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ABSTRACT

It is commonly understood that a verification tool should
provide a counterexample to witness a specification violation.
Until recently, software verifiers dumped error witnesses in
proprietary formats, which are often neither human- nor
machine-readable, and an exchange of witnesses between dif-
ferent verifiers was impossible. To close this gap in software-
verification technology, we have defined an ezchange format
for error witnesses that is easy to write and read by verifica-
tion tools (for further processing, e.g., witness validation) and
that is easy to convert into visualizations that conveniently
let developers inspect an error path. To eliminate manual
inspection of false alarms, we develop the notion of stepwise
testification: in a first step, a verifier finds a problematic pro-
gram path and, in addition to the verification result FALSE,
constructs a witness for this path; in the next step, another
verifier re-verifies that the witness indeed violates the speci-
fication. This process can have more than two steps, each
reducing the state space around the error path, making it
easier to validate the witness in a later step. An obvious
application for testification is the setting where we have two
verifiers: one that is efficient but imprecise and another one
that is precise but expensive. We have implemented the
technique of error-witness-driven program analysis in two
state-of-the-art verification tools, CPAcaECckER and ULTIMATE
Auromizer, and show by experimental evaluation that the
approach is applicable to a large set of verification tasks.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification

General Terms: Theory, Verification

Keywords: Error Witness, Counterexample Validation,
Software Verification, Program Analysis, Model Checking

1. INTRODUCTION

Software verification becomes more and more important in
practice; several breakthroughs in verification research were
achieved during the last decade, and several successful verifi-
cation tools were developed. The TACAS International Com-
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petition on Software Verification (SV—COMP)E] [4l|5] serves
as a showcase of the state-of-the-art. Users can choose from
a wide range of verifiers, and the SV-COMP categories give
an approximate guidance on which verifier is good for which
kind of programs. One important and unsolved problem
of applying verification technology in practice is that ver-
ification tools sometimes produce false alarms, and it still
requires an enormous manual effort to find out if a reported
bug indeed represents a genuine specification violation.

Our solution comprises two components: we developed
an exchange format for error witnesses and evaluated its
effectiveness by a thorough experimental evaluation, and we
develop the notion of stepwise testification, as the technique
of witness validation immediately leads to the notion of
witness refinement, enabling a chain of verifiers (or testifiers)
to continuously refine the erroneous state space until a test
vector for the error is found.

Testification is the process of giving evidence for a claim
that a given program satisfies, or violates, its specification.
The evidence of the absence, or presence, of a specification
violation is given by one or more witnesses. A verification
tool is a testifier if it provides evidence to support its claim,
i.e., if it produces a witness for correctness or for a violation
of the specification. Stepwise testification is the process of ap-
plying testification in several steps, on ever refined witnesses,
possibly using different verification tools, combining differ-
ent strengths. Figure [1] illustrates the process of stepwise
testification. In this paper, we focus on stepwise testifica-
tion of specification violations by producing error witnesses
(left part), while conditional model checking [10] focuses on
stepwise testification of correctness.

We accompany the bug report of verifier V7 with an error
witness, which represents information that can effectively
guide another verifier V5 to efficiently re-explore the state
space that verifier V1 reported to contain a bug. Our ex-
perimental study confirms the following insights: (1) our
exchange format makes it possible to communicate error
witnesses across verifiers, (2) verifier V2 needs on average
considerably less resources to validate the witness than veri-
fier V7 needed to find the error, even if V5 uses a more ex-
pensive verification technology (e.g., V1 using linear and V5
using bit-precise arithmetic), (3) stepwise testification can
be more efficient than verification, i.e., the CPU time for
Vi-verification + Va-witness-validation can be less than the
CPU time for Va-verification alone, (4) the state-space to be
analyzed by V5 is effectively reduced.

Tht‘cp ://sv-comp.sosy-lab.org/
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Our technique was already used in the most recent edition
of the competition on software verification. The SV-COMP
community manifested in the competition rules that each
answer FALSE must be accompanied by an error witness.
Previously, only the existence of an error witness was checked,
but not its meaning. The last edition of the competition
rules [5] required the organizer to reasonably validate each
witness in order to get more confidence that the error witness
indeed represents a valid bug before assigning a success score.

On the syntactic level, we use XML, more specifically
GraphML [19], as a language to represent error witnesses.
On the semantic level, we use the standard concept of (non-
deterministic) finite automata to represent an error witness.
A witness automaton observes the paths that the verifier
explores and directs the exploration engine along the paths
that the witness describes, i.e., towards the violation of the
specification. Witnesses can be read by humans (perhaps
using a visualization or inspection tool) or a witness validator.

Witness automata allow different levels of abstraction.
A most abstract error-witness automaton allows all paths
through the program, i.e., it does not restrict the state-
space exploration. A most concrete error-witness automaton
represents one concrete error path, which is annotated with
value assignments for all variables (i.e., a concrete test vector
is represented). Many interesting witnesses occur in between
the two extremes: there is a continuous spectrum of refined
witness automata, reducing the number of possible choices
through a program until the most concrete level —the test
vector— is reached. Sometimes it is efficient to represent
several (or even infinitely many) error paths in one witness.
Contributions. We make the following novel contributions:
e We develop a syntactical exchange format based on XML
for exchanging and archiving witnesses across software
verifiers, and instantiate the format for C programs.

We introduce witness automata as a semantical basis
from which a program analysis can be constructed as an
extension for existing verifiers (two examples given).
Our approach validates witnesses against the given pro-
gram and specification, independently from the computing
resource and verifier used to produce the witness, i.e., nei-
ther this resource nor this verifier need to be trusted.
We develop the notion of stepwise testification, which
continuously refines witnesses using different verifiers or
different approaches on perhaps different platforms.

We provide an extensive experimental evaluation that
shows the potential and feasibility of using error witnesses
and stepwise testification.

Advantages and Applications. Our solution has various
application scenarios in research and industry, for example:
e Witness validation can be used to automatically eliminate
false alarms in program analysis (e.g., as used in [30]).
A common exchange format can boost the development
of various tools for collecting, correlating, explaining, and
visualizing error witnesses from different sources.

e Error witnesses can accompany bug reports.

e It is sound to use untrusted computing resources and veri-
fication engines if followed by witness validation on trusted
computing resources and trusted witness validators. This
is especially interesting for verification in the cloud.
Different verification approaches and tools have different
strengths, and thus, it is interesting to combine different
verification approaches via stepwise testification.
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the number of paths (right) that need to be (re-)verified.

e Error witnesses can describe program parts that should
be covered by a (regression) test suite.

e Witness validation implies a notion of witness quality:
a more concrete witness (less resources needed for valida-
tion) might be considered better than an abstract witness.
Figure [2] (left) illustrates how testification gives evidence

of the presence of a specification violation by reducing the

state space that the witness validator needs to verify, i.e.,

the state-space to be explored gets narrower. Figure [2] (right)

illustrates that testification reduces the number of paths that

the witness validator has to verify. For example, given a

program that contains r error paths, an error witness might

represent more paths, e.g., p paths, including some infeasible
error paths, but testification might further refine such an
error witness until only one concrete path is represented

(e.g., in iteration n). Testification might also find out that

all paths of the witness are not violating the specification

(error witness rejected, cf. iteration n + 1).

Example. We illustrate how error witnesses are validated
and refined across verifiers: We start with an overview of
the process and then describe the process of producing and
consuming error witnesses in more detail.

We run three verifier instances in sequence. Each of them
takes the program shown in Fig. [3a] as input, and produces
an error witness. The specification of the program is that nei-
ther label ERROR1 nor ERROR2 is reachable from the program
entry. The first verifier runs an analysis based on predicate
abstraction [8,[31] with counterexample-guided abstraction
refinement (CEGAR) [21], and produces the error witness
in Fig. The second verifier takes this witness (and the
program) as input and runs an analysis based on an interval
domain [27], and produces the error witness in Fig. In
the last step, we run a test-case generator [6}/13] that takes
the error witness from Fig.|3c/as input and produces the test
vector in Fig. |3d| (Witness 3).

Before we continue with the example, we will informally
introduce several basic concepts. We model the program
as a control-flow automaton (CFA); its locations represent
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int foo(int int t) {
int d
if (d < 2
return O;
}
int x
int a
int b a*xd;
if (b >= 2048) {
ERROR1: exit (2);
}
if (b < 128) {
ERROR2: exit (3);
}
while (a > 0) {
a=-;
// code omitted
¥

return b;

s,
t;
I'l

nondet_int ();
x 7 512 64;
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(a) Source code (b) Witness 1

7:
a>=64

&& a<=512;
o/w
9,then:
b>=2048 9 olse:
@ && ©<=4096 ; else
b>=128
&& b<=2047;

(c) Witness 2 (d) Witness 3

Figure 3: Example C program (a) and a testification sequence of three witness automata: accepting control states are drawn
as double circles, sink states are labeled with the subscript L, non-accepting control states are drawn as single circle.

program-counter values (we denote the location before the
operation on line i as [;), and its edges represent program op-
erations. Error witnesses are represented as finite automata
that describe a set of program paths that should contain at
least one path that violates the specification. Paths that end
in a sink control state (not accepted by the witness automa-
ton) should not be explored by a verifier that consumes the
witness (during witness validation). In our figures, each tran-
sition of a witness automaton has a label, which is divided
into two parts (by colon): The first part is the source-code
guard, which is used to match the control-flow and can be
given, e.g., as a line number. The second, optional part
is the state-space guard, given as a C expression, which is
used to restrict the abstract successor state of an analysis,
i.e., the set of concrete program states that it represents.
The exploration of the state space can be restricted either
by transitions to sink control states (that have no outgoing
transitions, and thus the path exploration ends) or by restrict-
ing the state space using state-space guards at transitions.
A state-space guard needs to be checked if the corresponding
source-code guard matches the current control-flow edge. We
only consider analyses that construct reachability graphs
of abstract states. In our example, an abstract state is a
tuple (q,!, e) that is composed from the current state ¢ of the
witness automaton, the current location [ of the CFA, and a
component e that represents the information that is tracked
by the chosen abstract domain (for example, the interval
domain, or the predicate-abstraction domain). The analysis
that consumes a witness automaton proceeds along those
CFA edges that match transitions of the witness automaton.

The first witness automaton (Fig. is produced by
a verifier with predicate abstraction [8,[31], CEGAR |[21],
and lazy abstraction [9}/36]. The analysis detects that tak-
ing the then-branch in line 3 cannot lead to a violation of
the specification, and thus, writes a transition to the sink
state ¢, (with source-code guard 3,then:), and similarly
for the else branch in line 12. The multiplication in line 8
is overapproximated by the analysis (this predicate analysis
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uses linear arithmetics), and thus, it reports paths to both
error locations. Despite the infeasible error path that is
included in the witness, the loop of lines 15 — 18 has already
been analyzed, i.e., a successive witness validation can ignore
the loop completely.

In the next testification step, the error witness in Fig.
is validated by a verifier that runs an interval analysis. The
verifier starts with the abstract state (qo, (1, '), i.e., the wit-
ness automaton is in its initial state go, and the CFA is
on its initial location {; (which corresponds to the function
entry). The first analyzed operation is the declaration of
the function parameters and their initialization. In the wit-
ness automaton, only the self transition on state go labeled
with “o/uw” (otherwise) matches; self-transitions such as this
one match only if no other transition matches. Thus, the ver-
ifier proceeds to line 2 with the abstract state (qo,l2,-). The
assignment d=s-t is matched (again) by the self-transition
and the witness automaton stays in go. From abstract state
(go, 13, ), we compute one successor state for each case of the
condition in line 3: one for the then-case, and one for the
else-case; each case is matched by a corresponding edge of
the witness automaton. The then-branch of the if-statement
in line 3 is matched by the transition to the sink state g, ,;
the analysis does not continue on that branch because ¢,
has no successor. Thus, the else-branch of the if-statement
is taken by proceeding to ¢; in the witness automaton. For
the assignments of lines 6 and 7, the witness automaton
takes the self-transition in ¢i, where the analysis has to
branch due to the conditional assignment in line 7: on one
branch, the value of a is 64, on the other branch it is 512.
The paths immediately join again and the value of a is in
the interval [64,512]. The automaton stays in ¢; and the
analysis continues (with b in [128,4096] after line 8) until
it reaches line 9 with the abstract state (q1,lo,-). We com-
pute a separate abstract successor state for each case of the
condition in line 9: the successor state for the then-case
is (qg,,l10, ), because the next operation (label) ERROR1 is
reached. Since this is the (accepting) error state gg,, we



have confirmed the first error path of the witness. The
analysis continues at line 12 by computing successors for
(g2, l12, o) which was the result of the else-case of the condi-
tion in line 9. The state component oy, which represents the
information tracked by the interval analysis, stores the inter-
vals {a — [64,512],b — [128,2047],d — [2,8]}. The analysis
can not take the then-branch from gz (reaching the accepting
state ¢g,, which corresponds to ERROR2 in the CFA), because
the interval analysis stored that the value of b is in the inter-
val [128,2047]. Therefore, the label ERROR2 is not reachable
(the previous analysis that produced this witness automaton
could not detect this because the predicate analysis over-
approximated the multiplication in line 8). Proceeding the
else-branch from line 12, we enter g, of the witness au-
tomaton and reach line 15. The analysis that produced the
witness was able to prove that the code from line 15 onwards
does not violate the specification. Therefore, the sink control
state g1, concludes the analysis.

Upon completion, the interval analysis produces the wit-
ness automaton in Fig. The automaton is constructed by
encoding all abstract paths that lead to the violating abstract
state in line 10, and adding transitions to sink control states
along the paths such that a witness validator can stop the
exploration of branches that are not relevant for reaching
the violating abstract state.

In the last testification step, the error witness from Fig.
is used to restrict a test-case generator [6] in order to derive a
specific test vector for the path to ERROR1. The test vector is
derived by extracting a satisfying assignment of the formula
that represents the program path to the error location. The
third witness automaton (Fig. represents the result of
the test-case generation, i.e., a test vector.

Related Work. There is a large body of work on combining
different verification approaches, starting in the 1970’s with
reduced products of abstract domains [28]. There are many
combinations of model checking with data-flow analysis, with
testing, and with deduction (cf. [22] for an overview). Most
existing approaches combine different techniques in parallel as
a product or as portfolio verification. More recently, stepwise
sequential combinations were conceptualized as conditional
model checking [10|, where verification artifacts (‘conditions’)
are passed from one verifier to another. Our contribution
focuses on stepwise testification of specification violations,
based on passing error witnesses from one verifier to another.

Model-checking tools usually produce and provide counter-
examples in some form. However, there is an increasing
awareness for the need of (fast and automatic) validation of
program error paths in order to increase the confidence in
the automatic bug reports, especially to reduce the number
of false alarms [5}/18,[29}/40]. A cheap data-flow analysis can
be combined with a high-precision feasibility analysis to filter
out as many false alarms as possible within one instance of
a verifier |29]. Experiments illustrate that the validation of
error witnesses is usually significantly faster than re-verifying
the (full) program [18|. The tool that produced an error wit-
ness can work with a different abstract domain than the tool
that is used for the validation [40]. There was, however, no
unified exchange format for error witnesses across verifiers.

The process of refining witnesses has been addressed for
safety proofs from software verification [10L/26], but not yet
for counterexamples. Clarke and Veith [24] mention the
fact that already a full Kripke structure with a violation
of the specification would be a valid counterexample; they
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define a set of criteria that make counterexamples more
useful for tools and potential users. We extended this idea
to stepwise testification. Witness testification can be seen as
the counterpart of conditional model checking [10].

The exchange of verification (and inference) results across
verifiers has not been discussed in detail before. Counter-
examples were exported by deriving full programs from
counterexamples in order to provide them as input to another
tool [11}/14[}41]. This approach is not feasible for witness
validation because the witness needs to be checked against
the original program. There is a number of trace formats in
the context of distributed high-performance computing, e.g.,
the Open Trace Format [37], or the MPI trace format [1];
their primary intent is to keep record of events in the system,
for example, the exchange of messages between processes.
These formats have a strong focus on time-stamped events
in distributed systems and are not applicable to our prob-
lem. The Certification Problem Formatﬂ was designed for
first-order term-rewrite systems and termination analysis.

Error witnesses have many applications [25}32,[33]/39},/44],
and a common exchange format for verification tools will
foster further research in this direction, in particular, on
combinations of verification and debugging techniques.

2. PROTOCOL ANALYSIS

Preliminaries. We adopt the same notion of programs
to describe the theoretical aspects of our ideas as in previ-
ous work [12]. The presentation is restricted to a simple
imperative programming language that contains only as-
sume operations and assignments, and all program variables
are integers.EI Programs are represented by control-flow
automata (CFA). A control-flow automaton C = (L, b, G)
consists of a set L of program locations, modeling the pro-
gram counter, the initial program location lp, which models
the program entry, and a set G C L x Ops x L of control-flow
edges, each of which models the operation that is executed
during the flow of control from one program location to an-
other. All variables that occur in operations from Ops are
contained in the set X of program variables.

A program path is a sequence lo—2...22%[, with
(lic1,0pi,l;) € G for 1 < 4 < n and lp is the initial pro-
gram location. A program path is called feasible if there
exists a test vector [6] for which the program path can be
executed, otherwise the program path is called infeasible; a
feasible path with concrete test values is called concrete path.

Protocol Automata. A protocol automaton A
(@,%,6,q0, F) for a CFA C = (L, b, G) is a non-deterministic
finite automaton with the following components: the finite
set (Q represents the control states of the automaton, the
alphabet ¥ C 2% x ® consists of pairs of a finite set of CFA
edges from G and a state condition, the transition relation
0 C @ x X x @ defines the control-state transitions, the initial
control state go € @ defines the start of the automaton, and
the set F' contains the accepting control states. We write
q¢5q if (g,0,q¢') € § and g—¢ if there exists a o with ¢Z¢’.

Protocol Analysis. A protocol analysis for a protocol au-
tomaton A is a configurable program analysis (CPA) [12]
O = (Do, ~»0, mergeg, stopg ), which tracks the control state

?http ://cl-informatik.uibk.ac.at/software/cpf/
Our implementations are based on CPAcuecker [14] and
Urrivate Automizer [34], both of which support C programs.
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of a protocol automaton A = (Q, %, d, qo, ) and consists of
the following components (for a given CFA (L, ly, G)):

1. The abstract domain Do = (C, Q, []) consists of the
set C of concrete states, the semi-lattice O, and a concretiza-
tion function [-]. The semi-lattice Q = (Z,C,U, T o), with
Z = (QUA{T}) x ®, consists of the set Z of abstract data
states, which are pairs of a control state from @ (or spe-
cial lattice element T) and a condition from ®, a partial
order C, the join operator L, and the top element Tg.
The partial order C is defined such that (q,v) C (¢',v")
if (¢ = T orqg=¢q')andy = ', the join U is the least
upper bound of two abstract data states, and the top el-
ement Tg (T, true) is the least upper bound of the
set of all abstract data states. The concretization func-
tion [-] : Z — 29 is a mapping that assigns to each abstract
data state (g,1) the set [¢] of concrete states.

2. The transfer relation ~»o has the transfer (¢, -)~50(q’, %)
if the protocol automaton A has a transition ¢-—=¢’ such that
o = (D,v¢') and g € D. The condition 9" of the control-state
transition is stored in the successor in order to enable a
composite strengthening operator |12] to strengthen the suc-
cessor abstract data state of another component analysis in
the composite analysis using information from condition .

3. The merge operator combines elements with the same

control state: , )
mergeo ((a.0), (4 0) = {_{£70)""")

4. The termination check stopgy((g, %), R) returns true, i.e.,
terminates the state-space exploration of the current path
if the abstract data state is covered by an existing abstract
data state: stopg((g,v), R) = 3(q,?') € R: ¢ = '

Composition. The protocol CPA is used as one component
in a composite CPA, in which other component CPAs track
the data and control state, i.e., information about the values
of the variables and the control-flow location. Let P be a
component CPA that tracks the abstract data states. In
the composite abstract transfer relation, the abstract data
states from the protocol CPA O and the other CPA P can
be used to strengthen the composite abstract successor in
the following way: the composite abstract transfer restricts
the abstract data state in P to represent only those concrete
states that satisfy the state condition ¢ in Q. This way,
each abstract data state on a program path that the com-
posite CPA explores, always implies the corresponding state
condition of the protocol automaton.

if g=¢
otherwise .

Simulation. A run of a protocol automaton A for a
program path lp—%s ... 2%, is a simulation sequence
g0 ... I, such that every step l;—51; 11 is matched by
a step gi—+qi11 with oy = (D, ) and (I;, 0ps, liv1) € D and
all variable assignments at program location l;11 satisfy 1.
Protocol automaton A accepts the run if g, € F. We say
A accepts the program path 7 if there exists an accepting
run of A for m. The projection of an accepted run to its
alphabet symbols o1 ..., is called accepted word. The set
of all accepted words of A defines the language L(A).

Specification by Observer Automata. Safety properties
and security aspects [42] can be modeled using finite ob-
server automata (also called ‘monitor automata’) that run
in parallel to the system to be verified and ‘observe’ the
behavior of the system without influencing it. Observer au-
tomata are an established concept for providing a formal
specification [3,[7}/141|43]. Separating specification from im-
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plementation supports the idea of separation of concerns;
tools can support the user in providing and maintaining the
specification. A software specification is either weaved into
the source code before verification (cf. Stic [3] and Brast [7]),
or checked on-the-fly in parallel to the program (cf. Brasr-
cpa [43], CPAcuecker [14], Orion [29]). A set of properties
can be checked simultaneously within one run of a verifier.

An observer automaton is a protocol automaton that sat-
isfies the following condition: for every control state g of A,
and every control-flow edge g of C, the state conditions can
partition, but not restrict, the state space of the program:
V{v|3deQ:3ccL:3DCG:q¢5q¢,0= (D),
g € D} = true.

An observer analysis is a protocol CPA for an observer
automaton, i.e., an observer analysis ‘observes’ (or ‘monitors’)
the paths of the observed program, but does not restrict the
exploration of the program analysis. The observer CPA can
be used to split abstract paths to observe them separately.

3. TESTIFICATION

The goal of our work is to represent error paths —
paths through the program source code that violate the
specification— in such a way that they are reproducible,
machine-readable, and exchangeable between various veri-
fication tools. Conceptually, a witness is information that
provides evidence of the verification result. This paper fo-
cuses on error witnesses, i.e., witnesses that provide evidence
that the given program violates a given specification. For the
representation of error witnesses we use witness automata.

Witness Automata. A witness automaton is a protocol
automaton, and a witness analysis is a protocol CPA for a
witness automaton, which runs as one component CPA of a
composite program analysis in parallel to other component
CPAs. One of the other component CPAs is an observer
CPA that encodes the specification. In contrast to observer
automata, witness automata not only observe, but also re-
strict how the program analysis explores the program’s state
space. While an observer automaton has abstract successor
states for all concrete successor states, a witness automaton
can restrict the successor states to those successor states the
lead the exploration towards the specification violation. In
other words, the witness automaton guides the program anal-
ysis to explore the state space that violates the specification.
Automata that guide the analysis towards specific program
locations are also used for test-case generation [13].

Verification with Witnesses (Testification). We require
a verifier, whenever a violating program path is found, to
produce a witness automaton for exemplifying the violation;
we call such a verifier also testifier, because it testifies that the
bug exists, and we call this process testification, as illustrated
in Fig. @ The purpose of the witness automaton is to later
restrict the state-space exploration of a verifier such that
the error path can be confirmed with less effort than with a
completely independent verification run. In this paper, we
focus on error witnesses only.

Witness Validation. Witness validation is the process of
determining if, for a given program, specification, result, and
witness, the same result can be re-established independently
(Fig. 4b). In this paper specifically for error witnesses, we
validate if an error path can be found in the state space that
the witness describes. One way of implementing witness vali-
dation is to construct a composite program analysis that has
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a specification analysis and a witness analysis as components,
which simultaneously observe and restrict the state-space
exploration: the witness validation restricts the search of
the composite program analysis such that only paths are
explored that the witness automaton can match, and the
specification analysis checks if the path indeed violates the
specification. If, during the analysis of a program path, the
witness automaton takes a transition to a sink state, the
analysis stops exploring the path, thus, restricting the state-
space exploration. The witness is confirmed by the witness
validator if both, the specification automaton and the witness
automaton, take a transition to their respective (accepting)
error control state. We call such a verifier witness validator.

A widely-used instance of error-witness validation is coun-
terexample checking (e.g., |30]), for example during the re-
finement phase in CEGAR |21], where an abstract counterex-
ample (which is an error witness) is checked for feasibility
(the witness testifies against the program’s claim to correct-
ness). The given error witness is either rejected, which means
that it describes no feasible counterexample, or it is accepted
because it contains a concrete error path and CEGAR stops.

Abstraction Levels of Witness Automata. A witness au-
tomaton can represent more than one error path; in fact, the
verifier that constructs the witness automaton is not bound
to a certain level of abstraction. Obviously, for the purpose
of witnessing a violation of a specification, the witness is the
better the more the witness automaton restricts the search
space, in order for the validating program analysis to explore
fewer paths and validate the witness faster.

Stepwise Testification with Witnesses. Stepwise testi-
fication of witnesses is the iterative process of improving
witnesses, by removing unnecessary state space. This pro-
cess combines witness validation with testification: it takes
as input a witness and produces as output a better witness,
as illustrated in Fig. Here, for error witnesses, a testifi-
cation step starting with witness w produces a witness w’
that describes a subset of paths that contains an error path.
Each testification step reduces the state space that the next
testification step has to explore.
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The most concrete level of error witnesses describes one
single concrete path that violates the specification (cf. Fig.
right). Such a concrete error path contains value assignments
for all variables, and is equivalent to a test vector.

Stepwise Testification Across Verifiers. In order to en-
able witness validation and stepwise testification across dif-
ferent verifiers, we propose a verifier-independent exchange
format, which was already successfully used in SV-COMP
2015 [5]. The exchange of error witnesses across different
verifiers enables a wide range of applications, some of which
were outlined in the introduction. The following section gives
more detail on the proposed exchange format.

4. EXCHANGE FORMAT

Using a common exchange format for (error) witnesses,
tools that support stepwise testification may be chained ar-
bitrarily. We instantiate these concepts for programs written
in C, and an exchange format based on XML.

4.1 Witness Exchange Format

Our format for exchanging error witnesses is based on
GraphML [19], an XML-based format for storing and ex-
changing graph structures. A number of libraries support
reading and writing GraphML (or at least XML), and thus
make the adoption of the format convenient. The graph
nodes and graph edges represent the control states and the
transitions of the witness automaton, respectively.

We make use of the extensible nature of GraphML to
extend it with custom data for storing error-witness informa-
tion. Both the node and edge elements in GraphML can take
additional data within a data tag that has an attribute key.
The meaning of a data tag is determined by its key attribute.
More details on the error-witness format can be found on
our supplementary web pageEI

Automata States and Transitions. The control states @
and the corresponding transitions § C @ x X x @ of the
witness automaton are the central information to be encoded
in the format. The format also encodes the different roles
that a control state can take: (1) the initial state go of
the automaton, (2) a sink state g, (3) an error state gg,
or (4) a ‘normal’ state. Depending on the role we add
a data tag with the key attribute (1) entry, (2) sink, or
(3) violation, with the value true (the default is false for
all three, declaring the control state as ‘normal’).

The behavior of transitions between control states is de-
fined by a set of guards. The conditions at the transitions rep-
resent source-code guards and state-space guards. A source-
code guard is used by the validator to check if a control-flow
edge of the CFA matches a control-state transition based
on the source code. Line numbers are an example of such
guards. State-space guards are used to strengthen the ab-
stract successor states that are computed by the transfer
relation of an analysis after the source-code guard matches
the transition to the next control state of the witness au-
tomaton. Assumptions like x == 0; y > 5; are examples of
such guards. A summary of the guards that we use for our
experiments is given in Sect. @

4.2 Format Implementation

This section provides guidance towards robust implementa-
tions for writing and reading error witnesses, describes some
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best practices, and presents how common real-world issues
with exchanging (error) witnesses across different verifiers
can be addressed.

Writing a Witness Automaton from an ARG. A verifi-
cation tool can produce witnesses by transforming the desired
parts of the abstract reachability graph (ARG) [9] (which is
often available from an analysis) into a witness automaton.
The nodes along an error path in the ARG become control
states in the witness automaton. The initial control state go
of the witness automaton corresponds to the root node of
the ARG. For every ARG node that violates the specifica-
tion, we add a corresponding accepting (error) control state.
The edges of the ARG become transitions in the witness
automaton. Edges that leave the error path in the ARG
become transitions to a sink state, i.e., a state with no out-
going transitions. Based on the desired level of abstraction,
we add source-code guards to the transitions. Those can
be based, for example, on the line number, character offset,
and branching (control case) information of the ARG edge.
Constraints on variable values at the target state of an ARG
edge may be encoded as state-space guards. After producing
the witness automaton from the ARG, we perform several
minimizations: for example, we remove transitions without
any guard, and reduce sequences of similar transitions, i.e.,
given a sequence of transitions with the same set of guards,
we often leave only one of those transitions in the automaton.

Reading a Witness Automaton for Validation. An
error-witness validator reconstructs the witness automaton
that is stored in our exchange format. For every node in the
witness file, there is a state in the witness automaton. For
every edge in the witness file, there is a transition in the wit-
ness automaton, guarded by, for example, information about
line numbers, branchings, and assumptions from the data
tags. We add an unguarded self-transition to each accepting
(error) state in order to express that given a program path ¢,
for any prefix ¢’ of ¢ that causes the automaton to switch to
an error state, t is also an accepted error path. To states
that are neither sink nor accepting (error) state, we also
add a self-transition that is guarded by the negation of the
disjunction of the source-code guards of all other outgoing
transitions of this control state, such that it matches if no
other outgoing transition matches. We label these transi-
tions with “o/w”. This is done in order to address differences
in program representations between verifiers, which we will
discuss in more detail below. After the witness validator has
reconstructed the witness automaton, it is able to apply the
concepts described in Sect. [3| to validate the witness.

Addressing Differences in Program Representations
Between Verifiers by Stuttering. The ANSI C standard
specifies that it is not required to evaluate all parts of an
expression if some parts are sufficient to determine its out-
come. This has to be considered during witness validation.
Therefore, in addition to the transitions that are explicitly
defined in the error witness, control states that are neither
sink control state nor accepting control state have the transi-
tion “o/w” to itself. This self-transition is required in all cases
where the verifier that produced the witness skipped parts
of the code, either due to simplifications or optimizations
in the front-end of the verifier, or simply due to a higher
level of abstraction than applied by the witness validator.
For instance, the witness automaton might not contain any
information about a block of C code that is unreachable. We
consider imposing rules about what to include in witnesses
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and what can safely be omitted to be too restrictive and
a barrier to applying front-end optimizations. Therefore,
the witness automaton is allowed to stutter until the actual
analysis catches up in its exploration. On the other hand,
this implies that a witness validator must use an internal
representation of the program that is at least as fine-grained
and complete as the witnesses. Another effect of this solution
is that the end of a path must be explicitly marked as a sink
control state by the witness writer if the state-space guards
are not strong enough to contradict the abstract state of
the witness validator: otherwise, the state-space reduction
may not be as effective, because the witness validator has to
consider all remaining branches as well.

Handling Ambiguity. In some cases, the source-code
matching information at a transition might be ambiguous.
One line might contain several statements:

1 int c = 0;
2 int x = 1; ++x; ++x;
3 if (¢ == 0) { ERROR: exit(1); }

A witness automaton might have the assumption x==3 after
a match of line 2, because it is valid after the third statement
in line 2. An analysis that would require the truth of x==
after the first statement (first match) of line 2 could termi-
nate the analysis since the path formula z = 1 Ax = 3 is
unsatisfiable. These cases can be identified by considering the
direct successor edges in the CFA (lookahead). For a given
witness transition with source-code guards, an additional
transition from the source control state back to itself is intro-
duced. This transition is guarded by the same source-code
guard and additionally by the condition that two successive
CFA edges (hence the lookahead) match these guards. If
this case is encountered during the analysis, the transitions
provide a non-deterministic choice between proceeding to
the next control state or staying in the current control state.
The downside of this approach is that the non-determinism
inflates the state space. However, a smart witness valida-
tor may detect cases where there is no semantic difference
between the choices. The witness validator then makes a
choice, thus avoiding the state-space inflation. For example,
if the one-line sequence int x = 0, n = nondet(); is en-
countered, it does not matter which of the two declarations
an assumption about variable x is applied to, because the
initialization of n does not change the value of x. In the
given example, the ambiguity can also be resolved by the
witness writer by providing an exact offset value.

Imprecise Witnesses. A verifier that runs an analysis
with a coarse precision might not be able to choose a specific
path to the error location that is feasible in the concrete
program. Instead of choosing an arbitrary path, we produce
an automaton that describes several paths, assuming that one
of these paths is feasible in the concrete program. A witness
validator can therefore produce a refined version of the error
witness that describes a smaller number of paths.

Best Practices. Different verifiers use different internal
representations of programs. An exchange of error witnesses
across verifiers is only possible if the witness automata —
especially their transitions— refer to program fragments that
can be identified by all verifiers in the testification chain.
Therefore, we recommend brevity for witness production:
Instead of creating several transitions about the same pro-
gram operation, the verifier should try to merge them into a
single transition. Conversely, a witness validator must not
prune parts of the source code that might be referenced by a



witness. Due to these requirements for witness validators, it
is arguably more difficult to implement a witness validator
than a verifier that only writes witnesses, but we consider
this to be an acceptable trade-off for the flexibility that is
gained by enabling a verifier to refine and improve upon the
results of other tools.

Open Problems. There are several open problems that we
do not yet address in the current error-witness exchange for-
mat. Our format does not define a means to specify context
switches, so it is currently not possible to express witnesses
to specification violations that depend on concurrency. A
counterexample to termination, or more general, a counterex-
ample to a liveness property, is not a finite execution. Yet,
we can use witness automata to narrow down a program
to a set of infinite paths that contains an infinite execution.
However, the current syntax does not allow to distinguish
loops that may be executed infinitely often and loops that
may be executed for an arbitrary but finite number of times.

S. EXPERIMENTAL EVALUATION

To demonstrate the effectiveness and efficiency of error-
witness validation, we performed a large number of different
experiments. The experimental work flow consists of instruct-
ing the verifier (1) to produce an error witness and (2) to
validate an error witness.

Ezxperiment Goals. We perform a feasibility study to sup-

port the following claims:

Claim 1: We developed an error-witness format that is
machine-readable and can be used to exchange witnesses
for bugs in C programs between different verifiers.

Claim 2: Witness validation can take considerably less ef-
fort than verification, i.e., the witness successfully guides
the verifier through a considerably smaller state space.

Claim 3: A high-precision witness validator may improve
the overall effectiveness if an efficient but low-precision
verifier produces witnesses and the validator rejects a
substantial number of incorrect witnesses.

The witness validator is only applied to a verification
task (a program and its specification) if the previous verifica-
tion step produced a witness. An error witness may describe
only a subset of the (possibly infinite) paths that violate the
specification; rejecting an error witness does therefore not
imply that the verification task satisfies the specification, but
only that the given error witness does not encode a violating
path. Therefore, in our experiments that are restricted to
error witnesses, the result of witness validation is to be in-
terpreted as follows: FALSE means witness confirmed; TRUE
means witness rejected, i.e., the part of the program that the
witness describes does not violate the specification.

Benchmark Set. Our benchmark is composed of the
3964 verification tasks from all categories of SV-COMP
2015 (5] except Arrays, BitVectors, Concurrency, Floats,
MemorySafety, Termination, and Recursive, which are not
supported by one or both of the evaluated verifiers. A total
of 1148 of these tasks contain known specification violations.
Experimental Setup. All experiments were conducted on
machines with two 2.6 GHz 8-Core CPUs (Intel Xeon E5-
2650 v2) with 135 GB of RAM. The operating system was
Ubuntu 14.04 (64 bit), using Linux 3.13 and OpenJDK 1.7.
Each verification task was limited to two CPU cores, a CPU
run time of 15 min and a memory usage of 15 GB. CPACHECKER
was used in revision 17283 from the trunk, with MaruSAT5

728

as SMT solver. CPAcueEcker was configured to perform a
predicate analysis, using the theory of linear arithmetic over
integers and uninterpreted functions. ULTIMATE AUTOMIZER
was used in revision 14553 from the trunk and used its SV-
COMP’15 configuration with z3 as SMT solver. The bench-
marks were executed using BencrExec [17] in version 0.5.

Presentation and Availability. The results, tools, and ver-
ification tasks that we used in our evaluation are available on
our supplementary web page.ﬁAH reported times (CPU time)
are rounded to two significant digits. For verification runs
where the verifier claims to have found a bug, we distinguish
between expected alarms, which are alarms for programs
with a known specification violation, and unexpected alarms,
which are alarms for programs without known specification
violations. Unexpected alarms may occur if, due to a lack
of precision, a verifier reports an infeasible error path. An
expected alarm can still be a false alarm, if the witness is
incorrect, i.e., it does not describe a feasible error path. Our
knowledge about existing violations is based on the verdicts
of the SV-COMP communityEl

Claim 1: Witness Validation Across Verifiers. Our
first experiment represents a feasibility study showing that
we were able to implement a witness exchange format for
bugs in C programs for two different verifiers, CPACHECKER
and UrtimMaTE AuTomizer, which both can take the roles of a
verifier (producing witnesses) and a witness validator.

Results. We produced error witnesses with CPAcuEckEr and
Automizer, and then used them as input for both verifiers,
so that each verifier had to validate its own witnesses, and
the witnesses of the other verifier. In total, CPAcHECKER
produced 634 witnesses, 38 of which are considered to be
unexpected alarms, and Auvrtomizer produced 309 witnesses,
15 of which are considered to be unexpected alarms.

Validation Times. Figure[5a]displays the results for validating
witnesses produced by CPAcHECKER with CPAcHECKER itself
and shows that validating the witnesses is at least as fast,
and often much faster, than producing the witnesses. This
confirms our expectations and matches the results of ear-
lier work [18], where an internal, non-exchangeable witness
format was used. The same trend is observable in Fig.
which displays the results for cross-validating witnesses pro-
duced by Avromizer with CPAcHECKER, and in Fig. which
displays the results for validating witnesses produced by Au-
tomizer with Auromizer itself. We also note that Auromizer
has a slightly higher start-up time (about 6 seconds) than
CPAcHECKER (about 3 seconds) before any results are returned.
Figure displays the results for cross-validating witnesses
produced by CPAcHECKER with Automizer. Due to the differ-
ent start-up times observed above, there are some verification
tasks where validating the witnesses with CPAcHECKER was
quicker than validating them with Avromizer, but the trend
of witness validation often being faster than verification is
observable here, too.

Acceptance and Rejection Rates. In order to show that the ver-
ifiers actually use and check the witnesses provided to them,
a closer inspection of the witness acceptance and rejection
rates is required. Table[I]shows the total amounts of accepted
and rejected witnesses for each of the four combinations.
Runs where the witness validation timed out are counted as
rejections. The high rate of accepted expected alarms across
verifiers, 69 % and 70 %, respectively, confirms the earlier

Shttps://github.com/dbeyer/sv-benchmarks
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Figure 5: Scatter plots for pairwise composition for witness validation: CPU seconds for producing a witness on the x axis,
CPU seconds for witness validation on the y axis. A caption “p/c” abbreviates “witnesses produced by p that are accepted by ¢’

Table 1: Accepted and Rejected Witnesses

Validator CPACHECKER AUTOMIZER
Producer CPACHECKER | AuTOMIZER  [CPACHECKER | AUTOMIZER
Accepted 615 205 419 305
Rejected 19 104 215 4
Expected alarms only:
Accepted 585 204 418 291
Rejected 11 90 178 3
Accept. rate | 98% 69 % 70% 99 %
Unexpected alarms only:
Accepted 30 1 1 14
Rejected 8 14 37 1
Reject. rate 21 % 93 % 97 % 7%

observation that the tools understand each other’s witnesses.
The high rejection rates of 93 % and 97 % for the unexpected
alarms across the tools, on the other hand, confirm that
our approach is suitable for increasing the confidence in
counterexamples. It is also important to notice that not all
expected alarms are in fact accompanied by correct witnesses.
A verifier may produce an incorrect witness that does not
describe a feasible error path while missing the actual bug.
For example, CPAcuEckER produces a witness for the ver-
ification task elevator_spec3_product31l_false-unreach-
call.cil.c, but Auromizer rejects this witness. Manual
inspection reveals that the witness contains a sequence where
the value 200 is assumed for a variable __cil_tmp4 in line
3673 of the verification task, followed by assuming the value 0
for the result of the expression __cil_tmp4 / 3, in line 3675
of the verification task, an error caused by a technical lim-
itation of the chosen SMT configuration. The rejection of
the described path is therefore justified and desirable. For
validating their own witnesses, both the high rate of accepted
expected alarms (98 % and 99 %) and the low rate of rejected
unexpected alarms (21 % and 7%) is to be expected, be-
cause both the verification run and the witness validation are
equally (im)precise, and thus verifiers will repeat the same
mistakes they made when producing the witnesses.

Claim 2: State-Space Reduction. In order to support
the claim that the guidance provided by witnesses is able to
significantly reduce the state space that has to be explored
by the validator, we compare the code coverage between
producing witnesses and validating those witnesses as an
approximate indicator of the explored state space. The term
code coverage in this section refers to the code that is visited
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Figure 6: Scatter plots that illustrate a reduction of the
code coverage with values for the verification runs on the x
axes and values for the witness-validation runs on the y axes

by the verifier in order to determine the verification result.
Another indicator that could be used would be the amount
of states in the abstract reachability graphs, however, this
measure would not be comparable across different abstract
domains, and even though we used the same abstract domain
for both configurations in our comparison, we want our results
to be comparable to future experiments. For this experiment,
we chose the predicate analysis of CPAcuecker. We applied
two code-coverage measures: line coverage, which counts
each visited line once, and condition coverage, which counts
each visited case of each boolean sub-expression once.

Results. Figure [6a] illustrates that the line coverage of the
witness-validation run never exceeds and is often significantly
lower than during the initial verification run. Figure[6h]shows
the same trend for condition coverage, but with an even more
extreme reduction of coverage during witness validation in
comparison to the initial verification run. Condition coverage
is a better indicator for the reduction of the number of
explored program paths.

Claim 3: Witnesses Improve Effectiveness and Effi-
ciency. One of our claims is that for many verification
tasks, it is faster to use a quick, low-precision verification
followed by a high-precision witness validation (thereby ob-
taining high-precision confidence in the counterexamples),
than to use the slow, high-precision verification exclusively.
To support this claim, we selected the DeviceDrivers bench-
mark set of SV-COMP’15, which contains 1 650 verification
tasks, 203 of which contain a known specification violation.
We used two different predicate-analysis configurations of
CPACHECKER, one using linear arithmetic (LA) and one using
bit-precise arithmetic (BP). We used both configurations to
validate the witnesses produced by LA.
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Figure 7: Quantile plot showing that LA followed by a BP
witness validation and rerunning BP on rejections is more
efficient and effective than just running BP

Results. We made the following observations:

1. BP produces 1128 expected proofs, while LA produces
1164 expected proofs. The difference of 36 results is
because the bit-precise configuration BP times out on tasks
for which LA is quick enough to provide a proof.

2. BP produces 59 expected alarms for programs with known
specification violations, and 10 unexpected alarms for
programs without a known violation, whereas LA produces
77 expected alarms and 14 unexpected alarms (91 in total).
The confidence in the alarms reported by LA is initially
restricted to the limitations of linear arithmetics.

3. 50 of the 91 witnesses produced by LA were confirmed by a
BP validation. The confidence in these remaining witnesses
is thus strengthened by the bit-precise analysis. Among
the 41 rejected witnesses were 11 of the 14 unexpected
alarms. 3 witnesses for tasks where both configurations
produced unexpected alarms were confirmed by BP.

4. The sum of CPU time required to verify the tasks with
confirmed witnesses with LA and confirming those wit-
nesses with BP amounts to 0.74 h, while verifying the same
verification tasks with BP takes 3.1h.

5. If we sum the CPU time of all tasks with LA-verification
and BP-validation and add the sum of CPU time used
by BP to verify those tasks from scratch for which the
LA-witness was rejected by BP (which is 4.2h), we obtain a
total CPU time of 53 h. This is 9h less than the total CPU
time for verifying all tasks with BP (62h), even though we
now have 1164 expected proofs as well as 66 witnesses in
which we have bit-precise confidence, only 3 of which are
unexpected alarms (50 from LA which were confirmed by
BP and 16 from consecutively running BP on the tasks for
which the witness was rejected). This effect is visualized
in the quantile plot in Fig. [] We know that the BP rerun
could also solve another 9 tasks, however, the sum of the
CPU time for running LA, validating the witnesses, and
rerunning BP would exceed the time limit in these cases.
In summary, we observe that for this set of verification

tasks, using plain bit-precise predicate analysis for verifica-

tion is slower than verifying the tasks with predicate analysis
with linear arithmetics (LA) followed by witness validation
with a bit-precise predicate analysis (BP), while both provide
the same bit-precise confidence in the counterexamples. At
the same time, the efficiency of the predicate analysis with
linear arithmetics allows to produce more proofs before the
timeout than the bit-precise predicate analysis. Therefore,
we propose a workflow where the tasks are first verified by

LA, the witnesses of LA are validated by BP, and tasks for

which the witnesses were rejected are verified by BP.

As a sanity check, we also validated the witnesses produced
by LA with LA. As expected, almost all of the witnesses are

confirmed, so we are confident that the increased precision of
the BP witness validation is really the cause of the observed
witness rejections, and that the witnesses confirmed by BP
are valid even with bit-precise semantics, even though they
were produced by an analysis restricted to linear arithmetics.

Validity. We chose the DeviceDrivers benchmark set for this
experiment, because it contains real-world C code, and, con-
trary to some of the other SV-COMP’15 benchmark subsets,
it contains many programs that are large in terms of lines of
code and use a wide variety of the programming-language
features, such as structs, pointers, pointer arithmetics, and
arrays. For verification tasks from other sets that are not
as complex, we observed that the bit precise analysis of-
ten performs as well as the predicate analysis using linear
arithmetics. In our experiment, the goal was to show that
witnesses can be used to improve the results for cases where
the more precise analysis is too slow, so it would be invalid
to include tasks where this premise does not hold.

6. CONCLUSION

If the goal is as ambitious as verifying large software sys-
tems, it is required to combine the strengths of different
verification techniques and as a precondition, unify their
results and make them exchangeable. The objective of our
work was to close the gap of a missing exchange format for
error witnesses and to establish witness validation as part
of the verification and validation process. It is important to
have such a format in the verification community, in order to
eliminate false alarms by witness validation, and in order to
leverage the potential of combining different verification tools:
Once a verifier outputs its error witness in the exchangeable
format, no extra implementation work is necessary for wit-
ness validation; the witness can be given directly as input to
an off-the-shelf external witness validator (we provide two
open-source implementations). Our experience shows that it
is feasible to support such a format, despite the differences in
the internal representation of the control-flow of programs.

Stepwise testification goes one step beyond witness vali-
dation: Thanks to exchangeable error witnesses, it is easy
to design verification and validation processes where vari-
ous tools can interact, complementing and enriching each
other. Our experiments reveal that it is worthwhile to chain
testifiers that produce increasingly more restricted witnesses.

We performed an extensive experimental evaluation to
show that (1) the proposed error-witness exchange format
is flexible enough to enable the combination of two very dif-
ferent verification tools, (2) witnesses effectively reduce the
state space that a validator needs to explore, and (3) witness
validation is on average significantly faster than verification
without the guidance of a witness, and witness validation can
confirm and accept witnesses with reasonably good accep-
tance and rejection rates. Considering that this is the initial
study on witness validation, the results look very promising
to continue in this direction. Evidence of the success of
witness validation was also given by its application in the
last edition of the competition SV-COMP 2015.
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7. APPENDIX: REPLICATION PACKAGE

This paper comes with a replication package, which has
been successfully evaluated by the Replication Packages Eval-
uation Committee. Our supplementary web pageEl provides
all experimental data, and a virtual machine that contains
our implementations and has been prepared such that our re-
sults can be replicated easily. In this section, we will give an
overview over our provided reference implementations, such
that the reader may understand our approach and derive an
own implementation of our concepts. Further details on how
to replicate our experiments inside or outside of our virtual
machine can be found on the supplementary web page

7.1 Implemented Guards

In our experiments, we used several of the source-code and
state-space guards that are mentioned in Sect.[£.I] The most
important ones are listed below.

Source-Code Guards. The guards startline and endline
are source-code guards that map a transition to lines in the
program. Valid values are integer numbers that correspond
to actual line numbers in the original program. A transi-
tion matches if the observed analysis takes a control-flow
edge that starts at the given startline and, if applicable,
ends at the optionally given endline. We strongly recom-
mend startline as a baseline to be supported by all imple-
mentations, such that verifiers (testifiers) can rely on their
witnesses being consumable by a wide range of witness val-
idators. Program line numbers are an established concept
in computer science that programmers are familiar with:
there is tool support for navigation based on line numbers
in development environments, debuggers, and editors. The
source-code guard control is used to distinguish between
different branches in the program. Valid values for this guard
are condition-true and condition-false, where for a con-
ditional branching in the original program, condition-true
refers to the then-branch and condition-false to the else-
branch. The transition matches if the observed analysis takes
a control-flow edge that represents the specified branch of a
branching edge, but not its counterpart.

State-Space Guards. The guard assumption is the only
state-space guard that we used so far. Valid values for this
guard are expressions of the input programming language,
suchasx == 0; y > 5;. The variables used in these assump-
tions must appear in the original program code (auxiliary
variables that verifiers use internally are not allowed to ap-
pear in these expressions). Local variables that have the
same name as global variables or local variables of other
functions can be qualified by using a tag with the key as-
sumption.scope (see below). After the witness automaton
takes a transition with an assumption guard, the assump-
tions can be used by the analysis to reduce (strengthen) the
state space. By using the syntax of the input programming
language for expressing the assumptions, parsing the expres-
sions becomes an easy task for a witness validator; the same
parser that was already used to parse the program can be
reused. With this decision, we follow the examples of the
ANSI/ISO C Specification Languageﬁ and the Brast Query
Language |7]. The witness validator must map the variables
in the given assumptions to the variables in the program.
Due to scopes, there may be name conflicts. We propose to
explicitly state the variable scope along with the assumption;
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therefore we use the key assumption.scope. Valid values for
tags with this key are names of functions that are defined
in the program. The witness validator will first look for a
variable with a matching name in the scope of the provided
function name before checking the global scope. The value
of a data tag with this key applies to the assumption as a
whole. It is not possible to specify assumptions about local
variables of different functions.

7.2 Witnesses in CPACHECKER

In CPAcHECKER, the successor of a witness control state for
a given CFA edge is computed by matching the source-code
guards of the transitions against the CFA edge as described
earlier, such that there is one successor control state for
every transition that matches the CFA edge. During the
strengthening phase of the configurable program analysis
(CPA), the other component program analyses that run in
composition with the witness CPA may strengthen their in-
formation based on the state-space guards of the transition.
This strengthening from witness assumptions is currently
implemented for the value analysis and the predicate analy-
sis. For the value analysis, we conjunct the abstract state
with concrete variable values (the new values were previ-
ously unknown, or contradict the value analysis state and
thus make the abstract state unreachable, which results in
reducing the state-space that has to be explored). For the
predicate analysis, the assumption is conjuncted to the path
formula. For more information on these analyses and their
implementation within CPAcuECKER, we refer to our previous
work [15}16].

7.3  Witnesses in ULTIMATE AUTOMIZER

The validation of witnesses in Urrimate Automizer is done
in two steps. In the first step, a new CFA is constructed.
The paths of this CFA represent the paths of the original
CFA that comply with the source-code guards of the witness
automaton: the new CFA is constructed as a product of
the original CFA and the witness automaton. The nodes
of this product are pairs (I, q), where [ is a location of the
CFA and ¢ is a control state of the witness automaton. The
product contains an edge from (I, q) to (I',q") labeled with op
if (I, 0p,1’) is a CFA edge and
1. ¢=+¢ is a transition in the witness automaton such that

the CFA edge (I,0p,l’) is one of the edges that is repre-

sented by o,

2. there is an epsilon transition from ¢ to ¢, or

3. the states g and ¢’ coincide (implicit stuttering edge).
Note that in the current implementation, the state-space
guards and the source-code guard control of the witness are
ignored.

In the second step, Urrmvate Autowmizer verifies if the re-
sulting CFA satisfies the specification using an automata-
theoretic verification approach [35]. The witness is confirmed
if a violation of the specification is found.

When writing a witness automaton, ULTIMATE AUTOMIZER
produces the source-code guards startline, endline, and
control, as well as the state-space guard assumption. The
production of a witness is straightforward, because UrtiMaTE
Avutomizer already computes the necessary information in
order to provide human-readable counter-examples.
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