbers aside links represent their utilization.

such an assignment is not feasible, the heuristic expands
the middlepoint variable by greedily selecting the mid-
dlepoint that locally optimizes the objective function
without violating any constraint: This middlepoint is
either appended to all internal sequences of the consid-
ered middlepoint variable (if possible) or used in a new
sequence. The final value of the middlepoint variable is
then incrementally built repeating those operations. If
no expansion is possible at a given iteration, the algo-
rithm backtracks and replaces the last visited middle-
point with an alternative one.

All those operations are implemented with an infer-
ence approach, based on a continuous update of the
variable domains. To this end, we run forwarding func-
tion algorithms to exclude possible expansions which
are not compliant with the input constraints and adjust
the domain of every unassigned variable accordingly.

Fig. 5 illustrates an iteration of the construction step
algorithm for the middlepoint variable m associated to
the demand from s to t. The input goal constrains every
link to carry less load than its capacity and aim at min-
imizing the maximum link load. In the given network,
links (d, b) and (d, t) are over-utilized. Assume that
connectivity paths are computed as shortest paths and
all links have unitary weight. Since connectivity paths
from s to t cross (d, t), it is not possible to complete
the assignment of m by directly appending the destina-
tion t. Hence, our heuristic updates the value of m to
{[c]}, locally minimizing the objective function. More-
over, it runs forwarding function algorithms to update
unassigned variable domains. To avoid links (d, b) and
(d, t), the load forwarding function algorithm excludes
b and t from the domain of m, leaving only a and d in it.
The first-close heuristic is then re-run until t is reached.
Note that values discarded in one iteration may be used
in successive iterations. For example, while b is not in
the m’s domain in the depicted iteration, it re-enters
the domain whenever m’s value is updated to {[c, a]}.

Partial Reset Step. The first-close heuristic locally
optimizes the expansion of middlepoint variables but
does not provide any guarantee on the global optimality
of the computed variable assignment. We rely on the
partial reset step to statistically ensure the good quality
of the returned solution. In this second step, DEFO
resets a (large) subset of middlepoint variables of the

20

1. Let D be the set of demands with the worst value
of the objective function;

2. While fewer than k demands and not all the de-
mands in D have been selected

(a) Sort non-extracted demands in D according
to their objective function value (from the
worst to the best). Let S be the resulting
sorted array;

(b) Generate a random number r ∈ [0, 1[;

(c) Extract the ⌊rα|S|⌋-th demand from S.

3. Re-initialize the value of all middlepoint vari-
ables corresponding to extracted demands.

Figure 6: Partial reset algorithm.

current best solution. This operation identifies a new
starting state from which the construction step is re-
run, to explore another portion of the search space.

Our proposed partial reset algorithm is summarized
in Fig. 6. It randomly selects the middlepoint vari-
ables to reset among those associated to demands with
the worst value of the objective function, e.g., routed
through the most congested link in the MinMaxLoad
goal. Let D be the set of those demands. To allow
fine-tuning of the optimization process, the algorithm is
parametric: (i) k ∈ [1, 15] controls the number of vari-
ables to reset; and (ii) α ∈ [1, 6] influences the random
choice of which variables are selected. In particular, if
α = 1, all middlepoint variables corresponding to the
demands in D have the same chance to be selected. In
contrast, if α = ∞, the k demands in D with the worst
value of the objective function (e.g., highest bandwidth)
are deterministically selected. We change the value of
k and α during the computation. Namely, depending
on whether the previous construction step improved the
current best solution or not, we respectively decrease or
increase k by 1, hence causing the reset of more or less
variables. This is meant to dynamically control the size
of the explored parts of the search space during the opti-
mization in order to quickly converge to good solutions
and escape local optima. Moreover, to progressively al-
low more diversification, we decrease α (initially set to
6) with the number of iterations. Values and bounds of
the parameters are determined empirically.

5. REALIZATION

In this section, we describe our proposed realization
of the architecture depicted in Fig. 1.

A link-state IGP at the connectivity layer. Link-
state (LS) IGPs are the routing protocols currently used
inside carrier-grade networks. They are well-understood;
their implementation is robust to software bugs and op-
timized for fast convergence [25]. Built-in features also
ensure fast reroute in many failure cases [10]. More-
over, LS IGPs natively support (ECMP) multi-path
routing through even splitting over multiple shortest

paths, a crucial feature to exploit the physical redun-
dancy of carrier-grade networks. Finally, their informa-
tion flooding mechanism allows DEFO to easily com-
municate with devices and monitor topological changes.
Being based on shortest-path routing, the main limita-
tion of LS IGPs is their relative inflexibility. However,
flexibility is not critical for the connectivity layer.

Segment Routing at the optimization layer. Con-
trary to the connectivity layer, flexibility in the defini-
tion of forwarding paths and scalability in the intro-
duced overhead are the main requirements for the opti-
mization layer. We propose to rely on segment routing
(SR), in order to avoid both limitations of shortest-path
based protocols as well as scalability issues of end-to-
end tunneling (e.g., RSVP-TE) and hop-by-hop (Open-
Flow) ones. SR is a recently-standardized protocol [3],
supported by major router vendors and attracting grow-
ing interest from operators. In SR, routers can en-
rich (MPLS [26] or IPv6 [27]) packet headers with a
sequence of segments, i.e., instructions forcing packets
through specific intermediate nodes or links. The IGP
ECMP shortest paths are used to reach those interme-
diate points. SR provides a perfect match with the MR
model used in DEFO. Indeed, any middlepoint used in
an MR instance can be mapped to an SR segment, in
constant time. Thus, paths computed by DEFO for
a given demand can be efficiently translated into se-
quences of SR segments to be applied by the ingress
router for that demand. This has the additional side ef-
fect of limiting the optimization overhead to sequences
of SR segments (instead of full paths) configured only
at ingress routers (with no additional state on internal
ones). We evaluate scalability gains of using SR in §8.

Scala implementation of DEFO. We implemented
DEFO in about 9,000 lines of Scala code, on top of the
OscaR open-source CP solver [28]. Our implementa-
tion is provided at [20]. It supports all the constructs
defined in Fig. 2, hence all the use cases presented in §3.
To gather information on connectivity paths, DEFO can
participate in the link-state IGP by maintaining a single
adjacency with any IGP router, as in [29, 30]. To con-
figure the optimization layer, it has to push specific SR
configurations to routers. The control channel between
DEFO and network routers can be implemented in sev-
eral ways, including OpenFlow [31] and slight modifi-
cations of configuration protocols, like Netconf [32] or
Flowspec [33]. For compatibility with current routers,
we prefer to rely on the PCEP extension for SR [34].

6. EVALUATION SETUP

We evaluated our realization on multiple topologies
and demand matrices. We used real and realistic topolo-
gies and matrices to assess the results of DEFO in prac-
tical cases, and we relied on synthetic data to explore
its behavior in corner cases. For example, we exper-
imented with very connected topologies (i.e., with an

21

Type ID # nodes # links # demands
Real ISP R1 600 2150 11,500
Real ISP R2 400 1200 116,000
Real ISP R3 200 750 10,000
Real ISP R4 150 700 24,000
Inferred I5-9 79-317 296-1,946 6,000-96,000
Synthetic S10-11 50-100 280-570 2,500-10,000

Table 1: Evaluation dataset summary

average node degree higher than 5) and uniform demand
matrices to perform stress tests on DEFO efficiency.

Our dataset is summarized in Table 1. The table
provides more detailed information (approximated to
preserve anonymity) on real-world ISP topologies. The
other topologies in our dataset include inferred ones in
the Rocketfuel project [35] and synthetic ones generated
with the Delaunay triangulation algorithm in IGen [36].
The table reports aggregated information about those
topologies, since they are publicly available at [20].

To run experiments on delay-constrained goals, we
enriched each topology with path delays. We relied on
direct input from operators for real topologies. In the
other cases, we assigned path delays proportionally to
the physical distance between the geographical positions
of path endpoints.

Our dataset also contains demand matrices (one snap-
shot per topology). For all real topologies, we used
demands provided by operators. In the other cases, we
relied on synthetic demand matrices computed with the
approach described in [37]. This approach is based on
a gravity model fed with independently and identically
distributed exponential random variables. It produces
highly-skewed demand matrices which are quite realis-
tic, as shown in [37] and as we confirmed by a com-
parison with real matrices in our dataset. Finally, to
consider extreme use cases for worst-cases analyses, we
proportionally inflated all the demands until a maxi-
mum link usage of at least 120% was reached.

The experiments for our evaluation were run on Mac-
Book Pro laptops, with 2.6 GHz Intel CPU and 16 GB of
memory. Unless differently specified in the text, DEFO
has been configured with a timeout of 3 minutes for
each experiment. Moreover, we set the maximum num-
ber of middlepoints per optimized path to 2. Indeed,
we experimentally noticed that DEFO solutions with
this setting are significantly better than those with at
most 1 middlepoint per optimized path, while further
increasing the number of middlepoints per path tends
to lead to less significant improvements.

7. OPTIMIZED PATH EVALUATION

We now present an experimental evaluation of DEFO.
We first compare the forwarding optimization achieved
by DEFO on classic goals with solutions provided by
Cisco MATE [38], a commercial traffic engineering tool
(§7.1-7.2). Namely, we used MATE to simulate IGP

Topo Initial
Optimum

DEFO
cRSVP-TE IGP-WO

ID Load (≤ 3mins)

R1 121% 81% 90% 81% 96%
R2 120% 89% 94% 90% 108%
R3 120% NA 94% 80% 107%
R4 121% 86% 89% 86% 86%
I5 130% 86% 86% 86% 95%
I6 124% NA 76% 77% 77%
I7 142% 72% 82% 76% 80%
I8 120% 66% 72% 69% 78%
I9 195% NA 91% 70% 99%
S10 103% 69% 71% 73% 91%
S11 250% 56% 75% 69% 120%

Table 2: Comparison on maximum link load
minimization.

weight optimizations (IGP-WO) and RSVP-TE tunnel
optimization. The former influences forwarding path
computation by tweaking link weights on the topol-
ogy shared by IGP routers. The latter optimizes paths
through explicit RSVP-TE tunnels. We evaluated cen-
tralized and distributed RSVP-TE optimizations, which
we refer to as cRSVP-TE and dRSVP-TE respectively.
In cRSVP-TE a central controller setups the needed
tunnels, while a full-mesh of tunnels is individually op-
timized by single routers (tunnel endpoints) in dRSVP-
TE. In the second part of the section, we show results on
DEFO support for custom goals (§7.3) and new applica-
tions (§7.4), which are largely unsupported by available
tools. Those experiments show the effectiveness and
time efficiency of DEFO, and the possibility to use it
both offline (offline traffic engineering, planning, what-
if analyses, etc.) and online (online traffic engineering,
reaction to failures, etc.).

7.1 DEFO Quickly Computes Excellent
Solutions for Classic Goals

We start by evaluating DEFO on classic traffic engi-
neering (TE) goals. We take as an example the Min-
MaxLoad goal that aims at maximizing the spare ca-
pacity of the maximally-loaded link (see §3).
Table 2 compares the quality of the solutions (in terms

of maximal link load) achieved by the considered opti-
mization techniques with the theoretical optimum. Op-
timum results are computed by running the standard
Linear Program (LP) formalizing the multi-commodity
flow problem [39]. This LP assumes the possibility for
any node to fractionally split flows with arbitrary pro-
portions. This assumption is not realistic: Even with
uneven load balancing, supporting it would require to
know in advance the size of all flows and continuously
adjust load balancing according to flow sizes. We pro-
vided this LP as input to the commercial Gurobi solver.
The computation always ran out of memory on the lap-
top used in our evaluation, except for 3 topologies. We
then re-ran the LP solver on a much more powerful
server (32 CPU cores and 96 GB of RAM), and re-
ported the results in Table 2. Even on this server, the
LP could not be solved in some cases (NA values).

22

DEFO computes excellent solutions. Despite re-
stricting to even load-balancing over IGP paths, DEFO
computes forwarding paths that lower the maximum
load to a value close to the theoretical optimum. In
some cases, this value is even equal to the optimum
value, as for I5. In all the other cases except one, it
is less than 10% worse than the optimum. Moreover,
DEFO terminates in 3 minutes (by setting, see §6) on
a commodity laptop, while running the LP took us up
to many hours (including an entire night for the exper-
iment on R2) and sometimes ran out of memory on a
much more powerful server.

DEFO optimizes more than IGP-WO. IGP weight
tweaking techniques do not have fine-granularity. In
particular, they do not allow to modify forwarding paths
on a per-demand basis. As a result, contrary to DEFO,
IGP-WO could not avoid congestion in some of our ex-
periments. Indeed, the utilization of the maximally-
loaded link is above 100% for R2, R3, S11 (i.e., 3 out
of our 11 topologies). More generally, IGP-WO results
are much less close to the optimum than DEFO ones.

DEFO optimization power is comparable with
RSVP-TE. RSVP-TE tunnels allow to enforce arbi-
trary paths for each demands. Despite this allows fine-
grain optimization, results achieved by DEFO tend to
be close and sometimes even better than the ones ob-
tained with cRSVP-TE (as for I6 and S10). Also,
DEFO comes with the additional advantage of much
higher time efficiency. It indeed always terminated in
3 minutes (by setting, see §6), while cRSVP-TE opti-
mization took hours on our largest topologies.

7.2 DEFO Can Ease Network Operation

Operators often try to limit the number of applied
changes. This eases the deployment of the optimized
configuration, without the risk of triggering huge traffic
shifts and transient disruptions. To evaluate support for
those kind of tactical use cases, we experimented with a
variant of MinMaxLoad which minimizes the number of
optimized paths while ensuring that all links are utilized
for at most 90% of their respective capacity.

DEFO is much more effective than incremen-
tal IGP-WO. MATE supports an incremental IGP-
WO procedure that tries to lower the utilization of the
maximally-loaded link with a limited number of IGP
weight changes. In our experiments, it did not suc-
ceed in lowering the maximally loaded-link under 100%
for 3 topologies out of 11. In contrast, DEFO finds a
congestion-free solution in all our experiments. Also,
observe that the IGP weight changes are more intrusive
than those applied in our architecture. For example,
IGP weight changes can create forwarding loops [40]
and traffic shifts [41] for Internet destinations. In con-
trast, SR prevents such problems by clearly separating
forwarding optimization from IGP-based connectivity.

2 4 6 8 10

0
5

1
0

1
5

2
0

2
5

topology ID

o
p

ti
m

iz
e

d
 d

e
m

a
n

d
s
 (

%
 o

f
to

ta
l
n
u

m
b

e
r)

●
●

●

●

●

●

●

●

●

●

●

●DEFO cRSVP−TE

Figure 7: Optimization overhead to bring uti-
lization of the maximally loaded link under 90%.

Load Min 1st Qu. Median 3rd Qu. Max
<98% 0.17s 0.54s 1.38s 3.16s 12.83s
<95% 0.17s 0.59s 1.55s 3.56s 19.78s
<90% 0.22s 0.71s 2.05s 4.33s 46.8s

Table 3: DEFO computation time to lower the
maximum link load under a given threshold.

DEFO reduces the overhead of RSVP-TE opti-
mizations. We also let MATE optimize RSVP-TE tun-
nels according to the considered MinMaxLoad variant.
As in Table 2, the resulting maximal load is comparable
with DEFO output paths. However, Fig. 7 shows that
many more demands have to be optimized with cRSVP-
TE. Indeed, cRSVP-TE optimization often affects one
order of magnitude more demands than DEFO, that
is, typically thousands of demands instead of hundreds.
Even worse, dRSVP-TE (omitted in Fig. 7 for readabil-
ity) requires to optimize 2 to 3 orders of magnitude
more demands than DEFO. Hence, both cRSVP-TE
and dRSVP-TE optimizations imply a significant in-
crease in (i) routers to be re-configured; (ii) traffic to be
shifted from one path to another; and (iii) control-plane
overhead. Those three factors contribute to a number of
management issues including delay in the application of
TE actions and reduced ability for operators to debug
post-optimization configurations.

Recent versions of MATE and the commercial WAE
controller [42] support a heuristic to compute SR config-
urations for tactical TE [43]. It achieves optimization
overhead reductions very similar to DEFO: Those re-
sults are not reported in Fig. 7 for readability.

Another fundamental factor from an operational view-
point is the computation time. We considered variants
of MinMaxLoad with the maximum load constrained
to be at most 90%, 95%, or 98%. Consistently with
Table 2, DEFO always found a compliant solution ex-
cept when run on I9 with the 90% constraint. In the
latter case, it reported the best solution that it found
(with 91% maximum link utilization) after the config-

23

100 110 120 130 140 150

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

max latency deviance constraint (%)

m
a

x
 %

 o
f

lin
k
 l
o

a
d

Synthetic−O
Synthetic−U

ISP1
ISP2

Figure 8: Results of DEFO for the delay-
constrained MinMaxLoad goal.

ured 3-minute timeout. Table 3 reports the time taken
by DEFO in all the other experiments. The table shows
that DEFO always completed its computation in less
than one minute. In the vast majority of the cases,
it actually took at most 10 seconds; not rarely, it ter-
minated in a fraction of a second. Those results show
that DEFO can readily be used for periodic forwarding
optimization, e.g., for online traffic engineering.

7.3 DEFO Supports Refined Goals

We now evaluate DEFO on refined goals, not sup-
ported by current IGP-WO and RSVP-TE techniques.
We implemented support for some of those goals in a
recent SR controller [42].

Delay-respectful TE. We ran experiments on a Min-
MaxLoad variant with additional constraints forcing the
maximum delay of every forwarding path to be lower
than a pre-defined threshold. Precisely, for each source-
destination pair, we constrained the post-optimization
path delay to be lower than a given percentage variation
of the initial one. We ran different sets of experiments.
In each experiment set, we bound the delay increase to
respectively be at most 0% (i.e., no increase admitted),
10%, 20%, 30%, 40% and 50% of the initial delay.

The results obtained on two real topologies (R1 and
R2) and a synthetic one (S11) are plotted in Fig. 8. We
used two configurations for the synthetic topology, one
with uniform link weights (Synthetic-U) and the other
with optimized weights (Synthetic-O). The figure corre-
lates the maximum link utilization (y-axis) with increas-
ingly loose constraints on the permitted delay increase
(x-axis). Results match the intuition that if a larger de-
lay increase is tolerated, DEFO has more flexibility to
distribute traffic on different paths, and can lower the
load per link. Interestingly, our experiments also sug-
gest that tolerating 10% or 20% delay increase tends to
reduce the maximum link load under 100%, with a max-
imal link utilization comparable to this obtained with
much looser delay constraints (40% or 50%).

Multi-Objective Goals. DEFO accepts input goals
with multiple objectives, in which a solution that opti-

2 4 6 8

1
0

0
1

5
0

2
0

0

topology ID

m
a

x
 l
o

a
d

e
d

 l
in

k
 (

%
 o

f
it
s
 c

a
p

a
c
it
y
)

●

●
●

●

● ●

●
●

●

●0 services 1 service 2 services

Figure 9: DEFO optimization in different service
chaining scenarios.

mizes all the objectives may not exist. In those cases,
DEFO can build a Pareto front, i.e., a set of Pareto
optimal solutions that cannot be improved in any of
the objectives without degrading at least another one.
Then, DEFO can either return the Pareto front to the
operator or enforce any Pareto optimal solution.

DEFO can also plot the evolution of objective func-
tions over time. This allows operators to use DEFO as a
decision support system, e.g., to pick the right tradeoff
between optimization time and objectives.

7.4 DEFO Supports Service Chaining

We now evaluate DEFO when used for service chain-
ing applications. We provided DEFO with the goal of
minimizing the maximally-loaded link, under the con-
straint that some demands need to pass through any
middlepoint in specified sets. This matches the sce-
nario in which middlepoints in the same set implement
the same network service or virtualized function.

In our experience, operators do not deploy service
chaining, and are still reluctant to disclose realistic use
cases. However, most of them are interested in it. We
used DEFO as a what-if analysis tool, to evaluate the
degradation of link load optimization in the realistic
case in which services are deployed in central network
nodes. To provide a benchmark to future approaches,
we performed those experiments on inferred and syn-
thetic topologies (adding two new ones to our dataset),
and we publicly released them [20].

In each of those experiments, we selected the 5%
nodes traversed by the highest number of IGP paths as
those deploying services. We then randomly extracted
5% of the demands to pass through those nodes. We
performed two groups of experiments. In the first group,
the selected demands were forced to pass through any
service-enabled node. In the second group, the service-
enabled nodes were further split in two service sets, and
every selected demand was forced to sequentially pass
through any router in the first set and then through any
one in the second set.

24

Services Min 1st Qu. Median 3rd Qu. Max
0 0.24s 9.37s 41.89s 61.06s 140s
1 0.25s 17.21s 41.9s 59.15s 210s
2 0.30s 6.86s 27.09s 59.74s 71.78s

Table 4: DEFO computation time for service
chaining goals.

DEFO computed optimized paths always compliant
with the input constraints. Unsurprisingly, however,
service chaining constraints may prevent DEFO to com-
pute a congestion-free solution. The results on the max-
imum load after running DEFO are displayed in Fig. 9.
In 3 cases (out of 9), no solution can be computed by
DEFO when demands needed to pass a sequence of two
services. This can be due to both the (i) limited running
time, and (ii) the fact that DEFO currently configures
acyclic paths. In all the other experiments with one and
two services, however, those two factors did not prevent
DEFO from optimizing forwarding paths from keeping
all link utilization below 100%. In some case, DEFO re-
duces link loads more in the presence of services than in
the absence of them. This is due to the fact that service
chaining constraints generally restrict the possible paths
to be considered during the optimization; hence, they
can increase the likelihood for our optimization heuris-
tics to quickly explore a larger portion of the search
space and find a better solution.

Finally, Table 4 shows that service chaining constraints
have no statistical effect on DEFO time efficiency.

8. PATH REALIZATION EVALUATION

In this section, we evaluate the effectiveness of our
two-layer architecture implementation, both from a scal-
ability (§8.1) and a reactivity (§8.2) point of view.

8.1 Realization Scalability

We first compare different implementations (SR, tun-
nelling and hop-by-hop ones) of the optimized paths
computed by DEFO. For simplicity, we take as refer-
ence the MinMaxLoad goal. The entries to be installed
on routers for each of the compared implementations are
plotted in Fig. 10. For each topology (on the x-axis),
the figure reports on y-axis (in logarithmic scale) the
ratio between the number of entries needed by a given
alternative and those employed by our SR realization.

1.5-10x gain vs end-to-end tunnelling. Provided
that a tunnelling technology is supported by all routers,
a straightforward implementation of the optimized paths
computed by DEFO consists in deploying one (E2E)
tunnel per optimized path. Fig. 10 shows that this so-
lution comes with significantly more overhead than SR.
This is because end-to-end tunnels scale with the num-
ber of paths between each source-destination pair, while
SR scales with the number of middlepoints, i.e., factor-
ing all the paths between each middlepoint. Practically,
the number of additional entries is between 1.5 to 10

2 4 6 8 10

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0

topology

re
q

u
ir
e

d
 r

o
u

ti
n

g
 e

n
tr

ie
s
 /

 S
R

 o
n

e
s

●
● ●

●

●
● ●

● ●

●

●

●E2E tunnels M2M tunnels hop by hop

Figure 10: Comparison between different imple-
mentations of DEFO optimized paths.

times bigger than those needed by SR. Two topologies
(R2 and I5) make exception, needing about 20% more
entries for the E2E tunnels.

1.5-5x gain vs middlepoint to middlepoint tun-
nelling. A more scalable realization of DEFO paths
that can be achieved with tunnelling protocols consists
in configuring tunnels between each pair of middlepoints.
This way, the total number of tunnels is equal to the
sum of the paths between middlepoints in the paths
(instead of their combinations). Fig. 10 shows that
middlepoint to middlepoint (M2M) tunnels enable to
reduce the number of tunnels up to a factor of 2. This,
however, means that the entries needed by SR are still
between one half and one fifth of M2M tunnel ones.

1,000-10,000x gain vs hop by hop implementa-
tion. Finally, optimized path can be implemented with
hop-by-hop technologies (e.g., OpenFlow and static rout-
ing). In this case, every router must be configured with
a forwarding entry for every optimized path crossing
it. This leads to an explosion of the number of entries
needed to implement DEFO solutions. While this num-
ber can be optimized (e.g., by tagging packets), Fig. 10
shows that the gap to fill with respect to the SR (and
even with tunnelling solutions) is huge, i.e., among 3 or
4 orders of magnitude in our experiments.

8.2 Reactivity to Network Dynamics

Connectivity needs to be guaranteed and forwarding
has to be re-optimized upon a number of events, rang-
ing from network failures (e.g, link failures) to chang-
ing demands (e.g., traffic surges). We now describe how
components of our architecture react to those changes.

The link-state IGP used at the connectivity layer effi-
ciently re-establishes disrupted paths for all physically-
connected node pairs. Indeed, it (i) supports fast local
re-routing by relying on per-router decisions [10], and
(ii) can recompute new connectivity paths in less than
one second even in large networks [25]. Consequently,
relying on an IGP mitigates the need for fast reaction
to several events. For example, whenever an optimized

25

path includes a set of middlepoints which are still reach-
able after a failure, traffic can still flow over that path.

Still, forwarding may need to be quickly re-optimized
in some cases. Those cases include failures that dis-
rupt the connectivity between middlepoints in some op-
timized paths, and congestion triggered by new con-
nectivity paths. Fig. 7 and Table 3 show that DEFO
can remove forwarding disruptions by very quickly re-
optimizing few demands. This enables to use DEFO
for (i) online traffic engineering applications in which
forwarding is re-optimized periodically, with a period
of few minutes [6, 8]; (ii) pre-compute optimized paths
for most likely failures; and (iii) react to failures almost
in real-time, in many cases. About failure reaction, we
also publicly released a simulation (see [20]) of forward-
ing optimization with DEFO upon single-link failures
on our biggest synthetic topology. This reaction took
from few milliseconds to a couple of seconds for the vast
majority of the cases. As soon as the new optimized
paths are computed, they can be directly installed on
routers. Since we rely on SR, only the configuration of
the ingress point of the re-optimized demands needs to
changed, which provides additional architectural sup-
port for fast forwarding re-optimization.

9. DISCUSSION

We now discuss limitations of our proposal, and how
they can be tackled by slightly extending it.

Per-flow forwarding control. For simplicity, we de-
scribed our approach assuming source-destination gran-
ularity. Our evaluation shows that this level of granular-
ity effectively supports practical goals, especially traffic
engineering ones. Nevertheless, our proposal can also
support finer-grained control, by leveraging capabilities
commonly supported by commercial routers. For ex-
ample, policy-based routing can be configured on most
routers, enabling the specification of their routing be-
havior in terms of rules on additional packet-header
fields than only the destination IP. DEFO can also be
easily adapted for finer-grained forwarding optimiza-
tion, since it models traffic with the generic concept
of demands (i.e., flow aggregates).

Additional network goals. DEFO currently sup-
ports a large but limited set of network goals. However,
it can be extended to deal with additional goals. Con-
sider, for example, the case in which some middleboxes
add or drop packets, hence modifying en route the size
of demands. Within DEFO, we can adjust our algo-
rithms to split any demand D passing through one of
those middleboxes m in two demands D1 and D2, such
that (i) D1 goes from the source of D to m and carries
the same traffic as D, and (ii) D2 carries the modified
amount of traffic from m to the destination of D. More
in general, both the concept of demand and the network
parameters considered during the optimization can be
generalized. To this end, new constructs may be needed

in DEFO DSL. Moreover, new forwarding function algo-
rithms may have to be implemented (e.g., to run Step 4
in Fig. 4). Note that those additions would preserve the
support for all forwarding functions in Fig. 2, thanks to
their implementation as independent CP constraints.

10. RELATED WORK

To the best of our knowledge, DEFO’s ability to solve
classic, refined and service chaining goals under a com-
mon framework, at scale and efficiently, is unmatched
by previous research approaches. Moreover, prior tech-
niques typically require major changes in problem for-
mulation and internal algorithms even only to support
an additional constraint type (e.g., node avoidance).

Most previous works focused on classic traffic engi-
neering problems in ISP networks [44, 45]. Two main
approaches have emerged over the years. The first one
consists in tuning IGP weights [13, 46] according to traf-
fic demands. Network operators use commercial tools
for basic IGP weight tuning [38, 47]. We compared
DEFO against one of these tools [38] in §7. More sophis-
ticated weight optimizations, based on additional rout-
ing entries [48] or uneven traffic splitting [49, 50], have
also been explored in the literature. However, adding
routing entries affects scalability, and arbitrary traffic
splitting is hard to enforce in practice. Our experimen-
tal results (§7) show that DEFO can achieve huge op-
timizations with few additional entries and even load
splitting. The second approach is to rely on RSVP-
TE [51]. It allows to create end-to-end tunnels to for-
ward flows over any network path. RSVP-TE tunnels
can be configured in a distributed or centralized mode.
In the distributed mode, tunnels are dynamically re-
computed by ingress routers to match traffic patterns
or topological changes [52]. This mode is prone to oper-
ational issues [53] such as routing instability and latency
inflation [54]. In the centralized mode, a central com-
ponent (PCE or the network operator) explicitly spec-
ifies the RSVP-TE tunnels to be installed. Algorithms
have been proposed to optimize tunnel positioning [15,
55], and some have been implemented in commercial
tools [38, 47]. We compared DEFO against distributed
and centralized RSVP-TE in §7.
A few contributions looked at refined traffic engineer-

ing goals. Notably, FUBAR [56] tackles the problem of
maximizing utility of flow aggregates, defined as a spe-
cific composition of load and delay metrics. DEFO can
solve this problem (see §3) and many more variants of
it with arbitrary compositions of delay, load and service
chaining constraints and objectives. As partial outcome
of this work, we also contributed to support some re-
fined goals in the WAE controller [42] (see §7).
Online traffic engineering has been the target of re-

cent research. Several contributions [6, 8, 57, 58] pro-
posed different techniques to re-optimize forwarding pe-
riodically, i.e., every 5-10 minutes. Our results (§7-8)
show that DEFO (which computes paths in seconds)

26

and our network realization (quick to converge on a new
routing state) can be used for online traffic engineering.

Finally, some SDN works [1, 45] target individual
problems that can be solved by DEFO, including service
chaining. For example, [59, 60] provide architectures
and optimization frameworks to forward traffic through
middleboxes. However, previous SDN proposals do not
consider stringent robustness and high scalability re-
quirements of carrier-grade networks. Our evaluation
shows that both path computation algorithms (e.g., LP-
or MILP-based) and network protocols (OpenFlow) used
in previous works may not easily match those require-
ments. In comparison, hybrid SDN architectures, run-
ning both IGP and an SDN protocol, have better chances
to fit carrier-grade networks. Our proposal can be seen
as an integrated hybrid SDN architecture according to
the classification in [61]. As such, it enriches previous
efforts in the area (e.g., [6, 12, 30, 62]) with an origi-
nal architecture based on segment routing and a multi-
purpose declarative controller. Note that DEFO can be
used as a translator from abstract goals to forwarding
paths in protocols different from SR (see, e.g., §8.1). We
plan to compare our SR-based implementation with re-
cent proposals for implementing forwarding paths (like
Fibbing [30]) in future work.

11. CONCLUSIONS

This paper presents a proposal to realize appealing
promises of SDN, like declarative and expressive man-
agement, in carrier-grade networks. To accommodate
specific needs of those networks, e.g., robustness and
scalability, our proposal is based on a two-layer archi-
tecture, separating connectivity and optimization tasks.
Our centralized forwarding optimizer, DEFO, exposes a
declarative interface enabling operators to naturally de-
fine a variety of high-level goals. Given a goal, DEFO
automatically computes optimized paths that overwrite
the connectivity ones used by default. We proposed and
implemented a heuristic which makes this computation
effective and efficient (from few hundreds of millisec-
onds to less than one minute on real ISP networks).
Our evaluation also shows that the overhead of DEFO
optimizations is very limited (few optimized paths, each
implemented with at most two node segments).

We finally compared different realizations of our ar-
chitecture, providing a quantitative analysis of the trade-
offs achieved by each of them. Among the considered
realizations (including MPLS and OpenFlow), the com-
bination of IGP and segment routing currently provides
the best results in terms of robustness and scalability.

We contributed to implement some DEFO’s capabil-
ities in a commercial controller [42]. In future work, we
plan to fully integrate DEFO flexibility in it.

Acknowledgements

We thank SIGCOMM anonymous reviewers and our
shepherd, Ming Zhang, for insightful comments. This

work has been partially supported by ARC grant 13/18-
054 from Communauté française de Belgique. Pierre
Francois is fully funded by Cisco Systems.

12. REFERENCES

[1] D. Kreutz et al., “Software-defined networking: A
comprehensive survey,” Proceedings of the IEEE,
vol. 103, no. 1, pp. 14–76, 2015.

[2] N. McKeown et al., “OpenFlow: enabling
innovation in campus networks,”ACM CCR,
vol. 38, no. 2, pp. 69–74, 2008.

[3] C. Filsfils et al., “Segment Routing Architecture,”
Internet draft, 2014.

[4] M. Casado et al., “Rethinking enterprise network
control,”Trans. Netw., vol. 17, no. 4, pp.
1270–1283, 2009.

[5] M. Al-Fares et al., “Hedera: Dynamic Flow
Scheduling for Data Center Networks,” in NSDI,
2010.

[6] S. Jain et al., “B4: Experience with a
globally-deployed software defined wan,” in
SIGCOMM, 2013.

[7] S. Kandula et al., “Calendaring for Wide Area
Networks,” in SIGCOMM, 2014.

[8] C.-Y. Hong et al., “Achieving High Utilization
with Software-driven WAN,” in SIGCOMM, 2013.

[9] P. Quinn and T. Nadeau, “Service function
chaining problem statement,” Internet draft, 2014.

[10] C. Filsfils et al., “Loop-Free Alternate (LFA)
Applicability in Service Provider (SP) Networks,”
RFC 6571, 2012.

[11] R. Krishnan et al., “Mechanisms for Optimizing
LAG/ECMP Component Link Utilization in
Networks,” Internet Draft, 2014.

[12] O. Tilmans and S. Vissicchio, “IGP-as-a-Backup
for Robust SDN Networks,” in CNSM, 2014.

[13] B. Fortz and M. Thorup, “Internet traffic
engineering by optimizing OSPF weights,” in
INFOCOM, 2000.

[14] F. Rossi, P. Van Beek, and T. Walsh, Handbook of
constraint programming. Elsevier, 2006.

[15] A. Elwalid et al., “Mate: Mpls adaptive traffic
engineering,” in INFOCOM, 2001.

[16] D. Ghosh, DSLs in action. Manning
Publications, 2010.

[17] P. Schaus and R. Hartert, “Multi-objective large
neighborhood search,” in CP, 2013.

[18] P. B. Godfrey, S. Shenker, and I. Stoica, “Pathlet
routing,” in HotNets, 2008.

[19] P. B. Godfrey, I. Ganichev, S. Shenker, and
I. Stoica, “Pathlet routing,” in SIGCOMM, 2009.

[20] R. Hartert, “DEFO Web Site,”
sites.uclouvain.be/defo.

[21] A. Raj and O. C. Ibe, “A survey of IP and
multiprotocol label switching fast reroute

27

schemes,”Computer Networks, vol. 51, no. 8, pp.
1882–1907, 2007.

[22] P. Shaw, “Using constraint programming and
local search methods to solve vehicle routing
problems,” in CP, 1998.

[23] P. Laborie and D. Godard, “Self-adapting large
neighborhood search: Application to single-mode
scheduling problems,” in MISTA, 2007.

[24] A. H. Land and A. G. Doig, “An automatic
method of solving discrete programming
problems,” Econometrica: Journal of the
Econometric Society, pp. 497–520, 1960.

[25] P. Francois, C. Filsfils, J. Evans, and
O. Bonaventure, “Achieving Sub-second IGP
Convergence in Large IP Networks,”ACM CCR,
vol. 35, no. 3, 2005.

[26] C. Filsfils et al., “Segment Routing with MPLS
data plane,” Internet draft, 2014.

[27] S. Previdi et al., “IPv6 Segment Routing Header
(SRH),” Internet draft, 2014.

[28] OscaR Team, “OscaR: Scala in OR,” 2012,
https://bitbucket.org/oscarlib/oscar.

[29] A. Shaikh and A. Greenberg, “OSPF Monitoring:
Architecture, Design and Deployment
Experience,” in NSDI, 2004.

[30] S. Vissicchio et al., “Central control over
distributed routing,” in SIGCOMM, 2015.

[31] A. Sharafat et al., “MPLS-TE and MPLS VPNS
with Openflow,” in SIGCOMM, 2011.

[32] R. Enns et al., “Network Configuration Protocol
(NETCONF),” RFC 6241, 2011.

[33] P. Marques et al., “Dissemination of Flow
Specification Rules,” RFC 5575, 2009.

[34] S. Sivabalan et al., “PCEP Extensions for
Segment Routing,” Internet Draft, 2014.

[35] N. Spring et al., “Measuring isp topologies with
rocketfuel,”Trans. Netw., vol. 12, no. 1, 2004.

[36] B. Quoitin et al., “IGen: Generation of
router-level Internet topologies through network
design heuristics,” in ITC, 2009.

[37] M. Roughan, “Simplifying the synthesis of
internet traffic matrices,”ACM CCR, vol. 35,
no. 5, pp. 93–96, 2005.

[38] Cisco, “Planning and Designing Networks with
the Cisco MATE Portfolio,” white paper, 2013.

[39] T. Cormen et al., Introduction to Algorithms.
McGraw-Hill, 2001.

[40] L. Vanbever et al., “When the cure is worse than
the disease: The impact of graceful IGP
operations on BGP,” in INFOCOM, 2013.

[41] R. Teixeira et al., “Network sensitivity to
hot-potato disruptions,” in SIGCOMM, 2004.

[42] Cisco, “Cisco WAN Automation Engine: Greater
Traffic and Bandwidth Awareness for Easier
Programmability,” white paper, 2015.

[43] C. Filsfils, “Segment routing: update and future
evolution,” MPLS/SDN world congress, 2014.

[44] N. Wang et al., “An overview of routing
optimization for internet traffic engineering,”
Commun. Surveys Tuts., vol. 10, pp. 36–56, 2008.

[45] I. Akyildiz et al., “A roadmap for traffic
engineering in SDN-OpenFlow networks,”
Computer Networks, vol. 71, pp. 1–30, 2014.

[46] B. Fortz and M. Thorup, “Optimizing
OSPF/IS-IS weights in a changing world,” IEEE
J. Sel. Areas Commun., vol. 20, no. 4, 2002.

[47] Juniper, “WANDL IP/MPLSView,”
http://www.juniper.net/assets/us/en/local/pdf/
datasheets/1000500-en.pdf.

[48] A. Sridharan et al., “Achieving near-optimal
traffic engineering solutions for current
OSPF/IS-IS networks,”Trans. Netw., vol. 13,
no. 2, 2005.

[49] Y. Wang, Z. Wang, and L. Zhang, “Internet traffic
engineering without full mesh overlaying,” in
INFOCOM, 2001.

[50] D. Xu, M. Chiang, and J. Rexford, “Link-state
routing with hop-by-hop forwarding can achieve
optimal traffic engineering,”Trans. Netw., vol. 19,
no. 6, pp. 1717–1730, 2011.

[51] I. Minei and J. Luceck, MPLS-Enabled
Applications. Wiley, 2005.

[52] S. Dasgupta et al., “Dynamic traffic engineering
for mixed traffic on international networks,”
Computer Networks, vol. 52, no. 11, Aug. 2008.

[53] R. Steenbergen, “Mpls autobandwidth,” RIPE 64.

[54] A. Pathak et al., “Latency inflation with
MPLS-based traffic engineering,” in IMC, 2011.

[55] M. Kodialam et al., “Oblivious routing of highly
variable traffic in service overlays and IP
backbones,”Trans. Netw., vol. 17, pp. 459–472,
2009.

[56] N. Gvozdiev, B. Karp, and M. Handley, “FUBAR:
Flow Utility Based Routing,” in HotNets, 2014.

[57] H. Wang et al., “COPE: traffic engineering in
dynamic networks,” in SIGCOMM, 2006.

[58] S. Kandula et al., “Walking the tightrope:
responsive yet stable traffic engineering,” in
SIGCOMM, 2005.

[59] D. Joseph et al., “A Policy-aware Switching Layer
for Data Centers,” in SIGCOMM, 2008.

[60] Z. Qazi et al., “SIMPLE-fying Middlebox Policy
Enforcement Using SDN,” in SIGCOMM, 2013.

[61] S. Vissicchio et al., “Opportunities and Research
Challenges of Hybrid Software Defined Networks,”
ACM CCR, vol. 44, no. 2, 2014.

[62] S. Agarwal et al., “Traffic Engineering in Software
Defined Networks,” in INFOCOM, 2013.

28

