
A Real-time 802.11 Compatible Distributed MIMO System

Ezzeldin Hamed, Hariharan Rahul, Mohammed A. Abdelghany, and Dina Katabi
Massachusetts Institute of Technology

{ezz,rahul,melmotaz,dina}@csail.mit.edu

ABSTRACT

We present a demonstration of a real-time distributed MIMO

system, DMIMO. DMIMO synchronizes transmissions from 4 dis-

tributed MIMO transmitters in time, frequency and phase, and per-

forms distributed multi-user beamforming to independent clients.

DMIMO is built on top of a Zynq hardware platform integrated with

an FMCOMMS2 RF front end. The platform implements a custom

802.11n compatible MIMO PHY layer which is augmented with a

lightweight distributed synchronization engine. The demonstration

shows the received constellation points, channels, and effective data

throughput at each client.

CCS CONCEPTS

•Networks → Network protocols; Wireless access points,

base stations and infrastructure; •Hardware → Digital signal

processing;

1. INTRODUCTION

Recent years have seen the demand for wireless data increase

by leaps and bounds, putting tremendous pressure on our limited

supply of wireless spectrum. In recent years, distributed multi-user

beamforming has been proposed as a solution for this spectrum

crunch since it allows wireless througput to scale with the number

of transmitters in the network.

Our demonstration builds on recent advances in practical dis-

tributed multi-user beamforming. Specifically, MegaMIMO [2]

demonstrated an implementation using USRPs that achieved low

overhead distributed time, frequency and phase synchronization

across transmitters to provide distributed beamforming, and scaled

throughput with the number of transmitters. However, these prior

systems were not real-time or implemented in hardware.

In contrast, our system, DMIMO, implements a complete

802.11n compatible MIMO physical layer and the synchronization

subsystem in hardware. A hardware implementation requires us to

address real-time constraints such as integration with carrier sense

and response to interference unlike previous systems. Further, we

need to ensure that our time, frequency and phase synchronization

subsystems are simple enough to meet the timing and resource con-

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom

c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOI: http://dx.doi.org/10.1145/2785956.2790042

Applications

Linux�Drivers

DMIMO�

Compatible�

802.11n�PHY

ADC�Serial�Link

Config

Registers

DAC�Serial�Link

DMA

Programmable�Logic

Processing�System

Figure 1—Platform Architecture. The figure shows our software-
hardware architecture. The PHY on the FPGA implements an
802.11n MIMO system and the real time synchronization facilities
needed for distributed MIMO. The software on the ARM core con-
figures the PHY and manages data transfer to and from the device.

straints inherent to hardware, while still achieving the desired ac-

curacy for scaling throughput with the number of transmitters.

2. SYSTEM ARCHITECTURE

The DMIMO system consists of a hardware access point plat-

form that performs physical layer processing of data and the re-

ceived signals, and a software controller that coordinates the differ-

ent transmitters to perform distributed multi-user beamforming.

2.1 Hardware

We implement DMIMO on the Xilinx Zynq platform [3] in-

tegrated with the Analog Devices FMCOMMS2/3 RF front end

card [1]. The Zynq platform consists of an Artix based FPGA con-

nected by a high speed bus to an ARM dual-core Cortex A9 pro-

cessor. We implement the PHY layer for our 802.11n compatible

MIMO transceiver subsystem using Verilog on the Zynq FPGA.

Each MIMO transmitter can precode up to 8 independent streams

to 2 antennas. Four such transmitters can therefore coordinate to

jointly emulate a single 8x8 MIMO transmitter. We also run Linux

on the ARM core with drivers to interact with the PHY layer. The

PHY layer exposes read and write registers that enable real time

configuration and monitoring by drivers, as well as DMA for bulk

data transfer for packet transmission and reception. Fig. 1 shows

the hardware architecture of our system.

In addition to the typical transmission and reception functionali-

ties, our PHY has these additional configurable capabilities:

• Reporting the decoded constellation points on all the subcarriers.

• Reporting the estimated channel from the packet headers as well

as decoded data.

• Joint transmission with a master transmitter, along with time, fre-

quency, and phase synchronization.

119

http://dx.doi.org/10.1145/2785956.2790042
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2785956.2790042&domain=pdf&date_stamp=2015-08-17


Ethernet�Backbone

Controller

AP1
Beamforming�

Engine

APn
Beamforming�

Engine

Figure 2—DMIMO Architecture. The controller orchestrates the
beamforming engines on the APs.

Tran
smitters

Clients

Figure 3—Testbed. The testbed consists of 4 2-antenna MIMO
transmitters connected to an Ethernet backhaul, and 4 2-antenna
MIMO wireless clients. Each client is equipped with a monitor to
display parameters associated with its received signal.

2.2 Software Controller

Fig. 2 shows the DMIMO architecture. The software controller

coordinates the transmitters in order to measure the channels to

clients, as well as to perform distributed multi user beamforming.

In particular, it schedules joint channel measurement transmissions

from the master and slave transmitters as described in [2]. It then

obtains the measured channel information from the clients, and

computes a precoding matrix to be used by the transmitters. The

controller distributes the appropriate rows of the precoding matrix

to each transmitter along with the data for joint transmission, and

sets registers to ensure that the master and slave transmissions are

synchronized in frequency and phase. The PHY layer then performs

the beamforming and synchronized transmission in hardware.

3. DEMONSTRATION

The demonstration consists of four 2-antenna MIMO transmit-

ters capable of distributed MIMO and four 2-antenna MIMO clients

as shown in Fig. 3. Each transmitter is capable of participating,

along with other transmitters, in an 8 stream distributed MIMO

transmission. One of the transmitters is configured as a master, and

the others are configured as slaves. The transmitters are connected

to an Ethernet backhaul, as can be seen by the yellow ethernet ca-

bles to the left of each transmitter device. The clients, on the other

hand, are not connected to any wired network and communicate

wirelessly with the transmitters. Each client is connected to a mon-

itor, which is used to display various statistics related to the received

data, for instance, constellations, channel plots, throughput etc.

The transmitters periodically transmit channel measurement

packets to the clients. The clients use these measurement packets

to estimate the channels from the different transmitters, and then

transmit these measured channels back to the transmitters. The soft-

ware controller, which runs on the master, computes the precoding

matrix based on these measured channels and transmits the relevant

rows of the precoding matrix to each transmitter. Each transmitter

then precodes the 8 streams intended to the clients with its rows

of the precoding matrix. Note that the clients themselves are not

aware that the transmissions are joint to multiple clients, and each

will decode its streams individually.

The system supports 1 and 2 stream 802.11n (i.e. 56 subcarriers

with 4 pilots) and all the 1 and 2 stream 802.11n modulations and

−30 −20 −10 0 10 20 30
0

200

400

600

800

1000

1200

1400

Subcarrier index

C
h

a
n

n
el

 m
a
g
n

it
u

d
e

H
11

−30 −20 −10 0 10 20 30
0

200

400

600

800

1000

1200

1400

Subcarrier index

C
h

a
n

n
el

 m
a
g
n

it
u

d
e

H
12

−30 −20 −10 0 10 20 30
0

200

400

600

800

1000

1200

1400

Subcarrier index

C
h

a
n

n
el

 m
a
g
n

it
u

d
e

H
21

−30 −20 −10 0 10 20 30
0

200

400

600

800

1000

1200

1400

Subcarrier index

C
h

a
n

n
el

 m
a
g
n

it
u

d
e

H
22

Figure 4—Channel Matrix. The green line shows the 2x2 channel
matrix observed at one of the clients.

code rates (BPSK 1/2 rate, 4-QAM 1/2 rate, 4-QAM 3/4 rate, 16-

QAM 1/2 rate, 16-QAM 3/4 rate, 64-QAM 2/3 rate, 64-QAM 3/4

rate, and 64-QAM 5/6 rate).

An application on the transmitters chooses the rate for joint trans-

mission to the different clients, as well as the beamforming algo-

rithm to be used (e.g. zero forcing beamforming, conjugate beam-

forming, no beamforming).

The clients demonstrate the following statistics:

(a) Received constellation points: This is as shown on the moni-

tors in Fig. 3 above. The clustering of the constellation points shows

the impact of the channel feedback quality and timeliness on the ac-

curacy of beamforming, as well as the performance of the different

beamforming algorithms.

(b) Channel at each client: This shows the channel magnitude

across all subcarriers for the 2x2 channel matrix at each client. Note

that each client receives only a 2 stream packet after the combina-

tion of all the transmissions and hence effectively sees only a 2x2

channel. Fig. 4 shows an example channel matrix at a client.

The demonstration shows how this channel matrix will vary as

the controller uses different precoding techniques. For instance,

when the controller uses a form of zero-forcing that nulls the con-

tribution of all other streams at each antenna, each antenna will

effectively see only one stream. As a result, the off-diagonal entries

in the effective channel matrix (i.e., H12 and H21) will be close to 0.

However, such a restriction is too strict as the interference be-

tween two streams destined to the same client need not be nulled

relative to each other. Providing this additional degree of freedom to

the controller will allow it to compute a channel matrix which can

deliver higher throughput than the strict nulling system described

above. In such a case, the off-diagonal entries will be non-zero as

our demonstration will show.

(c) Throughput as a function of time: The demonstration shows a

graph of the effective throughput, i.e., the rate of correctly received

and decoded data as a function of time. The graph shows the ef-

fect of the transmitted modulation on the received throughput as a

function of the quality and timeliness of the channel measurement.

Further, it demonstrates the impact of various kinds of interference

(single tone and wideband) on the received throughput.

REFERENCES

[1] Analog devices FMCOMMS2. http://www.analog.com/en/
design-center/evaluation-hardware-and-software/
evaluation-boards-kits/EVAL-AD-FMCOMMS2.html.

[2] H. Rahul, S. Kumar, and D. Katabi. MegaMIMO: Scaling Wireless
Capacity with User Demands. In ACM SIGCOMM 2012, Helsinki,
Finland, August 2012.

[3] Xilinx Zynq.
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html.
Zynq All Programmable SOC.

120

http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-AD-FMCOMMS2.html
http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-AD-FMCOMMS2.html
http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-AD-FMCOMMS2.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

	Introduction
	System Architecture
	Hardware
	Software Controller

	Demonstration



