
ATG Education Research
The Authoring Tools Thread
Jim Spohrer

Introduction

ATG's Education Research Group was comprised of several
complementary research threads. In this short paper, I will
focus on the authoring tools thread, which along with ACOT,
Vivarium, and the Media Lab, was one of the core efforts.
ACOT (Apple Classroom of Tomorrow) schools have been a
model of effective use of computers in the classroom for over a
decade, and ACOT researchers, especially David Dwyer who
lead the ACOT effort for many years, were some of the first to
identify the critical importance of teacher professional devel-
opment to promote educational technology adoption. Another
well known thread was the Vivarium proiect lead by Alan Kay,
who envisioned ways to empower kids with powerful ideas
about computers, new media, and life-long learning. Finally,
Apple's Media Lab, led by Kristina Woolsey, was the thread
that pioneered the use of multimedia for learning. Part of the
strength of ATG's Education Research effort was the way in
which these and other research threads wove together.

In this paper I briefly survey some of the projects that were and
are part of the authoring tools thread and conclude with some
lessons learned. However, before surveying the projects, I will
provide a chronological and organizational overview. In 1989,
as part of the ATG's Education Research Group, Mark L.
Miller formed the Business Learning Research Group
(MrFixit, Role'm, and Piaget projects) to focus on simulation-
based learning environments and improved intelligent multi-
media software development methodologies [1]. In 1991,
through a collaboration with Steve Weyer's Intelligent Systems
Group (MacFrames project) and Alan Kay's Vivarium Group
(MacPal project), I started the End User Environments Group
(SK8, Puppeteer, KidSim, Constructo, and Scientists Work-

Bench projects) which drew together about a dozen researchers
investigating end user programming applied to education and
scientific computing. In 1994, our group had grown into the
Authoring Tools & Titles Program (many SK8-based projects,
including KidSim, Catalyst, MedFly, East/West Authoring
Tools projects) building off a DARPA/NSF grant which
allowed us to create an R&D collaboration with Apple, pub-
lishers, universities. In addition, collaborating with Alan Kay's
Learning Concepts Group (Squeak project) a Smalltalk mod-
ernization effort was undertaken. In 1996, our research team
adopted its current name, the Educational Object Economy
Project, which focuses on web-based learning and authoring
communities (EOE project), as well as learning platform evo-
lution (WorldBoard project).

Projects

MrFixlt
In collaboration with Boeing, the MrFixlt [1,3,4] project
explored ways in which intelligent multimedia technologies
could be used to build simulation-based learning environ-
ments for maintenance training tasks. The MrFixit prototype
included a simulation of a Boeing 737-t 00's pneumatic system
comprised of over 300 components (Figure 1), as well as a rule-
based agent that could troubleshoot over three dozen different
fault modes of the simulation (Figure 2). I was the technical
lead on this project, and first developed the prototype in Super-
Card, augmented with a simple rule-based expert system shell
I had implemented. Later, MrFixit was ported to SK8.

Role'm
In collaboration with Apple's Field Sales and Support Group,
the Role'm [1,2,41 project explored ways in which intelligent

124 April 1998 Volume 30, Number 2 SIGCHI BulLetin

http://crossmark.crossref.org/dialog/?doi=10.1145%2F279044.279173&domain=pdf&date_stamp=1998-04-01

. Meta-Tool, Multi-Runtimes

F i g u r e 3: Metatool to create task specific authoring tools

F i g u r e 1: MrFixit, aircraft pneumatic system device simulation

. i ; o , ~.
O : 0

' i] ; ;if. } ? , }tins
? : ; ? 4;,: : : ~ i i ? / ? i i

BB

r ~ .~ ~.~ ~:~. ,~.~ ,~/~ -~:~61 ~;F~%¢ ~ i~" ~

i ~ ii

2.:. ::• :~. i, . l i

I i I ~ z . r ~ L i

F i g u r e 2: MrFixit, troubleshooting expert system

multimedia technologies could be used to build interpersonal
simulators targeted at network solutions sales and technical
needs assessment tasks (Figure 3). The Role'm prototype
included a menu-based natural language interface that allowed
a student to interact with a simulated customer (including a
detailed model of the customer's organization and existing
computer network). The Role'm prototype embodied Rack-
man's SPIN sales technique. Arthur James was technical lead
on this project, and first developed the prototype in the KEE,
Knowledge Engineering Environment. Later, Role'm was
ported to SKS.

Piaget

Based on the experiences of building MrFixit, Role'm, and
other intelligent multimedia simulation-based learning envi-
ronments, I formulated an authoring tools strategy and then
managed the creation of many dozens of authoring tools. The

authoring tools strategy came to be known as the 'metatool
titlewave (Figure 4)' strategy (or initially, the Piaget project),
and was based on the idea that many task-specific authoring
tools would be needed to empower non-programming instruc-
tional designers and subject matter experts to easily create next
generation instructional titles. To create the many task-specific
authoring tools, a powerful metatool or tool building technol-
ogy would be required combining some of the best multimedia
features of tools like HyperCard and SuperCard with the best
artificial intelligence and modeling technology like KEE. In
sum, the authoring tools strategy had three steps: first, create a
powerful intelligent multimedia metatool; second, program-
mers would use the metatool to create task-specific authoring
tools; and third, non-programmers would use the task-specific
authoring tools to build lots of titles (a 'titlewave' as Chris
DiGiano referred to it).

To build confidence in the metatool titlewave strategy, we
undertook an experiment: build task-specific authoring tools
and then recreate MrFixit with the new tools. Furthermore, we
expected that building the task specific authoring tools would
not take longer than building the original MrFixit, and using
the task specific tools to rebuild MrFixit would be doable by a
non-programmer in an order of magnitude less time than
building the original MrFixit. We knew that building the orig-
inal 30 component MrFixit device simulation had taken about
one week of SuperCard programming. Plus, the separate com-
ponents had taken several days each. The intelligent agent that
was able to handle three dozen fault cases had required about
two weeks of SuperCard programming. In addition, two weeks
of debugging an integration were required. In total, we
expected a skilled SuperCard programmer would need between
one and two months to create a MrFixit-like coached simula-
tion learning environment.

Three task specific authoring tools were needed to rebuild
MrFixlt: PiagetDraw (a tool for building the device compo-
nents, both finite state machines as well as continuous state
machines based on pins, grooves, sockets [5,11, 18] and other
graphical constraints, see Figure 4), PiagetDiagram (a tool for
assembling components into a complete simulation, see Figure
5), and PiagetTree (a tool for building the decision tree logic
for troubleshooting the device's failure modes, see Figure 6).

SI@CI'II Bulletin Volume 30, Number 2 April 1998 125

Each of the task specific authoring tools had required about
two weeks to design and build, by myself, Dave Vronay, and
~dan Peterson. Using these three tools a non-programmer was
able to recreate a MrFixlt-like learning environment (with
many more components and failure modes modeled) in just
under two days (as compared to 1-2 months for a programmer
using SuperCard before)!

Figure 4: PiagetDraw, to create device components

i

Figure 5: PiagetDiagram, to connect components into o
complete device

The benefits of the metatool titlewave strategy were becoming
increasingly clear, and so our attention turned to two new
problems: creating a suitable metatoo] and creating a suite of
task-specific authoring tools to demonstrate a range of end-
user programming techniques. Fortunately, there were already
two related projects underway at Apple, MacFrames and Mac-
Pal.

MacFrames
Ruben Kleiman in ATG's Intelligent Applications Group had
been building an intelligent multimedia application frame-
work in Macintosh Common Lisp. Kleiman called his applica-

Figure 6: PiagetTree, to create troubleshooting decision trees

tion framework MacFrames, and we had used MacFrames to
build the three prototype Piaget task-specific authoring tools.
At its core, MacFrames had a powerful and flexible prototype-
instance frame system. Built on the frame system core was an
extensive library of prototype media and knowledge objects.
However, MacFrames lacked a scripting language and several
other features that we believed would be necessary for the
metatool to be usable by users familiar with HyperCard. At the
time, MacFrames users required Lisp programming knowledge
to build the task specific tools. So building on MacFrames, a
design for a more suitable metatool was undertaken. The meta-
tool work that grew out of MacFrames came to be known as
SK8.

MacPal
Also at that time, Alan Kay's Vivarium Group had just com-
pleted a design, implementation, and rest cycle for a kid usable
programming environment, called Playground. In preparation
for building the next iteration of a kids programming environ-
ment and Dynabook-like hardware for it, Alan had created the
MacPal working group. The working group attracted over a
dozen of the best minds from across Apple who were working
in a number of relevant areas, including the area of end-user
programming techniques [8]. A guiding principle that Alan
Kay instilled in everyone that came to these meetings was the
need to embody a set of powerful ideas in the new program-
ming environment that we were all struggling to create. While
we wanted to make programming the simple things simple, we
wanted the environment to allow for graceful scaling up so that
more complex things could and would be created as the pro-
grammers became more accomplished in using the environ-
ment. A technical report on a variety of end-user programming
techniques was produced by the working group. Also, out of
the MacPal working group, two key kids programming envi-
ronment projects emerged: Constructo (general purpose pro-
gramming) and KidSim (task specific programming).

SK8

SK8, a metatool or tool building technology, can best be
described as HyperCard on steroids. SK8 [6, 10, 13, 14] was
designed to be appealing simultaneously to HyperCard pro-
grammers who wanted a more complete and powerful pr ° -

126 April 1998 Volume 30, Number 2 SIGCHI Bulletin

gramming environment to grow into, as well as for novice
programmers looking for a first object oriented programming
environment. SK8 users program in SK8Script, a natural lan-
guage like programming environment that unlike HyperTalk
has a full prototype-instance object model as well as standard
programming data structures conveniently accessible. The
graphics model allows any object to contain any other object,
so containment becomes a powerful way to build up new
objects out of many component objects. In addition, SK8
includes an extensive library of predefined objects that were
carefully constructed to make building task specific authoring
tools straightforward. For example, connector objects and a
port wiring mode make it easy to build authoring tools based
on a wiring metaphor; a two dimensional picker object makes
spreadsheet and grid-based authoring tools straightforward to
construct. Finally, the SK8 Project Builder allows sophisticated
projects to be built entirely by direct manipulation. SK8 has
hundreds of subtle, but important, productivity features built
into it. Over one hundred research project tools were built or
first prototypes in SK8 [23].

SK8 is a large programming environment, requiring a mini-
mum of 25MB to operate comfortably. SK8's size is not a prob-
lem for professional multimedia developers, since they
typically use high end machines with a lot of RAM. However,
deployment of large projects is a problem. SK8 projects can be
delivered in under 16MB on a Macintosh Common Lisp run-
time. In addition, several investigations have explored deliver-
ing SK8 projects on Kaleida's ScriptX as well as Java runtimes
targeting machines with about 8MB of RAM.

SK8 and its complete set of source code (implemented in Mac-
intosh Common Lisp) can be freely downloaded at http://
sk8.research.apple.com/[19]. Ruben Kleiman was the chief
architect and implementor of SK8, though many others
including Brian Roddy, Hernan Epelman-Wang, Sidney
Markowitz, Chris Flick, Ken Dickey, Philip McBride, John
Ulrich, Michael Evins, and others too numerous to mention
made contributions large and small.

Constructo

Constructo was an off shoot of Alan Kay's MacPal working
group. Constructo was designed to be a programming environ-
ment for kids that would introduce them to a dozen powerful
ideas in programming and interactivity, including objects, con-
tainment, direct manipulation, variables, conditionals, itera-
tion, subroutines, and recursion (Figure 7 and Figure 8).
Constructo was noteworthy as an elegant unification of many
of the best features of the Macintosh Desktop Metaphor,
HyperCard, MacWrite, MacDraw, and MacPaint. Constructo
also borrowed ideas from the DiSessa's Boxer system for chil-
dren programmers. One powerful feature of Constructo was
the notion of object halos, that would pop-up around an object
allowing a user to easily and directly interact with the objects
in many useful ways. Constructo made easy tasks easy to do,
and diffficult tasks possible because Smalltalk programming was
accessible just under the hood. Constructo was implemented
in Smalltalk by Scott Wallace and Jerry Morrison.

Designing for Kids - -

- T o w r i t e , draw, communicate, organize

• T o a~mate, s i m u l a t e , c o n s t r u c t , access
i n f o , r u n cour:,eware

- Consolidate; not M a c W r i t e P r o + C a n v a s -
÷ HyperCard + Finder + . . .

• S i z z l e . . Mobility: Low 'price. ~

• T h e M a c P a l vision: An education PDA

Figure 7: Constructo, overv iew slide

Figure 8: Constructo, screenshot

KidSim (a.k.a Cocoa)

KidSim [6, 7, 10, 17, 20] was another offshoot of Alan Kay's
MacPal working group. KidSim was designed to be program-
ming environment for kids that would introduce children to
the wonders of programming by empowering them to create
simulated worlds. Unlike Constructo, which was designed to
be a general purpose programming environment, KidSim was
designed to be a special purpose or task specific authoring tool
for kids to create simulated worlds and interactive games.
Another early inspiration for KidSim came from the teachers
who helped co-design the early prototypes in part to meet their
need to create simulated worlds similar to the one described in
the book "Planiverse" by A.K. Dewdney (Figure 9).

To make KidSim accessible and fun for children, KidSim was
designed around a gameboard metaphor. Game pieces could be
created, and then placed on a gameboard (a two dimensional

SPGCHI Bulletin Volume 30, Number 2 April 1998 127

Figure 9: KidSim allowed teachers to build Planiverse type
worlds

grid). Pieces could be positioned in such a way that if an inter-
action between the pieces should occur (such as putting a fish
near a shark, so the shark could eat the fish), then a rule defin-
ing the interaction could be easily demonstrated via direct
manipulation. KidSim used graphical rewrite rules to capture
the behaviors of pieces in particular contexts. Graphical rewrite
rules are also part of Alex Repenning's Agentsheets program-
ming environment. Once game pieces are defined, rules of
interaction are defined, and an initial configuration of pieces is
placed on the gameboard, a clock is started and the pieces
begin moving and interacting. To make debugging straightfor-
ward, the clock can be run backwards. Ten year olds were able
to begin building KidSim worlds with as little as fifteen min-
utes of instruction. Some of the early KidSim worlds included
an aquarium simulation (Figure 10) and a hang glider simula-
tion (Figure 11).

Figure ! O: KidSim aquarium simulation

KidSim was created and implemented in SK8 by Dave Smith
and Allen Cypher. Later, they worked with Kurt Schmucker
and Peter Jensen, who rebuilt KidSim in Prograph. The new
product, called Cocoa, is freely downloadable from http://
cocoa.apple.corn/I16]. A key feature that was added in the
Cocoa implementation was the ability to embed Cocoa worlds
in web pages, making it a great tool for kids to build custom,
dynamic, fun web pages.

Figure 1 ! : KidSirn hang glider simulation

Puppeteer
The Role'm work, aimed at building intelligent multimedia
simulators to train people in interpersonal communication
skills, had been evolving as well. Enio Ohmaye, had joined our
group as a recent Ph.D. from Roger Schank's Institute for
Learning Sciences (ILS) at Northwestern University. At ILS,
Ohmaye had created a system called Dustin, which used a wir-
ing metaphor to construct sophisticated interpersonal simula-
tors. Ohmaye and James joined forces to explore a new
metaphor for authoring interpersonal simulations, a metaphor
based on comic strips. The comic strip metaphor became the
basis of a task-specific authoring tool known as Puppeteer (Fig-
ure 12). To demonstrate the usability of Puppeteer, two
advanced high school students were recruited to use Puppeteer
to build a second language/second culture interpersonal simu-
lator for business people to prepare for business meetings with
Japanese collaborators. The comic strip metaphor proved to be
valuable not only during authoring, but also proved to be valu-
able during maintenance operations to extend existing instruc-
tional simulation titles. A valuable component of the
Puppeteer project was a grammar authoring toot (Figure 13)
used for constructing the form of the allowed natural language
interactions with the interpersonal simulations. In addition,
MacHeadroom was a task specific authoring tool used in con-
junction with Puppeteer. MacHeadroom provided an emotion
editor for talking head agents that would move their lips, eyes,
and foreheads to convey text in a variety of (color coded) emo-
tional tones (Figure 14). Clusters of synergistic tools such as
these Puppeteer tools supported the notion that numerous task
specific authoring tools would be used to create a final educa-
tional software title or environment.

Scientists" WorkBench (a.k.a. Data Workbench, Commander Data)
The wiring metaphor is a valuable end user programming tech-
nique. However, as the complexity of an artifact increases,
wires begin crossing, and the spaghetti effect kicks in. Finding
a subject domain and a set of users who are comfortable with
the wiring metaphor can be challenging. LabView is one tool
that effectively uses the wiring metaphor to create virtual

128 April 1998 Volume 30, Number 2 SIGCHI Bulletin

. + _ _

:

¢] ~' - + "ks

_+___

Figure i 2 : Puppeteer's comic strip metaphor

Stories Phrases

I Ho~ le~g
Da l j - 0 f - v ceek
r~on th -P ia~e

f ' i t .mbe r

I
I

Sta r t S to r l l : Lo : l .mch Interface:
[S't ory [Inlerfsco ~ 1

r , + e

~ ~ :";::: ': 7 io~ to~ . ' : ' ': : ~7~

Figure ! 3: A grammar editor tool for natural language input
+

instruments. The metaphor is effective in part because the cre-
ators of devices are often familiar with wiring hardware com-
ponents together in real life.

Many scientists we spoke with were comfortable with the wir-
ing metaphor for certain tasks. Rob Wolf and Vince Kirchner
created a tool known as the Scientists Workbench that allowed
scientists to easily wire together signal and data processing
components to data banks and visualization tools (Figure 15
and Figure 16). The Scientists' Workbench was a combined
authoring tool and productivity tool for scientists. The tool
was interesting from a social perspective as well, as certain sci-

Figure ! 4: MacHeadroom creates agents that display
emotions

+ 7 - . Z : [- - i ~ :

entist became creators of components to be wired together,
while others became users of the components.

Catalyst (a.k.a. Media BluePrint, QuickStory)

Catalyst was the first project undertaken in our group that
tackled the challenge of supporting authoring teams as
opposed to supporting individual authors. While many of the
tools that our group was creating explored end user program-
ming technologies and ways of finding familiar representat,ons
for users to express their intentions, models of the world, and
knowledge, Catalyst explored the ways groups of people work
together to rapidly and creatively produce multimedia software
titles. Issues like rapid prototyping, plasticity in design, incre-
mental refinement, managing complexity, sharing workspaces,
project management, as well as multiple roles, responsibilities,
and representations for information were central to the notion
of team authoring. Stephanie Houde, Gary Young, and Lori
Leahy designed and implemented a Catalyst prototype in SK8.

MedFly

When Don Norman stepped in to direct ATG, his vision of the
future included a multitude of task-specific information appli-
ances. At his suggestion as well as Gary Starkweather's, we
began an investigation into task specific authoring tools for
information appliance type devices. One of these efforts was
the MedFly project.

The MedFly project explored form-based end user program-
ming techniques to create data entry, access, and processing
applications for hand held mobile devices, such as Personal
Digital Assistants (PDAs) like the Newton. The application
domains were medicine and aviation, hence the name, MedFly,
coined by Beverly Kane, M.D., the medical member of the
Medfly team. Chris Burmester created a SK8-based task-spe-
cific authoring tool that allowed form-based applications to be
easily created on a Macintosh, and then downloaded to run on
Newtons.

SJGCHI Bulletin Volume 30, Number 2 April 1998 129

Ilk F i l l ' (l i l t 1111111 ~ l u l l l $ | ln l lo t l , u$ C i I o r

F i g u r e 1 5 : Scientists' Workbench Population Simulation

+
,, ~ , ,

Figure 16: Scientists' Workbench Signal Processing

East/West Authoring Tools Projects

The East/West Authoring Tools Group [12] is an NSF funded
consortium composed of Apple, publishers, universities, and
government collaborators working together to create next gen-
eration authoring tools. Our starting premise is: there is no sin-
gle best learning environment for all situations, and there is no
single best authoring tool. Task specific authoring tools for a
wide variety of learning architectures are needed. To be effec-
tive the authoring tools must result in order of magnitude
reductions in authoring time and be usable by non-program-
mers. In addition, the resulting learning environments must
prove to be engaging, effective, and viable.

During Phase I of the collaboration, authoring tools for next
generation learning systems that had been developed at the
universities were ported to SK8 under the supervision of Jamie
Dinkelacker at Apple. By porting all of the existing tools to
SK8, we hoped to better understand the challenges and oppor-
tunities for sharing component software for task specific
authoring tools, and leverage each others efforts to create
hybrid, pedagogically diverse learning environments. Because
SK8 and ScriptX were not fully productized (though both ate
available as technology releases), in Phase 2 of the project the
implementation effort shifted to Java and work focused on the
creation of an Educational Object Economy (see below).

The East/West Authoring Tools collaboration spans a wide
variety of learning environments: construction kits and high
functionality design environments (Gerhard Fischer, Univer-
sity of Colorado), including Agentsheets (Alex Repenning,
University of Colorado) and HyperGami (Mike Eisenberg and
Ann Nishioka, University of Colorado), intelligent tutoring
systems (Beverly Woolf and Tom Murray, University of Massa-
chusetts at Amherst), cognitive tutoring systems (John Ander-
son and Steven Ritter, Carnegie Mellon University), and
interactive medical images (Parvati Dev, Stanford University).
In addition to those mentioned here, the collaboration
spanned many other organizations, many approaches to learn-
ing, and many approaches to authoring. More about these
projects can be found at the East/West Authoring Tools Group
web site: http:l/trp.research.apple.com/TRPlprojects.html

A great diversity of end-user programming techniques have
been explored in EIW Tools. For example, while a summer
intern at Apple, Stephen Blessings developed a novel combina-
tion of direct manipulation, programming by demonstration,
and form-based techniques to create production rules for a
simple cognitive tutor to teach subtraction with borrowing. He
went on to create a Newton version of the resulting subtraction
tutor. Over one hundred prototypes of task specific authoring
tools were created in SK8.

Squeak
The strategy of creating lots of task-specific authoring tools
using a single metatool is not without its problems. As the
range of task-specific authoring tools expanded and new 'must
have' media technologies sprang up, SK8 was continuing to
grow in size and complexity. Alan Kay suggested that a more
minimalist approach should also be explored, along the lines of
the original Smalltalk effort. In response to this suggestion,
Dan Ingalls, John Maloney, Ted Kaehler, and Scott Wallace
undertook the task of creating Squeak (named for the small
sound of a small animal). Squeak is a modern version of Small-
talk 80, using updated technologies and driven by a minimalist
philosophy.

Testament to the success of the Squeak simplification and
modernization effort was the fact that after it was released to
the Web (with sources) it was successfully ported to four other
platforms in just five weeks by self selected Smalltalk experts.
Squeak (with sources) is available at: http://
wvcw.research.apple.com/researchtprojlLearning_Concepts/
squeak/intro.html [15]. Today, Alan Kay and the Squeak
development team are part of Disney's Imagineering group,
and a thriving Squeak community has emerged in support of a
simple, open authoring environment. Small is truly beautiful.

EOE
No matter how easy to use authoring tools become, if authors
can find what they want (already built) they can save them-
selves a lot of time. For Java educational applets, the Educa-
tional Object Economy (EOE at http:H
trp.research.apple.com! [21]) is a good place to 'look before
you author.' Even if authors don't find exactly what they want,
they may be able to find something that is close enough as well
as qualified people with relevant experiences to join their
authoring team for the duration of the project.

130 April 1998 Volume 30, Number 2 SI@¢HI Bulletin

The Educational Object Economy (EOE) [22, 24, 25, 26] is
an experiment in mega-collaboration and virtual communities
(both authoring communities and learning communities). The
EOE not only acts as an amplifier of individual actions to
improve the quality and availability of Java educational applets,
but also provides a free web-based community framework for
other researchers who wish to experiment with creating virtual
communities for mega-collaboration. So far the mega-collabo-
ration has resulted in the EOE being the largest directory to
freely available educational Java applets in the world.

Our EOE is a community of people working together to
improve the quality and availability of web-based learning
materials. Apple, NSF, universities, publishers, and many oth-
ers have created a first exemplar Educational Object Economy
(at http://trp.research.apple.com), and we are now helping
others start their own EOEs. For example, Darcy Clark at Uni-
versity of Michigan has set up a Materials Science EOE. A key
part of an EOE is web site technology that helps empower
community members to work together. An EOE web site must
allow members to easily gather, share, and add value to web-
based materials of interest to the community. The technology
required to set up an EOE is relatively straightforward. How-
ever, creating a vibrant community that is actively achieving its
goals, and reflecting that activity through the web site, is a chal-
lenging task. John Lilly, Martin Koning-Bastiaan, and Melissa
Jones have implemented the Generic Object Economy (GOE)
starter kit in FileMaker 4 Pro, and it is freely available at the
EOE web site. In a project like the EOE, business models
(incentive structures) will be as much a part of the break-
through as the supporting technologies. Therefore, the EOE
web-site has a business section (headed by Lori Leahy) where
relevant business models are shared. In addition, Jeremy
Roschelle has been active in promoting component reuse in the
EOE, and Byron Henderson has been active in promoting co-
operative organizational principles in the EOE.

WorldBoard

One of the biggest problems with computer-supported learn-
ing is that it usually requires learners to sit (passively or
actively) in front of a computer screen. Learning and authoring
in context, away from traditional desktop computers is one of
the next research challenges we plan to undertake. We see the
movement from desktop to networked to mobile learning plat-
forms as part of a process of'learning platform evolution.'

Table 1 : Learning platform evolution impacts pedagogy,
production, and proliferation of learning objects

Platform Pedagogy Production Proliferation

Standalone Content ' Authoring Tools CD-ROM

Networked Conver- !Educational W W W
sations Object Economy

I

Mobile Context Sensors Wireless
WorldBoard

WorldBoard is a proposed planetary augmented reality system
for next generation authoring and contextual learning. With
new technologies that provide very accurate global positioning,
global wireless communication, and wearable displays, we can
foresee ways to "put information in its place." Geocoded infor-
mation objects will seem to be located in the appropriate places
for their use. Nature trails will have trees and rocks labeled.
Histoi'ical societies will provide time capsule views from differ-
ent points in a community. Looking at the night sky one will
see lines connecting the stars and names of the constellations.
Imagine being able to write messages and compose multimedia
annotations anywhere on the planet and have them persist in
that location. Providing information seamlessly integrated into
places opens up a wide range of possible production techniques
based on experience capture, annotation, and replay. For more
about WorldBoard, refer to: http://trp.research.apple.com/
events/ISITalkO62097 / parts/WorldBoard/ default.html.

Conc lud ing Remarks : Lessons L e a r n e d

The summary above provides a sampling of major efforts in
ATG's authoring tools area. Because over a hundred different
tools were created over the past eight years, many relevant
investigations had to be left out for brevity sake. Based on these
experiences, one may ask "what were some of the lessons
learned?" Three lessons stand out:

Lesson !: Users First
Authoring tools are used by people who want to create quality
computer-based learning materials. Whenever a project ran
into trouble it was because we had taken our eyes off the true
wants and needs of real users. Users had to be involved from
two perspectives: cognitive fit (for usability) and social fit (for
dissemination). Cognitive fit dealt with the usability of the
tool. Co-creating a suitable interface metaphor that was famil-
iar to the users was often a key step in developing the tool.
However, even a usable tool might nor be readily adopted in
the community of users without a dissemination strategy that
had been co-defined with that community.

Lesson 2: Complexity Kills
Complexity kills for three reasons: keeping up with technolo-
gies that are rapidly evolving on multiple fronts is nearly
impossible, learnability and hence dissemination efforts suffer,
technology transfer efforts from research teams to product
teams flounder. Authoring tools that incorporate innovations
on multiple fronts often make great demonstrations, but may
not be maintainable, adoptable, or productizable. By contrast,
successful tools were ones that had a single key innovation that
users could readily see the value of and learn to incorporate
into their daily practice, especially when the innovation could
be fit into an incremental improvement to an existing product.

Lesson 3: Cognitive Fit Is Easier to Attain than Social Fit
Designing and implementing tools with a good cognitive fit for
user and task is an exercise in removing gratuitous difficulties
and finding familiar, expressive interface metaphors. Because
there is an existing way the task is being performed by existing
users (authors), it is possible to invent a new tool idea and
quickly test the idea with users to see if it in fact makes a task
easier. Often users are able to state with confidence whether or

SIGCHI Bulletin Volume 30, Number 2 April 1998 13/

not they believe a new way of doing a task will be easier and
more efficient based solely on hearing the idea, without having
the new tool implemented. However, designing and imple-
menting a dissemination strategy with a good social fit for the
user community is far more difficult. A good social fit means
users eagerly give up an old tool and adopt a new tool. The
time constant in social fit (new product adoption cycle) is typ-
ically much longer than the time constant for cognitive fit
(duration of an authoring task). New tools that are free to try,
easy to learn, similar to existing tools, demonstrate rapid pay-
back, small and fast are likely to spread rapidly in a community
of users.

Like most lessons learned, these seem remarkably obvious in
hindsight. What was and is still not obvious is how the broader
social and economic dimensions of the authoring tools prob-
lem can be changed. For instance, without a robust market-
place for reusable component software, the broader authoring
community will have to remain satisfied with incremental
improvements to the dominant tools supplemented with occa-
sional innovative niche tools that rarely reach critical mass or
continue evolving.

Acknowledgments

This work has been supported by Apple Computer and NSF
Grant CDA-9408607. Thanks to the many teachers, summer
interns, external research colleagues, and visiting scholars who
contributed to this work. Thanks to the following executives
who supported these efforts: Rick LeFaivre, Larry Tesler, Dave
Nagel, Ike Nassi, and Don Norman.

I must confess it made me a bit nostalgic to think about this
stimulating research thread; one that I was lucky enough to be
responsible for nurturing and managing, especially in light of
the stellar collaborators I had the opportunity to work with
over the past eight years.

References

[1] Spohrer, J.C. (1990) Integrating multimedia and AI for
training: Examples and issues. Proceedings of the IEEE Sys-
tems, Man, and Cybernetics Conference. Los Angeles, CA.

[2] Spohrer, J.C., James, A., Abbott, C.A., Czora, G.J., Laffey,
J., Miller, M.L. (1991) A role playing simulator for needs
analysis consultations. Proceedings of the World Congress on
Expert Systems. Pergamon Press. Orlando, FL.

[3] Spohrer, J.C., Vronay, D., Kleiman, R. (1991) Authoring
intelligent multimedia applications: Finding familiar repre-
sentations for expressing knowledge. Proceedings of the IEEE
Systems, Man, and Cybernetics Conference. Charlottesville,
VA.

[4] James, A., and Spohrer, J.C. (1992) Simulation-based
learning systems: Prototypes and experiences. Demonstra-
tion. Proceeding of the ACM/SIGCHI Human Factors in Com-
puting Systems.May 3-7. Monterey, Ca. pp. 523-524.

[5] Vronay, D. and Spohrer, J.C. (1993) Pins, Grooves, and
Sockets: An Interface for Graphical Constraints. Proceedings
of INTERCHI '93.

[6] Spohrer, J.C., Cypher, A., James, A., Kleiman, R. Ohmaye,
E., Smith, D.C. (1994) How to make 'complex' software c u s -

tomizable. Proceedings of the IEEE Systems, Man, and Cyber-
netics Conference.

[7] Cypher, A., Smith, D.C. Spohrer, J.C. (1994) KidSim: Pro-
gramming agents without a programming language. Com-
munications oftheACM, 37 (7):55-67. ACM Press, New
York, NY.

[8] Chelsey, Chipkin, Cypher, Kaehler, Kay, Kieiman, Miller,
Mintz, Morrison, Rose, Smith, Spohrer, Vronay, Wallace
(1994) End- ~_~er Programming: Discussion of Fifteen Ideals.
Apple Library Research Note #94-13

[9] Spohrer, J.C. (1994) Mapping Learning, Apple Library
Research Report #94-12.

[10] Spohrer, J.C. (1995) Site Description: Apple Computer's
Authoring Tools and Titles R&D Program. Artificial Intelli-
gence Review, Kluwer Academic Press, Netherland.

[11] Spohrer, Richards, Vronay, Chipkin, Kleiman, Miller
(Sept 12, 1995) Graphical Inter~ce fer Interacting Con-
strained Actors: Continuous Machines. Patent Number:
5,450,540. Assignee Apple Computer, Inc.

[12] East/PC~stAuthoring ~ols Group (site launched June
1995): http://trp.research.apple.com/EWIndex.html and
http://trp.research.apple.com/TRP/projects.html

[13] Epelman-Wang, H., Markowitz, S., Roddy, B. (1996)
"Graphical Containment in Multimedia Authoring," Proc.
41st. IEEE Computer Society International Con3~rence (Com-
pCon 96), pp. 300-304, Santa Clara, February 1996.

[14] Roddy, B., Markowitz, S., Epelman-Wang, H. (1996)
"User Interfaces for Authoring Systems with Object Stores,"
Proc. 41st. IEEE Computer Society International Con)~rence
(CompCon 96), pp. 305-309, Santa Clara, February 1996.

[15] Squeak (Technology Release October 1996): http://
www.research.apple.com/research/proj/Learning_Concepts/
squeak/intro.html

[16] Cocoa (Product Release October 1996): http://
cocoa.apple.corn/

[17] Cypher, Smith, Spohrer (Oct 15, 1996) Extensible Simu-
lation System and Graphical Programming Method. Patent
Number: 5,566,295. Assignee Apple Computer, Inc.

[18] Spohrer (Feb. 4, 1997) Graphical Inter~cefer Interacting
Constrained Actors: State Machines. Patent Number:
5,600,774. Assignee Apple Computer, Inc.

[19] SK8 (Technology Release March 1997): http://
sk8.research.apple.com/

[20] Cypher, A., Smith, D.C. Spohrer, J.C. (1997) KidSim:
Programming agents without a programming language. In
Jeffrey M. Bradshaw (Ed.) SofiwareAgents, MIT Press, Cam-
bridge, MA. pp. 165-190.

[21] Educational Object Economy (Launch June 1997): http://
trp.research.apple.com/and http://www.eoe.org/

[22] Roschelle, J., Henderson, B. Spohrer, J.C., Lilly, J. (1998)
~wards an Educational Object Economy Technos, Winter
1997.

[23] Roddy, B., Epelman-Wang, H. "Interface Issues in Text
Based Chat Rooms", SIGCHIBulletin, Feb. 1998.

[24] Spohrer, J.C. (1998) Authoring Tools, Communities, and
Contexts. In Landauer and Bellman (Eds.) ½"rtual Worlds
and Simulation Conference (VWSIM '98) Simulation Series
Vol. 30, No. 2. pp. 87-88.

[25] Spohrer, J.C., Repenning, A., Dev, P. (1998) Educational
Object Economy: Authoring Tools for Simulations and On-

132 April 1998 Volume 30, Number 2 SIGCHI Bulletin

Line Communities. In Landauer and Bellman (Eds.) Virtual
Worlds and Simulation Confbrence (VWSIM '98) Simulation
Series Vol. 30, No. 2. pp. 115-116.

[26] Spohrer, J.C. and Lilly, J. (1998, submitted) Learning
Platform Evolution, Journal of lnteractive Media in Educa-
tion.

About the Author

Jim Spohrer is an Apple Distinguished Scientist heading up the
Educational Object Economy project. He has publications and
patents in the areas of learning architectures, authoring tools,
empirical studies of programmers, speech recognition, cogni-

tive science, and artificial intelligence. He received his B.S. in
Physics from MIT, and Ph.D.in Computer Science from Yale.

Contact Information

Jim Spohrer
Apple Computer, Inc.
MS: 301-3D 1 Infinite Loop
Cupertino, CA 95014, USA

Phone: + 1-408-974-1421
Fax: +1-408-974-5222
E-mail: spohrer@apple.com

SIGCHI Bulletin Volume 30, Number 2 April 1998 133

