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Abstract—In this paper, we address the problem of person re-

identification problem, i.e., retrieving instances from gallery 

which are generated by the same person as the given probe image. 

This is very challenging because the person’s appearance usually 

undergoes significant variations due to changes in illumination, 

camera angle and view, background clutter, and occlusion over 

the camera network. In this paper, we assume that the matched 

gallery images should not only be similar to the probe, but also 

be similar to each other, under suitable metric. We express this 

assumption with a fully connected CRF model in which each 

node corresponds to a gallery and every pair of nodes are 

connected by an edge. A label variable is associated with each 

node to indicate whether the corresponding image is from target 

person. We define unary potential for each node using existing 

feature calculation and matching techniques, which reflect the 

similarity between probe and gallery image, and define pairwise 

potential for each edge in terms of a weighed combination of 

Gaussian kernels, which encode appearance similarity between 

pair of gallery images. The specific form of pairwise potential 

allows us to exploit an efficient inference algorithm to calculate 

the marginal distribution of each label variable for this dense 

connected CRF. We show the superiority of our method by 

applying it to public datasets and comparing with the state of the 

art.  

Keywords—person re-identification; probabilistic inference; 

fully-connected CRF 

I. INTRODUCTION 

In this paper, we address the problem of person re-

identification, which is a standard component of multi-camera 

surveillance system as it is a way of associate multiple 

observations of the same individual over time. In realistic, 

wide-area surveillance scenarios such as airports, metro, and 

train stations, re-identification systems should be capable of 

robustly associating a unique identity with hundreds, if not 

thousands, of individual observations collected from a 

distributed network of many sensors. There are different 

settings of person re-identification task [1]. We consider the 

following one in this work. Suppose picture(s) of a target 

person is provided, the goal is to find all the corresponding 

instances belonging to this target in a large video datasets. A 

typical example of application is to search for and recover the 

trajectory of a suspect from the video collected by networks of 

cameras monitoring the region of interest.  

An automated re-identification system should be able to (i) 

generate candidate pedestrian pictures (called gallery of images 

in this paper) from the video and, (ii) determine which images 

in the gallery come from the target person by comparing them 

with the available target picture (called probe image in this 

paper). We assume that the first sub-problem has been solved 

using some pedestrian detection algorithms [2] and focus on 

the second sub-problem, which is still facing several challenges 

in practice. First, the camera network usually has complicated 

spatial and temporal topology. Therefore, given a query image 

of a person, the candidate set could be very large, introducing 

high levels of uncertainty to person re-identification. Second, 

there is variability in illumination, camera angles and views, 

background clutter, and occlusion over the camera network. In 

particular, the complexity increases in proportion to the scale 

of the camera network. Finally, the human body is articulated, 

and a person’s appearance can change almost continuously. 

Most of the current works about person re-identification 

follow a common pipeline: first, extracting the imagery 

features and constructing a descriptor; and second, evaluating 

the distance (or similarity) between the probe and each element 

in the gallery according to an appropriate metric. The elements 

in gallery that similar to the probe are thought to be targets. 

Motivated by [3], in this paper we take a different angle of 

view for person re-identification problem. The key assumption 

underlying our method is that the elements in gallery belonging 

to the target should not only be similar to the probe, but also be 

similar to each other, under suitable metric. In other words, 

comparisons are made between probe and gallery images, and 

at the same time between each pair of gallery images. We 

express this assumption with a fully connected CRF model in 

which each node corresponds to a gallery and each pair of 

nodes are connected by an edge. A label variable is associated 

with each node to indicate whether the corresponding image is 

from target person. We define unary potential for each node 

using existing feature calculation [7-12] and matching 

techniques [15-21], which reflect the similarity between probe 

and gallery image, and define pairwise potential for each edge 
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in terms of a weighed combination of Gaussian kernels, which 

encode appearance similarity between pair of gallery images. 

The specific form of pairwise potential allows us to exploit an 

efficient inference algorithm [4] to calculate the marginal 

distribution of each label variable for this dense connected 

CRF. The idea of considering similarity between gallery 

images is also exploited in [5]. However, the CRF model used 

in [5] is sparsely connected in which each node is connected 

with its k-nearest neighbors in feature space. In addition, [5] 

solve a MAP problem using graph cut algorithm and can only 

output a hard decision about the label of each gallery image 

without a confident score of the decision. Another related work 

is [6], in which the authors take into account the similarity 

between every pair of images that are consecutive in a ―path‖, 

and formulate the re-identification problem as a binary integer 

programming problem with a set of path consistency 

constraints. However, if the similarity of each pair of images in 

the gallery were considered, just like that in our fully 

connected CRF model, the number of path in [6] would 

become intractable. 

II. REALTED WORKS 

Literatures about person re-identification can be generally 

categorized into two themes.  

One of them is focusing on designing suitable feature 

representation for person re-identification. Ideally, the features 

extracted should be robust to changes in illumination, 

viewpoint, background clutter, occlusion and image 

quality/resolution. Ma [7,8] proposed two kinds of robust 

images descriptor for these purpose. The first one [7] is based 

on Biologically Inspired Features extracted through the use of 

Gabor filters and MAX operator, which are encoded by the 

covariance descriptor of [9], used to compute the similarity of 

BIF features at neighboring scales. The second one [8] builds 

on the combination of recently proposed Fisher Vectors for 

image classification [10] and a novel and simple seven-

dimensional local descriptor adapted to the representation of 

person images, and use the resultant representation as a person 

descriptor. Bazzani [11] presented a robust symmetry-based 

descriptor for modeling the human appearance, which localizes 

perceptually relevant body parts driven by asymmetry and/or 

symmetry principles. Specifically, the descriptor imposes 

higher weights to features located near to the vertical symmetry 

axis than those that are far from it, permitting higher preference 

to internal body foreground, rather than peripheral background 

portions in the image. Layne [12] takes a different view of 

learning mid-level semantic attribute features reflecting a low 

dimensional human interpretable description of each person’s 

appearance.  

Another theme of works in person re-identification is 

focusing on optimizing the matching of probe image against 

images in gallery, to overcome the inter-class confusion and 

intra-class variation. A number of studies have proposed 

different ways for estimating the Brightness Transfer Function 

[13,14], modeling the changes of color distribution of objects 

transiting from one camera view to another. However, in many 

cases the transfer functions between camera view pairs are 

complex and multi-modal. A popular alternative to color 

transformation learning is distance metric learning. The idea of 

distance metric learning is to search for the optimal metric 

under which instances belonging to the same person are more 

similar, and instances belonging to different people are more 

different. Existing distance metric learning methods for re-

identification include Large Margin Nearest Neighbour [15], 

Information Theoretic Metric Learning [16], Logistic 

Discriminant Metric Learning [17], KISSME [18], RankSVM 

[19], Probabilistic Relative Distance Comparison [20], and 

kernel based metric learning [21]. It has been shown that in 

general, metric learning is capable of boosting the re-

identification performance without complicated and 

handcrafted feature representations. of the current designations. 

III. OUR METHOD 

Given a probe image 
p
I  and a set of gallery images 

  
1
, ,

N
I I , our goal is to determine which element in 

the gallery set is generated by the same person as 
p
I . To this 

end, we assign a binary random variable 
i
x ,  1, ,i N . for 

each gallery image to indicate whether it is the target. We also 

assume that for each gallery image we have extracted a set of 

feature vectors 
 k
if ,  1, ,i N ,  1, ,k K , using some 

feature extraction algorithm. Now we can build a fully 

connected CRF, as shown in Fig.1. Each node in the CRF 

corresponds to a label variable 
i
x , and any pair of label 

variables are connected by an edge to encode the similarity 

between gallery images. The CRF represents the joint 

distribution over all labeling variables X  given all observed 

features F  
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Fig.1. The topology of a full connected CRF. Each image stands for a vertex 

in CRF and are connected to every other vertices with edges encoding their 

similarity information. 



The unary potential u  encodes the cost of assigning label 

ix  to node i  given observation if , and the pairwise potential 

 p  represents the cost of assigning labels ix  and jx  to nodes 

i  and j , respectively, given observations if  and jf . 

Parameter   is a weight learned by cross-validation, 

controlling the trade-off between unary and pairwise costs.  

Now the problem of re-identification transforms to 

inferring the posterior marginal distribution of each label 

variable of the CRF. In the next, we will describe what image 

features we used, how to define the unary and pairwise 

potentials in CRF, and how to perform efficient inference in 

the fully connected CRF using technique proposed in [4]. 

A.  Feature extraction  

Feature extraction aims to encode the image in person-

centered bounding box into visual signatures that are more 

robust and discriminable than raw pixel intensity. Three kinds 

of features are used in this work for their simplicity and 

effectiveness, capturing different and complementary 

characteristic of the image.  

BiCov features [7]. The first kind of feature used is a 

combination of biologically inspired features with covariance 

descriptors. First, biological inspired features are extracted by 

computing the convolution of original image in 3 color 

channels (HSV) with a bank of Gabor filters. After applying a 

max-pooling on the filtered images over two consecutive 

scales, the resulting magnitude images are encoded by 

comparing their covariance descriptors at different scales. 

Finally, the biological inspired features are combined with 

covariance descriptors to form the image representation. 

BiCov feature are very robust to illumination variations due to 

the use of Gabor filter and covariance descriptor. In addition, 

the max-pooling operation increases the tolerance to scale 

change and image shift. Furthermore, BiCov can achieve good 

performance without accurate foreground segmentation as it is 

based on the difference of covariance descriptor at 

neighboring scales and the Gabor features and the 

corresponding covariance descriptors of background regions 

are very similar.    

wHSV features [11]. The second feature we used is 

weighted color histograms which encode the chromatic 

content of pedestrian in HSV color space. After background 

subtraction using Stel component analysis [23], the 

perceptually salient body portions are localized and for each 

portion a vertical symmetry axis is estimated. Each pixel is 

weighted according to its distance from the symmetry axis and 

then the color histogram is constructed for each body portion. 

The pixels near the symmetry axis are weighted more than that 

far from it, ensuring to get information from the internal part 

of the body, trusting less the peripheral portions.   

MSCR features [22]. The third feature we used is 

Maximally Stable Color Region (MSCR) features. The MSCR 

operator detects a set of blob regions that are stable over a 

range of clustering steps. The descriptor of each region is a 9-

dimentional vector containing area, centroid, second moment 

matrix and average RGB color. MSCR is desirable for person 

re-identification for its invariance to scale changes and affine 

transformations of image color intensities.  

B. Potential function  

Now we define the unary and pairwise potentials in CRF. 

Unary potential. The unary potential measures the cost of 

assigning a label to a gallery image. We use the distance [7] 

between probe and gallery features as unary potential. The 

unary potential of i th node is defined as in Eq.2, where kw  

are normalized weights, pf  and if  are features of probe image 

and the i th gallery image, respectively. BiCovd  is the 

Euclidean distance in feature space, and wHSVd is 

Bhattacharyya distance. Regarding the definition of MSCRd , 

we use the one given in [11]. 

Pairwise potential. The pairwise potential introduces a 

penalty when the i th and j th nodes are assigned with 

different labels. As required by the fast inference algorithm [4], 

pairwise potential should take the form of a weighted mixture 

of Gaussian kernels. We define the pairwise potential based on 

features 
BiCovf  and 

wHSVf as in Eq.(3), where 
 

m
  are series of 

kernel width parameters specified experimentally, and 
 

mw
  are 

weights of Gaussian kernels that can be learned from training 

data by solving a least-square problem [CoDet].  
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The Gaussian kernels are defined as 
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which can be viewed as a similarity measure between two 

features. From the definition of pairwise potential we can see 

that if two gallery images with similar features are assigned 

with different labels a large penalty will be introduced. Thus 

the above definition encourages the gallery images labeled as 

targets to be similar with each others. 

C. Inference algorithm  

There are many standard algorithms for solving the 

inference problem in CRF. However, when the number of 

nodes is large, as always encountered in practice, the inference 

of a fully connected CRF is intractable in general. Fortunately, 

if the pairwise potentials take a form of mixture of Gaussian 

kernels, the inference can conducted efficiently using the 

approach described in [4].  

The fast inference algorithm [4] is based on a mean field 

approximation of the CRF distribution, which yields an 

iterative message passing algorithm for approximate inference. 

Given current mean field approximation of the marginals iQ , 

the update equation can be written as 

       
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exp ' , 'i i u i j j p i j
l l j i

Q x l x l Q x l x l x l 
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The key idea underlying [4] is that massage passing in 

above equation can be viewed as filtering on the field  iQ  

with Gaussian kernels in feature space. This enables us to 

utilize highly efficient approximation for high-dimensional 

filtering, which reduces the complexity of message passing 

from quadratic to linear, resulting in an approximate inference 

algorithm for fully connected CRFs that is linear in the number 

of nodes and sublinear in the number of edges in the model. 

IV. EXPERIMENTAL RESULTS 

A. Datasets 

ETHZ dataset. The ETHZ dataset [24], originally 

proposed for pedestrian detection and later modified for 

benchmarking person re-identification approaches, consists of 

three video sequences: SEQ. #1 containing 83 persons (4,857 

images), SEQ. #2 containing 35 persons (1,961 images), and 

SEQ. #3 containing 28 persons (1,762 images). All images 

have been resized to 64 × 32 pixels. The most challenging 

aspects of this dataset are illumination changes and occlusions. 

i-LIDS dataset. The i-LIDS Multiple-Camera Tracking 

Scenario (MCTS) [25] was captured indoor at a busy airport 

arrival hall. It contains 119 people with a total of 476 shots 

captured by multiple non-overlapping cameras with an 

average of four images for each person. Many of these images 

undergo large illumination changes and are subject to 

occlusions. In addition, images have been taken with different 

qualities (in terms of resolution, zoom level, noise), making 

very challenging the re-identification over this dataset. 

B. Implementation details 

We compute the BiCov feature [7], wHSV feature [11], 

and MSCR feature [22] using codes provided by the authors. 

For computational efficiency, we reduce the dimension of 

BiCov features by PCA before using them. And the weighted 

HSV features are normalized. We set the weights in Eq.(2) as 

w1=w2=w3= 1/3.  

 We split dataset randomly into training and test set. For 

each dataset, we select images of about 1/5 of the total number 

of persons for the test set while the images of remaining 

persons are attributed to the training set. The training set 

T{Vi ,Vj , GT} consists of image pairs (Vi ,Vj) and 

corresponding labels GT. If Vi and Vj belong to the same 

person, the ground truth label GT = 1 and 0 otherwise. In 

practice, the number of negative samples (GT=0) can be much 

larger than that of positive ones (GT=1). So we down-sample 

the negative pairs randomly to keep the training set balance. In 

this paper, the kernel widths in Eq.(3) are set to cover the 

range of 2k   with k varying from –i to j and    is a fine 

tuning parameter of kernel widths. To learn the weights of 

Gaussian kernels in Eq.(3), we minimize the distance between 

the prediction of Eq.(3) and the ground truth GT under the 

constraint that  are weights for convex combination. 

In this paper, we pose person re-id as a retrieval problem. 

Given a probe, we aim to retrieve all the corresponding images 

from the gallery set. We cannot present the CMC curves like 

traditional re-id literatures because the main hypothesis 

underlying CMC is that one and only one item of the gallery 

could correspond to the probe. Instead, we compute the 

precision and recall and plot precision-recall curves and use 

their combination, F score, as the evaluation measures. We 

compare our method with eBiCov [7] and SDALF [11]. 

Although the evaluation measure is different, we keep exactly 

the same parameters as the authors used in their works. We 

adopt 5-fold cross validation and randomly select instances of 

each person in test set as probe and report the average 

performance. 

C. Results and discussion  

We present our results in comparison with the baseline 

method eBiCov[7] and SDALF[11] on datasets in TABLE 1. 

For each probe we take the max F value and average over all 

probes and runs. Note that our method outperforms the others 

on all above datasets. Compared with SDALF and eBiCov, 

performance improvement of our method can be attributed to 

the inference in a full connected CRF model, in which the 

pairwise potential encodes the similarity between each pair of 

images. Therefore, the accuracy of similarity prediction of 

Eq.(3) is of vital importance to our method. In Fig.2 we give 

one instance of the predicted similarity matrix using learned 

parameters in comparison with ground truth. Note that the 



TABLE 1. Comparison of our method with state-of-art methods in averaged F score on different datasets 

Fig.2. Predicting similarity: (a) Ground truth. White stands for positive pairs, black stands for negative ones. (b) Predicted similarity. 

 

(a) Retrieved images                                                                                                                                 (b)Precision/Recall Curve 

Fig.3.  An instance on ETHZ dataset. (a)Top row: our method; middle row: eBiCov; bottom row: SDALF. The retrieved images in each row are sorted according 

to their probability of being target (top row) or their distance from the probe (middle and bottom rows). The mismatched images are marked with red boxes. (b) 

The corresponding Precision/Recall curve. The images marked with numbered yellow circles are correct matches, the same images in gallery are marked by the 
same number. 

predicted similarity depicts a similar pattern to the ground-

truth one. 

Fig.3 gives a typical instance to illustrate the effect of our 

method. Fig.3(a) shows the retrieved images using different 

methods. The images are sorted according to the confidence of 

being the target. The leftmost is the one with the highest 

confidence. We only show the images from rank 18 to 64, 

because the retrieved images by all methods with rank lower 

than 18 are correct matches. Note that incorrect matches begin 

to appear from rank 23 in the images sequence retrieved by 

eBiCov and from rank 22 in the images sequence retrieved by 

SDALF. We also note that the images marked with yellow 

numbered circles, which are correct matches of the probe, 

generally have lower ranks in the images sequence retrieved 

by our method compared with that by the other two methods. 

This implies that the inference in full connected CRF, which 

exploits the similarity information between gallery images, 

can improve the confidence of true matches which may have 

large distance from probe in the eBiCov or SDALF feature 

space.  

Methods 
Datasets 

ETHZ1 ETHZ2 ETHZ3 i-LIDS 

SDALF[11] 76.31 74.74 85.43 48.76 

eBiCov[7] 82.12 77.66 89.08 50.07 

Our method 84.22 80.37 91.92 53.67 

         

 
(a)Ground truth matrix                   (b) Similarity matrix 



We also give a typical instance on i-LIDS dataset in Fig.4. 

Similarly to ETHZ case, Fig.4(a) shows the retrieved image 

sequences using different methods sorted according to the 

confidence of being the target. The leftmost is the one with the 

highest confidence. There are only 5 images corresponding to 

the probe. Note that our method can cover all the correct 

matches within rank 5, while the correct matches marked with 

yellow numbered circles are retrieved by the other two 

methods at rank 15 and 28, respectively. This confirms that the 

inference in full connected CRF can improve the confidence of 

true matches which may be far from probe in the eBiCov or 

SDALF feature space by leveraging the similarity information 

between gallery images. 

V. CONCLUSION 

In this paper, we propose a novel method for person re-

identification based on inference in fully-connected CRF 

model. We use recent proposed features [7,11,22] as image 

signature, and pose the problem of re-identification as a 

probabilistic inference problem. We exploit the efficient 

inference algorithm [4] to calculate the marginal distribution 

of each node. The experimental results show the 

competitiveness of our method by comparing with the state of 

the art. Possible extensions include using more effective 

descriptors, incorporating metric learning [15-21] into the 

definition of pairwise potentials, and optimizing CRF 

parameters using max-margin learning [27]. 
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