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As both CPUs and GPUs become employed in a wide range of applications, it has been acknowledged that both
of these Processing Units (PUs) have their unique features and strengths and hence, CPU-GPU collaboration
is inevitable to achieve high-performance computing. This has motivated a significant amount of research
on heterogeneous computing techniques, along with the design of CPU-GPU fused chips and petascale
heterogeneous supercomputers. In this article, we survey Heterogeneous Computing Techniques (HCTs)
such as workload partitioning that enable utilizing both CPUs and GPUs to improve performance and/or
energy efficiency. We review heterogeneous computing approaches at runtime, algorithm, programming,
compiler, and application levels. Further, we review both discrete and fused CPU-GPU systems and discuss
benchmark suites designed for evaluating Heterogeneous Computing Systems (HCSs). We believe that this
article will provide insights into the workings and scope of applications of HCTs to researchers and motivate
them to further harness the computational powers of CPUs and GPUs to achieve the goal of exascale
performance.
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1. INTRODUCTION

Computer architects, programmers, and researchers are now moving away from the
CPU versus GPU debate [Gregg and Hazelwood 2011; Lee et al. 2010; Mittal and Vetter
2015; Vuduc et al. 2010] toward a CPU and GPU paradigm where the best features of
both can be intelligently combined to achieve even further computational gains. This
paradigm, known as Heterogeneous Computing (HC), aims to match the requirements
of each application to the strengths of CPU/GPU architectures and also achieve load
balancing by avoiding idle time for both the Processing Units (PUs). The importance of
heterogeneous computing can be seen from the fact that an astonishingly large fraction
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of TOP500 and Green500 supercomputers now use both CPUs and GPUs [Green500
2014; Top500 2014]. An even closer level of integration between CPUs and GPUs can
be achieved by fabricating them on the same chip, and many such processors have
already been produced, such as AMD Llano [Branover et al. 2012], Intel Sandy Bridge
[Yuffe et al. 2011], Ivy Bridge [Damaraju et al. 2012], etc.

The vastly different architectures and programming models of CPUs and GPUs, how-
ever, also present several challenges in achieving such collaborative computing. Due
to the interaction between them in a heterogeneous system, optimizing performance
and energy efficiency requires taking into account the characteristics of both the PUs.
For this reason, conventional CPU-only or GPU-only optimization techniques may not
work well in a heterogeneous system and hence, novel techniques are required to re-
alize the potential and promise of heterogeneous computing and also move toward the
goals of exascale performance.

Contributions. In this article, we provide an extensive survey of techniques and
architectures proposed for heterogeneous computing. We first discuss the motivation for
and challenges involved in heterogeneous computing and also clarify the terminology
used in this research field (Section 2). In Section 2, we also discuss how the hardware
architecture of both CPUs and GPUs have evolved over the years to identify important
trends. We then analyze the research works from several perspectives to highlight
their similarities and differences. From the perspective of researchers and algorithm
designers, we summarize the works related to CPU-GPU workload partitioning and
classify them based on their key idea, such as nature of scheduling (dynamic/static),
basis of division of work among PUs, etc. (Section 3 and Tables I and II). From the point
of view of programmers and application developers, we classify the works based on the
languages used for programming CPUs and/or GPUs in those works and also review the
techniques proposed that are related to compiler and programming framework/library
(Section 4 and Tables III and IV).

We then discuss the techniques for saving energy in HCSs and classify them
based on their essential approach (Section 5 and Table V). Further, we review
research works dealing with fused (integrated) CPU-GPU chips to show their relative
features/limitations compared to the discrete GPUs (Section 6 and Table VI). Further-
more, we classify the research works based on their application (or workload) domain
and discuss benchmark suites designed for evaluating HCSs (Section 7 and Tables VII
and VIII). We conclude this article with a discussion of the future trends (Section 8).
We hope that this article will be useful for a wide range of readers, including computer
architects, developers, researchers, and technical marketing professionals.

Scope of the Article. Since it is practically infeasible to review the broad spectrum of
research works, we take the following approach to limit the scope of this survey. We
discuss only those heterogeneous computing systems/techniques that use both CPUs
and GPUs, although it is also possible to build heterogeneous systems using Field
Programmable Gate Arrays (FPGAs), etc. We discuss heterogeneous computing tech-
niques proposed for both discrete and fused CPU/GPU architectures. We do not include
research works that obtain performance improvements from using GPUs alone or that
discuss load balancing within a single GPU or within multiple GPUs only. In other
words, we include works where a CPU is used as a processing unit also, in addition to as
a host running operating system. We do not include circuit/device/microarchitectural
level research works; rather, we include research works dealing with runtime and
algorithm/application execution, compiler, programming framework/language/library
and system-level techniques, etc. We mainly focus on the key research idea of the pa-
pers to gain insight, but we also mention the CPU/GPU used in their experiments to
get an idea of their evaluation platform.
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2. PROMISES AND CHALLENGES OF HETEROGENEOUS COMPUTING

2.1. Clarifying the Terminology

Since different research works use different terminologies, we first clarify them and
also mention the nomenclature that we use in this article. In literature, CPU-GPU
heterogeneous computing approaches have also been referred to as collaborative, hy-
brid, co-operative or synergistic execution, coprocessing, divide and conquer approach,
etc. In accordance with its purpose of use, a GPU is conventionally referred to as an
accelerator. However, given that CPU-GPU workload division based techniques on het-
erogeneous systems use CPUs also to get performance gain (and not just as a host),
sometimes a CPU is also referred to as an accelerator [Sun et al. 2012]. Similarly,
while a CPU is generally termed as host and GPU as a device, in the context of HCSs,
some researchers use the term “device” to refer to both CPUs and GPUs [Liu and Luk
2012; Veldema et al. 2011]. To maintain clarity, we do not use the term accelerator to
refer to GPU or device as a generic term for CPU or GPU. Instead, in this article we
use PU (processing unit) as the generic term for either CPU or GPU, following other
researchers (e.g., Binotto et al. [2010]). A few other equivalent terms used in literature
are Computing Unit (CU) [Verner et al. 2011], Computing Element (CE) [Li et al. 2012],
and Processing Element (PE) [Tsoi and Luk 2010].

At the architecture level, a chip that has both CPU and GPU integrated on the same
chip is referred to as Accelerated Processing Unit (APU) or Single-Chip Heterogeneous
Processor (SCHP). This is also referred to as a fused or integrated system, in contrast to
a conventional discrete system, which has CPU and GPU on different chips, connected
through a Peripheral Component Interconnect Express (PCIe) bus.

2.2. Evolution of Hardware Architecture of PUs

Before delving into heterogeneous computing, it is interesting to note how the hardware
architecture and performance of each PU individually have evolved over time. For
brevity, we only discuss some key parameters and focus on the last seven to eight years
to see the trends by sampling a few products.

2.2.1. Transistor Count. A few years ago, CPUs had nearly 1B transistors [Wendel et al.
2010], while the recently announced Oracle SPARC M7 CPU will have more than
10B transistors on chip [Morgan 2014]. Similarly, the GT200 GPU (2008) had 1.4B
transistors, while the recent Geforce GTX TITAN X GPU has 8B transistors [Pirzada
2015].

2.2.2. Core Count. Earlier CPUs had only one or two cores, while recent CPUs have
8 to 32 cores [Fluhr et al. 2014; Morgan 2014], and CPUs with more than 60 cores
are likely to be available in the near future [Gardner 2014]. Along similar lines, the
number of CUDA cores in GeForce GTX 280, GTX 480, GTX 680, and GTX TITAN X
GPU is 240, 448, 1536, and 3072, respectively [NVIDIA 2015].

2.2.3. Cache Size. With increasing number of cores, the size of Last Level Cache (LLC)
on a CPU is also increasing [Mittal 2014b]. The 45nm POWER7 processor had 32MB
Embedded DRAM (eDRAM) LLC [Wendel et al. 2010], the 32nm POWER7+ pro-
cessor had an 80MB eDRAM LLC [Zyuban et al. 2013], while the 22nm POWER8
processor has a 96MB eDRAM LLC [Fluhr et al. 2014]. Earlier GPUs only pro-
vided software-managed caches and not hardware-managed caches; however, as the
GPUs move toward general-purpose computing, they are now featuring increasingly
larger-sized hardware-managed caches. For example, GT200 architecture GPU did not
have an L2 cache, the Fermi GPU has 768KB LLC, the Kepler GPU has 1536KB LLC,
and the Maxwell GPU has 2048KB LLC [Mittal 2014a].
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2.2.4. 3D Stacking. 3D stacking facilitates high bandwidth and memory capacity
[Poremba et al. 2015] and hence, both CPUs and GPUs are increasingly moving to-
ward use of 3D stacking; for example, Intel’s Knights Landing [Gardner 2014] and
NVIDIA’s Pascal GPU [Gupta 2014] will feature 3D stacked memory.

2.2.5. Interconnect Bandwidth. The limited bandwidth of PCIe has conventionally re-
mained a bottleneck in GPU performance, especially for applications that transfer
large amounts of data between CPUs and GPUs [Gregg and Hazelwood 2011; Lee et al.
2010]. However, a recently proposed interconnect, called NVLink, promises to offer 5
to 12× bandwidth compared to PCIe Gen3 interconnect [Gupta 2014] and this is likely
to offset the bandwidth limitation of conventional interconnects.

These trends make it evident that the hardware architecture of both CPUs and
GPUs has undergone and is still undergoing a process of never-ending evolution. This
motivates the research on CPU-GPU heterogeneous computing, which is exactly what
we review in this article.

2.3. Motivation for Heterogeneous Computing

While the use of a GPU as a stand-alone device seems a promising idea at first, there are
several compelling reasons for moving toward a heterogeneous CPU/GPU computing
approach:

2.3.1. Acknowledging and Leveraging Unique Architectural Strengths of PUs. Both CPUs and
GPUs possess distinct architectural features. Modern multicore CPUs use up to a few
tens of cores, which are typically out-of-order, multi-instruction issue cores. Also, CPU
cores run at high frequency and use large-sized caches to minimize the latency of a
single thread. Clearly, CPUs are suited for latency-critical applications. In contrast,
GPUs use a much larger number of cores, which are in-order cores that share their
control unit. Also, GPU cores use lower frequency, and smaller-sized caches [Mittal
2014a]. Thus, GPUs are suited for throughput-critical applications. Thus, a heteroge-
neous system can provide high performance for a much wider variety of applications
and usage scenarios than using either a CPU or a GPU alone [Vetter and Mittal 2015].

2.3.2. Matching Algorithmic Requirements to Features of PUs. For applications where data
transfers dominate execution time, or branch divergence does not allow for the uninter-
rupted execution on all GPU cores, CPUs can provide better performance than GPUs.
Not only different applications, but even different phases of a single application may
exhibit properties that make it more suitable for execution on a particular PU [He and
Hong 2010; Nere et al. 2012; Shen et al. 2013]. For example, Ding et al. [2009] note
that for a query processing application, CPUs are more efficient for queries involving
short lists, while GPUs are more efficient for those involving long lists.

2.3.3. Improving Resource Utilization. To meet the worst-case performance requirements,
the CPU-only or GPU-only systems are usually overprovisioned; however, their average
utilization remains low [Mittal 2012; Mittal and Vetter 2015]. Further, after allocating
the task to the GPU (i.e., starting the kernel), the CPU stays idle, which leads to
wastage of energy. Similarly, for applications where the GPU memory bandwidth acts
as a bottleneck [Daga et al. 2011; Spafford et al. 2012], the computational resources
of GPUs remain underutilized. HCTs can address these inefficiencies by intelligently
managing the resources of both PUs [Gelado et al. 2010; Hu et al. 2011]. As a definite
case in point, the June 2014 Green500 list of most energy efficient supercomputers
shows that all the top 15 systems in the list are CPU-GPU heterogeneous systems
[Green500 2014].
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2.3.4. Reaping the Fruits of Advancements in CPU Design. In systems with GPUs, CPUs
have been conventionally used as host for GPU to manage I/O and scheduling; however,
as continuing innovations improve CPU performance even further (refer to Section 2.2),
using their computation capabilities also has become more attractive. Further, while
several initial works report that GPUs provide up to 100× to 1000× speedup, other
researchers claim that on applying careful optimizations on both CPUs and GPUs,
CPUs may equal or even outperform the performance of GPUs [Gummaraju et al.
2010; Lee et al. 2010]. Due to this, different amounts of work divisions to CPUs and
GPUs can lead to vastly different performance [Grewe and O’Boyle 2011]. These points
highlight the importance of using the computational capabilities of CPUs also.

2.4. Factors and Challenges Involved in Heterogeneous Computing

The vastly different architecture, programming model, and performance (for a given
program) of CPUs and GPUs present unique challenges in heterogeneous computing.
Several factors relating to both the PU and the application itself and spanning from
microarchitecture level to system level need to be taken into account for fully leveraging
their potential in an HCS. In what follows, we briefly mention these factors/issues.

2.4.1. PU Specific. (1) Architecture of HCS (discrete or fused). (2) Computation power
of the PUs. (3) Current load on PUs and achieving load balancing between them.
(4) Memory bandwidth and CPU-GPU data transfer overhead; avoiding and/or amor-
tizing overhead of launching GPU kernel and data transfer. (5) Pipelining for over-
lapping data transfer with computation or CPU computation with GPU computation.
(6) Taking into account limitations of PUs, for example, CPU-GPU memory bandwidth,
size of GPU and CPU memory, number of GPU threads and CPU cores, reduced perfor-
mance of GPU for double-precision computations, etc. [Vetter and Mittal 2015]. Also,
aggressively using CPU for computation affects its ability to act as a host, which harms
the performance [Endo et al. 2010; Gregg et al. 2010; Sun et al. 2012].

2.4.2. Application/Problem Specific. (1) Nature of algorithms, for example, amount of par-
allelism, presence of branch divergence. (2) Subdividing the workload and selecting
suitable work sizes to be allocated to PUs. (3) Accounting for data dependencies, for
example, if a task has data dependencies on a previous task, where was the previous
task executed?

2.4.3. Objective Specific. Achieving higher level optimization targets such as energy
saving, performance and fairness, etc.

The HCTs discussed in the next several sections account for these factors to avoid
their impact on performance.

3. ALGORITHM AND PROGRAM-EXECUTION LEVEL WORKLOAD PARTITIONING
TECHNIQUES

Tables I and II categorize the techniques proposed for intelligently partitioning the
workload between a CPU and a GPU at the level of algorithm or during program
execution. We classify the works based on two main criteria, which are as follows.

(1) Dynamic or static scheduling. This answers when the scheduling is done (Table I).
In dynamic division, the decision about running the subtasks or program phases
or code portions on a particular PU is taken at runtime. In static division, the
subtasks that are executed on a particular PU are already decided before program
execution; in other words, the mapping of subtasks to PUs is fixed.

(2) Basis of workload partitioning. This answers why a particular scheduling of tasks
to PUs is done (Table II). This can be motivated by characteristic/capability of
the PU itself and/or the subtasks themselves. For example, assuming that the
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Table I. A Classification of Algorithm/Runtime Level HCTs Based on Nature of Scheduling/Mapping

Classification References
Dynamic Acosta et al. [2010], Agulleiro et al. [2012], Agullo et al. [2011], Albayrak et al. [2012],

Álvarez-Melcón et al. [2013], Becchi et al. [2010], Belviranli et al. [2013], Bernabé et al.
[2013], Bhaskaran-Nair et al. [2013], Binotto et al. [2011], Boyer et al. [2013], Breß
et al. [2013], Chen et al. [2012], Choi et al. [2013], Clarke et al. [2012], Delorme [2013],
Deshpande et al. [2011], Diamos and Yalamanchili [2008], Gao et al. [2012], Garba and
González-vélez [2012], Gregg et al. [2010], Gregg et al. [2011], Hamano et al. [2009],
Hartley et al. [2010], Hawick and Playne [2013], He and Hong [2010], Hermann et al.
[2010], Horton et al. [2011], Humphrey et al. [2012], Huo et al. [2011], Jiang and
Agrawal [2012], Jiménez et al. [2009], Joselli et al. [2008], Kofler et al. [2013],
Kothapalli et al. [2013], Lang and Rünger [2013], Lecron et al. [2011], Lee et al. [2012],
Li et al. [2011], Li et al. [2012], Liu et al. [2012], Ma et al. [2012], Ma et al. [2013],
Mariano et al. [2012], Munguia et al. [2012], Muramatsu et al. [2011], Muraraşu et al.
[2012], Odajima et al. [2012], Papadrakakis et al. [2011], Pienaar et al. [2011], Ravi and
Agrawal [2011], Ravi et al. [2012], Scogland et al. [2012], Shen et al. [2010], Shirahata
et al. [2010], Siegel et al. [2010], Silberstein and Maruyama [2011], Stefanski [2013], Su
et al. [2013], Tan et al. [2012], Teodoro et al. [2009], Teodoro et al. [2012], Teodoro et al.
[2013], Udupa et al. [2009], Vömel et al. [2012], Wang et al. [2013b], Wang et al. [2014],
Wu et al. [2012], Yang et al. [2010], and Yao et al. [2010]

Static Agullo et al. [2011], Balevic and Kienhuis [2011], Banerjee and Kothapalli [2011],
Benner et al. [2010], Benner et al. [2011], Binotto et al. [2010], Boratto et al. [2012],
Boyer et al. [2013], Chai et al. [2013], Chen et al. [2010], Chen et al. [2012], Choi et al.
[2013], da S Junior et al. [2010], Delorme [2013], Dziekonski et al. [2011], Endo et al.
[2010], Gao et al. [2012], Gregg et al. [2011], Grewe and O’Boyle [2011], Hamano et al.
[2009], Hampton et al. [2010], Hardy et al. [2009], Hu et al. [2011], Jetley et al. [2010],
Korwar et al. [2013], Kothapalli et al. [2013], Liu and Luk [2012], Liu et al. [2009], Liu
et al. [2011], Liu et al. [2012], Lu et al. [2012a], Lu et al. [2012b], Luo et al. [2011],
Mariano et al. [2012], Matam et al. [2012], Munguia et al. [2012], Muraraşu et al.
[2012], Nakasato et al. [2012], Nigam and Narayanam [2012], Ogata et al. [2008],
Ohshima et al. [2007], Pajot et al. [2011], Panetta et al. [2009], Park et al. [2011],
Phothilimthana et al. [2013], Pienaar et al. [2011], Pirk et al. [2012], Rahimian et al.
[2010], Ravi and Agrawal [2011], Scogland et al. [2012], Shen et al. [2013], Shukla and
Bhuyan [2013], Singh and Aruni [2011], So et al. [2011], Sottile et al. [2013],
Stpiczynski and Potiopa [2010], Sun et al. [2012], Takizawa et al. [2008], Toharia et al.
[2012], Tsoi and Luk [2010], Tsuda and Nakamura [2011], Venkatasubramanian and
Vuduc [2009], Verner et al. [2011], Wang and Song [2011], Wang et al. [2013a], Xiao
et al. [2011], Xu et al. [2012], Yang et al. [2013], and Zhong et al. [2012]

different subtasks are of similar nature and can run on any of the PUs, the decision
about where a subtask should be mapped depends on which PU provides higher
performance and which mapping helps in achieving load balancing. However, if
subtasks differ, it may be more suitable to map a particular subtask to a particular
PU; for example, highly parallel subtasks can be mapped to the GPU, while the
sequential subtasks can be mapped to the CPU. In some cases, a subtask cannot be
mapped on a particular PU; for example, when the memory footprint of a subtask
exceeds the memory size of the GPU.

In Table II, we also identify the techniques that use pipelining between the CPU and
GPU, such that different phases or dependent subtasks are handled by the CPU and
GPU in an overlapped manner, or transfer of data between them is overlapped with
computation. We now discuss a few of these techniques.

3.1. Scheduling Based on Relative Performance of PUs

Ogata et al. [2008] present a library for 2D Fast Fourier Transform (FFT) that auto-
matically uses both PUs to achieve optimal performance. Using a performance model,
it evaluates the respective contributions of each PU and then makes an estimation
of the total execution time of the FFT problem for arbitrary work distribution and
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Table II. A Classification of Algorithm/Runtime Level HCTs Based on Criterion used
for Workload Division (and Other Aspects)

Classification References
Based on
relative
performance
of PUs for
load balancing

Acosta et al. [2010], Agulleiro et al. [2012], Agullo et al. [2011], Albayrak et al. [2012],
Becchi et al. [2010], Belviranli et al. [2013], Bernabé et al. [2013], Bhaskaran-Nair
et al. [2013], Binotto et al. [2011], Boratto et al. [2012], Boyer et al. [2013], Chai et al.
[2013], Chen et al. [2012], Choi et al. [2013], Clarke et al. [2012], Endo et al. [2010],
Gao et al. [2012], Garba and González-vélez [2012], Gharaibeh et al. [2012], Gregg
et al. [2010], Gregg et al. [2011], Grewe and O’Boyle [2011], Hardy et al. [2009],
Hartley et al. [2008, 2010], Hawick and Playne [2013], He and Hong [2010], Hermann
et al. [2010], Hu et al. [2011], Humphrey et al. [2012], Huo et al. [2011], Jiang and
Agrawal [2012], Jiménez et al. [2009], Joselli et al. [2008], Kofler et al. [2013],
Kothapalli et al. [2013], Lang and Rünger [2013], Lecron et al. [2011], Lee et al.
[2012], Li et al. [2011], Li et al. [2012], Liu et al. [2012], Lu et al. [2012a], Ma et al.
[2012], Ma et al. [2013], Matam et al. [2012], Muraraşu et al. [2012], Nakasato et al.
[2012], Nigam and Narayanam [2012], Odajima et al. [2012], Ogata et al. [2008],
Ohshima et al. [2007], Papadrakakis et al. [2011], Phothilimthana et al. [2013],
Pienaar et al. [2011], Pienaar et al. [2012], Rahimian et al. [2010], Ravi and Agrawal
[2011], Ravi et al. [2012], Rofouei et al. [2008], Scogland et al. [2012], Shen et al.
[2010], Shimokawabe et al. [2011], Shirahata et al. [2010], Shukla and Bhuyan
[2013], Siegel et al. [2010], Singh and Aruni [2011], Sottile et al. [2013], Su et al.
[2013], Sun et al. [2012], Teodoro et al. [2012], Teodoro et al. [2013], Udupa et al.
[2009], Venkatasubramanian and Vuduc [2009], Verner et al. [2011], Vömel et al.
[2012], Wang et al. [2013b], Wang et al. [2014], Wen et al. [2012], Wu et al. [2012], Wu
et al. [2013], Yang et al. [2010], Yang et al. [2013], Yao et al. [2010], and Zhong et al.
[2012]

Based on
low/high
parallelism or
other charac-
teristics of
subtasks/
phases

Álvarez-Melcón et al. [2013], Balevic and Kienhuis [2011], Banerjee and Kothapalli
[2011], Banerjee et al. [2012], Benner et al. [2010], Benner et al. [2011], Binotto et al.
[2010], Breß et al. [2013], Chen et al. [2010], Choudhary et al. [2012], Deshpande
et al. [2011], Diamos and Yalamanchili [2008], Dziekonski et al. [2011], Garba and
González-vélez [2012], Hampton et al. [2010], He and Hong [2010], Hong et al. [2011],
Horton et al. [2011], Hu et al. [2011], Jetley et al. [2010], Joselli et al. [2008],
Kothapalli et al. [2013], Liu et al. [2009], Liu et al. [2011], Ltaief et al. [2011], Lu et al.
[2012b], Luo et al. [2011], Mariano et al. [2012], Munguia et al. [2012], Muramatsu
et al. [2011], Pajot et al. [2011], Panetta et al. [2009], Pirk et al. [2012], Shen et al.
[2013], Shimokawabe et al. [2011], So et al. [2011], Stefanski [2013], Stpiczynski
[2011], Stpiczynski and Potiopa [2010], Su et al. [2013], Teodoro et al. [2009], Toharia
et al. [2012], Tomov et al. [2010], Tsoi and Luk [2010], Tsuda and Nakamura [2011],
Wang and Song [2011], Wang et al. [2013a], Xu et al. [2012], and Yang et al. [2013]

Based on
floating-point
precision of
PUs

Benner et al. [2011], Gao et al. [2012], and Stpiczynski and Potiopa [2010]

Based on
limitation in
size of GPU
memory

Huo et al. [2011], Ogata et al. [2008], Teodoro et al. [2013], and Yao et al. [2010]

Other aspects
Pipelining Balevic and Kienhuis [2011], Banerjee and Kothapalli [2011], Banerjee et al. [2012],

Benner et al. [2011], Chen et al. [2012], Choudhary et al. [2012], Conti et al. [2012],
Deshpande et al. [2011], Hampton et al. [2010], Huo et al. [2011], Jetley et al. [2010],
Korwar et al. [2013], Li et al. [2012], Liu et al. [2011], Ltaief et al. [2011], Pajot et al.
[2011], Panetta et al. [2009], Park et al. [2011], Pienaar et al. [2012], Shimokawabe
et al. [2011], Su et al. [2013], Tan et al. [2012], Udupa et al. [2009], Wen et al. [2012],
Wu et al. [2012], Xiao et al. [2011], Yang et al. [2010], and Yang et al. [2013]

Use of
MapReduce
framework

Chen et al. [2012], Hong et al. [2010], Jiang and Agrawal [2012], Ravi et al. [2012],
Shirahata et al. [2010], Tan et al. [2012], Tsoi and Luk [2010], and Wu et al. [2013]
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problem sizes. It decomposes the computation of FFT into multiple substeps, and uses
profiling along with data transfer time to estimate the execution time of each step. Us-
ing these estimates, the optimal workload division between PUs is found for achieving
load balancing. Their experimental system uses Core 2 Duo E6400 CPU and GeForce
8800 GTX GPU.

Ding et al. [2009] propose an approach for accelerating query processing. Based on
the length of the query, their technique decides whether a query can be more efficiently
analyzed on a CPU or GPU. Based on this, the tasks are put in one of the two task
queues. A third task queue is made with the queries that may be efficiently analyzed on
both CPUs and GPUs. A PU first processes queries from its own task queue and then
from the third task queue. If it is still idle, it can steal a task from the task queue of
another PU, following the idea of work-stealing scheduling. Their evaluation platform
uses Core 2 Duo CPU and GeForce 8800 GTS GPU.

Gregg et al. [2010] propose a workload division technique that schedules works on de-
vices based on several factors such as the contention of devices, historical performance
data, number of cores, processor speed, problem size, and device status; for example,
busy or free. If the CPU is busy with running many threads, the process is run on the
GPU; and if the GPU is significantly faster than the CPU for a process, their technique
waits for the GPU even if there is contention on the GPU. Moreover, if the problem size
is such that the data associated with it cannot fit into the GPU memory, the process
is run on the CPU. They perform experiments using Core 2 Duo CPU and Radeon HD
4350 GPU.

Becchi et al. [2010] propose a technique for automatically scheduling computation
tasks over an HCS and managing data placement. Their technique intercepts function
calls to kernels and schedules them on a PU based on their argument size, historical
profile, and location of data. Their technique accounts for both computation time and
data transfer time. They observe that if the data are already available on a GPU (say),
scheduling a task on a GPU may provide an advantage even if the GPU provides less
performance than the CPU. Thus, their technique defers all data transfers between
PUs until necessary. Their experiments are conducted using a quad-core Xeon CPU
and a Tesla C870 GPU.

Agullo et al. [2011] propose a method for accelerating QR factorization using a
CPU/GPU heterogeneous system. Their method works in three steps. In the first step,
the QR factorization problem is expressed in terms of sequence of tasks of desired
granularity such that they can be executed on a suitable PU. In the second step, CPU
or GPU functions (or kernels) are designed for executing those tasks. Finally, in the
third step, static or dynamic scheduling is used for scheduling these tasks on a CPU or
GPU. Static scheduling utilizes a priori knowledge of the schedule and provides high
performance but does not offer portability. Dynamic scheduling uses a StarPU run-
time system [Augonnet et al. 2011] and thus provides high productivity and the ability
to schedule complex algorithms on heterogeneous systems. StarPU is a tasking Ap-
plication Programming Interface (API) that facilitates the execution of parallel tasks
on heterogeneous computing platforms, and incorporates multiple scheduling policies.
They perform experiments using two HCSs: one with Xeon X5550 CPU and Quadro
FX5800 GPU and another with Opteron 8358 SE CPU and Tesla S1070 GPU.

Lecron et al. [2011] present an HCT for detecting and segmenting vertebra in X-
ray images. The most computation intensive part of vertebra segmentation is edge
detection. After initial loading of images, their technique uses the StarPU system to
map edge detection function on GPUs and CPUs to effectively utilize both PUs. StarPU
also provides functionality to transfer the GPU results to the CPU at the end of com-
putation. Using their approach, multiple CPU cores and GPUs can be simultaneously
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used for achieving further speedup. Their experiments use Core 2 Duo 6600 CPU along
with Tesla C1060 GPU.

Li et al. [2011] propose an HCT for Cryo-EM 3D reconstruction, where tasks (in this
case, individual images) are assigned to a CPU and a GPU based on their relative
performance. The estimates of performance of PUs is updated during each iteration of
execution of algorithm. They also propose techniques to exploit hardware parallelism
provided by each PU by leveraging thread-level and data-level parallelism. Their ex-
periments are performed on a supercomputer whose nodes are composed of two six-core
Xeon X5650 CPUs and a Tesla C2050 GPU.

Deshpande et al. [2011] present two techniques for accelerating image dithering
operation. In image dithering, the amount of parallelism available changes for different
regions of the image. The parallelism is low toward the beginning and end, and is high
in the middle of dithering. Their first technique, called “CPU-GPU handover” uses a
CPU for executing the initial part of the algorithm (step 1), then transfers the data
to a GPU for doing the middle part of the algorithm (step 2), and finally hands over
the data back to the GPU for doing the last part of the algorithm (step 3). In this
technique, although both a CPU and a GPU are used for the task for which they are
most efficient, they are not used together at the same time. Their second technique
called “CPU-GPU hybrid” changes the previously mentioned step 2, such that the work
of step 2 is divided between the CPU and GPU. Thus, the CPU performs steps 1 and 3
alone, and also shares the work in step 2. They have shown that the second technique
provides higher performance than the first technique. Their experiments use a Core 2
Duo P8600 CPU along with a GeForce 8600M GT.

Verner et al. [2011] propose an algorithm for implementing hard real-time stream
scheduling in heterogeneous systems. Their algorithm partitions the incoming streams
into two subsets: one for processing by the GPU and the other for the CPU. Using a
schedulability criteria, it is ensured that both subsets are schedulable. The algorithm
works to find an assignment that satisfies both the deadline constraint of each stream
alone and the aggregate throughput requirements of all the streams. A Core 2 Quad
CPU and a GeForce GTX 285 GPU were used for their experiments.

Grewe and O’Boyle [2011] propose a static partitioning technique for OpenCL pro-
grams on HCSs. Their technique conducts static analysis on OpenCL programs to
extract code features. Using this information, their technique first determines the best
work-division ratio across the PUs in a system. Afterward, it divides the workload into
suitable sized chunks for each PU using machine learning approach. Use of machine
learning makes their technique portable across different implementation platforms and
different implementations of OpenCL. They evaluate their technique using a system
with a Xeon E5530 CPU and a Radeon HD 5970 GPU.

Agulleiro et al. [2012] present an HCT for 3D tomographic reconstruction. In electron
tomography, single-tilt axis geometry is used to decompose a 3D reconstruction problem
into several independent 2D reconstruction tasks. These 2D slices of the volume can be
computed in parallel using a reconstruction method, on either a CPU or a GPU. Their
technique starts a CPU thread and one thread for each GPU, which is responsible
for sending data to the GPU and receiving the slices after reconstruction. When the
threads become idle, more work (slices) is assigned to them and parallel execution takes
place on both PUs. The amount of slices allocated to a PU depends on its performance,
specifically the GPU is allocated alarger number of slices. Thus, their technique uses
on-demand allocation for achieving load balancing. They use two HCSs for evaluation
purposes: one with a quad-core Xeon E5640 CPU and Tesla C2050 GPU and another
with a Quad-core Xeon W3520 CPU and GeForce GTX 285 GPU.

Teodoro et al. [2012] use CPU-GPU on-demand allocation on an HCS for accelerating
an image processing application. To amortize the overhead of a GPU kernel call and
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data transfer, they group large pieces of data to be processed by each kernel and ensure
that each kernel performs a maximum amount of possible computations (i.e., steps of
the image processing algorithm) with the data. Their experiments use a six-core Xeon
X5660 CPU along with a Tesla M2070 GPU.

Boratto et al. [2012] use static scheduling to divide the workload of matrix computa-
tion on a CPU and a GPU for solving the problem of landform attributes representation.
Their evaluation platform uses six-core Xeon X5680 CPUs and Tesla C2070 GPUs.

Matam et al. [2012] present a workload-division technique for generalized sparse
matrix-matrix multiplication (SPGEMM). Due to the irregular computations in
SPGEMM, a GPU does not provide large speedup for this problem. Their technique
observes the speedup of a GPU over a CPU and accordingly assigns a fraction of work
to PUs such that their finish times become equal. They perform experiments using a
system with a Core i7 920 CPU and a Tesla C2050 GPU.

Lu et al. [2012a] present an HCT for accelerating a Rapid Radiation Transfer Model
(RRTM) application used in radiation physics. RRTM involves a loop over a two-
dimensional grid and thus, presents an opportunity for workload division by splitting
along the x or y direction. Their technique divides the workload between a CPU and a
GPU by taking into account their processing power. They use a Message-Passing Inter-
face (MPI) + OpenMP/CUDA programming model, where communication between dif-
ferent nodes takes place using MPI; CPU parallelization is implemented using OpenMP
and the GPU is programmed using CUDA. They perform experiments using a Tianhe-
1A supercomputer whose compute node has two six-core Xeon X5670 CPUs and a Tesla
M2050 GPU.

Hawick and Playne [2013] present an HCT for cluster component-labeling analysis
in critical phase modeling. Their technique performs a simulation of the Potts model on
a GPU, since the Potts system has regular data structure and memory access locality. It
also uses random number generation, which can be efficiently implemented on a GPU.
For connected component labeling, their technique uses a CPU if at least one CPU core
is available, otherwise, this labeling is performed on the GPU itself. This approach
indirectly takes the different performance values of the GPU/CPU into account and
avoids CPU idling. They perform experiments using multiple CPU-GPU HCSs, viz., an
i7-2700K with a GTX590 (utilizing only one of its GPUs), an i7-970 with a GTX580,
two Xeon E5-2640’s with an M2090, two Xeon X5675’s with an M2075, and finally
two Opteron 6274’s with a GTX680. They note that in all cases, the hybrid algorithm
provided higher performance than using just the GPU. They also observed that based
on decreasing order of performance, GPUs can be ranked as GTX680, GTX580, M2090,
GTX590, and M2075.

Choi et al. [2013] present a workload division based scheduling technique for HCS.
They also discuss simple scheduling policies such as the first-free scheduling policy,
which schedules an incoming task on the first available PU; an alternate-assignment
scheduling policy, which schedules the tasks alternately on a CPU and a GPU, and a
performance-history scheduling policy, which computes the ratio of performance of a
GPU over a CPU for a task based on performance history and schedules the task on
a GPU if the ratio is more than a threshold. Their technique provides enhancements
to performance-history scheduling policy by also taking into account the information
about the time when a PU will become available. Using this, along with actual esti-
mated execution time of the task, the completion time of a task on both a CPU and
a GPU can be estimated and the best PU can be chosen to minimize the makespan.
Their evaluation platform is a system with a Core 2 Quad Q9400 CPU and a Geforce
8500GT GPU.

Bernabé et al. [2013] present an HCT for accelerating 3D-Fast Wavelet Transform.
For a GPU, they use kernels implemented in CUDA or OpenCL and for a CPU, they use
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kernels implemented in Pthread. Using these kernels, they first profile the performance
of the GPU and CPU and then allocate the workload to the PUs in proportion to their
performance. They experiment using two systems. The first system has a Xeon E5620
CPU, a Tesla C2050 GPU, and an ATI FirePro V5800 GPU. The second system has a
Core 2 Quad Q6700 CPU and a Tesla C870 GPU. Of the two, the first system provides
higher performance.

Belviranli et al. [2013] present a dynamic load-balancing technique for loop iterations
on HCS. Their technique works in two phases. In the first phase, the relative perfor-
mance of PUs is estimated by experimenting with different task size allocations to the
PU. Small task sizes provide better load balancing, while large task sizes provide bet-
ter resource utilization and an optimal value of task sizes achieves a trade-off between
these two factors. In the second phase, the remainder and majority of computations
are performed based on the relative performance values obtained in the first phase.
The second phase utilizes a modified version of a self-scheduling algorithm [Belviranli
et al. 2013] to achieve load balancing. Their experiments use a system with a 16-core
Opteron 6200 CPU and a Tesla C2050 GPU.

3.2. Scheduling Based on Nature of Subtasks

Liu et al. [2009] present a method to parallelize Nonrigid Registration (NRR) of med-
ical images. They first divide the original serial algorithm into regular and irregular
parts. Then, the regular part is mapped to a GPU since it offers high parallelism.
The irregular part is mapped to a multicore CPU since it requires synchronization
and communication and hence, cannot benefit from GPU implementation. A system
with a dual-core Opteron 2218 CPU and a GeForce 8800 GT GPU is used for their
experiments.

Yao et al. [2010] propose an HCT for HMMER application that is used for biosequence
analysis. Their technique spawns one thread each for the CPU and the GPU; and when
a sequence is retrieved from the database it can be assigned to either a CPU or a
GPU. The HMMER algorithm has a large memory requirement and thus, for large-
sized sequences, shared memory of the GPU becomes unsuitable while global memory
incurs a large performance penalty. Hence, their technique maps sequences larger
than a threshold on the CPU and smaller sequences on the GPU. Their experiments
are conducted on a system with a Core 2 Duo E7200 CPU and a GeForce 8800 GTX
GPU.

Hermann et al. [2010] propose a workload-division technique for interactive physics
simulations. Their technique divides the work of time integration between PUs using
a conventional graph partitioner and then uses work-stealing scheduling to achieve
load balancing. Their work-stealing algorithm takes spatial and temporal locality into
account. For leveraging spatial locality, the tasks using the same data are likely to be
mapped to the same PU. For leveraging temporal locality, at the time of starting a new
time integration step, preference is given to a PU that executed the previous iteration.
Also, during work stealing, their technique takes into account the fact that smaller
tasks are more efficient on the CPU and vice versa. Their experiments use a quad-core
Nehalem CPU and a GeForce GTX 295 GPU.

Benner et al. [2010] propose an HCT for accelerating computation of matrix sign
function using Gauss-Jordan elimination. In each iteration, the factorization of the
current column panel is performed on the CPU. It is because this step involves smaller
data size, BLAS-1 operations, and pivoting, which are not suitable for parallelization.
On the GPU, matrix multiplication and pivoting of the columns outside the current
column panel are performed, since they can be easily parallelized. Their evaluations
are performed using a system with a Xeon quad-core E5405 CPU and a Tesla C1060
GPU.
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Hu et al. [2011] present an approach for accelerating Fast Multipole Method (FMM)
on an HCS. They study the cost of different phases of FMM and the communication
involved. Then, they distribute the work by considering the characteristics of both
the CPU and GPU, such that each PU is given the work that it can do in the most
efficient manner. This approach also provides load balance and minimizes the data
transfer between them. Their evaluations are performed over three CPU-GPU HCSs:
one with a Xeon X5560 CPU and a Tesla S1070 GPU, a second with a quad-core Xeon
Harpertown 5300 CPU and a Tesla S1070 GPU, and a third with a Xeon E5504 CPU
and a Tesla C2050 GPU.

Muramatsu et al. [2011] present an HCT for accelerating Hessenberg reduction
for nonsymmetric eigenvalue problems. Basic Linear Algebra Subprograms (BLAS)
operations form the majority of operations in this algorithm. Their technique assigns
level-1 and level-2 BLAS operations on a CPU, since parallelism present in these
operations is limited and hence, the data transfer cost outweighs the performance
gain obtained by using a GPU. Further, for level-3 BLAS operations, the data are
divided between a CPU and a GPU, and they both perform operations on the data.
This enables leveraging the performance of the GPU, while avoiding CPU idling. They
perform evaluations using a Core i7 920 CPU and a Tesla C1060 GPU.

Hong et al. [2011] propose a technique for accelerating Breadth-First Search (BFS)
application. For each level of BFS algorithm execution, their technique dynamically
selects the most suitable implementation from multiple choices, viz., a sequential ex-
ecution and two possible parallel execution methods on a CPU and a GPU execution.
This decision is taken based on the number of nodes to be traversed in each level. For a
small number of nodes, the parallelism present is small, due to which GPU resources
cannot be fully utilized and overhead of data transfer to a GPU cannot be amortized.
By choosing the suitable PU, their approach optimizes the performance achieved for
each graph size. The experiments are conducted using a Xeon X5550 CPU and a Tesla
C2050 GPU.

Stpiczynski [2011] implements linear recurrence systems involving constant coeffi-
cients on an HCS. The algorithm for solution of this problem can be expressed in terms
of BLAS-2 and BLAS-3 operations. His heterogeneous implementation uses a CPU for
sequential steps and a GPU for parallel steps to leverage the benefits of both. An HCS
with a Core i7 950 CPU and a Tesla C2050 GPU is used for the experiments.

Stefanski [2013] proposes a workload-division technique for Discrete Green’s Func-
tions (DFGs), where short length DFGs are assigned to a CPU and long length DFGs
are assigned to a GPU. They conduct experiments on a system with a quad-core Core
i7 and a GeForce GTX 680 GPU.

In the context of electromagnetic scattering, Gao et al. [2012] present a technique for
implementing the “Shooting and Bouncing Ray” (SBR) method in conjunction with
truncated wedge “incremental length diffraction coefficients” (TW-ILDCs) on HCS.
They map SBR on a GPU since numerous independent ray tubes can fully utilize the
massively parallel resources on the GPU. TW-ILDCs are mapped to a CPU since they
require high-precision, complex numerical calculations to get an accurate result. Eval-
uations are performed using a system with a Core i5 CPU and a GeForce 470 GTX GPU.

Wang et al. [2013a] present an HCT for accelerating mapping of high-resolution
human brain connectomes. Out of different steps of the algorithm, their technique
maps computation of Pearson’s correlation, modular detection, and all-pairs shortest
path to a GPU (based on available parallelism), and the other steps such as computation
of clustering coefficients to a CPU. Their experiments are performed on a system with
a quad-core Core i7-3770 CPU and a Geforce GTX 580 GPU.

Yang et al. [2013] present an HCT for global atmospheric simulations using a cubed-
sphere shallow-water model. This simulation involves processing 2D data arranged
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in the form of rectangular patches. Their technique divides the patch into sub-blocks,
where the computation of a sub-block also depends on its neighbors. Further, the
subblock is divided into an inner part, the computation for which does not depend on
neighboring subblocks, and an outer part consisting of four boundaries. Their technique
schedules the inner part on a GPU to leverage parallelism and the outer part on a CPU
since this part does not present large parallelism. By adjusting the size of the inner part,
their technique adjusts the workload division between PUs to achieve the best possible
performance. They conduct evaluations on a Tianhe-1A supercomputer (configuration
shown previously) and achieve 0.8 PetaFLOP performance.

3.3. Pipelining

Park et al. [2011] present an HCT for ultrawideband signal processing applications.
Their technique divides the imaging component of this application, such that the back-
projection step is carried out on a GPU and the data interpolation step is carried out
on a CPU. Moreover, using asynchronous kernel launch, the CPU starts processing
the next frame while the GPU is completing the current frame. Using this approach,
the latency of the GPU backprojection processing time is effectively hidden. They use
three CPU-GPU HCSs, which, in decreasing order of performance are (1) Xeon 5570 +
Tesla 1060, (2) Xeon 5160 + GeForce 8800 GTX, and (3) Core 2 Duo T9500 + Quadro
3600M.

Xiao et al. [2011] propose an HCT for accelerating protein sequence search using
Basic Local Alignment Search Tool for Protein (BLASTP) sequence search. BLASTP
has four steps (viz., hit detection, ungapped extension, gapped alignment, gapped
alignment with traceback), of which the first three stages consume 99% of the execution
time. Also, execution of the first two stages is performed together, while that of the third
stage is done independently. In their technique, the first two stages are executed on a
GPU and the third stage is executed on a CPU. Also, the database is separated into
several chunks. The GPU executes the first stages for a given chunk, transfers the
output to the CPU and then the CPU starts stage three. Meanwhile, the GPU starts
processing the next chunk. Thus, they improve resource utilization using pipelining.
Their CPU-GPU hybrid experimental system uses a Core 2 Duo CPU and one of the
two following GPUs: Tesla C1060 and Tesla C2050. Of the two GPUs, Tesla C2050
provides higher performance.

Banerjee et al. [2012] present a work-division technique for on-demand pseudoran-
dom number generation. Their random number generator uses parallel random walks
on an expander graph. In this problem, few random bits are required to select a neigh-
bor on the graph. In their technique, these bits are generated on a CPU and are then
transferred to a GPU in an asynchronous manner and then the GPU generates the
random number. Since each walk can be performed independent of each other, massive
parallelism can be obtained and using asynchronous transfer, latency of communica-
tion can be overlapped with that of computation. Their technique performs better than
both CPU-only and GPU-only implementations. Their evaluation platform has a Core
i7 980 CPU and a Tesla C1060 GPU.

Li et al. [2012] propose the use of heterogeneous computing to accelerate Double-
Precision General Matrix Multiplication (DGEMM) algorithm taking into account the
case where the size of matrices is too large to fit in GPU memory. Their technique
divides the matrices into submatrices and multiplies them block by block. Also it
separates the GPU computation from write-back of results. Thus, both data transfer to
a GPU and from a GPU are effectively overlapped with computation on a GPU, so that
the CPU, GPU, and PCIe can work in a pipelined manner, which hides the latency of
computation. Their experimental system has a Xeon X5650 CPU and a Radeon HD5970
GPU and achieves up to 844 GFLOPS performance.
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3.4. Use of MapReduce Framework

Shirahata et al. [2010] propose a map task scheduling technique for HCSs. If a
MapReduce job, whose tasks can be executed on both a CPU and a GPU, is sub-
mitted, a task scheduler uses profiles collected from dynamic monitoring of map task’s
behavior to assign the map task to a suitable PU with a view to minimize the overall
MapReduce task execution time. They implement their technique using Hadoop sys-
tem. The experimental system uses dual-core Opteron 880 CPUs and Tesla S1070
GPUs.

Tsoi and Luk [2010] describe a heterogeneous compute cluster named Axel. Axel
uses Nonuniform Node, Uniform System (NNUS) architecture, where heterogeneous
PUs (viz., CPU, GPU, and Field-Progammable Gate Array (FPGA)) are hosted in a
single node, and all nodes are connected through a system bus. Axel uses MapReduce
framework where a GPU and FPGA work on the Map part in parallel and a CPU
works on the Reduce part. Further, it accounts for processing capability, local memory
and communication capability for processing units to assign works to them and thus,
leverage the parallelism of the GPU, the specialization of FPGA, and the scalability
of CPU clusters. The experimental system uses quad-core Phenom X4 9650 CPUs and
Tesla C1060 GPUs.

Chen et al. [2012] present two approaches for accelerating MapReduce applications
on an HCS. The first approach, called map dividing, dynamically schedules workload to
each scheduling unit on both a CPU and a GPU, and each PU conducts map and reduce
simultaneously. The second approach, called pipelining, runs the map and reduces
stages on different PUs, i.e., each PU only executes one stage of MapReduce. They use
one core of the CPU as the scheduler; and the remaining CPU cores and each streaming
multiprocessor of GPU as one scheduling unit. To achieve load balance while keeping
scheduling costs low, they also propose a runtime tuning method to adjust task block
sizes for each scheduling unit. The experiments are done using AMD Fusion APU
(A8-3850), which integrates a quad-core CPU and an HD6550D GPU.

4. PROGRAMMING LANGUAGES, FRAMEWORKS, AND RELATED DEVELOPMENT TOOLS

4.1. A Classification of Research Works Based on Programming Languages Used

Table III classifies the works discussed in this article based on the programming lan-
guage used. Different languages offer different trade-offs between ease of program-
ming, ability to write optimized code, ability to target multiple PUs and products from
different vendors, etc. For example, OpenCL can be used for both CPUs and GPUs, and
hence, applications written in OpenCL can be easily scheduled on any PU. By com-
parison, CUDA works only on NVIDIA GPUs and AMD Core Math Library (ACML)
and Brook+ can be used to program AMD GPUs only. Similarly, OpenMP, Pthread,
Thread Building Block (TBB), and Math Kernel Library (MKL) are used to write par-
allel programs on CPUs. From Table III, it is clear that for GPU programming, CUDA
is most widely used, which is due to its similarity with C/C++ and the ability to write
optimized code. For CPU programming, OpenMP is most widely used due to its porta-
bility and ease of programming by virtue of use of compiler directives. Note that MKL
is internally parallelized by OpenMP threading; for the sake of clarity, we mention it
separately in Table III. In Section 4.4, we briefly discuss OpenCL due to its capability to
provide heterogeneous computing and omit the discussion of other languages/libraries
mentioned in Table III for the sake of brevity.

Table IV summarizes the works on programming frameworks, compiler techniques,
and runtime systems that facilitate heterogeneous computing. We now discuss a few
of them.
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Table III. Programming Languages Used for GPU and/or CPU in Different Research Works

Classification References
OpenCL Albayrak et al. [2012], Bernabé et al. [2013], Binotto et al. [2011], Boyer et al. [2013],

Conti et al. [2012], Daga et al. [2011], Danalis et al. [2010], Delorme [2013], Gregg
et al. [2010], Gregg et al. [2011], Grewe and O’Boyle [2011], Hetherington et al.
[2012], Kofler et al. [2013], Lee et al. [2013a], Liu et al. [2012], Nakasato et al. [2012],
Phothilimthana et al. [2013], Shen et al. [2013], Spafford et al. [2012], Ukidave et al.
[2013], and Veldema et al. [2011]

CUDA (and its
libraries) on
GPU

Acosta et al. [2010], Agulleiro et al. [2012], Agullo et al. [2011], Álvarez-Melcón et al.
[2013], Anzt et al. [2011], Augonnet et al. [2011], Balevic and Kienhuis [2011],
Banerjee and Kothapalli [2011], Banerjee et al. [2012], Becchi et al. [2010], Belviranli
et al. [2013], Benner et al. [2010], Benner et al. [2011], Bernabé et al. [2013],
Bhaskaran-Nair et al. [2013], Binotto et al. [2010], Boratto et al. [2012], Breß et al.
[2013], Chai et al. [2013], Chen et al. [2010], Choudhary et al. [2012], Clarke et al.
[2012], da S Junior et al. [2010], Deshpande et al. [2011], Diamos and Yalamanchili
[2008], Dziekonski et al. [2011], Endo et al. [2010], Gao et al. [2012], Gharaibeh et al.
[2012], Hampton et al. [2010], Hardy et al. [2009], Hartley et al. [2008, 2010],
Hawick and Playne [2013], He and Hong [2010], Hermann et al. [2010], Hong et al.
[2011], Hu et al. [2011], Humphrey et al. [2012], Huo et al. [2011], Jetley et al.
[2010], Jiang and Agrawal [2012], Jiménez et al. [2009], Korwar et al. [2013],
Kothapalli et al. [2013], Lang and Rünger [2013], Lecron et al. [2011], Lee et al.
[2012], Li et al. [2011], Liu and Luk [2012], Liu et al. [2009], Liu et al. [2011], Ltaief
et al. [2011], Lu et al. [2012a], Lu et al. [2012b], Luo et al. [2011], Ma et al. [2012],
Ma et al. [2013], Mariano et al. [2012], Matam et al. [2012], Meredith et al. [2011],
Munguia et al. [2012], Muramatsu et al. [2011], Muraraşu et al. [2012], Nakasato
et al. [2012], Nigam and Narayanam [2012], Ogata et al. [2008], Ohshima et al.
[2007], Padoin et al. [2012], Pajot et al. [2011], Panetta et al. [2009], Papadrakakis
et al. [2011], Park et al. [2011], Phothilimthana et al. [2013], Pienaar et al. [2011],
Pienaar et al. [2012], Rahimian et al. [2010], Ravi et al. [2012], Rofouei et al. [2008],
Shen et al. [2010], Shimokawabe et al. [2011], Shirahata et al. [2010], Shukla and
Bhuyan [2013], Siegel et al. [2010], Silberstein and Maruyama [2011], Singh and
Aruni [2011], So et al. [2011], Sottile et al. [2013], Stefanski [2013], Stpiczynski
[2011], Stpiczynski and Potiopa [2010], Su et al. [2013], Sun et al. [2012], Takizawa
et al. [2008], Tan et al. [2012], Teodoro et al. [2009], Teodoro et al. [2012], Teodoro
et al. [2013], Toharia et al. [2012], Tomov et al. [2010], Tsoi and Luk [2010], Tsuda
and Nakamura [2011], Udupa et al. [2009], Venkatasubramanian and Vuduc [2009],
Verner et al. [2011], Wang et al. [2013a], Wang et al. [2013b], Wang et al. [2014], Wen
et al. [2012], Wu et al. [2012], Wu et al. [2013], Xiao et al. [2011], Xu et al. [2012],
Yang et al. [2013], Yao et al. [2010], and Zhong et al. [2012]

Brook+ on GPU Park et al. [2011] and Wang and Song [2011]
ACML on GPU Li et al. [2012] and Yang et al. [2010]
OpenMP on
CPU

Álvarez-Melcón et al. [2013], Ayguade et al. [2009], Banerjee and Kothapalli [2011],
Boratto et al. [2012], Chai et al. [2013], Clarke et al. [2012], Conti et al. [2012], Daga
et al. [2011], Deshpande et al. [2011], Hong et al. [2010], Korwar et al. [2013],
Kothapalli et al. [2013], Lang and Rünger [2013], Li et al. [2011], Li et al. [2013], Liu
and Luk [2012], Lu et al. [2012a], Lu et al. [2012b], Mariano et al. [2012], Nigam and
Narayanam [2012], Park et al. [2011], Rahimian et al. [2010], Shen et al. [2010],
Sottile et al. [2013], Teodoro et al. [2013], Veldema et al. [2011], Wen et al. [2012], Wu
et al. [2012], and Yang et al. [2013]

Pthread on
CPU

Balevic and Kienhuis [2011], Becchi et al. [2010], Bernabé et al. [2013], Humphrey
et al. [2012], Singh and Aruni [2011], Su et al. [2013], Wang et al. [2013b], Wang
et al. [2013b], and Xiao et al. [2011]

Intel MKL on
CPU

Agullo et al. [2011], Benner et al. [2010, 2011], Boratto et al. [2012], Clarke et al.
[2012], Dziekonski et al. [2011], Horton et al. [2011], Ltaief et al. [2011], Matam et al.
[2012], Meredith et al. [2011], Spafford et al. [2012], Tomov et al. [2010], and Yang
et al. [2010]

Intel TBB on
CPU

Becchi et al. [2010], Breß et al. [2013], Luk et al. [2009], and Pienaar et al. [2011]
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Table IV. A Classification of Development Tools for HCSs

Classification References
Programming
frameworks,
languages, or libraries

Augonnet et al. [2011], Ayguade et al. [2009], Diamos and Yalamanchili [2008],
Gelado et al. [2010], Hong et al. [2010], Humphrey et al. [2012], Insieme
Compiler [2014], Jablin et al. [2012], Kim et al. [2012], Lee et al. [2013], Li
et al. [2013], Mistry et al. [2013a], Odajima et al. [2012], OpenACC Standard
[2014], OpenMP 4.0 [2014], Pai et al. [2010], Pandit and Govindarajan [2014],
Pienaar et al. [2011], Saha et al. [2009], Scogland et al. [2012], Scogland et al.
[2014], Spafford et al. [2010], Stone et al. [2010], Udupa et al. [2009], and
Veldema et al. [2011]

Compiler-level
techniques for
mapping to CPU/GPU

Kofler et al. [2013], Luk et al. [2009], Phothilimthana et al. [2013], Pienaar
et al. [2012], Prasad et al. [2011], Ravi et al. [2010], and Takizawa et al. [2008]

Design of OpenCL and
related languages,
frameworks, or
extensions

Gummaraju et al. [2010], Kim et al. [2012], Mistry et al. [2013a],
Phothilimthana et al. [2013], Shen et al. [2013], Spafford et al. [2010], Stone
et al. [2010], and Sun et al. [2012]

4.2. Programming Frameworks

Diamos and Yalamanchili [2008] propose Harmony, which utilizes performance esti-
mates to schedule applications in an HCS. They propose online monitoring of kernels
and describe a dependence-driven scheduling that analyzes how applications share
data and decides on PU selection based on which applications can run without block-
ing. Their evaluations are performed on a system with an Athlon64 CPU and a GeForce
8800 GT GPU.

Hong et al. [2010] propose a framework called MapCG that facilitates portability
between a CPU and a GPU at the level of source code. Without requiring modification,
a program can be compiled and executed on either a CPU or GPU using a MapReduce
programming model. Use of OpenCL enables using a single kernel code version for
both PUs in place of providing separate kernel versions for them. Their experimental
platform uses a six-core Opteron CPU and a GeForce GTX 280 GPU.

Pai et al. [2010] present a programming framework, named PLASMA, that enables
writing of portable Single-Instruction, Multiple-Data (SIMD) programs. PLASMA uses
an Intermediate Representation (IR), which provides succinct and clean abstractions
(i.e., free from details of any particular SIMD architecture) to enable programs to be
compiled on different PUs. Then, using a runtime, these programs can be automatically
multithreaded and executed on different PUs, such as a GPU, a CPU, and a Cell BE;
for example, a for loop in a kernel can be split across a CPU and a GPU. The runtime
takes care of load balancing and distributed memory and also ensures that before any
computation, data are moved from the CPU to the GPU or vice versa. Their experiments
show that the performance of portable PLASMA code compares well to the platform-
specific codes. They perform experiments using a system with a quad-core Xeon E5440
CPU and a GeForce 8800 GTS GPU.

Pienaar et al. [2011] present a runtime framework for the execution of workloads
represented as parallel-operator directed acyclic graphs (PO-DAGs) on HCSs. They
identify four criteria, viz., suitability, locality, availability, and criticality, which are im-
portant to consider while performing workload division for achieving good performance.
Suitability shows which PU is most suited, that is, provides the best performance for
a task. Locality shows whether the data required for a task is present in the mem-
ory of a PU and if so, by scheduling the task on that PU, data transfer cost can be
avoided. Availability shows when a PU will become available for scheduling, thus it
might be advantageous to wait for a suitable PU to become free rather than to schedule
in a greedy manner. Criticality shows how the execution of a task affects the overall
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execution time, thus by scheduling the kernels that are on critical path on the most
suitable PU, the makespan can be reduced. Their method uses analytical models for
estimating communication time and online history information for estimating kernel
execution time; and based on these schedules the tasks on different PUs to achieve the
best possible performance. The experiments have been conducted for three classes of
processors: netbook (Intel Atom 330 + NVIDIA ION), laptop (Core 2 Duo + GeForce
320M), and server (Xeon 5500 + Tesla C1060).

Veldema et al. [2011] propose a framework for HC in the context of OpenMP adapted
to Java, called ClusterJaMP. They propose an array package that provides replicated
and partitioned arrays, using which a parallel-for loop can be distributed over PUs.
At the beginning of a program, they execute a microbenchmark and a few bandwidth
tests, and use this information to estimate relative performance of PUs. Using this,
their technique dynamically changes the number and type (GPU or CPU) of PUs to
achieve an optimal communication/computation ratio for achieving the best possible
performance. They perform experiments using an HCS with a Xeon 5550 CPU and a
Tesla M1060 GPU.

Scogland et al. [2012] propose a runtime system for automatically dividing an Ac-
celerated OpenMP region across different PUs. The runtime also handles ensuring
data transfer to PUs for input and output. Accelerated OpenMP uses hetero clause
as a compiler directive, using which a programmer can control whether heterogeneous
computing is used; and if so, how many loop iterations are assigned to a CPU. They
propose enhancing this directive by also providing information on the type of scheduler
(static or dynamic), ratio of performance of PUs, and a factor termed as div (explained
shortly). The static scheduler uses a predetermined work division based on a specified
ratio, while the dynamic scheduler updates this ratio after first execution of parallel
region and uses this to make better decisions in future executions. To get an even better
estimate of the value of the ratio, the div parameter is used to control the number of
iterations to be used for getting the estimate of the ratio. Evaluations are performed
using a 12-core Opteron 6174 CPU and a Tesla C2050 GPU.

Jiang and Agrawal [2012] present an approach called MATE-CG for accelerating
MapReduce applications on parallel heterogeneous environments. Apart from allowing
CPU-only and GPU-only execution, MATE-CG runtime also supports dividing the work
between a CPU and a GPU. The amount of data to be processed by the CPU and
the GPU is decided by a partitioning parameter, which can be decided at runtime
using an autotuning approach based on the iterative characteristic of data-intensive
applications. By collecting profiling data over the first few phases, the value of this
parameter can be found with small overhead. The experimental system uses quad-core
Xeon E5520 CPUs and Tesla C2050 GPUs.

Humphrey et al. [2012] present a Uintah runtime system, which provides a scheduler
for heterogeneous computing. Uintah works on an abstract task-graph representation
of parallel computation and communication to take into account data dependencies
between tasks. Each task has a C++ method associated with it, which performs the
actual computation. A GPU task is represented by an additional C++ method, which is
used for setting up a GPU kernel and invocation. Uintah’s heterogeneous task sched-
uler accounts for the dependencies of tasks. It also determines the order of execution
and ensures correct interprocess communication. Further, it ensures that any vari-
able is not simultaneously used by multiple running tasks. Further, by using CUDA
asynchronous API, Uintah scheduler overlaps data transfer with computation on PUs,
and also ensures that before a GPU task is run, the required data are present in the
GPU memory. The experiments are performed on two systems, one of which has six-
core Xeon X5660 CPUs with Tesla M2090 GPUs and another has 16-core Opteron 6200
CPUs with Tesla 20-series GPUs.

ACM Computing Surveys, Vol. 47, No. 4, Article 69, Publication date: July 2015.



69:18 S. Mittal and J. S. Vetter

Odajima et al. [2012] propose a framework for heterogeneous computing us-
ing StarPU with XcalableMP-dev parallel programming language. XcalableMP is a
directive-based language extension that supports parallel computing over different
nodes in a distributed memory system. XcalableMP-dev extends XcalableMP for clus-
ters equipped with heterogeneous nodes. StarPU is used as the execution engine of
XcalableMP-dev. They demonstrate the use of their framework for the N-body prob-
lem, where the loops are distributed between PUs in proportion to their performance.
Their experimental system uses Opteron 6134 CPUs and Tesla C2050 GPUs.

4.3. Compiler-Level Techniques

Luk et al. [2009] propose the Qilin framework for mapping computations on an HCS.
It provides an API for writing parallelizable programs. Qilin uses a training phase, in
which a performance model is created for each task on each PU. Each kernel version
is executed with different inputs and a linear model is fitted to the observed run-
times. Using this information, optimal workload division is computed and dynamic
compilation is done to instantiate the chosen distribution. Similar to OpenMP, Qilin
is built on top of C/C++; however, unlike OpenMP, which can exploit parallelism only
on CPUs, Qilin can exploit parallelism on both CPUs and GPUs. Their experimental
machine uses a Core 2 Quad CPU along with a GeForce 8800 GTX GPU.

Ravi et al. [2010] propose a compiler and runtime framework for mapping a
MapReduce class of applications to a system composed of multicore CPUs and GPUs.
Their framework starts with simple C functions that has annotations added to it. Using
this, their framework automatically generates the middleware API code for the CPU
and GPU simultaneously. Afterward, the runtime system uses a work-sharing based
approach to dynamically partition the work between CPU cores and the GPU. In work
sharing, the scheduler adds the work in a global work list. An idle processor can obtain
works from this list. They also observe that since GPUs incur large overhead of kernel
invocation and data transfer, the chunk size of work allocated to them should be large.
In contrast, CPU cores are relatively slower but also have smaller latency, and hence,
to achieve better load balancing, the chunk size allocated to them should be small.
Their evaluation system uses an Opteron 8350 CPU with a GeForce 9800 GTX GPU.

Prasad et al. [2011] propose a compiler for compiling MATLAB programs to achieve
execution on heterogeneous processors. After identifying the data parallel regions of
the program, the compiler composes them into kernels. Further, the identified kernels
are mapped to a suitable PU so that the execution of kernels happens synergistically
and the data transfer overhead is minimized. Their compiler does not require the users
to perform manual annotation to specify the arrays whose operations are mapped to
the GPU. Use of their compiler provides a performance advantage over native execution
of MATLAB. Their experimental system uses a quad-core Xeon processor and one of
the following GPUs: GeForce 8800 GTS or Tesla S1070. Their results show that, in
general, Tesla S1070 provides higher speedup than GeForce 8800 GTS. They also note
that a few large-sized problems could not be run on GeForce 8800 GTS due to its limited
memory capacity.

Pienaar et al. [2012] propose an Automatic Heterogeneous Pipelining (AHP) frame-
work for HCSs. AHP takes a C++ program that has been annotated with compiler
directives by the programmer regarding targets of pipelining. Using program annota-
tions, AHP extracts a task graph for each program region. It also profiles the tasks on
PUs of HCS to estimate task execution time and intertask communication time. Then
AHP works to iteratively identify pipeline stages and transforms the task graph to re-
flect the pipeline structure. Afterward, it maps the pipelined task graph to the HCS and
generates code for the optimized heterogeneous pipeline that uses frameworks such as
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Intel TBB, Cilk, OpenMP, and CUDA. Their evaluation platform uses a quad-core Xeon
E5520 CPU and a NVIDIA Tesla C1060 GPU.

Kofler et al. [2013] propose a workload-division technique that uses an Insieme
source-to-source compiler [Insieme Compiler 2014] to translate an OpenCL program
for a single device into an OpenCL program for multiple devices. Afterward, workload
partitioning is performed using on an offline-generated model, which is based on both
static program features (e.g., number of branches, floating point operations, etc.) and
dynamic program features (e.g., data transfer size, overhead, etc.), capabilities of the
PU, and the input data. To achieve the best possible workload division, they use a
Principle Component Analysis (PCA) method. The two HCSs used in their experiments
have (1) an Opteron 6168 CPU with a Radeon HD5870 GPU and (2) a Xeon X5650 CPU
with a GeForce GTX480 GPU.

4.4. Design of OpenCL and Related Frameworks

OpenCL [Stone et al. 2010] is an open standard and has been adopted by several ven-
dors. It facilitates both task parallelism and data parallelism. For each PU, a command
queue can be created to which tasks can be submitted. Use of parallel programming can
be achieved on each PU individually and on all PUs collectively. It provides a higher
abstraction programming framework and hence, it enables the programmer to write
programs that are portable across a wide variety of processing units, although it may
not be able to achieve the highest possible performance on a PU.

Spafford et al. [2010] present a library called Maestro for data orchestration on mul-
tiple OpenCL-enabled PUs. The OpenCL task queue model requires the programmer
to manage separate task queues for each PU. This, in turn, requires the programmer to
have detailed knowledge of each PU. Maestro uses a single high-level task queue and
based on the runtime information, it can automatically transfer data and divide work
among PUs. Maestro uses an autotuning approach to optimize OpenCL code on each
PU and offline profiling to measure relative performance of each PU to decide optimal
work division. Maestro also facilitates overlapping data transfer with computation to
achieve pipelining. Their experimental HCS uses an Opteron 246 CPU with a Radeon
HD 5870 GPU.

Kim et al. [2012] present SnuCL that enables OpenCL applications to run in a
distributed manner on a cluster. SnuCL makes all the OpenCL compatible PUs (e.g., a
CPU or a GPU) on a cluster logically appear on a single local node. SnuCL internally
uses MPI but does not require the use of MPI in the application source. Using SnuCL,
OpenCL applications written for a single node can run on the entire cluster without
any modification. Thus, the application can utilize the PUs of a compute node similar
to the PUs in the host node. This helps the programmer in utilizing all the PUs in
a cluster for heterogeneous computing. Evaluations are performed on a CPU/GPU
heterogeneous cluster whose compute node has a Xeon X5660 CPU with a GeForce
GTX 480 GPU.

5. TECHNIQUES FOR IMPROVING ENERGY EFFICIENCY

Table V summarizes the techniques for saving energy in HCSs (DVFS = dynamic
voltage/frequency scaling). Note that while many other techniques that aim to improve
performance may also save energy, in this table we only show those techniques that
have been evaluated on the basis of energy efficiency. We now discuss a few of these
techniques.

5.1. Workload Partitioning Based Techniques

Liu and Luk [2012] propose an approach for utilizing CPUs, GPUs, and FPGAs
for improving energy efficiency of scientific computing and demonstrate its use for
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Table V. A Classification of Approaches Used for Energy Saving in HCSs

Classification References
By intelligent workload
partitioning and
performance improvement

Choi et al. [2013], Hamano et al. [2009], Liu and Luk [2012], Liu et al.
[2012], Luk et al. [2009], Ma et al. [2012], Rofouei et al. [2008],
Silberstein and Maruyama [2011], and Takizawa et al. [2008]

By DVFS on both CPUs and
GPUs

Liu et al. [2012], Ma et al. [2012], and Wang and Song [2011]

By DVFS on CPUs only Anzt et al. [2011] and Liu et al. [2011]
By resource scaling or
low-power modes

Liu et al. [2011] and Silberstein and Maruyama [2011]

High-Performance Linpack (HPL) benchmark. Their technique uses profiling to record
the runtime power consumption and execution time (which includes data transfer time
and computation time) of all PUs, along with the power consumption of the commu-
nication channel. Using these parameters, the problem of finding the right workload
division among PUs while optimizing energy efficiency is modeled as a linear program-
ming problem. Their experimental HCS has a Xeon W3505 CPU and a Tesla C2070
GPU.

Takizawa et al. [2008] propose Stream Programming with Runtime Autotuning
(SPRAT), a runtime environment for improving energy efficiency by workload divi-
sion. SPRAT uses a performance model that accounts for both the computation time of
PUs and the communication time; and dynamically selects a PU for executing a kernel
such that the system energy is minimized. Their experimental system uses a Core 2
Quad CPU and one of the three GPUs, which, in decreasing order of performance, are
GeForce 8800 GTX, GeForce 8800 GT, and GeForce 8600 GTS.

Hamano et al. [2009] propose an HCT that schedules tasks to PUs with the aim of
optimizing energy efficiency. Their technique takes into account the performance of
tasks on different PUs and the energy consumption of PUs when they are busy and
idle. Using this, their technique estimates the energy efficiency for different mapping
of tasks to different PUs and chooses the mapping that leads to minimum energy
consumption. Their evaluation platform has a Phenom 9850 quad-core CPU along
with a GeForce 8800 GTS GPU.

5.2. DVFS Based Techniques

Wang and Song [2011] present a technique for saving energy in HCSs. Their technique
models the problem of workload division and voltage scaling as an integer linear pro-
gramming problem, with the objective of minimizing energy consumption (of both PUs
and system buses) for a given performance constraint. Voltage scaling and workload
division affect each other and also have an effect on the performance and energy con-
sumption of PUs. Their model also accounts for the communication cost. With the op-
timal workload division, minimum execution time is obtained with highest voltage
levels. Compared to this time, for different percentages of increase in execution time
(i.e., performance loss), the energy consumption can be calculated, using which the
trade-off between performance and energy consumption can be explored. They perform
experiments on a machine equipped with a Core I7-920 quad-core CPU and a Radeon
HD 4870 4870 GPU.

Anzt et al. [2011] propose a technique for saving energy in HCSs while executing
iterative linear solvers. After starting a GPU kernel, the CPU stays in a busy-wait
loop and performs no useful work. During this time, CPU energy can be saved by
using Dynamic Voltage/Frequency Scaling (DVFS) with little performance loss. Fur-
ther, when the execution time of the kernel is large enough, by noting that time once,
the CPU can be transitioned to a sleep state for that duration in future iterations, that
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is, future calls to the kernel since the solver takes nearly the same time in different
iterations. Their experimental HCS uses an eight-core Opteron 6128 CPU and a Tesla
C1060 GPU.

Ma et al. [2012] propose a framework for power management of HCSs. Their tech-
nique divides the workload between a CPU and a GPU based on workload characteris-
tics to achieve load balancing and reduce idling. Afterward, the frequency and voltage
of the CPU and the frequency of the GPU are adjusted to achieve energy savings with
minimal performance degradation. Their experimental system uses a dual-core AMD
Phenom II X2 CPU along with a GeForce 8800 GTX GPU.

Liu et al. [2012] discuss a workload-division technique for saving energy in an HCS
while also meeting task deadlines. Their technique first maps tasks on a CPU or a
GPU, such that their deadlines are met and load balancing can be achieved, and then
applies DVFS to both PUs to save energy. When the average-case execution times are
shorter than worst-case execution times, extra slack is generated that can be further
exploited using DVFS to save extra energy. Their experiments are performed using a
Xeon 5160 CPU and a Radeon HD 5770 GPU.

5.3. Resource Scaling Based Techniques

Liu et al. [2011] propose a technique based on a waterfall model for improving the en-
ergy efficiency of large-scale heterogeneous clusters, in which each node may have
several CPU-GPU pairs. Their technique transitions the node into one of the three
possible power states, namely, busy (all CPUs and GPUs of a node are working), spare
(at least a single CPU-GPU pair is free), and sleep (all CPU-GPU pairs are free). At
the time of reduced workload, a node in the sleep state is powered off and at the time of
additional workload, a node is woken up. Further, their technique schedules the tasks
on an available CPU-GPU pair with the view to minimize their execution time, and
scales the voltage of the CPU to save energy while meeting task deadlines. Finally, to
achieve load balancing, their technique migrates a small fraction of the GPU’s share of
task to the CPU in the same CPU-GPU pair when required. Their performance models
are based on a Tianhe-1A supercomputer, which uses a six-core Xeon X5670 CPU and
a Tesla M2050 GPU.

Silberstein and Maruyama [2011] present an algorithm for optimizing the energy
efficiency of an HCS while running applications comprised of multiple interdependent
tasks. Their algorithm takes into account the energy consumption of each task on a
CPU and a GPU, along with the data transfer cost and constructs a schedule with
provably minimal total consumed energy. They assume that both a CPU and a GPU
can be powered off when idle and incur no overhead when they are powered on. Their
experimental platform uses a Core 2 Quad CPU and a GeForce GTX 285 GPU.

6. FUSED CPU-GPU CHIPS AND COMPARISON WITH DISCRETE SYSTEMS

Discrete GPUs have separate memory spaces from the CPU and hence, data transfer
happens over a connection bus (e.g., PCIe bus), which incurs large overhead. Also, these
systems require large programming effort, since the programmer has to manage the
data that is manipulated by both the CPU and the GPU. To address these limitations,
researchers have designed fused HCSs that feature shared memory space between the
CPU and the GPU. This reduces their data transfer time, which especially benefits the
applications that require large communication between the CPU and the GPU. Table VI
summarizes the works that compare fused CPU-GPU chips with discrete CPU-GPU
systems. We now discuss a few of these works.

Delorme [2013] present two strategies for implementing radix sort on the fused
HCS. The coarse-grained implementation divides the data to be sorted between a
CPU and a GPU at the beginning of algorithm. Afterward, they individually sort the
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Table VI. Classification of Works Related to Fused HCSs

Classification References
Comparison of fused
HCSs with discrete
HCSs

Boyer et al. [2013], Conti et al. [2012], Daga et al. [2011], Delorme [2013],
Hetherington et al. [2012], Lee et al. [2013a], Spafford et al. [2012], Sun et al.
[2012], and Ukidave et al. [2013]

Data transfer
overhead evaluation

Boyer et al. [2013], Conti et al. [2012], Daga et al. [2011], Delorme [2013],
Hetherington et al. [2012], Lee et al. [2013a], and Spafford et al. [2012]

Energy efficiency
evaluation

Spafford et al. [2012] and Ukidave et al. [2013]

data and finally, their outputs are merged to produce single sorted output. The fine-
grained implementation with dynamic partitioning shares data after each pass of the
sorting algorithm. In this implementation, algorithm repartitions data after each step
and thus, a piece of data does not belong to a specific PU, rather the entire data
must be visible to both PUs during kernel execution. This implementation requires
more communication and synchronization than the coarse-grained implementation;
however, it also provides better performance due to better load balancing. He also
shows that both these implementations outperform the state-of-the-art GPU radix sort
implementation, which shows the merit of utilizing a CPU for performing computations
in an HCS. They perform experiments using two APUs, viz., an AMD A6-3650 APU
(with a quad-core AMD CPU and a Radeon HD 6530D GPU) and an AMD A8-3850 APU
(with a quad-core AMD CPU and a Radeon HD 6550D GPU), of which the A8-3850
APU shows higher performance.

Hetherington et al. [2012] compare the performance of Memcached (a key-value store
application) on discrete HCS with that on fused HCS. They observe that on discrete
systems, the time of data transfer between the CPU and the GPU becomes a significant
fraction of the total execution time, which negatively affects the performance of the
GPU. On excluding the data transfer overhead, however, the discrete GPU provides a
large performance gain. Their experiments use two fused HCSs, viz., a Llano A8-3850
APU (with a Radeon HD 6550D GPU) and a Zacate E-350 (with a Radeon HD 6310
GPU) and one Radeon HD 5870 discrete GPU. They note that the fused chips such
as Llano and Zacate have lower computation power compared to the discrete GPU;
however, their ability to avoid the transfer of data enables them to provide higher
performance than the discrete GPU chip.

Similarly, Spafford et al. [2012] show that low CPU-GPU data transfer overhead is
a key advantage of fused HCS, which makes its energy efficiency better than that of a
discrete GPU. At the same time, the penalty of contention between a CPU and a GPU
is higher for a fused HCS (due to fused memory hierarchy) than for a discrete GPU.
Further, compared to a discrete CPU with a nearly similar power budget, the fused HCS
uses a simpler CPU microarchitecture design and hence, it provides lower performance
on computationally intensive tasks than the discrete CPU. Their experiments use a A8-
3850 Llano APU as the fused HCS and a Radeon HD 5670 and a FirePro v8800 as two
discrete GPUs.

Fused HCSs (or APUs) replace the PCIe data transfer cost by fast memory block
transfers between the CPU and GPU memory partitions. Daga et al. [2011] show that
due to this, for a kernel benchmark, an AMD E-series Zacate APU with only 80 GPU
cores provides more than 3× improvement over a discrete AMD Radeon HD 5870 GPU
that has a total of 1600 more powerful GPU cores. They also show that compared to a
discrete GPU, an APU reduces the parallelization overhead.

Lee et al. [2013a] compare the performance of memory accesses on a fused HCS
and a discrete GPU for different memory access patterns. They note that on the fused
HCS, a CPU memory access from the GPU is nearly as fast as a GPU memory access.
This provides the opportunity for the GPU to directly access data on the CPU without
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copying, and it especially benefits the applications with little data reuse. For their
experiments, they use an A8-3850 APU as the fused HCS and a Radeon HD5870 as
the discrete GPU.

Ukidave et al. [2013] study the performance and energy consumption of discrete and
fused HCSs for different FFT implementations with different input sizes. They show
that with growing input data size, the energy efficiency of these HCSs increases due to
better utilization of the data-parallel resources on the GPUs. They also show that the
power consumption increases with the number of OpenCL kernel calls and increased
use of the GPU fetch unit. They perform experiments using two discrete GPUs, viz.,
a GeForce GTX 480 and a Radeon HD 7770, and two fused systems, viz., an AMD
A8-3850 APU and a Core i7-3770 Ivy Bridge processor (which uses Intel Series-4000
embedded GPU).

7. APPLICATION AREAS OF AND BENCHMARKS FOR HETEROGENEOUS COMPUTING

7.1. Application Domains of Heterogeneous Computing

Table VII classifies the works discussed in this article based on their application do-
mains. These domains are by no means exhaustive, as heterogeneous computing can
be applied in several other domains that are also computationally intensive and/or
provide the opportunity for parallelization.

7.2. Benchmarks for Heterogeneous Computing

Due to their unique characteristics, HCSs require special benchmarks to gain insights
into their functioning. To fulfill this need, several benchmark suites have been proposed
that help in meaningfully comparing their architectures and programming environ-
ments against similar systems. Table VIII summarizes these benchmarks. Notice that
some of these benchmarks provide implementations in different languages which allow
comparison using those programming models. We now briefly discuss these benchmark
suites.

SHOC (Scalable HeterOgeneous Computing) benchmark [Danalis et al. 2010] pro-
vides both low-level microbenchmarks (to evaluate architectural features of the system)
and application kernels (to evaluate the features of the system such as intranode and
internode communication between PUs). In addition to the serial version, SHOC pro-
vides an embarrassingly parallel version (which executes on different PUs or nodes
of a cluster, but have no communication between PUs or nodes), and a true parallel
version (which measures multiple nodes, with single or multiple PUs per node, and also
involves communication). Thus, SHOC benchmarks scale effectively across a single PU
to a large cluster. For the same fundamental algorithm, Parboil [Stratton et al. 2012]
provides versions of varying levels of optimizations. This feature enables the compiler
writers to evaluate source and compiler optimizations on different architectures.

The choice of programs in Rodinia [Che et al. 2009] is based on Berkeley’s dwarf
taxonomy and is aimed at covering different types of parallel communication pat-
terns and synchronization techniques. Valar [Mistry et al. 2013b] benchmark suite
provides OpenCL applications for studying interaction of processing units in HCSs.
Programs in this suite are categorized based on whether the majority of algorithm
execution is done on a single PU, or on multiple PUs with or without substantial
communication. Also, the programs are characterized by whether their behavior is
latency sensitive, streaming type, or has a Quality-of-Service (QoS) requirement.

8. CONCLUSION AND FUTURE DIRECTIONS

In recent years, CPUs and GPUs are increasingly being seen as indispensable copro-
cessors, instead of substitutes for each other. As a result, heterogeneous computing has

ACM Computing Surveys, Vol. 47, No. 4, Article 69, Publication date: July 2015.



69:24 S. Mittal and J. S. Vetter

Table VII. Classification of Research Works Based on their Application (or Workload) Domains

Classification References
Maths, numerical
methods, and/or algebraic
routines

Agullo et al. [2011], Álvarez-Melcón et al. [2013], Anzt et al. [2011], Becchi
et al. [2010], Benner et al. [2010], Benner et al. [2011], Bernabé et al.
[2013], Binotto et al. [2010], Boyer et al. [2013], Clarke et al. [2012], Conti
et al. [2012], Daga et al. [2011], Danalis et al. [2010], Diamos and
Yalamanchili [2008], Dziekonski et al. [2011], Endo et al. [2010], Gregg
et al. [2010], Gregg et al. [2011], Gummaraju et al. [2010], Hong et al.
[2010], Horton et al. [2011], Jiménez et al. [2009], Kim et al. [2012], Kofler
et al. [2013], Kothapalli et al. [2013], Lang and Rünger [2013], Lee et al.
[2012], Li et al. [2012], Liu and Luk [2012], Ltaief et al. [2011], Luo et al.
[2011], Ma et al. [2013], Mariano et al. [2012], Matam et al. [2012],
Meredith et al. [2011], Muramatsu et al. [2011], Ogata et al. [2008],
Ohshima et al. [2007], Pai et al. [2010], Pandit and Govindarajan [2014],
Papadrakakis et al. [2011], Pienaar et al. [2011], Prasad et al. [2011],
Scogland et al. [2012], Siegel et al. [2010], Spafford et al. [2012], Stefanski
[2013], Stpiczynski [2011], Stpiczynski and Potiopa [2010], Su et al. [2013],
Takizawa et al. [2008], Tomov et al. [2010], Ukidave et al. [2013], Veldema
et al. [2011], Venkatasubramanian and Vuduc [2009], Vömel et al. [2012],
Wang et al. [2013b], Wen et al. [2012], Yang et al. [2010], and Zhong et al.
[2012]

Video processing,
imaging, and/or computer
vision

Agulleiro et al. [2012], Choudhary et al. [2012], Deshpande et al. [2011],
Hartley et al. [2008, 2010], Lecron et al. [2011], Li et al. [2011], Liu et al.
[2009], Mistry et al. [2013a], Nigam and Narayanam [2012], Pajot et al.
[2011], Park et al. [2011], Pienaar et al. [2012], So et al. [2011], Teodoro
et al. [2009], Teodoro et al. [2012], Teodoro et al. [2013], Toharia et al.
[2012], Tsuda and Nakamura [2011], and Wang et al. [2013a]

Data mining, processing,
and/or database systems

Banerjee and Kothapalli [2011], Banerjee et al. [2012], Becchi et al. [2010],
Breß et al. [2013], Chen et al. [2012], Delorme [2013], Gelado et al. [2010],
Gharaibeh et al. [2012], He and Hong [2010], Hetherington et al. [2012],
Hong et al. [2011], Jablin et al. [2012], Kothapalli et al. [2013], Lee et al.
[2013a], Liu et al. [2011], Munguia et al. [2012], Pandit and Govindarajan
[2014], Pienaar et al. [2012], Pirk et al. [2012], Ravi et al. [2010], and
Shirahata et al. [2010]

Physics Hardy et al. [2009], Hawick and Playne [2013], Hermann et al. [2010],
Humphrey et al. [2012], Jetley et al. [2010], Joselli et al. [2008], Korwar
et al. [2013], Lu et al. [2012a], Nakasato et al. [2012], Panetta et al. [2009],
Rahimian et al. [2010], Teodoro et al. [2013], Wu et al. [2012], and Yang
et al. [2013]

Chemistry Bhaskaran-Nair et al. [2013], Hampton et al. [2010], and Ma et al. [2013]
Bioinformatics and/or
medical science

Agulleiro et al. [2012], Chai et al. [2013], Chen et al. [2010], Hartley et al.
[2008, 2010], Lecron et al. [2011], Li et al. [2011], Liu et al. [2009],
Rahimian et al. [2010], Shen et al. [2010], Singh and Aruni [2011], So et al.
[2011], Wang et al. [2013a], Xiao et al. [2011], and Yao et al. [2010]

Smith-Waterman
algorithm

Chen et al. [2010], Luk et al. [2009], and Singh and Aruni [2011]

N-body simulations Hu et al. [2011], Jetley et al. [2010], Joselli et al. [2008], Nakasato et al.
[2012], Rahimian et al. [2010], and Tsoi and Luk [2010]

Electromagnetics Álvarez-Melcón et al. [2013], Dziekonski et al. [2011], Gao et al. [2012], and
Stefanski [2013]

been actively researched and utilized in a variety of applications ranging from natural
sciences to engineering, etc. Several challenges still remain, and we believe that re-
search in the near future will provide solutions to them. We now briefly mention some
directions for future research.

Many algorithm-level techniques require the programmer to manually partition the
workload between PUs, identify the subtasks suitable for each PU, and/or profile the
performance of each PU. This is a tedious process that does not scale well beyond small
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Table VIII. A Classification of Benchmark Suites for Heterogeneous Computing

Name Languages/Versions
Scaled

Using MPI? Example Application Fields
SHOC Serial, OpenCL, and

CUDA
Yes Scientific computing, linear algebra,

molecular dynamics, etc.
Parboil Serial, OpenMP, OpenCL,

and CUDA
No Image processing, biomolecular simulation,

astronomy, and fluid dynamics
Rodinia OpenCL, OpenMP, and

CUDA
No Medical imaging, bioinformatics, data mining,

and molecular dynamics
Valar OpenCL No Computer vision, digital signal processing,

data mining, and physics

problems. Fully automatic toolchains are required to extend the benefits of heteroge-
neous computing to a wide range of application domains.

Several existing large-scale codes are written in either CPU or GPU languages.
Porting them to HCSs will incur large overhead and is also error-prone. A signifi-
cant amount of work needs to be done before recently introduced HCS programming
frameworks can reach the level of maturity, robustness, and popularity enjoyed by the
conventional CPU programming languages.

Mobile computing systems, which now number nearly equal to the population of the
Earth [International Telecommunication Union 2012], generally provide multimedia
services under real-time performance constraints and hence, they are attractive targets
for acceleration through the use of heterogeneous computing. However, mobile systems
also impose very stringent cost and power budgets [Mittal 2014c]. While the large cost
and power consumption of HCSs may be acceptable in high-end computing systems,
using them in mobile systems calls for an order-of-magnitude improvement in their
energy efficiency.

While fused HCSs address several limitations of discrete HCSs, they also intro-
duce new trade-offs and require the design of suitable data-access strategies to take
full advantage of their fast interconnection. Moreover, existing fused HCSs are not
strictly superior to discrete GPUs on all parameters and hence, despite their poten-
tial, extensive evaluation and development on them has been lacking. Novel solutions
are required at device, architecture, programming, and system levels before the fused
HCSs can become commonplace in mainstream computing systems.

In this article, we have synthesized the research work on heterogeneous comput-
ing by showing the broad spectrum of heterogeneous computing techniques and their
key research ideas and applications. We surveyed research works at different levels
of abstraction, viz., algorithm, runtime, compiler, programming model, etc. We dis-
cussed both both fused and discrete CPU-GPU systems along with the benchmark
suits proposed to evaluate them. It is hoped that this article will be highly beneficial
to computer architects, researchers, and application developers and will inspire novel
ideas and open promising research avenues.
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