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ABSTRACT
We present PCR, a new automatic patch generation system.
PCR uses a new condition synthesis technique to efficiently
discover logical expressions that generate desired control-
flow transfer patterns. Presented with a set of test cases,
PCR deploys condition synthesis to find and repair incor-
rect if conditions that cause the application to produce the
wrong result for one or more of the test cases. PCR also
leverages condition synthesis to obtain a set of compound
modifications that generate a rich, productive, and tractable
search space of candidate patches.

We evaluate PCR on a set of 105 defects from the Gen-
Prog benchmark set. For 40 of these defects, PCR gener-
ates plausible patches (patches that generate correct outputs
for all inputs in the test suite used to validate the patch).
For 12 of these defects, PCR generates correct patches that
are functionally equivalent to developer patches that appear
in subsequent versions. For comparison purposes, GenProg
generates plausible patches for only 18 defects and correct
patches for only 2 defects. AE generates plausible patches
for only 27 defects and correct patches for only 3 defects.

1. INTRODUCTION
Large software systems are known to include many more

defects than human developers are able to triage, under-
stand, and repair [34]. Generate-and-validate systems start
with a test suite of inputs, at least one of which exposes a
defect. They then generate candidate patches in an attempt
to find a (hopefully correct) patch that produces correct out-
puts for all inputs in the test suite [27, 34, 21, 28, 33].

Recent papers on several generate-and-validate systems
report impressive results — they claim to fix over half of the
bugs in a large benchmark set of bugs [21, 28, 33]. Unfortu-
nately, because of experimental error in the patch validation,
these reported results are wrong [29]. In fact, at least half of
the reported patches do not generate correct results even for
the inputs used to validate the generated patches. Moreover,
the overwhelming majority of the patches are not correct —
at the end of the day, these systems generate correct patches
for less than 3% of the bugs in the benchmark set [29]. Ex-
perimental results from an implemented automatic patch
generation system show that generating patches that simply
delete functionality can do as well [29]. These facts do not
inspire confidence in the overall viability of the generate-
and-validate approach to automatic patch generation.

But of course, these are far from the only generate-and-
validate patch generation systems. ClearView, for exam-
ple, deploys a more targeted set of modification operations,

induced patch space, and search algorithm to successfully
produce patches that eliminate Firefox security vulnerabili-
ties [27]. These results suggest that the problem lies not with
the generate-and-validate approach per se, but with the spe-
cific set of modification operators, induced patch space, and
search algorithms used in previous systems [21, 28, 33].

1.1 PCR
We present a new program repair system, Predicate Com-

pound Repair (PCR). PCR deploys a novel set of modifi-
cation operators and a novel search algorithm to obtain a
tractable search space rich in useful patches. PCR works
with a set of positive test cases, for which the program al-
ready produces correct outputs, and a set of negative test
cases, for which the program produces incorrect outputs.
The goal is to obtain a patch that preserves the correct be-
havior for the positive test cases and changes the behavior
for negative test cases so that the patched program produces
correct outputs for all test cases.

PCR first uses standard defect localization techniques to
identify candidate statements to modify. PCR then uses the
following modification operators to obtain candidate patches.
It applies each candidate patch in turn as it is generated to
determine if it produces correct outputs on all test cases.

• Condition Tightening: For each identified branch
statement, PCR generates patches that conjoin the
branch condition with an additional (synthesized by
PCR) clause to tighten the condition.

• Condition Loosening: For each identified branch
statement, PCR generates patches that disjoin the
branch condition with an additional (synthesized by
PCR) clause to loosen the condition.

• Conditional Guard: For each identified statement,
PCR generates patches that insert an if statement that
guards the statement, so that the statement executes
only when a (synthesized by PCR) condition is true.

• Conditional Control-Flow Insertion: At the pro-
gram point before each identified statement, PCR gen-
erates patches that insert a control-flow statement (re-
turn, break, or goto an existing label) guarded by an if
statement, so that the control-flow statement executes
only when a (synthesized by PCR) condition is true.

• Insert Initialization: For each identified statement,
PCR generates patches that insert a memory initial-
ization statement before the identified statement.



• Value Replacement: For each identified statement,
PCR generates patches that either 1) replace one vari-
able with another, 2) replace an invoked function with
another function, or 3) replace a constant with another
constant.

• Copy and Replace: For each identified statement,
PCR generates patches that copy an existing state-
ment to the program point before the identified state-
ment and then replace a value in the copied statement
with another valid value.

The rationale for the Copy and Replace modification is
to exploit redundancy in the program — many successful
program modifications can be constructed from code that
already exists in the program [7]. The goal of the Replace
part of Copy and Replace is to obtain a rich patch search
space that includes variable replacement to enable copied
code to operate successfully in a new naming context. The
success of these modifications is consistent with previous
work that shows that, without replacement, only approxi-
mately 10% of developer changes can be fully derived from
existing statements without modification [23, 7, 16]. This
fact may also provide insight into the poor performance of
previous patch generation systems [21, 33, 28] (which only
copy statements without expression-level modifications).

Many of PCR’s modifications introduce new if statements
with new conditions. These modifications help PCR create
a rich space of potentially correct patches. But this search
space is effective in large part because it contains such a
large and flexible set of potential conditions. PCR there-
fore deploys a condition synthesis algorithm that enables it
to quickly find productive conditions within this very large
search space. The goal of the condition synthesis algorithm
is to derive a condition that:

• Preserves Positive Test Case Behavior: For each
positive test case, the new condition should preserve
the branch direction for all executions of the condi-
tion so that the execution remains unchanged and the
patched program produces the correct output for the
positive test case.

• Changes Negative Test Case Behavior: For each
negative test case, the new condition should change at
least one branch direction so that the program pro-
duces a different (ideally the correct) output for the
negative test case.

Instead of naively enumerating and testing all possible
possible conditions, PCR’s condition synthesis algorithm per-
forms the following steps:

• Negative Test Case Executions: PCR runs an in-
strumented version of the program on each negative
test case to determine 1) the number of times the tar-
get condition executes and 2) the direction the target
branch takes on each execution.

• Flip Negative Test Case Directions: PCR reexe-
cutes an instrumented version of the program on each
negative test case. On each execution, it selects one
or more branch directions to flip. It then observes the
resulting output to see if it is correct.

• Instrumented Executions: If PCR finds a sequence
of branch directions that produce correct outputs for

the negative test cases, it performs instrumented exe-
cutions of the program on both negative and positive
test cases. For each negative test case, is uses the
discovered branch directions that produce the correct
output.

For each instrumented execution, PCR records a map-
ping from the values of the variables in the context
surrounding the condition to the resulting branch di-
rections for each execution of the condition.

• Condition Synthesis: The goal is to synthesize a
symbolic condition, over the variables in the surround-
ing context, that produces the same branch directions
as those recorded in the successful instrumented exe-
cutions. PCR synthesizes a sequence of symbolic con-
ditions that maximize the number of branch directions
that match the branch directions in the instrumented
executions.

• Condition Synthesis Test: PCR applies the syn-
thesized condition and runs the patched program to
determine if the synthesized condition enables the pro-
gram to produce correct outputs for all test cases. If
so, PCR has found a patch. If not, PCR proceeds on
to test the next condition in the generated sequence of
conditions.

1.2 Experimental Results
We evaluate PCR on 105 real world defects from seven

large real world applications, libtiff, lighttpd, the PHP in-
terpreter, fbc, gzip, wireshark, and python. This is the same
benchmark set used to evaluate several previous generate-
and-validate systems [21, 33]. We say that a patch is plau-
sible if it generates correct results for all of the inputs in the
test suite used to validate the patch. PCR generates plau-
sible patches for 40 of the 105 defects in the benchmark set.
For 12 of these detects, PCR generates correct patches which
are functionally equivalent to the developer patch in the sub-
sequent fixed version. For comparison, GenProg [21] gener-
ates plausible patches for only 18 defects and correct patches
for only 2 defects. AE [33] generates plausible patches for
only 27 defects and correct patches for only 3 defects [29].
Kali, an automatic patch generation system that only deletes
functionality [29], generates plausible patches for 27 defects
and correct patches for 3 defects on this benchmark set.

1.3 Reasons for Success
We manually analyzed the correct patches that PCR gen-

erates for the 12 defects in our experiments. We attribute
much of the PCR success to the following reasons:

• Modification Operators: PCR’s modification op-
erators generate a rich patch search space with many
useful patches. The richness of the search space can be
seen in comparison with the previous GenProg and AE
search space — for 10 out of the 12 defects, the gener-
ated PCR correct patches lie outside the GenProg and
AE patch search spaces. See Section 4.4.

• Condition Synthesis: The condition synthesis tech-
nique enables PCR to efficiently explore its rich patch
search space. For the 12 defects, the condition syn-
thesis reduces the number of candidate patches that
PCR needs to validate by an order of magnitude on



average. In fact, without the condition synthesis PCR
would be unable to find correct patches for 4 out of
the 12 defects within the 12 hour PCR timeout. See
Section 4.4.

1.4 Comparison with PAR
PAR [19] is another prominent automatic patch genera-

tion system. PAR is based on a set of predefined human-
provided patch templates. We are unable to directly com-
pare PAR with PCR because, despite repeated requests to
the authors of the PAR paper over the course of 11 months,
the authors never provided us with the patches that PAR
was reported to have generated [19]. Monperrus [24] found
that PAR fixes the majority of its benchmark defects with
only two templates (“Null Pointer Checker” and “Condition
Expression Adder/Remover/Replacer”).

In general, PAR avoids the search space explosion prob-
lem because its human supplied templates restrict its search
space. However, the PAR search space (with the eight tem-
plates in the PAR paper [19]) is in fact a subset of the PCR
search space. Moreover, the difference is meaningful — the
PCR correct patches for at least 5 defects in our experi-
ments are outside the PAR search space (see Section 4.4).
This result illustrates the fragility and unpredictability of
using fixed patch templates.

1.5 Contributions
This paper makes the following contributions:

• Modification Operators: It presents a set of novel
modification operators that generate a productive search
space rich in useful patches.

• Condition Synthesis: It presents a novel condition
synthesis algorithm which enables PCR to efficiently
search the rich PCR space of conditions for candidate
patches.

• Experimental Results: It presents experimental re-
sults that characterize the effectiveness of PCR in au-
tomatically generating patches for 105 defects from the
GenProg benchmark set [21]. PCR generates plausi-
ble patches for 40 of these defects and correct patches
for 12 of these defects. These results show that PCR
substantially outperforms previous patch generation
systems that have been evaluated on this benchmark
set [21, 33, 28].

• Rationale and Insight: It discusses the reasons why
PCR is able to generate so many successful patches
in comparison with previous systems. This discus-
sion provides insight into important issues in auto-
matic patch generation, specifically the inadequacy of
general ideas such as copying code or targeting con-
ditionals and how the it is the specific design of the
modification operations and search algorithm that de-
termines success or failure.

PCR is dramatically more successful in repairing defects
than previous systems [28, 21, 33]. This success highlights
the importance of the specific modification operations and
the interactions between the resulting generated patch search
space and the algorithm used to search that space. General
ideas such as copying statements and manipulating condi-
tionals may be easy to come by but, in the absence of more

1 // Creates new DatePeriod object.
2 PHP_METHOD(DatePeriod, __construct) {
3 php_period_obj *dpobj;
4 char *isostr = NULL;
5 int isostr_len = 0;
6 zval *interval;
7 ...
8 // Parse (DateTime,DateInterval,int)
9 if (zend_parse_parameters_ex(...)==FAILURE) {

10 // Parse (DateTime, DateInterval, DateTime)
11 if (zend_parse...(...)==FAILURE) {
12 // Parse (stirng)
13 if (zend_parse_parameters_ex(...,&isostr,
14 &isostr_len, &options)==FAILURE) {
15 php_error_docref(...,"This constructor\
16 accepts either\
17 (DateTime, DateInterval, int) OR\
18 (DateTime, DateInterval, DateTime)\
19 OR (string) as arguments.");
20 ...
21 return;
22 } } }
23 dpobj = ...;
24 dpobj->current = NULL;
25 // candidate fix template
26 /* if (isostr_len || abstract_cond() ) */
27 // final generated fix
28 /* if (isostr_len || isostr) */
29 /* if (isostr)*/ // official fix
30 if (isostr_len) {
31 // Handle (string) case
32 date_period_initialize(&(dpobj->start),
33 &(dpobj->end), &(dpobj->interval),
34 &recurrences, isostr, isostr_len);
35 ...
36 } else {
37 // Handle (DateTime,...) cases
38 /* pass uninitialized ‘interval’ */
39 intobj = (php_interval_obj *)
40 zend_object_store_get_object(interval);
41 ...
42 }
43 ...
44 }

Figure 1: Simplified Code for PHP bug #54283

insightful concepts such as condition synthesis and replace-
ment, fail to deliver anything close to a successful patch
generation system [21, 28, 33, 9]. A more targeted approach
may produce successful patches [19, 22, 27], but only within
a limited and potentially very fragile scope. PCR, with its
unique combination of powerful modification operations and
an efficient search algorithm driven by condition synthesis,
overcomes many of the disappointing limitations of previous
systems [21, 28, 33, 9].

The rest of this paper is organized as follows. Section 2
presents a motivating example of PCR. Section 3 presents
the technical detail of PCR. Section 4 evaluates PCR. We
discuss related work in Section 5 and then conclude in Sec-
tion 6.

2. EXAMPLE
We next present a motivating example of using PCR to

generate a patch for the PHP interpreter. The PHP inter-
preter before 5.3.7 (or svn version before 309580) contains
an error (PHP bug #54283) in its implementation of the
DatePeriod object constructor [5]. A PHP program that
calls the DatePeriod constructor with a single NULL value as
the parameter (e.g., DatePeriod(NULL)) can cause the PHP
interpreter to access invalid memory address and crash.



Figure 1 presents the simplified source code from the source
file ext/date/php_date.c that is responsible for this error.
The code in Figure 1 is from the corresponding C function
inside the PHP interpreter that implements the DatePeriod
constructor. The PHP interpreter calls this function to han-
dle DatePeriod constructor calls in PHP programs.

A PHP program can invoke the DatePeriod constructor
with either three parameters or a single string parameter.
Lines 9-22 in Figure 1 parse the parameters. Note that if
the PHP program invokes the constructor with a single NULL

value, the zend_parse_parameter_ex() function will not re-
turn FAILURE. Instead, it will set the variable isostr to
NULL and the variable isostr_len to zero.

The if statement at line 30 in Figure 1 checks the value of
isostr_len to determine whether the current invocation has
three parameters or only one parameter. However, if the in-
vocation contains a single NULL value as the parameter, the
variable isostr_len will be zero and the invocation will be
misclassified as having three parameters and take an incor-
rect branch (lines 37-41). This causes the program to pass
a potentially uninitialized pointer interval to the function
zend_object_store_get_object() at line 40, which even-
tually causes the function to access invalid memory address.

We apply PCR to automatically generate a patch for this
error. Specifically, we provide PCR:

1. Program to Patch: The PHP interpreter source
code repository at version 309579 which contains this
error;

2. Negative Test Scripts: A set of negative test scripts
that expose the error (i.e., test scripts that the PHP
version 30979 cannot pass but the code after applying
the generated patch should pass);

3. Positive Test Scripts: A set of positive test scripts
that prevent regression (i.e, test scripts that the ver-
sion 30979 already passes and that the patched code
should still pass).

PCR then performs following steps:

• Error Localization: PCR compiles the given PHP
interpreter version with additional profiling instrumen-
tations which produces the execution traces. It then
executes this profiling version of PHP with all test
scripts in both the negative test script set and the pos-
itive test script set. PCR observes that lines 39-40 in
Figure 1 are always executed with negative test scripts
but are rarely executed with positive test scripts. PCR
therefore recognizes this statement and its enclosing if
statement condition (line 30) are potential modifica-
tion targets.

• Generate Candidate Patch: PCR searches patches
that modify the source code around the location of
the previously identified potential target statements.
At the 11th attempt for this error, PCR loosen the
branch condition of the if statement at line 30 with
an undetermined abstract condition abstract_cond()

(see lines 25-26).

• Candidate Fix Testing: PCR then compiles the
patched source code together with a PCR runtime li-
brary that implements an algorithm that searches over

possible combinations of the inserted abstract condi-
tion. PCR tests the patched source code with test
scripts in both the negative and positive test script
sets. The PCR runtime library determines that the
candidate patch may pass all test scripts, given that
an appropriate abstract condition could be properly
synthesized.

• Branch Condition Synthesize: The PCR branch
condition synthesis algorithm observes that for all exe-
cutions with negative test scripts, the variable isostr

is not zero at the program point of the abstract con-
dition and for all executions with positive test scripts,
the variable isostr is zero (note that || is a short cir-
cuit operator). PCR therefore determines that (isostr
!= 0) is a potential concrete condition that can replace
the abstract condition.

PCR compiles and tests the PHP interpreter again
with the abstract condition being replaced with (isostr

!= 0). The PHP interpreter passes all test scripts and
therefore PCR outputs the result patch (lines 27-28 in
Figure 1) to the user.

Note that the official patch from the PHP developer in
the version 309580 replaces isostr_len with isostr (line
29 in Figure 1), but isostr_len is always zero when isostr

is zero at the branch condition. The PCR generated patch
is therefore functionally equivalent to the official patch from
the PHP developer.

3. DESIGN
The current implementation of PCR works with applica-

tions written in the C programming language. PCR consists
of three parts, the error localizer, the main search algorithm,
and the condition synthesizer. Given the application source
code, a set of negative test cases that can expose the error
the user wants to fix, and a set of positive test cases that
the original application source code already passes, the er-
ror localizer produces a ranked list of statements that are
potentially responsible for the error.

The main search algorithm generates a set of candidate
patches that modify the original program around the state-
ments identified by the error localizer. It then tests each of
the generated candidate fixes until it finds a candidate patch
that can pass all given test cases.

For a candidate patch that modifies a branch condition,
the PCR main search algorithm inserts an abstract condition
as the placeholder instead of enumerating all possible con-
crete conditions. For such a candidate patch, the condition
synthesizer will synthesize the concrete condition to replace
the abstract condition to generate the final patch.

3.1 Error Localizer
The PCR error localizer first recompiles the given applica-

tion with additional instrumentation. It inserts a call back
before each statement in the source code to record a positive
counter value as the timestamp of the statement execution.
PCR then invokes the recompiled application on all the pos-
itive and negative test cases.

For a statement s and a test case i, r(s, i) is the recorded
execution timestamp that corresponds to the last timestamp
from an execution of the statement s when the application
runs with the test case i. If the statement s is not executed



Input : original program prog
Input : potential target statement set S
Output: a set of candidate programs P

1 P ←− ∅
2 for s in stmts(prog) do
3 if s is IF-STATEMENT then
4 if s ∈ S or thenstmts(s) ∩ S 6= ∅ then
5 Snew ←− genLooseIfCond(s)
6 P ←− P ∪ replaceStmt(prog, s, Snew)

7 if s ∈ S or elsestmts(s) ∩ S 6= ∅ then
8 Snew ←− genTightIfCond(s)
9 P ←− P ∪ replaceStmt(prog, s, Snew)

10 if s ∈ S then
11 Srepl ←− genGuardedStmt(s)
12 Srepl ←− Srepl ∪ genReplace1Atom(s)
13 P ←− P ∪ replaceStmt(prog, s, Srepl)
14 Sins ←− genInitStmt(s)
15 Sins ←− Sins ∪ genGuardedControl(s)
16 Sins ←− Sins ∪ genStmtToAdd(s)
17 P ←− P ∪ insertStmt(prog, s, Sins)

Figure 2: The main search algorithm of PCR

at all when the application runs with the test case i, then
r(s, i) = 0.

We use the notation Neg for the set of negative test cases
and Pos for the set of positive test cases. PCR computes
three scores a(s), b(s), c(s) for each statement s:

a(s) = | {i | r(s, i) 6= 0, i ∈ Neg} |
b(s) = | {i | r(s, i) = 0, i ∈ Pos} |
c(s) = Σi∈Negr(s, i)

A statement s1 has higher priority than a statement s2 if
prior(s1, s2) = 1, where prior is defined as:

prior(s1, s2) =


1 a(s1) > a(s2)
1 a(s1) = a(s2), b(s1) > b(s2)

1
a(s1) = a(s2), b(s1) = b(s2),
c(s1) > c(s2)

0 otherwise

Intuitively, PCR prioritizes statements that 1) are exe-
cuted with more negative test cases, 2) are executed with
less positive test cases, and 3) are executed later during ex-
ecutions with negative test cases.

PCR runs the above error localization algorithm over the
whole application including all of its C source files. If the
user specifies a source file to patch, PCR computes the in-
tersection of the top 5000 statements in the whole applica-
tion with the statements in the specified source code file.
PCR uses the statements in this intersection as the identi-
fied statements to patch. Unlike GenProg [21] and AE [33],
PCR can also operate completely automatically. If the user
does not specify any such source file, PCR returns the top
200 statements in the whole application (potentially from
different source files) as the potential modification targets.

3.2 Search Algorithm
PCR uses the clang front-end [1] to transform the program

source code into a clang AST tree in which each node may
represent a declaration, a definition, or a statement. Each

node may have multiple sub-nodes to represent hierarchical
relationships within the code (e.g., a compound statement
contains multiple sub-statements). PCR generates patches
that modify only one AST statement node in the clang AST
tree of the program (including patches that modify com-
pound statement nodes, which represent code blocks).
Generate Candidate Patches: Figure 2 presents the
PCR candidate patch generation algorithm. Given the orig-
inal program prog and a set of potential target statements
S identified by the error localizer, the algorithm produces a
set of candidate patched programs P .

Note that stmts(prog) in line 2 denotes the set of state-
ments in prog. thenstmts(s) in line 4 denotes the set of state-
ments in the“then”branch of the if-statement s. elsestmts(s)
in line 7 denotes the set of statements in the “else” branch
of the if-statement s. replaceStmt(prog, s, S) (at lines 6,
9, 13) is an utility routine, which takes a program prog, a
statement s, and a set of new statements S and returns a
set of programs, in which each program is a duplicate of
prog with the statement s being replaced by a correspond-
ing new statement in S. insertStmt(prog, s, S) (at line 17)
is an utility routine similar to replaceStmt except that the
corresponding new statement is inserted before s in each
duplicate program in the returned set instead of replacing s.

There are seven boldfaced subroutines in the algorithm
(see lines 5, 8, 11, 12, 14, 15, and 16 in the Figure 2) whose
names start with gen. These subroutines implement com-
pound modifications that PCR supports. Each of these sub-
routines takes a statement s and returns a set of statements
that PCR will use to replace or insert before the statement
s. These subroutines work as follows:

• Tighten or Loosen an If Condition: For an if-
statement s, if s or any statement in the then branch
of s is in the potential target statement set identified
by the error localizer, PCR will generate a patched
program with the branch condition in the if-statement
s being tightened (see lines 4-6 in Figure 2). The
genTightIfCond(s) routine produces a set that con-
tains a single duplicate statement of the if statement
s. The routine appends to the duplicate statement
an additional “and” clause with an undetermined ab-
stract condition to the branch condition (i.e., ap-
pending && abstract_cond()). PCR similarly calls
genLooseIfCond(s) to generate a patch with loosen
branch condition (see lines 7-9).

• Add If Guard for a Statement: For each state-
ment s that the error localizer identifies as poten-
tial modification target. PCR generates a patch in
which the statement s is executed only if the pro-
gram state satisfies an undetermined abstract condi-
tion (see line 11). The routine genGuardedStmt(s)
returns a set that contains only the statement if (ab-

stract_cond()) { s; }.

• Add Memory Initialization: For each identified
statement s and each pointer p that s dereferences,
PCR generates a patch in which the entire memory
region that p points to is set to zero before executing
s (see line 16). The size of the memory region is de-
termined by the type signature of the pointer p. The
routine genInitStmt(s) returns a set of statements
that contains a corresponding memset() call initializa-
tion statement for each pointer p used in s.



• Add a Guarded Control Statement: For each
identified statement s, PCR generates patches that in-
sert guarded control flow statements before s (line 15).
The routine genGuardedControl(s) returns a set of
if-guarded control flow statements that PCR can in-
sert before s for this kind of patches. Again, the con-
ditions of the inserted if-statements are undetermined
abstract conditions. The current implementation of
PCR considers the following control statements: 1) re-
turn statements that return void or constant integers
that appear in the same function, 2) break statements
inside a loop, 3) and goto statements that jump to an
existing label in the same function.

• Replace a Statement: For each identified state-
ment s, PCR generates patches in which one of the
program values in s is replaced by another value of
the same type (line 12). In the current implementa-
tion, PCR considers 1) replacing a variable with an-
other local variable, 2) replacing a constant enumer-
ated value with another constant value in the same
enumeration, 3) and replacing a function in a call ex-
pression with another function that has the same type
signature. genReplace1Atom(s) returns the set of
statements formed by replacing exactly one program
value in s. PCR then generates a candidate patch by
replacing s with each statement in the returned set of
genReplace1Atom(s) (see lines 12 and 13).

• Add a Statement: For each identified statement s,
PCR generates patches in which a new statement snew

is inserted before s. The routine genStmtsToAdd(s)
computes the set of statements that PCR will add
before s. It first collects all simple statements (ex-
cluding complicated statements that may contain sub-
statements) that appear elsewhere in the same source
file. For each collected simple statement, it performs
the replacement modifications similar to the routine
genReplace1Atom that we discussed previously. For
each collected simple statement and each modified
statement we obtained, if the statement is semantically
valid to insert before s, the routine will add it to the re-
sult set. PCR then generates a patch by inserting each
statement in the returned set of genStmtsToAdd(s)
before s (lines 16 and 17).

Note that PCR does not include any modifications that
delete a statement. Statement deletion is simply a special
case of the compound modification that adds an if-guard
for the statement. If the branch condition of the if-guard is
false, this modification effectively removes the statement.
Patch Test Order: PCR tests each of the generated
candidate patches one by one. PCR empirically sets the
patch test order as follows:

1. PCR first tests patches that changes only a branch
condition (e.g., tighten and loosen a condition).

2. PCR tests patches that insert an if-statement before a
statement s, where s is the first statement of a com-
pound statement (i.e., C code block).

3. PCR tests patches that insert an if-guard around a
statement s.

4. PCR tests patches that insert a memory initialization.

5. PCR tests patches that insert an if-statement before
a statement s, where s is not the first statement of a
compound statement.

6. PCR tests patches a) that replace a statement or
b) that insert a non-if statements (i.e., generated by
genStmtsToAdd()) before a statement s and s is the
first statement of a compound statement.

7. PCR finally tests the remaining patches.

Intuitively, PCR prioritizes patches that contain condi-
tionals. With abstract conditions that PCR later synthe-
sizes, each such patch stands in for multiple potential con-
crete patches. PCR also prioritizes patches that insert a
statement before the first statement of a compound state-
ment (i.e., a code block), because inserting statements at
other locations is often semantically equivalent to such patches.

If two patches have the same tier in the previous list, their
test orders are determined by the rank of the two corre-
sponding original statements (which two patches are based
on) in the list returned by the error localizer.

3.3 Test and Condition Synthesizer
Test Runtime: PCR patches the application with each
candidate patch and runs the patched application with all
considered test scripts to determine whether the candidate
patch is potentially valid or not. For patches that do not
contain abstract conditions, this testing process is straight-
forward. If the compiled patched application passes all con-
sidered test scripts, PCR has found a plausible patch that
it accepts.

Note that as an optimization, PCR tests the application
with negative test scripts first. We observed that most in-
valid patches fail on at least one of the negative test scripts.
PCR can skip the rest of testing process as soon as the
patched program fails on any of the test scripts.

For candidate patches that contain abstract conditions,
PCR applies the patch to the application and compiles the
patched application with the PCR runtime library, which
implements the function stub abstract_cond() for the ab-
stract condition. The implementation of the abstract_cond()
in the library is actually an algorithm that searches possible
output combinations of the abstract condition that can pass
test scripts.

Note that for each positive test script, always returning
the same zero/one sequence as the execution of the origi-
nal unpatched application will cause the application to pro-
duces the same correct results (if the application executes
deterministically). For each negative test script, PCR runs
the patched application multiple times. In the first run,
the function abstract_cond() returns the same zero/one
sequence as in the original unpatched execution. In each suc-
cessive run, the PCR runtime library flips the return value of
the last unflipped invocation of abstract_code() to search
for a sequence of values that enable the application to pro-
duce the correct result. In the last run, the runtime library
simply flips all return values.

In the current implementation, the PCR runtime tries 10
runs for each negative test script. If PCR is able to find a
combination that passes each negative test script, the PCR
test runtime will determine that this is a potentially valid
patch.

If the test process succeeds, the PCR test runtime records
the list of output value combinations of the abstract condi-



tion that make the application to pass each test script. PCR
also records the value of all active local variables, global vari-
ables, and heap variables each time the function stub of the
abstract condition in the test runtime is invoked. The test
runtime passes this information to the condition synthesizer.
Condition Synthesizer: The PCR condition synthesizer
operates similar to a program invariant detector [15]. Unlike
an invariant detector, which aims to find invariants that are
true at the specific program point in every execution, the
PCR condition synthesizer aims to find condition expres-
sions that match the return values from the test runtime.
PCR considers the following integer or pointer type program
values:

1. local variables,

2. global variables or heap variables that are used in the
same code block of the abstract condition,

3. and subexpressions in the same statement of the ab-
stract condition.

The condition synthesizer currently considers condition ex-
pressions that combine these values with equal signs, un-
equal signs, and constant values.

The condition synthesizer produces a sequence of concrete
condition expressions. Each expression maximizes the num-
ber of matched return values from the test runtime. If there
is a tie between two expressions, the synthesizer considers
the expression with a simpler form first (e.g., PCR considers
that (!a) simpler than a != 3 or a != b).

PCR replaces the abstract condition in the patch with the
produced concrete condition and runs all considered test
scripts again with the new fix. If the patched application
passes all of the test scripts, PCR outputs the patch to the
user. Otherwise, the condition synthesizer will try again
with another condition expression. In our current implemen-
tation, the synthesizer tries 20 condition expressions before
it moves on to the next candidate patch.

3.4 Optimizations
Batched Compilation: When PCR tests candidate patches,
compilations of the patched application may become the per-
formance bottle neck for PCR. To reduce the time cost of
compilations, PCR merges similar candidate patches into a
single combined patch with a branch statement. A global
integer environment variable controls the branch statement,
so that the batched patch will be equivalent to each individ-
ual candidate patch, when the environment variable takes a
corresponding constant value. PCR therefore only needs to
recompile the merged patch once to test each of the individ-
ual candidate patches.
Test Case Evaluation Order: PCR always first tests
each candidate patch with the negative test cases. Empir-
ically, negative test cases tend to eliminate invalid patches
more effectively than positive test cases. Furthermore, when-
ever a positive test case eliminates a candidate patch, PCR
will record this positive test case and prioritize this test case
for the future candidate patch evaluation.
Patches for Code Duplicates: Programs often contain
duplicate or similar source code. This is often caused by
the usage of macros or code copy-paste during application
development. PCR detects such code clones in the source
code. When PCR generates patches that modify one of the
cloned code snippets, PCR also generate additional patches

that propagate the modification to the other duplicates of
the modified snippet.

3.5 Implementation
We have implemented PCR in C++ using the clang com-

piler front-end [1]. We choose clang because it has a AST
tree interface that contains APIs that support source code
rewrites. This enables PCR to generate a patched source
code file without dramatically changing the overall struc-
ture of the source code. Existing program repair tools [21,
28, 33] often destroy the structure of the original source by
inlining all header files and renamining all local variables in
their generated patched source code. Preserving the exist-
ing source code structure helps developers understand and
evaluate the patch and promotes the future maintainability
of the application.

4. EXPERIMENTAL RESULTS
We evaluate PCR on the defects in the GenProg bench-

mark set, which contains 105 real world defects [21]. These
defects are drawn from seven large open source applications,
libtiff [4] (a TIFF image processing library and toolkit),
lighttpd [3] (a popular open source HTTP server), the PHP
interpreter [6] (an open source interpreter for PHP scripts),
gmp (a multiple percision arithmetic library), gzip (a pop-
ular compression toolkit), python (the standard Python lan-
guague implementation), wireshark (a popular network pack-
age analyzer), and fbc (an open source Basic compiler).

We address the following questions:

1. Plausible Patches: How many plausible patches can
PCR generate for this benchmark set?

2. Correct Patches: How many correct patches can
PCR generate for this benchmark set?

3. Design Decisions: How do the various PCR design
decisions (condition synthesis, value replacement) af-
fect the ability of PCR to generate plausible and cor-
rect patches?

4. Previous Systems: How does PCR compare with
previous patch generation systems on this benchmark
suite?

4.1 Methodology
Collect and Reproduce the Defects: For each of
the seven benchmark applications, we collected (from the
GenProg website [2]) the set of defects, test harnesses, test
scripts, and test cases that the GenProg authors used in
their experiments. We modified the test scripts and test har-
nesses to eliminate various errors [29]. For libtiff we imple-
mented only partially automated patch validation, manually
filtering the final generated patches to report only plausible
patches [29].

For each defect, we collected the specific version of the
application that corresponds to the defect and the corre-
sponding reference patched version where this defect has
been patched by the developer in the repository. We then
reproduced each defect (except the fbc defects) in our ex-
perimental environment, Amazon EC2 Intel Xeon 2.6GHz
Machines running Ubuntu-64bit server 14.04. The fbc ap-
plication only runs in 32-bit environments, so we use a vir-
tual machine with Intel Core 2.7Ghz running Ubuntu-32bit
14.04 for the fbc experiments.
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libtiff 77k 78 24 3 5 5 5 0 0 1 1 2.4m 54.0m 71.4m
lighttpd 62k 295 9 5 4 5 3 0 0 0 0 7.2m 144.1m 182.3m
php 1046k 8471 44 5 7 18 14 1 2 8 7 13.7m 156.2m 186.2m
gmp 145k 146 2 1 1 2 2 0 0 1 1 7.5m 128m 374.5m
gzip 491k 12 5 1 2 2 2 0 0 1 1 4.2m 33.5m 29.5m
python 407k 35 11 1 3 3 3 1 1 1 1 31.1m 237.7m 163.0m
wireshark 2814k 63 7 1 4 4 4 0 0 0 0 58.8m 32.2m 40.3m
fbc 97k 773 3 1 1 1 1 0 0 0 0 8m 15m 53m
Total 105 18 27 40 34 2 3 12 11

Table 1: Overview of PCR Patch Generation Results

Each defect has a positive test case set on which both the
version with the defect and the reference patched version
of the application produce correct outputs and a negative
test case set on which the version with the defect does not
produce correct output. The goal is to generate a plausi-
ble patch so that the patched application produces correct
outputs on all test cases in both of the two test case sets.
Apply PCR: For each defect, we ran PCR with a time
limit of 12 hours. We terminate PCR when either 1) PCR
successfully finds a patch that passes all of the test cases or
2) the time limit of 12 hours expires with no generated PCR
patch.

GenProg and AE require the user of the system to identify
a source code file to patch. This requirement reduces the size
of the search space but eliminates the ability of these three
systems to operate automatically without user input. PCR
does not impose this limitation — it is capable of operating
fully automatically across the entire source code base. To
compare PCR with previous systems, we run PCR twice for
each defect: once without specifying a source code file to
patch, then again specifying the same source code file to
patch as specified in the GenProg experiments.
Inspect Patch Correctness: For each defect, we man-
ually inspected all of the patches that PCR generates. We
consider a generated patch correct if 1) the patch completely
eliminates the defect exposed by the negative test cases so
that no input will be able to trigger the defect, and 2) the
patch does not introduce any new defects.

We also analyze the developer patch (when available) for
each of the 40 defects for which PCR generated plausible
patches. Our analysis indicates that the developer patches
are, in general, consistent with our correctness analysis: 1)
if our analysis indicates that the PCR patch is correct, then
the patch has the same semantics as the developer patch and
2) if our analysis indicates that the PCR patch is not correct,
then the patch has different semantics from the developer
patch.

We acknowledge that, in general, determining whether a
specific patch corrects a specific defect can be difficult (or in
some cases not even well defined). We emphasize that this
is not the case for the patches and defects that we consider
in this paper. The correct behavior for all of the defects is
clear, as is patch correctness and incorrectness.
Compare with GenProg and AE Systems: We com-
pared the PCR patches with the patches that GenProg and
AE generate. In this patch comparison, we leverage our pre-
vious plausibility and correctness analysis for the GenProg
and AE patches [29]. The comparison is straightforward:
PCR generates plausible patches for at least 13 more de-
fects (40 for PCR vs. 18 for GenProg and 27 for AE) and

correct patches for at least 9 more defects (12 for PCR vs.
2 for GenProg and 3 for AE).

We next inspected each correct patch that PCR generated
and identified the corresponding PCR modification operator
that PCR used to generate each patch. Our analysis of the
patches indicates that the correct PCR patches for 10 out
of the 12 defects are outside the GenProg and AE search
spaces. PCR’s novel modification operators enable the gen-
eration of these patches. See Section 4.4 for more details.

We next evaluated the condition synthesis technique by
turning off the condition synthesis and rerunning PCR on
these 12 defects. The resulting executions search the same
space, but simply enumerate all conditions in the space (in-
stead of using condition synthesis to accelerate the search).
Our results show that turning off condition synthesis causes
PCR to explore substantially more patches, in some cases
over two orders of magnitude more patches. See Section 4.4
for more details.

4.2 Summary of Experimental Results
Table 1 summarizes our benchmark set and our experi-

mental results. The first column “App” presents the name
of the benchmark application. The second column “LoC”
presents the size of the benchmark application measured in
the number of source code lines. The third column “Tests”
presents the number of developer supplied test cases that are
used in the GenProg benchmark set and in our experiments.
The fourth column “Defects” presents the number of defects
we considered in our experiments.

The fifth column “Plausible GenProg” in Table 1 presents
the number of defects for which GenProg successfully gener-
ated at least one plausible patch. The sixth column “Plau-
sible AE” presents the number of defects for which AE suc-
cessfully generated at least one plausible patch. Note that
due to experimental error in the patch evaluation scripts, at
least half of the originally reported patches from the Gen-
Prog and AE papers are implausible [29]. See our previous
work on the analysis of GenProg and AE patches for de-
tails [29].

The seventh and eighth columns present the number of de-
fects for which PCR generates a plausible patch. “PCR”cor-
responds to the runs where we specified the target source file
to patch (as in the GenProg and AE runs), while“PCR(NoF)”
corresponds to the runs where we do not provide PCR with
a target source file to patch so that PCR executes fully auto-
matically over the entire source code base of the application.
PCR generates plausible patches for at least 13 more defects
than GenProg and AE (40 for PCR v.s. 18 for GenProg and
27 for AE). Even with no specified source code file to patch
(note that GenProg and AE require the user to provide this
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libtiff-ee2ce-b5691 139321 5630 5630 Correct 49423 2167 2167 Correct No Gen 162m 134m
libtiff-d13be-ccadf 39207 94 94 Gen 14717 68 68 Gen Gen Gen 46m 52m
libtiff-90d13-4c666 142938 5764 - Gen 50379 2070 - Gen No Gen 273m 133m
libtiff-5b021-3dfb3 85812 21 7526 Gen 62981 35 6894 Gen Gen Gen 6m 8m
libtiff-08603-1ba75 38812 46 - Gen 16415 80 - Gen Gen Gen 30m 30m
lighttpd-1794-1795 62517 37 - Gen No Gen Gen 84m >12h
lighttpd-1806-1807 5902 5 - Gen No Gen Gen 281m >12h
lighttpd-1913-1914 37783 69 - Gen 20363 5 - Gen Gen No 248m 298m
lighttpd-2330-2331 24919 6 - Gen 21910 106 - Gen Gen Gen 51m 59m
lighttpd-2661-2662 21539 47 81 Gen 14218 545 - Gen Gen Gen 55m 190m
php-307562-307561 10927 968 968 Correct 40419 1614 1614 Correct No No 32m 412m
php-307846-307853 51579 4842 4842 Correct 261609 1786 1786 Correct No No 132m 429m
php-307931-307934 25045 3 - Gen No Gen Gen 164m >12h
php-308262-308315 94127 36 12854 Gen No No No 152m >12h
php-308525-308529 7067 160 - Gen No No Gen 294m >12h
php-308734-308761 2886 252 252 Correct 8137 1920 1920 Correct No No 180m 385m
php-309111-309159 15867 66 5747 Gen 27262 101 8638 Gen No Correct 50m 83m
php-309516-309535 50522 3975 3975 Correct No No No 113m >12h
php-309579-309580 8451 11 11 Correct 218782 45 45 Correct No No 20m 81m
php-309688-309716 6962 462 534 Gen 40750 563 4383 Gen No No 18m 113m
php-309892-309910 12662 4 4 Correct 166491 56 56 Correct Correct Correct 37m 77m
php-309986-310009 10977 30 - Gen 54392 37 - Gen Gen Gen 85m 369m
php-310011-310050 2140 153 1252 Gen 39634 20 10773 Gen Gen Gen 429m 267m
php-310370-310389 3865 33 - Gen 45305 29 - Gen No No 91m 100m
php-310673-310681 16079 1215 - Gen 13859 312 - Gen Gen Gen 132m 56m
php-310991-310999 294623 127 127 Correct 133670 50 50 Correct No No 149m 107m
php-311323-311300 32009 122 - Gen 211717 93 - Gen No No 666m 83m
php-311346-311348 33620 22 22 Correct 18121 3 3 Correct No No 68m 45m
gmp-13420-13421 14744 2242 2242 Correct 19652 3088 3088 Correct No No 236m 363m
gmp-14166-14167 4581 9 - Gen 10217 13 - Gen Gen Gen 20m 23m
gzip-a1d3d4-f17cbd 46113 942 942 Correct 18106 260 260 Correct No Gen 38m 31m
gzip-3fe0ca-39a362 20522 60 - Gen 21353 3 - Gen Gen Gen 29m 28m
python-69223-69224 11955 794 - Gen 24113 77 - Gen No Gen 564m 238m
python-69783-69784 12691 67 67 Correct 24331 58 58 Correct Correct Correct 59m 79m
python-70098-70101 27674 46 - Gen 13238 899 - Gen No Gen 90m 172m
wshark-37112-37111 8820 80 - Gen 17704 41 - Gen Gen Gen 48m 36m
wshark-37172-37171 47406 223 - Gen 25531 153 - Gen No Gen 28m 38m
wshark-37172-37173 47406 175 - Gen 25531 270 - Gen No Gen 24m 40m
wshark-37284-37285 53196 313 - Gen 27723 345 - Gen No Gen 29m 47m
fbc-5458-5459 506 4 4 Gen 4611 6 54 Gen Gen Gen 15m 53m

Table 2: PCR Results for Each Generated Plausible Patch

information), PCR is able to generate plausible patches for
34 defects.

The ninth column“Correct GenProg”presents the number
of defects for which GenProg generates a correct patch. The
GenProg result tar file available on the GenProg website [2]
reports results from 10 different GenProg executions with
different random number seeds. For some defects some of
the generated patches are correct while others are not. We
count the defect as patched correctly by GenProg if any
of the generated patches for that defect are correct. The
tenth column “Correct AE” presents the number of defects
for which the generated AE patch is correct.

The eleventh and twelfth columns present the number of
defects for which the generated PCR patch is correct. “PCR”
corresponds to the runs where we provided PCR with the
target source file to patch (as in the GenProg and AE runs),
while “PCR(NoF)” corresponds to the runs where we do not
provide PCR with a target source code file. This result
highlights PCR’s ability to generate correct patches. Our
results show that PCR generates correct patches for at least
9 more defects than GenProg and AE (12 for PCR v.s. 2
for GenProg and 3 for AE). Even when the target source file
is not specified, PCR still generates correct patches for 11
defects.

The thirteenth column “Init Time” in Table 1 presents
the average time PCR spent to initialize the repair pro-
cess, which includes compiling the whole application and
running the error localizer. The fourteenth column “PCR
Search Time” presents the average execution time of PCR
on all defects of the application for which PCR can generate
patches. The fourteenth column “PCR(NoF) Search Time”
presents the average execution time for the runs where we
do not specify source code file to patch. Our experimental
results show that for those defects for which PCR generates
a patch, PCR will generate the first patch in less than 2
hours on average.

4.3 PCR Patch Generation Results
PCR generates plausible patches for 40 defects in our

benchmark sets. Table 2 presents detailed information for
each defect for which PCR generates a patch. The first col-
umn “Defect” is in the form of “X-a-b”, where “X” is the
name of the application that contains the defect, “a” is the
defective version, and “b” is the reference patched version.
Columns 2-5 in Table 2 present results from the PCR runs
where we specified the target source file to patch (as in the
GenProg and AE runs). Columns 6-9 present results from



the PCR runs where we do not specify a source code file to
patch.
Search Space: The second column and the sixth column
“Search Space” in Table 2 present the total number of can-
didate patches in the PCR patch search space. The third
column and the seventh column “Gen At” presents the to-
tal number of candidate patches that the PCR test runtime
evaluates before PCR generates the patch.

For most defects, PCR generates patches after evaluating
less than 1000 candidate patches. This is because 1) 28
out of 40 patches that PCR generates are related to branch
statement conditions, 2) and the PCR condition synthesizer
enables PCR to efficiently explore the search space of such
patches.

The fourth column and the eighth column “Correct At”
present the rank of the first correct patch in the PCR search
space (if any). A “-” indicates that there is no correct patch
in the search space. For 20 out of the total 40 defects, if
the source code file to patch is specified and for 17 out of
the total 34 defects if the source code file to patch is not
specified, there is at least one correct patch inside the PCR
search space.

Note that even if the correct patch is within the PCR
search space, PCR may not generate this correct patch —
the PCR search may time out before PCR encounters the
correct patch, or PCR may encounter a plausible but incor-
rect patch before it encounters the correct patch. Stronger
test suites with additional test cases may expose more de-
fects in the candidate patches and (by eliminating otherwise
plausible patches or more quickly eliminating implausible
patches) enable PCR to find more correct patches.
Comparison With GenProg and AE: The fifth col-
umn and the ninth column“Result” presents for each de-
fect whether the PCR patch is correct or not. The tenth
column “GenProg” presents the status of the GenProg gen-
erated patch for each defect. The eleventh column “AE”
presents the status of the AE generated patch for each de-
fect. “Correct” in the column indicates that the tool gener-
ated a correct patch. “Gen” indicates that the tool generated
a plausible but incorrect patch. “No” indicates that the tool
does not generate a plausible patch for the corresponding
defect.

Our experimental results show that whenever GenProg or
AE generates a plausible patch for a given defect, so does
PCR. For one defect, AE generates a correct patch when
PCR generates a plausible but incorrect patch. For this de-
fect, the PCR search space contains a correct patch, but the
PCR search algorithm encounters the plausible but incor-
rect patch before it encounters the correct patch. For the
remaining defects for which GenProg or AE generate a cor-
rect patch, so does PCR. PCR generates plausible patches
for 22 more defects than GenProg and 13 more defects than
AE. PCR generates correct patches for 10 more defects than
GenProg and 9 more defects than AE.

4.4 PCR Design Choices
To evaluate the impact of various PCR design choices, we

analyzed the 12 correct patches that PCR generates. Table 3
classifies the 12 correct patches that PCR generates. This
classification highlights the challenges that PCR must over-
come to generate these correct patches. The first column
“Defect” presents the defect.

Defect Fix Type
Fix Evaluation
(No Synthesis)

php-307562-307561 Replace† 5.3X
php-307846-307853 Add Init† 2.5X
php-308734-308761 Add Guarded Control†‡ 5.7X
php-309516-309535 Add Init† 3.1X
php-309579-309580 Change Cond†‡ 15.6X
php-309892-309910 Delete 50X
php-310991-310999 Change Cond† 324.4X*
php-311346-311348 Redirect Branch† 141.2X*
libtiff-ee2ce5-b5691a Add Control†‡ 8.9X*
gmp-13420-13421 Replace†‡ 5.1X*
gzip-a1d3d4-f17cbd Copy and Replace†‡ 11.7X
python-69783-69784 Delete 35.9X

Table 3: PCR results on each correct patch

Modification Operators: The second column“Fix Type”
presents the fix type of the correct patch for each defect.
“Add Control” indicates that the generated patch inserts a
control statement with no condition. “Add Guarded Con-
trol” indicates that the generated patch inserts a guarded
control statement with a meaningful condition. “Replace”
indicates that the generated patch modifies an existing state-
ment using value replacement to replace an atom inside
it. “Copy and Replace” indicates that the generated patch
copies a statement from somewhere else in the application
using value replacement to replace an atom in the state-
ment. “Add Init” indicates that the generated patch inserts
a memory initialization statement. “Delete” indicates that
the generated patch simply removes statements (this is a
special case of the Conditional Guard modification in which
the guard condition is set to false). “Redirect Branch” indi-
cates that the generated patch removes one branch of an if
statement and redirects all executions to the other branch
(by setting the condition in the if statement to true or false).
“Change Cond” indicates that the generated patch changes
a branch condition in a non-trivial way (unlike “Delete” and
“Redirect Branch”).

A “†” in the second column indicates that the PCR patch
for this defect is outside the search space of GenProg and
AE (for 10 out of the 12 defects, the PCR patch is outside
the GenProg and AE search space). A “‡” in the column
indicates that the PCR patch for this defect is outside the
search space of PAR with the eight templates from the PAR
paper [19] For 5 out of the 12 defects, the PCR patch is
outside the PAR search space.

For php-307846-307853, php-308734-308761, php-309516-
309535, and libtiff-ee2ce5b7-b5691a5a, the PCR patches in-
sert control statements or initialization statements that do
not appear elsewhere in the source file. For php-307562-
307561, gmp-13420-13421, and gzip-a1d3d4-f17cbd, the PCR
patches change expressions inside the copied or replaced
statements. For php-309579-309580, php-310991-310999, and
php-311346-311348, the PCR generated patches change the
branch condition in a way which is not equivalent to delet-
ing the whole statement. These patches are therefore outside
the search space of GenProg and AE, which only copy and
remove statements.

The PCR correct patches for php-308734-308761 (add“break”),
libtiff-ee2ce5b7-b5691a5a (add“goto”), and gzip-a1d3d4-f17cbd
(add “assignment”) are outside the PAR search space be-
cause no template in PAR is able to add goto, break, or as-
signment statements into the source code. The PCR correct
patch for gmp-13420-13421 is also outside the PAR search



space, because the patch replaces a subexpression inside
an assignment statement and no template in PAR supports
such an operation. The PCR correct patch for php-309579-
309580 is outside the PAR search space because the patch
changes a branch condition (See Section 2), but the inserted
clause “isostr” does not appear elsewhere in branch condi-
tions in the application. The PAR template “Expression
Adder” collects the added condition clause only from other
conditions in the program.
Condition Synthesis: The third column “Fix Evaluation
(No Synthesis)” presents the increased number of candidate
patches PCR needs to consider before the correct patch if
PCR turns off condition synthesis and naively enumerates
all possible conditions. A “*” in the column indicates that
PCR would be unable to generate the patch within 12 hours
if the condition synthesis is turned off. Our results show
that condition synthesis significantly reduces the number of
candidate patches that PCR needs to validate, in some cases
by a factor of over two orders of magnitude. Without con-
dition synthesis, PCR would be unable to generate patches
for 4 out of the 12 defects within 12 hours.

5. RELATED WORK
ClearView: ClearView is a generate-and-validate system
that observes normal executions to learn invariants that
characterize safe behavior [27]. It deploys monitors that de-
tect crashes, illegal control transfers and out of bounds write
defects. In response, it selects a nearby invariant that the in-
put that triggered the defect violates, and generates patches
that take a repair action when the invariant is violated. Sub-
sequent executions enable ClearView to determine if 1) the
patch eliminates the defect while 2) preserving desired be-
nign behavior. ClearView generates patches that can be
applied directly to a running program without requiring a
restart.

ClearView was evaluated by a hostile Red Team attempt-
ing to exploit security vulnerabilities in Firefox [27]. The
Red Team developed attacks that targeted 10 Firefox vul-
nerabilities and evaluated the ability of ClearView to auto-
matically generate patches that eliminated the vulnerability.
For 9 of these 10 vulnerabilities, ClearView is able to gen-
erate patches that eliminate the vulnerability and enable
Firefox to continue successful execution [27].

PCR differs from ClearView in both its goal and its tech-
nique. PCR targets software defects that can be exposed by
supplied negative test cases, which are not limited to just
security vulnerabilities. PCR operates on a search space
derived from its modification operators to generate candi-
date patches, while ClearView generates patches to enforce
violated invariants.
GenProg, RSRepair, and AE: GenProg [34, 21] uses a
genetic programming algorithm to search a space of patches,
with the goal of enabling the application to pass all consid-
ered test cases. RSRepair [28] changes the GenProg algo-
rithm to use random modification instead. AE [33] uses a de-
terministic patch search algorithm and uses program equiv-
alence relations to prune equivalent patches during testing.

Previous work [29] shows that, contrary to the design prin-
ciple of GenProg, RSRepair, and AE, the majority of the
reported patches of these three systems are implausible due
to experimental error in the patch validiation. Further se-
mantic analysis [29] on the remaining plausible patches re-
veals that despite the surface complexity of these patches,

an overwhelming majority of these patches are equivalent
to functionality elimination. In fact, an implemented naive
patch generation system that only eliminates functionality
can, on the same benchmark set, produce plausible patches
and correct patches for at least as many defects [29].

Unlike GenProg [21], RSRepair [28], and AE [33], which
only copy statements from elsewhere in the program, PCR
defines a set of novel modification operators that enables
PCR to operate on a search space which contains meaningful
and useful patches. PCR then uses its condition synthesis
technique to efficiently explore the search space. Our results
show that PCR significantly outperforms GenProg and AE
in the same benchmark set. The majority of the correct
patches PCR generates in our experiments are outside the
search space of GenProg, RSRepair, and AE.
SemFix and MintHint: SemFix [25] and MintHint [18]
replace the potential faulty expression with a symbolic value
and use symbolic execution techniques [8] and SMT solvers
to find a replacement expression that can enable the program
to pass all test cases. SemFix and MintHint are evaluated
only on applications with less than 10000 lines of code. In
addition, these techniques cannot generate fixes for state-
ments with side effects.
Debroy and Wong: Debroy and Wong [9] presents a mutation-
based patch generation technique. This technique either re-
places an existing arithmetic operator with another opera-
tor or negates the condition of an if or while statement. In
contrast, PCR uses more sophisticated and effective modi-
fication operators and search algorithms. In fact, none of
the 12 correct patches that PCR generates are within the
Debroy and Wong search space.
NOPOL: NOPOL [10] is an automatic repair tool focusing
on branch conditions. It identifies branch statement direc-
tions that can pass negative test cases and then uses SMT
solvers to generate repairs for the branch condition. PCR
differs from NOPOL in the following ways. 1) To make
the search space tractable, NOPOL assumes that a branch
statement in the fixed program will always take the same
direction during the execution. This assumption is often
not true when the branch condition is executed multiple
times for a test case (php-308734-308761 and php-310991-
310999). In this case NOPOL will fail to generate a patch.
The PCR condition synthesis algorithm, of course, does not
have this limitation. 2) NOPOL focuses only on patches
that change conditions, while PCR can generate patches for
a broader class of defects (php-307562-307561, php-307846-
307853, php-309516-309535, libtiff-ee2ce-b5691, gmp-13420-
13421, and gzip-a1d3d-f17cb). 3) NOPOL was evaluated on
two small Java programs (each with less than 5000 lines of
code) and two artificial examples in [10], while we evaluate
PCR on 105 real world defects in seven C applications with
more than one million lines in total.
Fix Safety-Policy Violation: Weimer [32] proposed a
patch generation technique for safety policy violation errors.
This technique takes a DFA-like specification that describes
the safety policy. For an execution trace that violates the
policy, it finds a nearest accepting trace from the offending
execution trace for the DFA specification. It then generates
a patch that forces the program to produce the identified
accepting trace instead of the trace that violates the policy.
The goal is not to obtain a correct patch — the goal is in-
stead to produce a patch that helps give a human developer
insight into the nature of the defect.



In contrast, PCR does not require human-supplied speci-
fications and can work with any defect (not just safety pol-
icy violations) that can be exposed by negative test cases.
Unlike PCR, Weimer’s technique does not attempt to re-
pair branch conditions and simply uses path constraints as
branch conditions to guard its modifications to minimize the
patch impact on normal traces.
Domain Specific Repair Generation: Other pro-
gram repair systems include VEJOVIS [26] and Gopinath
et al. [17], which applies domain specific techniques to re-
pair DOM-related faults in JavaScript and selection state-
ments in database programs respectively. AutoFix-E [31]
repairs program faults with human-supplied specifications
called contracts. PCR differs from all of this previous re-
search in that it focuses on generating fixes for general pur-
pose applications without human-supplied specifications.

5.1 Targeted Repair Systems
Researchers have developed a variety of repair systems

that are targeted at specific classes of errors.
Failure-Oblivous Computing: Failure-oblivious comput-
ing [30] checks for out of bounds reads and writes. It dis-
cards out of bounds writes and manufactures values for out
of bounds reads. This eliminates data corruption from out
of bounds writes, eliminates crashes from out of bounds ac-
cesses, and enables the program to continue execution along
its normal execution path.

Failure-oblivious computing was evaluated on five errors
in five server applications. The goal was to enable servers
to survive inputs that trigger the errors and continue on to
successfully process other inputs. For all five systems, the
implemented system realized this goal. For two of the five
errors, failure-oblivious computing completely eliminates the
error and, on all inputs, delivers the same output as the
official developer patch that corrects the error (we believe
these patches are correct).
Bolt: Bolt [20] attaches to a running application, deter-
mines if the application is in an infinite loop, and, if so, ex-
its the loop. A user can also use Bolt to exit a long-running
loop. In both cases the goal is to enable the application to
continue useful execution. Bolt was evaluated on 13 infinite
and 2 long-running loops in 12 applications. For 14 of the
15 loops Bolt delivered a result that was the same or better
than terminating the application. For 7 of the 15 loops, Bolt
completely eliminates the error and, on all inputs, delivers
the same output as the official developer patch that corrects
the error (we believe these patches are correct).
RCV: RCV [22] enables applications to survive null deref-
erence and divide by zero errors. It discards writes via null
references, returns zero for reads via null references, and
returns zero as the result of divides by zero. Execution con-
tinues along the normal execution path.

RCV was evaluated on 18 errors in 7 applications. For 17
of these 18 errors, RCV enables the application to survive
the error and continue on successfully process the remaining
input. For 11 of the 18 errors, RCV completely eliminates
the error and, on all inputs, delivers either identical (9 of 11
errors) or equivalent (2 of 11 errors) outputs as the official
developer patch that corrects the error (we believe these
patches are correct).
APPEND: APPEND [13] proposes to eliminate null
pointer exceptions in Java by applying recovery techniques
such as replacing the null pointer with a pointer to an ini-

tialized instance of the appropriate class. The presented
examples illustrate how this technique can effectively elimi-
nate null pointer exceptions and enhance program survival.
Data Structure Repair: Data structure repair enables
applications to recover from data structure corruption er-
rors [12]. Data structure repair enforces a data structure
consistency specification. This specification can be provided
by a human developer or automatically inferred from correct
program executions [11].
Self-Stabilizing Java: Self-Stabilizing Java uses a type
system to ensure that the impact of any errors are even-
tually flushed from the system, returning the system back
to a consistent state and promoting successful future execu-
tion [14].

5.2 Discussion
These results highlight the importance of the specific mod-

ification operators and search algorithm in obtaining a suc-
cessful patch generation system. General concepts such as
copying statements [21, 28, 33] and targeting condition-
als [9], by themselves, fail to deliver sufficiently rich and
tractable patch search spaces with useful patches. Consider,
in contrast, the success of the more sophisticated ClearView
invariant enforcement approach and the PCR combination
of compound mutations and condition synthesis. The suc-
cess of these two more sophisticated approaches indicates
that it is the tight interplay between the operations that gen-
erate the patch search space and the algorithms that search
that space that is important. It is this sophisticated inter-
play, and not general concepts such as copying statements
or focusing on conditionals, that makes or breaks a given
automatic patch generation system.

6. CONCLUSION
The difficulty of generating a patch search space rich

enough to correct defects while still supporting a search al-
gorithm efficient enough to find the patches in an acceptable
amount of time has significantly limited the ability of pre-
vious automatic patch generation systems [21, 33]. PCR’s
novel set of modification operators and efficient search algo-
rithm based on condition synthesis highlight how a syner-
gistic combination of modification operators and search al-
gorithm can enable successful automatic patch generation.
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