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ABSTRACT

Many network-on-chip (NoC) designs focus on maximizing
performance, delivering data to each core no later than
needed by the application. Yet to achieve greater energy
efficiency, we argue that it is just as important that data is
delivered no earlier than needed. To address this, we explore
data criticality in CMPs. Caches fetch data in bulk (blocks
of multiple words). Depending on the application’s memory
access patterns, some words are needed right away (critical)
while other data are fetched too soon (non-critical). On
a wide range of applications, we perform a limit study of
the impact of data criticality in NoC design. Criticality-
oblivious designs can waste up to 37.5% energy, compared
to an idealized NoC that fetches each word both no later
and no earlier than needed. Furthermore, 62.3% of energy is
wasted fetching data that is not used by the application. We
present NoCNoC, a practical, criticality-aware NoC design
that achieves up to 60.5% energy savings with no loss in per-
formance. Our work moves towards an ideally-efficient NoC,
delivering data both no later and no earlier than needed.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures—interconnection architectures

1. INTRODUCTION

As CMPs scale to hundreds and thousands of cores, the
NoC becomes a significant factor in the cost of accessing data
from memory. Traditional processor designs have focused on
accessing data with minimal latency, fetching in bulk and
employing prefetchers to deliver data no later than needed
by the application. However, energy consumption is now a
major concern, with NoC energy expecting to grow infeasi-
bly high as we continue towards lower technology nodes [7].
Our work argues that NoCs should deliver data both no later
and no earlier than needed to achieve ideal efficiency.
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Fetching data in blocks of 16+ words is beneficial since it
avoids large tag arrays, improves DRAM row buffer utiliza-
tion and exploits spatial locality. But fetching some data
prematurely wastes NoC energy. As an analogy, imagine
multiple cars heading to the airport, each catching a dif-
ferent flight. Bulk-fetching implies that the cars convoy to-
gether and take the fastest route such that all cars arrive in
time for the earliest flight. This is wasteful since some cars
have later flights and could take a slower route that burns
less fuel.

We define data criticality as the promptness with which an
application uses data after its block is fetched from memory.
When an instruction currently waiting in the pipeline uses
a data word immediately upon its arrival, this word is criti-
cal. A non-critical word is fetched merely as a consequence
of bulk-fetching the entire block and may (or may not) be
used later by some yet to be issued instruction. Data crit-
icality is an inherent characteristic of both an application’s
memory access patterns and the processor microarchitec-
ture. In this paper, we analyze criticality and perform a
limit study to estimate the amount of energy wasted in us-
ing traditional, criticality-oblivious NoC designs. Compared
to a theoretical, idealized NoC that fetches each data word
both no later and no earlier than needed, we find that up to
37.5% energy is wasted. In addition, we find that 62.3% of
energy is wasted in fetching data words that is never used
by the application at all (dead words). To demonstrate the
significance of data criticality, we evaluate a practical NoC
design that dynamically adapts to criticality. We show that
a criticality-aware NoC achieves up to 60.5% energy sav-
ings with negligible impact on performance. We make the
following contributions:

e We study the impact of data criticality on PARSEC [5]
and SPLASH-2 [35] applications.

e We show that a criticality-oblivious NoC can waste up
to 37.5% dynamic energy (17.3% on average). Fur-
thermore, 62.3% of dynamic energy is wasted fetching
dead words.

e We present NoCNoC (Non-Critical NoC), a practical,
criticality-aware design that achieves energy savings of
27.3% (up to 60.5%) with no loss in performance.

2. DATA CRITICALITY

Data criticality defines how promptly an application uses
a data word after its block is fetched from memory. A word is
critical if an instruction that needs it is issued in the proces-
sor pipeline before the word arrives at the L1 cache. The in-
struction will stall, hurting application performance. Ideally,
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Figure 1: Examples of data criticality.

we would like to fetch this word through the NoC with zero
time. To mask the fetching latency, modern superscalar,
out-of-order processors continue executing independent in-
structions while waiting. However, performance still suffers
as many applications have limited instruction-level paral-
lelism (ILP). Since data is fetched in blocks, many words
arrive at the cache prematurely. A word is non-critical if it
is not needed by any instructions currently in the pipeline.
Even if this word was fetched with zero latency, it would
not improve performance. Words with low criticality are
less sensitive to NoC latency and can tolerate longer fetch
delay without harming performance.

Fig. 1 presents simplified examples of data criticality from
PARSEC [5]. In blackscholes (Fig. 1a), sptprice is accessed
sequentially, exhibiting spatial locality. However, the func-
tion BlkSchlsEqEuroNoDiv performs many floating point
operations and takes a long time to complete. With 16-
word blocks, the first iteration of the loop fetches not only
sptprice[0] but all elements up to sptprice[15]. Since
the execution of B1kSchlsEqEuroNoDiv is long, many of the
elements—especially sptprice[15]—are fetched long before
they are needed; these elements have very low criticality.
Fig. 1b presents another example. Since array cell->p is
invariant to the inner loops, there is a long delay between se-
quential array accesses. Synchronization can also yield non-
critical words. Depending on a particle’s location, neigh->a
may or may not be enclosed by a lock. As a result, the delay
between accesses may be large due to lock contention.

Data criticality is an inherent consequence of spatial lo-
cality and is exhibited by most (if not all) real-world applica-
tions. Note that compiler optimizations can reorder instruc-
tions to improve ILP and thus increase criticality, but the
amount of ILP is limited by both the microarchitecture and
the application characteristics. In general, low criticality
can arise in the following situations:

Long-running code between accesses.
Interference due to thread synchronization.
Dependences from other cache misses.
Preemption by the operating system.

2.1 Data Liveness

We also study data liveness as an extreme case of criti-
cality. A word is live-on-arrival (or live) if it is accessed at
least once while in the L1 cache. With perfect spatial local-
ity, all 16 words of a block would be live. However, in many
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Figure 2: Examples of data liveness.

applications, many cache words are fetched but never used
prior to eviction. A word is dead-on-arrival (or dead) if it
is never accessed before being evicted. Fetching dead words
expends unnecessary energy.

Fig. 2 presents simplified examples of data liveness. In
Fig. 2a, elements of array cell->v are accessed sequentially
by the inner loop. However, depending on the position, an
element’s x, y or z member may not be accessed. As a result,
dead words may be fetched. This is common in many appli-
cations since members of data structures are stored contigu-
ously in memory but not always needed during a given phase
of the application. Dead words can also arise from irregu-
lar access patterns. In Fig. 2b, mParticles is not accessed
sequentially but rather accessed based on mIndex; some el-
ements are used more than others and some are never used
at all. As a more extreme example, simulated annealing
(Fig. 2c) exhibits very little spatial locality since elements
of _netlist are accessed randomly; neighbouring elements
are brought into the cache but never used.

Data liveness measures the degree of spatial locality. The
more live words in a cache block, the better the spatial
reuse. In general, words can be dead-on-arrival if they are
evicted early or inherently unused by the application. Note
that compilers can employ data packing and alignment opti-
mizations to increase spatial locality and thus liveness, but
this can potentially yield more false sharing of cache blocks.
Dead words are commonly found in the following situations:

Unused members of structs.

Irregular or random access patterns.

Heap fragmentation.

Padding between data elements.

Early evictions due to invalidations, cache pressure or
poor replacement policies.

2.2 Comparison to Instruction Criticality

Instruction criticality [13, 15, 16, 31] is a measure of the
relative importance of each instruction in the pipeline, typi-
cally based on how likely the instruction is to fall on the crit-
ical path of execution. For example, assume load instruction
X accesses the word a[0] (i.e. the word at offset 0 in block a)
and load instruction Y accesses the data word b[0]. Both in-
structions are issued, miss in the L1 cache and are now wait-



16 cores, 2 GHz, 4-wide, out-of-order,
80-instruction ROB
64 B (16 words)

Processor

Cache blocks

L1 cache private, 4-way,
1-cycle latency, 64 kB per core
L2 cache shared, fully distributed, 16-way,

6-cycle latency, 16 MB total
Main memory 4 banks, 160-cycle latency, 4 GB total

Cache coherence MSI protocol

Technology node 22 nm

Table 1: CMP configuration.

Topology 4x4 mesh
Frequency 2.0 GHz
Voltage 1.14 V
Channel width 128-bit
Virtual channels 6 per port (4 flits each)
Router pipeline stages 3
Routing algorithm X-Y dimension-order
Request/Response packet size 6B / 64+64B

Table 2: Baseline NoC.

ing for their data in the reorder buffer (ROB). NoC critical-
ity schemes (e.g., Aergia [13]) would prioritize/deprioritize
fetching either a or b to improve performance and/or save
energy. This priority is based on the criticality of X and Y,
deciding which of these two instructions is on the critical
path of execution and more likely to stall the processor. We
refer to this as instruction criticality. However, this form of
criticality is incomplete; it does not capture data criticality.
When we prioritize block a over b based only on the criti-
cality of instructions X and Y, then we assume that all other
words in the block—al1], a[2], etc.—are as equally critical
as a[0]. This may not be the case since we do not know
which instructions will be issued in the future. Perhaps the
application will need a[2] before a[1]. Perhaps the appli-
cation does not access a[1] until many cycles later, wasting
energy in fetching it as quickly as a[0]. Thus data critical-
ity is separate from instruction criticality. Determining data
criticality is challenging since it assesses words that may (or
may not) be used by instructions that may (or may not) be
issued soon or far into the future.

3. CRITICALITY STUDY

We characterize data criticality across a range of ap-
plications. We model a theoretical NoC design for each
application—ideally tuned to its criticality characteristics—
which represents the lower-bound energy consumption when
fetching data both no later and no earlier than needed.*
From this, we study the impact of criticality and estimate
energy wasted in conventional, criticality-oblivious NoCs.

3.1 Experimental Methodology

We assume a 16-core CMP, configured as in Table 1. Our
baseline is a conventional NoC design, configured as in Ta-
ble 2. We use FeS2—a full-system x86 simulator [25]—
with BookSim [18] to run applications from PARSEC [5]
and SPLASH-2 [35]. Energy consumption is measured using
DSENT ([32]. For each application, dynamic energy is mea-
sured using the number of injected bytes, hop count, and

Note that just-in-time fetching may not always be optimal
since it can alter congestion patterns in the network. For
this study, it simply serves as a first step towards designing
criticality-aware NoCs.

runtime collected from FeS2 and BookSim. NoC voltage-
scaling values are obtained from Sharifi et al. [29].

3.2 Measuring Criticality

To characterize criticality, we measure the fetch latency
and access latency of all data words used in each application.
For a data word a[x] (i.e., the word at offset x in block a), its
fetch latency is the time elapsed from the L1 cache’s request
for a to the arrival of the data block at the cache. This is the
uncore latency, much of which is contributed by the NoC.
In a conventional, criticality-oblivious NoC design, the fetch
latency of all words in a are identical. The access latency of
al[x] is the time elapsed from the L1 cache’s request for a
to the first L1 access (hit) of a[x] by the application. This
represents the data word’s criticality; the lower the access
latency (i.e., the sooner it is used), the higher the criticality.?

Fig. 3 shows the distributions of access latency (normal-
ized to fetch latency) of all words accessed. For now, we
ignore dead words. By normalizing to fetch latency, we ef-
fectively estimate the amount of network slowdown that can
be tolerated. For example, if a word’s access latency is 3%
its fetch latency, then the NoC can fetch this word 3x slower
(saving energy) without hurting performance. Applications
are grouped based on their overall criticality from very low
to very high. The distributions in Fig. 3 are cumulative.
For example, in fluidanimate (Fig. 3a), 20% of all words can
tolerate a network that is 10x slower than the baseline.

Words with a normalized access latency of 1x (or lower)
are critical. These words are used immediately upon arriv-
ing at the L1 cache; instructions in the ROB are already
waiting for them. Fig. 3 shows that non-critical words exist
in all applications, even those with high overall criticality.
Applications are generally written to exploit spatial local-
ity, due to the bulk-fetching nature of conventional caches.
Since processors cannot achieve perfect ILP, some words are
bound to be fetched before the instructions needing them
are issued. Applications with very low criticality (Fig. 3a)
tend to fetch data too early. These include blackscholes
and swaptions, which are financial applications with many
time-consuming floating-point operations in between data
accesses (Sec. 2). Fluidanimate and streamcluster also ex-
hibit very low criticality due to heavy synchronization and
long delays between accesses.

3.3 The Impact of Criticality

We aim to quantify the amount of energy wasted in con-
ventional NoC designs, where in a given block a, the fetch
latencies of all words—al0], a[1], etc.—are equal. These
designs are oblivious to the varying criticalities (access laten-
cies) of the data words. Our goal is to model a theoretical,
ideal NoC where every word is fetched such that its fetch
latency is equal to its access latency; all data is delivered
both no later and no earlier than needed.

Experiments. Starting from the baseline, we divide the
NoC into multiple subnetworks each operating at a different
frequency and voltage. The subnetworks split the baseline
128-bit channel width. Using the distributions from Sec. 3.2,
each subnetwork is assigned to fetch a subset of words that
share a common access latency. The subnetwork’s frequency
is then configured such that the fetch latency is equal to the
access latency. We perform a brute-force search of all possi-
ble subnetwork configurations to find the one that yields the

2 Access latency encapsulates the fetch latency.
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Figure 3: Cumulative distribution functions of criticality of all words accessed. Applications grouped by degree of criticality.

subnet access / fetch | channel frequency voltage
0 1x 76-bit 2.0 GHz 1.14 V
1 Ix - 1.1x 4-bit 2.0 GHz 1.14 V
2 1.1x - 2% 4-bit 1.8 GHz 1.09 V
3 2x - 3.5 4-bit 1.0 GHz 0.84 V
4 3.5X - 7Tx 8-bit 571.4 MHz | 0.71 V
5 7x - 18X 8-bit 285.7 MHz | 0.62 V
6 18X - oo 24-bit 111.0 MHz | 0.57 V

Table 3: Ideal NoC model for bodytrack.
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Figure 4: Word distribution of ideal NoC model for body-
track. Areas under the curve represent subnetworks.

lowest energy. Table 3 shows the ideal NoC configuration for
bodytrack.® This is visualized in Fig 4, where each area un-
der the curve represents a subset of words that are assigned

3We do not consider channel widths narrower than 4 bits.
Logic overheads of routing and allocation and sideband sig-
nals make narrow channels unrealistic.
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Figure 5: Energy wasted due to non-criticality.

to a given subnetwork. For example, only the words with
normalized access latency between 7x and 18X are injected
into subnetwork 5. Words with an access latency of 7x can
tolerate a frequency of 285.7 MHz (baseline 2.0 GHz divided
by 7). Each word is injected into the subnetwork with the
highest fetch latency that is no greater than the word’s ac-
cess latency. This allows us to estimate the lower-bound
energy consumed when all data is fetched both no later and
no earlier than needed.

Results. Fig. 5 shows the amount of dynamic energy
wasted in the baseline, criticality-oblivious NoC compared to
the ideal NoC. On average, 17.3% of energy is wasted (up to
37.5% for swaptions). As expected, conventional NoCs are
energy-inefficient for applications with very low criticality
(Fig. 3a), expending 27.6% of unnecessary energy. Wasted
energy is driven by two factors: the fraction of words that are
non-critical and their degree of non-criticality (the amount
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Figure 6: Energy wasted in fetching dead words.

of network slowdown they can tolerate, based on the ratio of
access and fetch latency). Even though canneal and cholesky
have a low fraction of non-critical words (Fig. 3d), significant
energy is still wasted since they can tolerate large network
slowdowns beyond 10x.

Data criticality is a function of not only the application’s
memory access patterns but also the processor microarchi-
tecture. Fig. 5 also shows results for a lean core, which is
single-issue with a 20-entry ROB. Since the lean core exploits
less ILP, at any given time, there are less instructions waiting
in the processor pipeline for their data. This increases the
fraction of non-critical words and their access latencies, re-
ducing overall criticality. As a result, even applications with
very high criticality—such as radix and radiosity (Fig. 3d)—
waste signficant energy. On average, 22.7% (up to 42.5%)
is wasted with lean cores. It is important to design NoCs
with criticality-awareness, particularly when running low-
criticality applications or when using lean processor cores.

3.4 The Impact of Liveness

To explore the impact of data liveness, Fig. 6 shows the
energy wasted in fetching dead words. On average, 62.3%
(up to 87.9%) of energy is expended on fetching words into
the L1 cache that are never used before being evicted. As
discussed in Sec. 2, this is generally attributed to poor spa-
tial locality and irregular access patterns. This is evident
in both bodytrack and canneal, where 84.4% and 85.5% of
energy is wasted. An ideally energy-efficient NoC would not
consume any unnecessary energy in fetching dead words.

4. CRITICALITY-AWARE NOC DESIGN

We studied ideal, criticality-aware NoC designs in the pre-
vious section; however, in the real world, such designs are
infeasible. It is impossible to achieve perfect criticality-
awareness (i.e., all data is delivered both no later and no
earlier than needed) because the access latency of a word is
not known in advance. Thus we cannot guarantee a fetch
latency that is exactly identical to the access latency. For-
tunately, it is possible to implement a practical NoC design
that can dynamically predict criticality with high accuracy
and save significant energy. In this section, we present such
a design—NoCNoC (Non-Critical NoC)—which achieves en-
ergy savings of 27.3% (up to 60.5%) with no loss in perfor-
mance. A criticality-aware NoC design needs to perform
three key functions:

1. Predict the criticality of a data word prior to fetching
it (Sec. 4.1).

prediction table

instruction
address

000000000003010X1010000000C3000| | H’it.
-15 0 15

=

prediction vector
(requested word 4)
010110100000000 |
0 15

L1 request packet

Figure 7: Data criticality predictor.

2. Physically separate the fetching of words based on
their criticality (Sec. 4.2).

3. Reduce energy consumption in fetching low-criticality
words (Sec. 4.3).

4. Eliminate the fetching of dead words (Sec. 4.4).

4.1 Predicting Criticality

Ideally, we want to know the exact time a word will be
accessed (if at all) before fetching it. However, measuring
and storing the access latencies of every word in the ap-
plication is impractical. To keep overhead and complexity
low, NoCNoC employs a simple binary prediction scheme: a
word is predicted to be either critical or non-critical. Fig. 7
shows the hardware predictor, which is inspired from previ-
ous work [20]. The predictor is coupled with the L1 cache. It
utilizes a table of 31-bit vectors indexed by the instruction
address. We use untagged table entries to keep overhead
low. Each vector tracks the access history of each word in
the cache block based on its offset relative to the requested
word (that caused the cache miss).

Prediction Lookup. Fig. 7 demonstrates an example
prediction. A cache miss occurs requesting the word at offset
4. From the criticality vector, the words at offsets 2, 5 and
7 are predicted to be critical since they are positioned -2,
+1 and +3 respectively, relative to the requested word. A
16-bit prediction vector is extracted and appended to the
L1 request packet. Note that the requested word is always
critical because there already is an instruction (which caused
the cache miss) waiting to access it.

Prediction Update. Each block in the L1 cache stores
the requested word offset, a pointer to the prediction table
entry and a 16-bit access vector. Starting with the initial
request, the access vector keeps track of which words in the
block have been accessed by instructions. When the block
arrives at the L1 cache, the contents of the access vector
indicate which words are critical (since they were accessed
while the block was still being fetched). The criticality pre-
diction table entry is updated based on this access vector.
A hysteresis bit is used to account for infrequent deviations
from the data access pattern.

4.2 Separating Criticality

Ideally, we want each word to traverse a NoC optimized for
its criticality. However, it is physically infeasible to imple-
ment such a NoC for all levels of criticality. Instead, NoC-
NoC employs a heterogeneous, two-network design, where
one subnetwork is dedicated to critical words and the other
is dedicated to non-critical words. For each L1 cache miss,
the criticality predictor is invoked. The data response packet
is then split into two separate packets: one containing the



words predicted to be critical and the other containing those
predicted non-critical. Recent work shows that using mul-
tiple physical subnetworks can improve energy-efficiency [2,
14, 34], even more so than multiple virtual networks [36]. We
now have two routers per tile: one per subnetwork. With a
mesh topology, this has negligible impact on chip area [4].

NoCNoC does not require any changes to the coherence
protocol. Coherence still operates on a block granularity. It
only requires that the processor core and L1 cache support
early-restart; instructions waiting for a specific word can
proceed immediately when the word arrives, without having
to wait for the whole block. Entries in the L1 miss sta-
tus handling registers are not cleared until after all words
have arrived. All control packets—requests, invalidations,
acknowledgements—are injected into the critical network.
As writeback packets are not on the application’s critical
path, we inject them into the non-critical network.

4.3 Saving Low-Ceriticality Energy

Ideally, we want low-criticality words to be fetched no
earlier than necessary to save energy. However, this is dif-
ficult to implement since data words have highly varying
criticalities, which can change throughout the execution of
the application. In NoCNoC, we employ dynamic voltage-
frequency scaling (DVFS) to slow down the non-critical sub-
network. This allows us to save energy on words predicted
to be non-critical, since they can tolerate a higher fetch la-
tency. However, we must avoid lowering the frequency too
much. Recall that a word is deemed non-critical if its access
latency is greater than its fetch latency (i.e., it is not used
until sometime after it arrives). As a result, if the frequency
of the non-critical network is set too low, the fraction of
words that are deemed non-critical approaches zero (since
fetch latency becomes too high).

In NoCNoC, we set the frequency such that the utiliza-
tion of the critical and non-critical subnetworks is balanced
to prevent high congestion on either network. We define
a DVFS threshold 6 equal to the fraction of total NoC re-
sources allocated to the non-critical network (e.g., if non-
critical channel width is 4 bytes and critical channel width
is 12 bytes, then 6 is set to 25%). During runtime, in epochs
of 10 ms (Sec. 4.5), we measure «, the fraction of total net-
work traffic that is injected into the non-critical network. At
the end of each epoch, if a exceeds 6, then the application
is currently exhibiting low criticality, and the non-critical
network is overutilized. NoCNoC responds by reducing the
frequency of the non-critical network. This allows us to
1) save energy in the presence of low criticality, and 2) bal-
ance the utilization of the two networks (i.e., reducing fre-
quency increases fetch latency, which reduces the fraction of
words that are deemed non-critical). If a is below 6, then
criticality is high, and the critical network is overutilized;
NoCNoC responds by increasing the non-critical frequency.

4.4 Eliminating Dead Words

Ideally, we only want to fetch data words that are needed
by the application. However, it is impossible to determine
whether or not a word will be used when fetching it. In
NoCNoC, we employ speculative dead word elision to save
energy. Using the same prediction scheme as with criticality
(Sec. 4.1), each L1 cache is also equipped with a liveness
predictor. Before fetching a block, the liveness predictor

We vary frequency in steps of 250 MHz (Sec. 4.5).
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Figure 8: Criticality prediction accuracy of NoCNoC.

generates a 16-bit vector where each bit represents a word
in the block and is set if that word is deemed to be live.
This vector is appended to the L1 request packet and used
to omit dead words from the data response packet. Dead
word elision requires the L1 cache to use a valid bit per
word instead of per block.® The liveness predictor is imper-
fect; it can occasionally mispredict a live word to be dead.
When this occurs, the L1 cache must issue another request,
retrieving the rest of the block.

4.5 Evaluation

To show the promise of criticality-aware designs, we eval-
uate NoCNoC in terms of criticality prediction accuracy,
dynamic energy consumption and application performance.
We assume the same baseline CMP and NoC configura-
tions as in Sec. 3.1. We configure NoCNoC such that the
aggregate bandwidth of its two subnetworks is equal to
that of the baseline conventional NoC; we implement 88-
bit channels on the critical subnetwork and 40-bit channels
on the non-critical subnetwork. All overheads introduced
by NoCNoC—such as the 16-bit prediction vectors and the
extra requests upon liveness mispredictions—are accounted
for in our measurements. Predictors are initialized to as-
sume all words are live and critical to be conservative dur-
ing warm-up. We assume 4 kB prediction tables, similar to
the implementation by Kim et al. [20]. Typically only 10
or fewer static load instructions cause more than 80% of L1
misses in most applications [11]. Since our prediction tables
are indexed by the addresses of load-miss instructions, we
expect that the table size can be reduced further while still
maintaining high accuracy. Using CACTI [33], we measure
the NoCNoC energy overheads (criticality and liveness pre-
dictors, and additional metadata in L1 caches) to be 2.6%
of total cache energy. We employ DVFS in 10 ms epochs,
assuming a 20 us actuation overhead. 6 is set to 31.25% (40-
bit non-critical channels and 88-bit critical channels). DVFS
metadata is piggybacked onto packets [10] and only aggre-
gated once every 10 ms; thus overhead is negligible. In our
implementation, DVFS for the non-critical network ranges
from 500 MHz to 2 GHz (in steps of 250 MHz), initially set
to 1.25 GHz. The critical network is fixed at 2 GHz.
Criticality Prediction Accuracy. Fig. 8 shows the crit-
icality prediction accuracy of NoCNoC. Note that the y-
axis begins at 70% for readability. A prediction is correct
if the word is both critical and predicted-critical, or both
non-critical and predicted-non-critical. On average, NoC-

®Coherence is still maintained on a cache block granularity.
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Figure 9: NoCNoC performance and energy.

NoC correctly predicts the criticality of words with 97.2%
accuracy. As discussed in Sec. 4.1, our predictor uses rel-
ative word offsets, which are highly effective since in most
applications, spatially-colocated data elements are typically
accessed in a predictable order [27]. A word is underpredicted
if it is critical but predicted-non-critical (false negative), and
overpredicted if it is non-critical but predicted-critical (false
positive). Overpredictions increase congestion on the critical
network while underpredictions stall the processor, forcing
it to wait for data that has been wrongly injected into the
slow non-critical network. NoCNoC achieves very low over-
prediction and underprediction rates of 2.2% and 0.6%.

Performance and Energy. Fig. 9a and 9b show NoC-
NoC performance and energy. We compare against the base-
line conventional NoC with and without dead word elision
(DWE). Although we demonstrate significant energy wasted
on fetching dead words (Sec. 3), the inaccuracy of our live-
ness predictors limits the savings. On average, specula-
tive dead word elision still achieves 18.3% energy savings
compared to the baseline. NoCNoC—which includes dead
word elision—sees energy savings of 27.3% on average (up
to 60.5%), while increasing runtime by only 3.6%.

We note that canneal is a pathological case that performs
poorly on any multi-network design. Due to its poor spatial
locality (Fig. 2c¢), canneal exhibits the highest number of L1
misses per cycle (0.096) of any application, nearly double
that of its nearest competitor (bodytrack with 0.058). This
results in very heavy congestion in the NoC. By splitting the
NoC into smaller subnetworks (even without reducing the
frequency), the smaller channel widths increases the number
of flits per packet. This increases resource contention in
the NoC (buffer stalls and head-of-line blocking), which is
amplified by the baseline high congestion in canneal.
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Figure 10: Breakdown of injected bytes.

Comparison to Instruction Criticality. As discussed
in Sec. 2.2, instruction criticality schemes [13, 15, 16, 31]
try to determine which instructions fall on the critical path
of execution. Specifically, Aergia—a NoC prioritization
scheme [13]—characterizes criticality based on how likely an
instruction is to stall the processor pipeline. These schemes
are effective in accelerating critical data blocks, but their
opportunities for energy savings are limited. Unlike data
criticality, they do not take into account the data that is
fetched before any instructions that need it are even issued.

To illustrate this, we compare Aergia’s classification of
criticality (Fig. 10a) with that of NoCNoC (Fig. 10b). To
identify non-critical instructions, Aergia tracks L2-miss-
predecessors, which are older instructions that have missed
in the L2 cache (suffering a longer latency to access mem-
ory). An instruction with one or two L2-miss-predecessors
can tolerate some network slowdown while an instruction
with >2 can tolerate even more; it is highly likely that an
L2-miss-predecessor will stall the processor. Conversely, an
instruction with zero L2-miss-predecessors cannot tolerate a
slowdown, and thus no energy savings can be achieved. We
find that instructions with zero L2-miss-predecessors make
up 89.9% of injected NoC traffic, leaving only 10.1% for po-
tential energy savings. This is due to typically low L2 miss
rates and limited MLP. On the other hand, with NoCNoC,



only 56.1% of traffic is critical while 43.9% can be slowed
down (non-critical) or even eliminated (dead).

5. RELATED WORK

Liveness. Kim et al. exploit data liveness through a re-
designed router microarchitecture [20]. Predictors have been
implemented that recognize the spatial locality of memory
accesses [9, 21, 30]. These focus on prefetching and cache
power savings. Other techniques can identify when words
and sub-blocks will no longer be used before eviction [1, 3,
19, 23, 28]. Kumar et al. exploit dead words using variable
block granularity to reduce cache energy [22]. Unlike our
work, these techniques do not target NoC energy.
Criticality. Exploiting instruction criticality [13, 15, 16,
31] provides less opportunities for NoC power savings com-
pared to data criticality as shown in Sec. 4.5. Low-latency
and low-power main memory modules can be used to tar-
get data criticality in the form of latency-sensitive memory
accesses [8, 26]. Critical words caches dedicate a separate
L2 storage array to words that were requested first in the
past [17]. We observe that more than one word can be crit-
ical on each cache miss. Prioritization schemes characterize
NoC packets based on latency-sensitivity [6, 12, 24]. They
alm to boost performance while we aim to save energy.

6. CONCLUSION

We study the impact of data criticality in NoC design.
Data criticality is an inherent consequence of spatial locality;
it defines how promptly an application uses a data word
after its block is fetched from memory. We find that all
applications studied exhibt data criticality. Conventional,
criticality-oblivious NoC designs waste up to 37.5% energy.
Furthermore, 62.3% of energy is wasted fetching data that is
never used by the application. To illustrate the importance
of criticality-awareness, we show how NoCNoC can achieve
up to 60.5% energy savings with negligible performance loss.
We demonstrate that NoCs should be designed to deliver
data both no later and no earlier than needed.
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