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Abstract. An improvement is a correct program transformation that optimizes the program, where the
criterion is that the number of computation steps until a value is obtained is decreased. This paper investi-
gates improvements in both – an untyped and a polymorphically typed – call-by-need lambda-calculus with
letrec, case, constructors and seq. Besides showing that several local optimizations are improvements, the
main result of the paper is a proof that common subexpression elimination is correct and an improvement,
which proves a conjecture and thus closes a gap in Moran and Sands’ improvement theory. We also prove
that several different length measures used for improvement in Moran and Sands’ call-by-need calculus
and our calculus are equivalent.

1 Introduction

Motivation and State of the Art Functional programming languages with lazy evaluation like Haskell
[8] support declarative programming. They allow a definition of the intended results leaving the exact
sequence of operations unspecified and provide a high-level of abstraction [5].

While there is no official formal semantics of Haskell, it is often loosely identified with an extended
lazy lambda-calculus with call-by-name evaluation. However, all real implementations of Haskell use
call-by-need evaluation – i.e. lazy evaluation extended by sharing to avoid duplicated evaluation of
subexpressions.

Moreover, call-by-name models the computation of results and can be used to reason about program
semantics, but it fails to model resource consumption in real implementations. In contrast call-by-need
program calculi provide a good model of both: the correctness of the computation as well as the amount
of required work. Analyzing these calculi and providing tools for proving transformations to be correct
and/or to be optimizations is cumbersome, since sharing complicates reasoning, but it is worth the
effort.

There is a lot of research in the area of analyzing and proving the correctness of program transfor-
mations (e.g. [10, 6, 20]). However, there seems to be few research on whether the (correct) program
transformations are also optimizations – i.e. while preserving the meaning of the programs they also
decrease the runtime or the space behavior of the programs. Having such results is e.g. useful in
automated tools for program transformation like Hermit [21].

A theory of optimizations or improvements in extended lambda calculi is treated in [9] for a call-
by-need higher order language, and a call-by-value variant in [15]. In [9] the resource model counts
the steps of an abstract machine for call-by-need evaluation which is a variant of Sestoft’s abstract
machine [22]. The work of Moran and Sands [9] provides a foundation for program improvements which
leads to several results exhibiting program transformations that are improvements and also provides
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Term variables: x, xi ∈ Var where Var is the set of term variables

Expressions: r, s, t ∈ Expr := x | λx.s | (s t) | (cK,i s1 . . . sar(cK,i)) | (letrec x1 = s1, . . . , xn = sn in t) | (seq s t)

| (caseK s of ((cK,1 x1 . . . xar(cK,1)) -> t1) . . . ((cK,|DK | x1 . . . xar(cK,|DK |)) -> t|DK |))

(a) Expressions of the language LR

(s t)sub∨top → (ssub t)vis

(letrec Env in s)top → (letrec Env in ssub)vis

(letrec x = s,Env in C[xsub]) → (letrec x = ssub,Env in C[xvis])

(letrec x = s, y = C[xsub],Env in t) → (letrec x = ssub, y = C[xvis],Env in t), where C is not trivial

(letrec x = s, y = xsub,Env in t) → (letrec x = ssub, y = xnontarg,Env in t)

(seq s t)sub∨top → (seq ssub t)vis

(case s of alts)sub∨top → (case ssub of alts)vis

letrec x = svis∨nontarg, y = C[xsub],Env in t → Fail

(letrec x = C[xsub],Env in s) → Fail

(b) Computing reduction positions using labels in LR, where a ∨ b means label a or label b. The algorithm does
not overwrite non-displayed labels.

Fig. 1: Syntax and Labeling for the Calculus LR

techniques for showing program transformations being improvements. In [9] it is also remarked that
the reductions used in any context (a form of partial evaluation) are improvements, but the efficiency
gain has a limit: it is at most polynomial. A detailed analysis on this topic can be found in [3] for a call-
by-value lambda calculus. Clearly, other program transformations (which are not calculus reductions)
have a higher potential to improve efficiency. One such rule is common subexpression elimination
which identifies equal subexpressions of the program and replaces them by references to a single copy
of the subexpression. Common subexpression elimination is treated in [9], but not proved to be an
improvement (but it is conjectured).

Recently, Hackett and Hutton [4] rediscovered the improvement theory of [9] to argue that opti-
mizations are indeed improvements, with a particular focus on worker/wrapper transformations (see
e.g. [1] for more examples). The work of [4] uses the same call-by-need abstract machine as [9] with a
slightly modified measure for the improvement relation.

Goals and Results The goal of this paper is to develop an improvement theory for the LR-calculus [20],
an extended higher-order lambda calculus with call-by-need evaluation which models the core language
of Haskell. Differences to the work of Moran and Sands are (i) that the LR-calculus uses a small-step
operational semantics expressed by rewriting rules and a strategy, (ii) that it does not restrict the
syntax of arguments to be variables (i.e. in LR arbitrary expressions are allowed as arguments), and
(iii) that it includes the seq-operator for strict evaluation of expressions which is indispensable to
model the semantics of Haskell (see e.g. [6, 16]).

We use previous results and techniques for the LR-calculus to establish new improvement laws, in
particular we show that common subexpression elimination is an improvement. Here we can built upon
a detailed analysis of reduction lengths (performed in [20] in the context of a strictness analysis); the
method of using diagrams to compute and join overlappings between reductions and transformations
which we developed and applied in several works [7, 20, 13, 14] to show correctness of program trans-
formations; and correctness of inlining (or common subexpression elimination) via infinite expressions
(unfolding the letrecs) established in [19]. We prefer analyzing reductions in LR, due to the success of
the diagram method in LR.

Since our improvement relation is different from [9] (it uses a different measure and operational
semantics), we compare our measures with those in [9, 4]. The result is that our improvement theory
can be transferred to the abstract machine of [9] using our measure, and that our calculus and Moran
and Sand’s calculus together with their measures are equivalent w.r.t. resources.
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Analyzing untyped calculi covers a large amount of program transformations, however, typing ar-
guments are required for showing that interesting program transformations are improvements (see e.g.
[4]). Due to cyclic bindings, using monomorphic typing and monomorphising a polymorphic calculus
is insufficient. Hence we adapt ideas from system-F polymorphism [2, 11], in particular from an inter-
mediate language in a Haskell compiler [8, 23], and develop an improvement theory for the calculus
LRP – a polymorphically typed variant of LR with let-polymorphism. The type erasure of reduction
sequences exactly leads to the untyped reduction sequences in LR, so that our analyses complement
each other. We also show that a type-dependent transformation (called (caseId)) is an improvement.

Outline In Sect. 2 we recall the untyped calculus LR, and in Sect. 3 we introduce improvement for
LR and prove a context lemma. In Sect. 4 we show that common subexpression elimination is an
improvement. In Sect. 5 we compare our length measure with the measures used by Moran and Sands’
improvement theory. In Sect. 6 we introduce improvements for the polymorphically typed variant LRP
of the calculus LR and prove that a type dependent transformation is an improvement. We conclude
in Sect. 7.

2 The Call-by-Need Lambda Calculus LR

We recall the calculus LR [20], which is an untyped call-by-need lambda calculus which extends the
lambda calculus by recursive letrec, data constructors, case-expressions, and Haskell’s seq-operator.
We also recall several results from previous investigations: from [20] we reuse a counting theorem for
reduction lengths and correctness of several program transformations. From [19] we reuse correctness
of copying arbitrary expressions.

We employ the syntax of the calculus LR [20]. Let Var be a countable infinite set of variables. We
assume that there is a fixed set of type constructors K, where every type constructor K ∈ K has an
arity ar(K) ≥ 0, and there is a finite, non-empty set DK = {cK,1, . . . , cK,|DK |} of data constructors.
Every data constructor has an arity ar(cK,i) ≥ 0. The syntax of expressions r, s, t ∈ Expr of LR is
defined in Fig. 1a. We write FV (s) for the set of free variables of an expression s.

Besides variables x, abstractions λx.s, and applications (s t) the syntax of LR comprises the
following constructs: Constructor applications (cK,i s1 . . . sar(cK,i)) are only allowed to occur fully
saturated. We sometimes omit the index of the constructor or use vector notation and thus write e.g.
(c −→s ) instead of (cK,i s1 . . . sar(cK,i)).

In a letrec-expression letrec x1 = s1, . . . , xn = sn in t all variables x1, . . . , xn must be pairwise
distinct, the scope of xi is all si and t. The bindings x1 = s1, . . . , xn = sn are called the letrec-
environment and the expression t is called the in-expression. Sometimes the environment is abbreviated
by Env (e.g. we write (letrec Env in s), if the exact syntax of the bindings is not relevant). In an
environment Env = {x1 = t1, . . . , xn = tn}, we define LV (Env) = {x1, . . . , xn} and we sometimes write
{xi = ti}ni=1 as abbreviation for such an environment. We also use Env for parts of the environment
like e.g. in letrec Env1,Env2 in s. For a chain of variable-to-variable bindings xj = xj−1, xj+1 =
xj , . . . , xm = xm−1 we use the abbreviation {xi = xi−1}mi=j .

In a seq-expression (seq s t) the expression s must be successfully evaluated before the expression
t is evaluated, and thus seq can be used for strict evaluation of expressions. The syntax includes case-
expressions (caseK s of ((cK,1 x1 . . . xar(cK,1)) -> t1) . . . ((cK,|DK | x1 . . . xar(cK,|DK |)

) -> t|DK |)) where

there is a caseK for every type constructor K. A case-expression has exactly one case-alternative
((cK,i x1 . . . xar(cK,i)) -> ti) for every data constructor cK,i ∈ DK . The variables x1, . . . , xar(cK,i) in
the case-pattern ((cK,i x1 . . . xar(cK,i)) -> ti) must be pairwise distinct and the scope of the variables
x1, . . . , xar(cK,i) is the expression ti. We sometimes use the meta-symbol alts to abbreviate the case-
alternatives and thus e.g. write (caseK s of alts).

Definition 2.1. A context C is an expression with a hole (denoted by [·]) at expression position.
Surface contexts S are contexts where the hole is not in an abstraction, top contexts T are surface
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(lbeta) C[((λx.s)sub r)→ C[(letrec x = r in s)]

(cp-in) (letrec x1 = (λx.s)sub, {xi = xi−1}mi=2,Env in C[xvism ])
→ (letrec x1 = (λx.s), {xi = xi−1}mi=2,Env in C[(λx.s)])

(cp-e) (letrec x1 = (λx.s)sub, {xi = xi−1}mi=2,Env , y = C[xvism ] in r)
→ (letrec x1 = (λx.s), {xi = xi−1}mi=2,Env , y = C[(λx.s)] in r)

(llet-in) (letrec Env1 in (letrec Env2 in r)sub)→ (letrec Env1,Env2 in r)

(llet-e) (letrec Env1, x = (letrec Env2 in sx)sub in r)→ (letrec Env1,Env2, x = sx in r)

(lapp) C[((letrec Env in t)sub s)]→ C[(letrec Env in (t s))]

(lcase) C[(caseK (letrec Env in t)sub alts)]→ C[(letrec Env in (caseK t alts))]

(lseq) C[(seq (letrec Env in s)sub t)]→ C[(letrec Env in (seq s t))]

(seq-c) C[(seq vsub t)]→ C[t] if v is a value

(seq-in) (letrec x1 = (c
−→
t )sub, {xi = xi−1}mi=2,Env in C[(seq xvism t)])

→ (letrec x1 = (c
−→
t ), {xi = xi−1}mi=2,Env in C[t])

(seq-e) (letrec x1 = (c
−→
t )sub, {xi = xi−1}mi=2,Env , y = C[(seq xvism t)] in r)

→ (letrec x1 = (c
−→
t ), {xi = xi−1}mi=2,Env , y = C[t] in r)

(case-c) C[(caseK (ci
−→
t )sub . . . ((ci

−→y ) -> t) . . .)]→ C[(letrec {yi = ti}ni=1 in t)] if n = ar(ci) ≥ 1

(case-c) C[(caseK csubi . . . (ci -> t) . . .)]→ C[t] if ar(ci) = 0

(case-in) letrec x1 = (ci
−→
t )sub, {xi = xi−1}mi=2,Env in C[caseK xvism . . . ((ci

−→z ) -> t) . . .]
→ letrec x1 = (ci

−→y ), {yi = ti}ni=1, {xi = xi−1}mi=2,Env in C[(letrec {zi = yi}ni=1 in t)]
where n = ar(ci) ≥ 1 and yi are fresh variables

(case-in) letrec x1 = csubi , {xi = xi−1}mi=2,Env in C[caseK xvism . . . (ci -> t) . . .]
→ letrec x1 = ci, {xi = xi−1}mi=2,Env in C[t] if ar(ci) = 0

(case-e) letrec x1 = (ci
−→
t )sub, {xi = xi−1}mi=2, u = C[caseK xvism . . . ((ci

−→z ) -> r1) . . . ],Env in r2
→ letrec x1 = (ci

−→y ), {yi = ti}ni=1, {xi = xi−1}mi=2, u = C[(letrec z1 = y1, . . . , zn = yn in r1)],Env in r2
where n = ar(ci) ≥ 1 and yi are fresh variables

(case-e) letrec x1 = csubi , {xi = xi−1}mi=2, u = C[caseK xvism . . . (ci -> r1) . . .],Env in r2
→ letrec x1 = ci, {xi = xi−1}mi=2 . . . , u = C[r1],Env in r2 if ar(ci) = 0

Fig. 2: Reduction rules

contexts where the hole is not in an alternative of a case, and weak top contexts are top contexts where
the hole is not in a letrec.

A multicontext M is an expression with several (or also no) holes at expression positions.

2.1 Normal Order Reduction

A value in LR is an abstraction λx.s or a constructor application (c −→s ). The reduction rules of the
calculus are defined in Fig. 2, where the role of the labels sub, top, vis, nontarg will be explained below in
Definition 2.2. The rule (lbeta) is the sharing variant of classical β-reduction. The rules (cp-in) and (cp-
e) copy abstractions. The rules (llet-in) and (llet-e) join two letrec-environments. The rules (lapp),
(lcase), and (lseq) float-out a letrec from the first argument of an application, a case-expression, or
a seq-expression. The rules (seq-c), (seq-in), and (seq-e) evaluate a seq-expression, provided that the
first argument is a value (or a variable that is bound (via indirections) to a constructor application).
The rules (case-c), (case-in), and (case-e) evaluate a case expression provided that the first argument
is (or is a variable which is bound to) a constructor application of the right type.

The normal order reduction strategy of the calculus LR is a call-by-need strategy, which is a call-
by-name strategy adapted to sharing. It applies the reduction rules at specific positions. Instead of
defining the call-by-need evaluation in terms of a syntactic definition of reduction contexts (using a
context free grammar), we provide an algorithm to find the position of a redex and also to describe
the syntactic form of so-called reduction contexts1.

Definition 2.2 (Labeling Algorithm). The labeling algorithm detects the position to which a re-
duction rule will be applied according to normal order. It uses the labels: top,sub,vis,nontarg where top

1 However, a syntactic (and rather complex) definition of reduction contexts by a context free grammar and the corre-
sponding description of normal order reduction for the calculus LR can be found in [20].
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(gc1) (letrec x1 = s1, . . . , xn = sn,Env in t)→ (letrec Env in t) if for all i : xi does not occur in Env nor in t

(gc2) (letrec x1 = s1, . . . , xn = sn in t)→ t if for all i : xi does not occur in t

(cpx-in) (letrec x = y,Env in C[x]) → (letrec x = y,Env in C[y]) where y is a variable and x 6= y

(cpx-e) (letrec x = y, z = C[x],Env in t) → (letrec x = y, z = C[y],Env in t) where y is a variable and x 6= y

(cpax) (letrec x = y,Env in s)→ (letrec x = y,Env [y/x] in s[y/x])
where y is a variable, x 6= y and y ∈ FV (s,Env)

(cpcx-in) (letrec x = c
−→
t ,Env in C[x])→ (letrec x = c −→y , y1 = t1, . . . , yn = tar(c),Env in C[c −→y ])

(cpcx-e) (letrec x = c
−→
t , z = C[x],Env in t)→ (letrec x = c −→y , y1 = t1, . . . , yar(c) = tar(c), z = C[c −→y ],Env in t)

(abs) (letrec x = c
−→
t ,Env in s)→ letrec x = c −→x , x1 = t1, . . . , xar(c) = tar(c),Env in s where ar(c) ≥ 1

(abse) (c
−→
t )→ (letrec x1 = t1, . . . , xar(c) = tar(c) in c

−→x ) where ar(c) ≥ 1

(xch) (letrec x = t, y = x,Env in r) → (letrec y = t, x = y,Env in r)

(ucp1) (letrec Env , x = t in S[x])→ (letrec Env in S[t])

(ucp2) (letrec Env , x = t, y = S[x] in r)→ (letrec Env , y = S[t] in r)

(ucp3) (letrec x = t in S[x])→ S[t]
where in the (ucp)-rules, x has at most one occurrence in S[x] and no occurrence in Env , t, r; and S is a surface context

Fig. 3: Extra transformation rules

means reduction of the top term, sub means reduction of a subterm, vis marks already visited subex-
pressions, and nontarg marks already visited variables that are not target of a (cp)-reduction. For a
term s the labeling algorithm starts with stop, where no other subexpression in s is labeled and proceeds
by applying the rules given in Fig. 1b exhaustively.

Note that the labeling algorithm does not descend into sub-labeled letrec-expressions. If the labeling
algorithm does not fail, then a potential normal order redex is found, which can only be a superterm
of the sub-marked subexpression. However, it is possible that there is no normal order reduction, if
the evaluation is already finished, or no rule is applicable.

Definition 2.3 (Normal Order Reduction of LR). Let t be an expression. Then a single normal
order reduction step t

no−→ t′ is defined by first applying the labeling algorithm to t, and if the labeling
algorithm terminates successfully, then one of the rules in Figure 2 has to be applied, if possible, where
the labels sub, vis must match the labels in the expression t (t may have more labels).

It can be verified (by a case analysis) that normal order reduction is unique, i.e. for an expression
t either no normal order reduction is possible, or there is a unique expression t′ (upto α-equivalence)
s.t. t

no−→ t′

We sometimes attach more information to the reduction arrow, e.g.
no,lbeta−−−−−→ denotes a normal order

reduction using rule (lbeta). For a binary relation→ we write
+−→ for the transitive closure, and

∗−→ for

the reflexive-transitive closure of→. E.g.,
no,∗−−→ denotes the reflexive-transitive closure of

no−→. We write
n−→ for exactly n →-steps and we write

n∨m−−−→ for either n or m steps. The notation
a∨b−−→ is also used

for a and b being rule names, meaning the union of the rules a and b. For instance,
no,lbeta∨no,lapp,0∨1−−−−−−−−−−−−−→

means one or none normal order reduction step using rule (lbeta) or rule (lapp).

We define reduction contexts and weak reduction contexts:

Definition 2.4. A reduction context R is any context, such that its hole will be labeled with sub or
top by the labeling algorithm in Fig. 1b. A weak reduction context, R−, is a reduction context, where
the hole is not within a letrec-expression.

Definition 2.5. A weak head normal form (WHNF) is a value v, or
an expression (letrec Env in v), where v is a value, or an expression
(letrec x1 = (c

−→
t ), {xi = xi−1}mi=2,Env in xm).

An expression s converges, denoted as s↓, iff there exists a WHNF t s.t. s
no,∗−−→ t. This may also

be denoted as s ↓ t
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2.2 Program Transformations

A program transformation P is a binary relation on expressions. We write s
P−→ t, if (s, t) ∈ P . For

a set of contexts X and a transformation P , the transformation (X,P ) is the closure of P w.r.t. the

contexts in X, i.e. C[s]
X,P−−→ C[t] iff C ∈ X and s

P−→ t.
The reduction rules in Fig. 2 are also program transformations where we ignore the labels.

Definition 2.6. We define unions for the rules in Fig. 2: (case) is the union of (case-c), (case-in),
(case-e); (seq) is the union of (seq-c), (seq-in), (seq-e); (cp) is the union of (cp-in), (cp-e); (llet) is
the union of (llet-in), (llet-e); and (lll) is the union of (llet), (lapp), (lcase), and (lseq).

In Fig. 3 additional program transformations are defined. We use the following unions: (gc) is the
union of (gc1) and (gc2); (cpx) is the union of (cpx-in) and (cpx-e); (cpcx) is the union of (cpcx-in)
and (cpcx-e); and (ucp) is the union of (ucp1), (ucp2), and (ucp3).

We use the unions of the reduction rules also for normal order reduction and thus e.g. write
no,llet−−−−→

for
no,llet−in∨no,llet−e−−−−−−−−−−−−−→.
We briefly explain the additional transformations: (gc) performs garbage collection by removing

unused letrec-environments, and (cpx), (cpax) copy variables, and can be used to shorten chains
of indirections. The transformation (cpcx) copies a constructor application into a referenced posi-
tion, where the arguments are shared by new letrec-bindings. Similarly, (abs) and (abse) perform
this sharing without copying the constructor application. The transformation (ucp) means “unique
copying” and it inlines a shared expression which is referenced only once.

2.3 Contextual Equivalence

As program equivalence we use contextual equivalence which equates two expressions if exchanging
one program by the other program cannot be observed in any surrounding program contexts.

Definition 2.7. Let s, t be two LR-expressions. We define contextual equivalence ∼c w.r.t the oper-
ational semantics of LR: Let s ∼c t, iff for all contexts C[·]: C[s]↓ ⇐⇒ C[t]↓.

Note that contextual equivalence is a congruence, i.e. it is an equivalence relation which is compatible
with contexts.

Definition 2.8. A program transformation P is correct, if it preserves contextual equivalence, i.e.
P ⊆ ∼c.

In [20] we proved that all introduced transformations are correct:

Proposition 2.9 ([20]). The program transformations (lbeta), (case), (seq), (cp), (lll), , (gc), (cpx),
(cpax), (cpcx), (abs), (abse), (xch), and (ucp) are correct.

3 Improvement in the LR-Calculus

While contextual equivalence is a correctness criterion for program transformations, it has no require-
ments on the transformation being an optimization w.r.t. time (or space) complexity of a program.
This is where the improvement relation comes into play and restricts contextual equivalence of s, t by
the further requirement that s may be replaced by t (within a program) if the number of computa-
tion steps for successfully evaluating the whole program is not increased. We define two measures for
estimating the time consumption, counting the essential and all reduction steps:

Definition 3.1. Let t be a closed expression with t ↓ t0.

1. rln(t) is the number of lbeta, case, seq-reductions in t ↓ t0.
2. rlnall(t) is the number of all reductions in t ↓ t0.
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It is consistent to define the measures as ∞, if t ↑.

The main measure throughout this paper is rln(·) which can be justified as follows: The (cp)-
reductions are not counted, however, since every (no,cp) is followed by an (no,lbeta)- or an (no,seq)-
reduction, or it is the last reduction, the number of (cp)-reductions of an expression t is at most
2 · rln(t) + 1.

Also (lll)-reductions are not counted, since these can be more efficiently implemented on abstract
machines, often more efficient than in the calculus model, by floating environments to the top in
one step instead of doing it step-by-step. A further deviation from real run-time is the size of the
abstractions, which are duplicated in a (cp) reduction. Also the search for a redex (modeled by our
labeling algorithm) is not counted by our measures (which is different from [9]). If the computation
is long compared to the size of the expression, then the sizes of abstractions can be considered as
constant. In particular, in call-by-need computation, the size of abstractions cannot be increased. This
alleviates the error made by not counting the size (see also Theorem 5.17).

From [20] we repeat several invariance properties w.r.t. reduction lengths of the transformations
in Figs. 2 and 3:

Theorem 3.2 ([20]). Let t be a closed LR-expression with t ↓ t0.

1. If t
C,a−−→ t′, and a ∈ {case, seq, lbeta, cp}, then rln(t) ≥ rln(t′) and rlnall(t) ≥ rlnall(t′).

2. If t
S,a−−→ t′, and a ∈ {case, seq, lbeta}, then rln(t) ≥ rln(t′) ≥ rln(t)− 1.

3. If t
C,a−−→ t′, and a ∈ {lll, gc}, then rln(t) = rln(t′) and rlnall(t) ≥ rlnall(t′). For a = gc1 the

equation rlnall(t) = rlnall(t′) holds.

4. If t
C,a−−→ t′, and a ∈ {cpx, cpax, xch, cpcx, abs}, then rln(t) = rln(t′) and rlnall(t) = rlnall(t′).

5. If t
C,ucp−−−→ t′, then rln(t) = rln(t′) and rlnall(t) ≥ rlnall(t′).

3.1 The Improvement Relation

The improvement relation identifies contextual equivalent expressions and requires that the reduction
length rln(·) is not increased:

Definition 3.3 (Improvement Relation). For s, t ∈ Expr let s � t (t is improved by s), iff s ∼c t
and for all contexts C[·] s.t. C[s], C[t] are closed: rln(C[s]) ≤ rln(C[t]). We write t � s if s � t
holds. If s � t and s � t, we write s ≈ t.

A program transformation P is an improvement iff P ⊆ �.

Let η ∈ {≤,=,≥} be a relation on non-negative integers, and for a class of contexts X (we will
instantiate X with: all contexts C; all reduction contexts R; all surface contexts S; or all top-contexts
T ) let s ./η,X t iff for all X-contexts X, s.t. X[s], X[t] are closed: rln(X[s]) η rln(X[t]). In particular,
./≤,C = �, ./≥,C = �, and ./=,C = ≈.

The context lemma for improvement shows that it suffices to take reduction contexts into account
for proving improvement. Its proof is similar to the ones for context lemmas for contextual equivalence
in call-by-need lambda calculi (see [20, 17]).

Lemma 3.4 (Context Lemma for improvement). Let s, t be expressions with s ∼c t, η ∈ {≤,=
,≥}. Then s ./η,R t iff s ./η,C t.

Proof. One direction is trivial. For the other direction we prove a more general claim using multicon-
texts:

For all n ≥ 0 and for all i = 1, . . . , n let si, ti be expressions with si ∼c ti and si ./η,R ti.
Then for all multicontexts M with n holes s.t. M [s1, . . . , sn] and M [t1, . . . , tn] are closed:
rln(M [s1, . . . , sn]) η rln(M [t1, . . . , tn]).
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s
T,pcgE//

no,a ��
t
no,a��

s′
T,pcgE

// t′

(1)

s
T,pcgE//

no,lll ��
t

s′
T,pcgE

;;

(2)

s
T,pcgE //

no,llet ��
t
no,llet��

s′
C,llet

// s′′
T,pcgE

// t′

(3)

s
T,pcgE //

no,a ��
t
no,a��

s′
C,a
// s′′

T,pcgE
// t′

(4)

s
pcgE //

no,a ��
t

no,a{{
s′

for a ∈ {seq, case}

(5)

s
T,pcgE //

no,cp ��
t
no,cp��

s′
T,pcgE

// s′′
T,pcgE

// t′

(6)

s
T,pcgE //

no,case ��
t
no,case��

s′
C,abs

// s′′
T,pcgE

// t′

(7)

s
T,pcgE //

no,case ��
t
no,case��

s′
C,case

// s′′
C,(cpx∨gc),∗

// s′′′
T,pcgE

// t′

(8)

Fig. 4: Forking diagrams for (pcgE)

The proof is by induction on the pair (k, k′) where k is the number of normal order reductions
of M [s1, . . . , sn] to a WHNF, and k′ is the number of holes of M . If M (without holes) is a WHNF,
then the claim holds. If M [s1, . . . , sn] is a WHNF, and no hole is in a reduction context, then also
M [t1, . . . , tn] is a WHNF and rln(M [s1, . . . , sn]) = 0 = rln(M [t1, . . . , tn]).

If in M [s1, . . . , sn] one si is in a reduction context, then one hole, say i of
M is in a reduction context and M [t1, . . . , ti−1, ·, ti+1, . . . , tn] is a reduction con-
text. By the induction hypothesis, using the multi-context M [. . . , ·, si, ·, . . .], we have
rln(M [s1, . . . , si−1, si, si+1, . . . , sn]) η rln(M [t1, . . . , ti−1, si, ti+1, . . . , tn]), and from the as-
sumption we have rln(M [t1, . . . , ti−1, si, ti+1, . . . , tn]) η rln(M [t1, . . . , ti−1, ti, ti+1, . . . , tn]), and
hence rln(M [s1, . . . , sn]) η rln(M [t1, . . . , tn]).

If in M [s1, . . . , sn] there is no si in a reduction context, then M [s1, . . . , sn]
no,a−−→ M ′[s′1, . . . , s

′
n′ ],

may copy or shift some of the si where s′j = ρ(si) for some variable permutation ρ. However, the

reduction type is the same for the first step of M [s1, . . . , sn] and M [t1, . . . , tn], i.e. M [t1, . . . , tn]
no,a−−→

M ′[t′1, . . . , t
′
n′ ] with (s′j , t

′
j) = (ρ(si), ρ(ti)). We take for granted that the renaming can be carried

through. The rln(.)-count on both sides is m = 0 or m = 1, depending on a. Thus we can apply
the induction hypothesis to M ′[s′1, . . . , s

′
n′ ] and M [t′1, . . . , t

′
n′ ], and so we have rln(M [s1, . . . , sn]) =

m+ rln(M ′[s′1, . . . , s
′
n′ ]) η m+ rln(M ′[t′1, . . . , t

′
n′ ]) = rln(M [t1, . . . , tn]).

Since reduction contexts are also T - or S-contexts, we have:

Corollary 3.5. Let s, t be expressions with s ∼c t, and η ∈ {≤,=,≥}. Then s ./η,T t (or s ./η,S t)
implies that s ./η,C t.

Now we can prove properties of the (cp)-reduction using the diagrams in [20] (see also Appendix A)

Theorem 3.6. Let t be a closed LR-expression with t ↓ t0. If t
C,cp−−→ t′ then rln(t) = rln(t′).

Proof. This follows using correctness of (cp) and the diagrams in [20, Lemmas B.8, B.9] where forking

diagrams for t1
no,a←−→ s

S,cp−−→ are computed. Then counting the reductions contributing to rln(.) and
using Corollary 3.5 shows the claim.

Due to the exact analyses in [20] on the influence of the reduction rules (Fig. 2) and the addi-
tional transformations (Fig. 3) concerning the reduction lengths as stated in Theorems 3.2 and 3.6,
Proposition 2.9 and Corollary 3.5. imply the following theorem:

Theorem 3.7. The transformations (case), (seq), (lbeta), (cp), (lll), (gc), (cpx), (cpax), (xch), (abs),
and (ucp) are improvements.

Moreover, for a ∈ {(cp), (lll), (gc), (cpx), (cpax), (xch), (abs), (ucp)} the inclusion a ⊆ � and
thus the inclusion a ⊆ ≈ holds.
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4 Common Subexpression Elimination

Common subexpression elimination (cse) can be expressed as:

(cse) M [s, . . . , s]→ letrec x = s in M [x, . . . , x]
where x is a fresh variable and the multicontext M
does not capture a variable in s

We will show that (cse) is an improvement. Although this appears to be obvious, it is not trivial,
due to several reasons. The calculus LR is call-by-need, which means that computations and also
parts of computations can be shared. Correctness of (cse) could only be proved via a call-by-name
calculus on infinite trees, which cannot be used to analyse resource usage under call-by-need, and it
was mentioned as a conjecture in [9] (for a related core language).

To show (cse) ⊆ � we consider the general-copy rule

(gcp) letrec x = s in C[x] → letrec x = s in C[s].

We first show that the inverse of (gcp) is an improvement. Since (gc) ⊆ ≈ and letrec x =

s in M [x, . . . , x]
gcp,∗−−−→ letrec x = s in M [s, . . . , s]

gc−→ M [s, . . . , s], this implies that (cse) is an
improvement. For the proof that (pcg) (the inverse of (gcp)) is an improvement we require several
variants of the rule. Note that x ∈ FV (s) is permitted (gcp) and (pcg).

Definition 4.1. The transformation (pcg) is the union of the rules:

(pcg-in) letrec x = s,Env in C[s]
→ letrec x = s,Env in C[x]

(pcg-e) letrec x = s,Env , y = C[s] in r
→ letrec x = s,Env , y = C[x] in r

The transformation (pcgE) is the union of the following rules:

(pcgE1-in) letrec Env ,Env2 in C[letrec Env ′,Env3 in r]
→ letrec Env ,Env2 in C[letrec Env3α in rα]

(pcgE2-in) letrec Env ,Env2 in C[letrec Env ′ in r]
→ letrec Env ,Env2 in C[rα]

(pcgE1-e)
letrec Env ,Env2, x = C[letrec Env ′,Env3 in r] in s
→ letrec Env ,Env2, x = C[letrec Env3α in rα] in s

(pcgE2-e) letrec Env ,Env2, x = C[letrec Env ′ in r]
→ letrec Env ,Env2, x = C[rα] in s

(pcgE3) letrec Env ,Env ′,Env3 in r
→ letrec Env ,Env3α in rα

where Env ′α = Env and α only renames variables of LV (Env ′).

Proposition 4.2. (pcg) and (pcgE) are correct.

Proof. In [19] the following result for LR was obtained:

For an expression s, its infinite tree IT (s) is derived by unfolding all letrec-bindings (and
removing the letrec). If IT (s) = IT (t) for two expressions s, t (where = is syntactic equality
modulo α-equivalence on infinite trees), then s ∼c t.

Now, since s
pcg∨pcgE−−−−−−→ t implies that IT (s) = IT (t), correctness of both program transformation

holds.
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·
T,pcg //

no,a ��

·
no,a��

·
T,pcg

// ·

a 6= (cp)

(9)

·
T,pcg //

no,cp

��

·
no,cp��

no,a ��

·
no,a��

·
T,pcg

// ·
T,pcg,0∨1

// ·

a ∈ {lbeta, seq}

(10)

·
T,pcg //

no,cp ��

·
no,cp��

·
no,a ��

·
no,a��

·
C,cp
// ·

C,a
// ·

T,pcg
// ·

a ∈ {lbeta, seq}

(11)

·
T,pcg //

no,a ��

·
no,a��

·
C,a,∗

// ·
T,pcg

// ·

a 6= (cp)

(12)

·
no,a ��

T,pcg // ·
no,azz·

a ∈ {case,seq}

(13)

·
T,pcg //

no,llet �� no,llet��
·
T,pcgE

// ·
T,pcg

// ·

(14)

·
T,pcg //

no,case ��

·
no,case��

·
C,lll,∗

// ·
T,pcg

// ·
T,pcg

// · ·
C,(cpx∨gc),∗
oo

(15)

·
T,pcg //

no,case ��

·
no,case��

·
T,case

// ·
C,(cpx∨gc),∗

// ·
T,pcg

// ·

(16)

Fig. 5: Forking-diagrams for (pcg)

Proposition 4.3. If s
T,pcgE−−−−→ t, then rln(s) ≥ rln(t) and rlnall(s) ≥ rlnall(t). Moreover, the

transformation (pcgE) is an improvement, i.e. (pcgE) ⊆ �.

Proof. Let s′
no,a←−− s

T,pcgE−−−−→ t. All possible overlappings (forks) can be joined by one of the diagrams
in Fig. 4 (details are in Appendix C.1) where solid lines are the given reductions and dashed lines
are the existential reductions. By induction on rlnall(s) we show that rlnall(t) ≤ rlnall(s) and
rln(t) ≤ rln(s). If rlnall(s) = 0 then s is a WHNF, and t must also be a WHNF and rlnall(t) =

rln(t) = 0. If rlnall(s) > 0, then let s
no,a−−→ s′.

– For diagram (1) we can apply the induction hypothesis to s′
T,pcgE−−−−→ t′, since rlnall(s′) =

rlnall(s)− 1. This shows that rlnall(t) ≤ rlnall(s) and also that rln(t) ≤ rln(s).

– For diagram (2) we can apply the induction hypothesis to s′
T,pcgE−−−−→ t which shows rlnall(t) ≤

rlnall(s′) = rlnall(s)− 1 and rln(t) ≤ rln(s′) = rln(s).
– For diagram (3) we have rlnall(s) > rlnall(s′) and rln(s) = rln(s′). By Theorem 3.2 (3)

rlnall(s′′) ≤ rlnall(s′) and rln(s′′) ≤ rln(s′). We can apply the induction hypothesis to

s′′
T,pcgE−−−−→ t′ which shows rlnall(t′) ≤ rlnall(s′′) and rln(t′) ≤ rlnall(s′′). This implies

rlnall(t) ≤ rlnall(s) and also rln(t) ≤ rln(s).
– For diagram (4) we have rlnall(s′) < rlnall(s) and rln(s′) ≤ rln(s) (or rln(s′) < rln(s) if
a ∈ {case, beta, seq}). Theorem 3.2 shows that rlnall(s′′) ≤ rlnall(s′) and rln(s′′) ≤ rln(s′).

Applying the induction hypothesis to s′′
T,pcgE−−−−→ t′ yields rlnall(t′) ≤ rlnall(s′′) and rln(t′) ≤

rln(s′′). This implies both rlnall(t) ≤ rlnall(s) as well as rln(t) ≤ rln(s).
– For diagram (5) obviously rlnall(s) = rlnall(t) and rln(s) = rln(t) hold.
– For diagram (6) we have rlnall(s′) < rlnall(s) and rln(s) = rln(s′). Applying the induction

hypothesis to s′
T,pcgE−−−−→ s′′ yields rlnall(s′′) ≤ rlnall(s′) and rln(s′′) ≤ rln(s′). Applying the

induction hypothesis to s′′
T,pcgE−−−−→ t′ yields rlnall(t′) ≤ rlnall(s′′) and rln(t′′) ≤ rln(s′′). Since

t
no,cp−−−→ t′, this shows rlnall(t) ≤ rlnall(s) and rln(t) ≤ rln(s).

– For diagram (7) we have rlnall(s′) < rlnall(s) and rln(s) < rln(s′). By Theorem 3.2 (4) we have

rln(s′′) ≤ rln(s′) and rlnall(s′′) ≤ rlnall(s′). Applying the induction hypothesis to s′′
T,pcgE−−−−→ t′

yields rlnall(t′) ≤ rlnall(s′′) and rln(t′) ≤ rln(s′′) which shows rlnall(t) ≤ rlnall(s) and
rln(t) ≤ rln(s).

– For diagram (8) we have rlnall(s′) < rlnall(s) and rln(s) < rln(s′). By Theorem 3.2 (1), (3),
(4) we have rln(s′′′) ≤ rln(s′) and rlnall(s′′′) = rlnall(s′). Applying the induction hypothesis

to s′′′
T,pcgE−−−−→ t′ yields rlnall(t′) ≤ rlnall(s′′′) and rln(t′) ≤ rln(s′′) which shows rlnall(t) ≤

rlnall(s) and rln(t) ≤ rln(s).

Since (pcgE) is correct (Proposition 4.2), the context lemma for improvement (Corollary 3.5) shows
(pcgE) ⊆ �.
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Lemma 4.4. If s
T,pcg−−−→ s′, where s is a WHNF, then either s′ is a WHNF, or s′

no,cp−−−→ s′′ where s′′

is a WHNF.

Lemma 4.5. For closed s with s
T,pcg−−−→ s′: rln(s) ≥ rln(s′).

Proof. Let s↓, and s
T,pcg−−−→ s′. We show rln(s) ≥ rln(s′) by induction on the measure

(rln(s), rlnall(s)), ordered lexicographically. For the base case rln(s) = rlnall(s) = 0, the ex-
pression s is a WHNF and Lemma 4.4 shows that rln(s′) = 0.

For the induction step, Fig. 5 shows the overlappings between normal order reduction-steps and a
T,pcg−−−→-transformation (see Appendix C.2 for details) where the cases that the (T ,pcg)-transformation
is an inverse (C,cp)- or (C,cpx)-transformation are not covered, since in these cases Theorem 3.2 (4),
or Theorem 3.6 show the claim. We consider the remaining cases:

(Lookup) 〈Γ, x = s | x | S〉 −⇀ 〈Γ | s | #upd(x) : S〉
(Update) 〈Γ | v | #upd(x) : S〉 −⇀ 〈Γ, x = v | v | S〉 where v is a value (v = λx.s or v = c −→y )

(Unwind1) 〈Γ | (s x) | S〉 −⇀ 〈Γ | s | #app(x) : S〉
(Unwind2) 〈Γ | (seq s x) | S〉 −⇀ 〈Γ | s | #seq(x) : S〉
(Unwind3) 〈Γ | caseK s of alts | S〉 −⇀ 〈Γ | s | #case(alts) : S〉
(Subst) 〈Γ | λx.s | #app(y) : S〉 −⇀ 〈Γ | s[y/x] | S〉
(Seq) 〈Γ | v | #seq(y) : S〉 −⇀ 〈Γ | y | S〉 where v is a value (v = λx.s or v = c −→y )

(Branch) 〈Γ | ci,K −→x | #case(. . . ((ci,K
−→y ) -> t) . . .) : S〉 −⇀ 〈Γ | t[−→x /−→y ] | S〉

(Letrec) 〈Γ | letrec Env in s | S〉 −⇀ 〈Γ,Env | s | S〉

Fig. 6: Machine transitions

1. If s
no,case∨seq∨lbeta−−−−−−−−−−−→ t1, then one of the diagrams (9), (12), (13), (15), or (16) of Fig. 5 holds. The

diagrams can be summarized as follows where a ∈ {case, seq, lbeta}:

s
T,pcg //

no,a
��

s′

no,a
��

t1
C,a,∗∨C,lll,∗

// t2
C,gc∨cpx,∗

// t3
T,pcg,∗

// t4 oo
C,gc∨cpx,∗

t5

We have rln(t1) = rln(s) − 1 and by Theorem 3.2 we have rln(t3) ≤ rln(t1). We apply the

induction hypothesis for every step in t3
T,pcg,∗−−−−→ t4 and we derive rln(t4) ≤ rln(t1) < rln(s).

Theorem 3.2 shows that rln(t4) = rln(t5), and thus rln(s′) = rln(t5)+1 ≤ rln(t1)+1 = rln(s).

2. Let s
no,cp−−−→ t1. If t1 is a WHNF, then by Lemma 4.4 s′

no,cp,0∨1−−−−−−→ t′1 where t′1 is a WHNF and

rln(s′) ≤ rln(s) holds. If t1 is not a WHNF, then t1
no,a−−→ t2 where a ∈ {(lbeta), (seq)} and

diagram (10) or (11) of Fig. 5 holds.

For diagram (10) we have:

s
no,cp

��

T,pcg // s′

no,cp��
t1

no,a
��

t′1
no,a
��

t2
T,pcg

// t3
T,pcg,0∨1

// t4

Then rln(t2) < rln(s) and we apply the induction hypothesis to t2
T,pcg−−−→ t3 which shows rln(t3) ≤

rln(t2) < rln(s). We then apply the induction hypothesis to t3
T,pcg,0∨1−−−−−−→ t4 which shows rln(t4) ≤

rln(t2) < rln(s) and rln(s′) ≤ rln(s).

Similarly, in diagram (11) the situation is: t2
no,a←−− t1

no,cp←−−− s
pcg−−→ s′

no,cp−−−→ t′1
no,a−−→ t5, and

t2
C,cp−−→ t3

C,a−−→ t4
T,pcg−−−→ t5. Then rln(t2) < rln(s) and by Theorem 3.2 (1) rln(t4) ≤ rln(t2)
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and we apply the induction hypothesis to t4
T,pcg−−−→ t5 and have rln(t5) ≤ rln(t4) < rln(s) and

rln(s′) ≤ rln(s).

3. If s
no,lll−−−→ t1, then the one of the diagrams (9), (12), or (14) of Fig. 5 holds, which can be summarized

as follows:

s
T,pcg //

no,lll
��

s′

no,lll
��

t1
C,lll,∗∨T,pcgE

// t2 pcg
// t3

Then rln(t1) = rln(s), and rlnall(t1) = rlnall(s)−1.Theorem 3.2 (3), and Proposition 4.3 show
that rln(t2) ≤ rln(t1) and rlnall(t2) ≤ rlnall(t1). Thus we can apply the induction hypothesis

to t2
T,pcg−−−→ t3 which yields rln(t3) ≤ rln(t2). Since s′

no,lll−−−→ t3, we have rln(s′) = rln(t3) ≤
rln(t2) = rln(t1) = rln(s) which shows the claim. ut

Theorem 4.6. The program transformations (pcg) and (pcgE) are improvements, and thus (cse) is
an improvement.

Proof. For (pcgE) the claim is proved in Proposition 4.3 and for (pcg) this follows from Lemma 4.5,
correctness of (pcg) (Proposition 4.2) and the context lemma for improvement (Corollary 3.5).

As already demonstrated, the transformation (cse) can be represented as a sequence
gc←− .

pcg,∗−−−→
and since (gc) ⊆ ≈ by Theorem 3.7, this shows that (cse) is an improvement.

5 The Improvement Theory of Moran & Sands

We investigate the relationship between our measure rln(·) and the counting measures used in [9, 4]
for their improvement relations. In Theorem 5.11 we show that rln(·) coincides with the number of
essential transition steps of the abstract machine of [9]. In Theorem 5.15 we compare the number of
all transitions steps (the measure used by [9]) with our measure and the measure used by [4].

To compare and relate the resource consumption of two program calculi, we define the notion
of an asymptotically resource-preserving translation. Therefore, we use the O-notation as follows. For
functions f, g : E → N, we write f ∈ O(g), if there is a constant c > 0, s.t. for all e ∈ E: f(e) ≤ c∗g(e).

Definition 5.1. Let K1 = (E1,∼1, size1, µ1), K2 = (E2,∼2, size2, µ2) be two calculi with sets of
expressions, contextual equivalences, size-measures for expressions, and measures for reduction length
of expressions.

Then a translation φ1 : K1 → K2 is size-preserving, iff size1(e) ∈ O(size2(φ(e))) and φ is fully
abstract; i.e., for all e, e′ ∈ E1: e ∼1 e

′ ⇐⇒ φ1(e) ∼2 φ1(e
′).

Then φ : K1 → K2 is asymptotically resource-preserving, if φ is a size-preserving translation such
that there exists an n ∈ N with µ1(e1) ∈ O(size2(φ1(e1))

n ∗ (µ2(φ1(e1)) + 1)).

At the very end of this section (Theorem 5.17) we prove several results on asymptotic resource-
preserving translations between the calculus LR and the abstract machine of [9] w.r.t. different mea-
sures for reduction lengths.

We first recall the abstract machine used by [9]. The syntax of machine expressions is the same as
the syntax for LR-expressions except that argument positions are restricted to variables, i.e. in appli-
cations (s t), seq-expressions2 (seq s t), and constructor applications (c t1 . . . tar(c)) the expressions
t, ti must be variables.

2 Note that the syntax in [9] does not have seq-expressions.
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(mo,cpv-e) (letrec Env , x = vsub, y = C[xsub∨nontarg] in s)→ (letrec Env , x = v, y = C[v] in s) where v is a value

(mo,cpv-in) (letrec Env , x = vsub in C[xsub])→ (letrec Env , x = v inC[v]) where v is a value

(mo,β-var) C[(λx.s)sub y]→ C[s[y/x]]

(mo,casecx) C[(caseK (cK,i
−→x )sub of . . . ((cK,i

−→y ) -> s) . . .)]→ C[s[−→x /−→y ]]

(mo,seq-c) C[(seq vsub x)]→ C[x]

(mo,glletm) R−[(letrec Env in s)sub]→ (letrec Env in R−[s])

(mo,gllet-in) (letrec Env1 in C[(letrec Env2 in s)sub])→ (letrec Env1,Env2 in C[s])

(mo,gllet-e) (letrec y = C[(letrec Env1 in s)sub],Env2 in t)→ (letrec y = C[s],Env1,Env2 in t)

Fig. 7: Machine order reduction rules

Definition 5.2. The translation ψ from arbitrary LR-expressions into machine expressions is

ψ(x) := x, if x ∈ Var
ψ(s t) := letrec x = ψ(t) in (ψ(s) x)
ψ(seq s t) := letrec x = ψ(t) in (seq ψ(s) x)
ψ(c s1 . . . sn) := letrec x1 = ψ(s1), . . . , xn = ψ(sn)

in (c x1 . . . xn)
ψ(M [s1, . . . , sn]) := M [ψ(s1), . . . , ψ(sn)]

where the multicontext M is letrec x1 = [·], . . . , xn = [·] in [·], λx.[·], or
caseK [·] of (pat1 -> [·]) . . . (patn -> [·]).

Since ψ(t)
C,ucp,∗−−−−→ t, Theorem 3.2 (5) implies:

Lemma 5.3. For all closed t ∈ Expr: rln(t) = rln(ψ(t)).

A state Q of the machine is a tuple 〈Γ | s | S〉, where Γ is an environment of bind-
ings (like a letrec-environment), s is a machine expression, and S is a stack, with entries
#upd(x),#app(x),#seq(x),#case(alts) where x is a variable and alts is a set of case-alternatives.
We use list notation for the stack S. The transition rules of the machine are shown in Fig. 6. With
(Unwind) we denote the union of (Unwind1), (Unwind2), and (Unwind3). The machine starts with
〈∅ | s | []〉 for an expression s and an accepting state is of the form 〈Γ | v | []〉 where v is a value (i.e.
an abstraction or a constructor application). A machine state 〈Γ | s | S〉 is reachable iff there exists

an expression t s.t. 〈∅ | t | []〉 ∗−⇀ 〈Γ | s | S〉. We define a mapping φ from reachable machine states to
machine expressions:

φ(〈Γ | s | #upd(x) : S〉) = φ(〈Γ, x = s | x | S〉)
φ(〈Γ | s | #app(x) : S〉) = φ(〈Γ | (s x) | S〉)
φ(〈Γ | s | #seq(x) : S〉) = φ(〈Γ | (seq s x) | S〉)
φ(〈Γ | s | #case(alts) : S〉) = φ(〈Γ | (case s of alts) | S〉)
φ(〈Γ | s | []〉) = letrec Γ in s

Note that φ(〈Γ | v | []〉) = letrec Γ in v and thus accepting states are mapped to WHNFs.

Definition 5.4. Let s be a closed machine expression such that 〈∅ | s | []〉 n−⇀ Q where Q is an accepting
state. Then mlnall(s) = n and mln(s) is the sum of all (Subst)-, (Branch)-, and (Seq)-steps in the
sequence and mlnlook(s) is the number of all (Lookup)-transitions. If no such sequence exists for s,
then mlnall(s) = mln(s) = mlnlook(s) =∞. We use mln(·) with the same meaning also for reachable
states Q of the machine.

Note that the improvement theory in [9] is based on the measure mlnall(·), whereas the measure in
[4] is mlnlook(·).
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5.1 Relating the Essential Reduction Steps

In this section we show that for a machine expression s the number of essential transition steps coincides
with the number of essential normal order reductions in LR, i.e. we show that rln(s) = mln(s). With
Lemma 5.3 this also implies that for every LR-expression s the equation rln(s) = mln(φ(s)) holds.

Lemma 5.5. Let Q be a reachable state, and Q −⇀ Q′. Then for φ(Q) and φ(Q′) one of the following
cases holds:

Q

φ ##

Lookup∨Unwind/ Q′

φzz
φ(Q) = φ(Q′)

Q
φ ��

Branch / Q′

φ��
φ(Q)

no,case−c
// s
T,cpax,∗

// s′
T,gc,∗
// φ(Q′)

Q
φ ��

Update / Q′

φ��
φ(Q)

T,cp
// φ(Q′)

Q
φ ��

Letrec / Q′

φ��
φ(Q)

T,lll,∗
// φ(Q′)

Q
φ ��

Seq / Q′

φ��
φ(Q)no,seq

// φ(Q′)

Q
φ ��

Update / Q′

φ��
φ(Q)

T,cpcx
// s
T,cpx,∗

// s′
T,gc,∗
// φ(Q′)

Q
φ ��

Subst / Q′

φ��
φ(Q)

no,lbeta
// s
T,cpax
// s′

T,gc
// φ(Q′)

Proposition 5.6. Let s be a closed machine expression with mln(s) = n. Then rln(s) = n.

Proof. We consider the sequence of machine transitions from 〈∅ | s | []〉 to an accepting state and
construct a sequence of (no,lbeta)-, (no,case-c)-, (no,seq)-, (T,cp)-, (T,cpcx)-, (T,cpax)-, (T,lll)-, and
(T-gc)-transformations from s to a WHNF.

So let Q0 = 〈∅ | s | []〉 k−⇀ Qk where Qk is an accepting state. We use induction on k: If k = 0 then
s = φ(Q0) is a WHNF. If k > 0 then we apply Lemma 5.5 to Q0 −⇀ Q1 and then apply the induction

hypothesis to Q1
k−1−−⇀ Qk. This construction gives a sequence of transformations from s = φ(Q0) to a

WHNF, where the sum of (no,lbeta)-, (no,case-c)-, and (no,seq)-steps is n.
Now iteratively apply Theorems 3.2 and 3.6 from right to left to every transformation which is not

a normal order reduction. Since all these steps leave the measure rln(·) unchanged, and the normal
order step increases the measure by 1, this shows rln(s) = n.

To show that for a closed machine expression s the equation rln(s) = n also implies mln(s) = n, we
define a variant of the normal order reduction for machine expressions – called machine order reduction:
It uses the reduction rules shown in Fig. 7 and the machine order redex is found by the labeling
algorithm in Definition 2.2. Let (mo,cpv) be the union of (mo,cpv-e) and (mo,cpv-in), and (mo,glll)
be the union of (mo,glletm), (mo,gllet-in), and (mo,gllet-e). A machine order WHNF (MWHNF) is
a value or an expression of the form letrec Env in v where v is a value. For a closed expression
s, let rlnmo(s) be the number of (mo,β-var)-, (mo,casecx)-, (mo,seqc)-reductions in a machine order
reduction sequence from s to an MWHNF, and rlnmo(s) =∞ otherwise.

Lemma 5.7. If the machine expression s is a WHNF, then either s is also an MWHNF, or s
mo,cpv,∗−−−−−→

s′ where s′ is an MWHNF.

Lemma 5.8. Let s
no,a−−→ t where a is not a (cp), or s

no,cp,∗−−−−→ s′
no,seq∨lbeta−−−−−−−−→ t. The diagrams in Fig. 8

show how at least one machine order reduction can be performed for s, s.t. s
mo,+−−−→ r and how t and r

are joinable by program transformations.

Proposition 5.9. Let s be a closed machine expression with rln(s) = n. Then rlnmo(s) = n.

Proof. Let s
no,k−−→ tk where tk is a WHNF. We use induction on (rln(s), rlnall(s)) to show the

claim. If rlnall(s) = 0, then s is a WHNF, and s
mo,cpv,∗−−−−−→ s′ where s′ is an MWHNF and thus
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s
mo,cpv,∗ //

no,cp,∗ ��

·
mo,β−var// r
· S,cp,∗

77

·
no,lbeta �� · S,gc,∗

99

t S,cpx,∗

77

(17)

s
mo,cpv,∗ //

no,case

��

·
mo,casecx// r

· S,gc,∗

88

· S,cpx,∗

77

t S,cpcx,∗

88

(18)

s
mo,cpv,∗ //

no,cp,∗
��

·
mo,seq−c // r
· S,cp,∗

77

·
no,seq ��

· S,gc,∗

77

· S,cpx,∗
77

t S,cpcx,∗

77

(19)

s
mo,glll //

no,lll

��

r

t

S,lll,∗

;;

(20)

Fig. 8: Diagrams for transferring normal order reductions into machine order reductions

rlnmo(s) = 0. Now assume rlnall(s) > 0. If s
no,cp−−−→ s′, where s′ is a WHNF, then s

mo,cpv,∗−−−−−→ s′′,
where s′′ is a WHNF, and so rln(s) = rlnmo(s

′′) = 0. In the other cases we apply a diagram from

Lemma 5.8 to a prefix of s
no,k−−→ tk.

For diagram (20) we have rln(t) = rln(s) and rlnall(t) < rlnall(s). By Theorem 3.2 (3)
rln(r) = rln(s) and rlnall(r) < rlnall(s). We apply the induction hypothesis to r and get
rlnmo(r) = rln(s) and thus rlnmo(s) = rln(s).

If diagram (18), (19), or (17) is applied, then rln(t) = rln(s) − 1 and Theorem 3.2 shows that
rln(r) = rln(t). Applying the induction hypothesis to r shows rlnmo(r) = rln(s)− 1.

Since s
mo,∗−−−→ r where exactly one (mo,casecx), (mo,seq-c), or (mo,β-var) is in the sequence, this

shows rlnmo(s) = rln(s). ut

Proposition 5.10. If rln(s) = n, then mln(s) = n.

Proof. From rln(s) = n we get rlnmo(s) = n by Proposition 5.9. Let s
mo,k−−−→ s′ where s′ is an

MWHNF. By induction on k, we show that for every reachable machine state Q0 with φ(Q0) = s

there exists an accepting state Qm s.t. Q0
∗−⇀ Qm and mln(Q0) = n. If k = 0, then Q0

Letrec,0∨1−−−−−−⇀ Q′

where Q′ is accepting. For k > 0, let s
mo−−→ s0

mo,k−1−−−−−→ s′. The following diagrams (where (UL) is
(Unwind) ∨ (Lookup)) show the relationship between s

mo−−→ s0 and the machine transition for Q0:

s
mo,cpv // s0

Q0

φ
OO

UL,∗
/

Update
/ Q1

φ
OO s

mo,β−var // s0

Q0

φ
OO

UL,∗
/

Subst
/ Q1

φ
OO s

mo,seqc // s0

Q0

φ
OO

UL,∗
/

Seq
/ Q1

φ
OO

s
mo,casecx // s0

Q0

φ
OO

UL,∗
/

Branch
/ Q1

φ
OO s

mo,glll // s0

Q0

φ
OO

UL,∗
/

Letrec
/ Q1

φ
OO

The diagrams show that after applying the induction hypothesis to s0 and Q1 we have rlnmo(s) =
mln(Q0). Finally, since φ(Q0) = s for Q0 = 〈∅ | s | []〉, we have mln(s) = rlnmo(s).

By Propositions 5.6 and 5.10 and Lemma 5.3 we have:

Theorem 5.11. For any closed s ∈ Expr: rln(s) = mln(ψ(s)).

Corollary 5.12. The translation ψ seen as a translation from LR to the abstract machine of [9] in
the variant presented in this paper is fully-abstract.

5.2 Relating Essential and All Transition Steps

We write (ULLU) for the union of (Unwind), (Letrec), (Lookup), (Update) and (SBS) for the union
of (Subst), (Branch), (Seq).

Theorem 5.13. Let s be a closed machine expression with s↓. Then mlnall(s) ≤ 3 ∗ (size(s) + 2) ∗
(mln(s) + 1), where size(·) is the size of an expression (viewed as syntax tree).
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Proof. Let mln(s) = n and Q0 = 〈∅ | s | []〉 m−⇀ Qm, where Qm is an accepting state and the sequence
contains n (SBS)-transitions.

The number of (Update)-transitions is equal to the number of (Lookup)-transitions. The number of
(Unwind)-transitions is equal to the number of (SBS)-transitions. It remains to count the (Letrec)- and
the (Lookup)-transitions. First observe that letrec-expressions and -bindings which are generated by
an (SBS)-transition are a copy of a subexpression which exists in s (where variables may be permuted).
Since a (Letrec)-transition removes the letrec, there are at most (n+1)∗size(s) (Letrec)-transitions.
The same argument applies to the first (Lookup)-transitions of a binding x = . . .. The number of other
(Lookup)- transitions (which are not the first for a binding x = . . .) is bounded by n + 1, since for
such a (Lookup) the binding must be x = v, where v is a value, which implies, that no other (Lookup)
transition can follow before another (SBS)-transition is performed. Thus, in total there are at most
(n+ 1) ∗ (size(s) + 1) (Lookup)-transitions.

Concluding, in the sequence there are at most (n + 1) ∗ size(s) (Letrec)-transitions, at most
(n+ 1) ∗ (size(s) + 1) (Lookup)-transitions, at most (n+ 1) ∗ (size(s) + 1) (Update)-transitions, and
exactly n (Unwind)-transitions. By adding the n (SBS)-transitions this shows mlnall(s) ≤ 3 ∗ (n +
1)(size(s) + 2).

We analyse whether counting the number of (Lookup)-transitions is appropriate as claimed in [9]
and used in [4].

Proposition 5.14. Let s be a closed LR-expression with s ↓. Then mlnall(s) ≤ (2 ∗ size(s) ∗
(mlnlook(φ(s)) + 1)).

Proof. Consider a valid transition subsequence without a (Lookup)-transition. For every intermedi-
ate machine state mi = 〈Γ | si | Si〉, i = 1, . . . , n consider the expression ui = φ(〈 ∅ | si | Si〉).
Then size(ui) is never increased by the intermediate steps, but strictly decreased by (Subst),
(Branch), (Seq), (Update), and (Letrec). The maximal size of ui is not greater than size(s), (as
already argued) hence mln(s) + (number of (Update)s) + (number of (Letrec)s) is not greater than
size(s) ∗ (mlnlook(φ(s)) + 1). Since the overall number of (Unwind)s is exactly mln(s), we obtain
mlnall(s) ≤ (2 ∗ size(s) ∗ (mlnlook(φ(s)) + 1)).

Theorem 5.15. Let s be a closed machine expression. Then mlnlook(s) ≤ mlnall(s) ≤ (2∗size(s)∗
(mlnlook(s) + 1)), and mln(s) ≤ mlnall(s) ≤ 3 ∗ (size(s) + 4) ∗ (mln(s) + 1).

Remark 5.16. Theorem 5.15 justifies our claim that common subexpression elimination (also called
β-expand) is an improvement in [9] and also in [4]. However, our proofs only show that this is the case
if improvement is defined w.r.t. mln(.) in their calculus. Note that also the size is not increased (up to
the initial inverse gc) by common subexpression elimination.

The results in this section imply:

Theorem 5.17. The following calculi allow asymptotically resource-preserving translations into each
other: (i) LR with rln; (ii) Moran-Sands calculus with mlnall; (iii) Moran-Sands calculus with mln;
and (iv) the Moran-Sands calculus with mlnlook.

Note that in LR switching from rln(.) to rlnall(.) is not resource-preserving, since there are LR-
expressions s s.t. rlnall(s) ∈ O(size(s)n(rln(s)+1)) is false for all n (see Appendix B). However, this
is not a counter argument against the LR-calculus, but only an argument against an implementation
that really mimics the (lll)-reductions.

6 The Polymorphically Typed Calculus LRP

In this section we consider the polymorphically typed variant LRP of the calculus LR. The type
erasing translation from LRP into LR is adequate: equivalences and improvements in LR will also be
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Type variables: a, ai ∈ TVar Types: τ ∈ Typ := a | (τ1 → τ2) | K τ1 . . . τar(K)

Term variables: x, xi ∈ Var Polymorphic types: ρ ∈ PTyp := τ | λa.ρ
Patterns: patK,i := (cK,i :: τ x1 :: τ1 . . . xar(cK,i) :: τar(cK,i)) Polymorphic abstractions:u ∈ PExprF := Λa1. . . . .Λak.λx.s

Expressions:s, t ∈ ExprF := u | x :: ρ | (s τ) | (s t) | (cK,i :: τ s1 . . . sar(cK,i)) | (seq s t)

| (letrec x1 :: ρ1 = s1, . . . , xn :: ρn = sn in t) | (caseK s of (patK,1 -> t1) . . . (patK,|DK | -> t|DK |))

(a) Types and expressions of the language LRP (see also [18]).

s :: τ2

(λx :: τ1.s) :: τ1 → τ2

s :: ρ

Λa.s :: λa.ρ

s :: λa.ρ

(s τ) :: ρ[τ/a]

s :: τ1 → τ2 t :: τ1

(s t) :: τ2

s :: τ t :: τ ′

(seq s t) :: τ ′

s :: τ1 pat i :: τ1 ti :: τ2

(caseK s of (pat1 -> t1) . . . (pat |DK | -> t|DK ])) :: τ2

s1 :: ρ1 . . . sn :: ρn t :: ρ

(letrec x1 :: ρ1 = s1, . . . , xn :: ρn = sn in t) :: ρ

s1 :: τ1, . . . , sar(c) :: τar(c) τ = τ1 → . . .→ τar(c) → τar(c)+1

type(c) = λa1, . . . , am.τ
′′ there are τ ′1, . . . , τ

′
m with τ ′′[τ ′1/a1, . . . , τ

′
m/am] = τ

(c :: τ s1 . . . sar(c)) :: τar(c)+1

(b) Typing Rules for LRP

(s t)sub∨top → (ssub t)vis s 6= Λa.e′

((Λa.u) τ)sub∨top → ((Λa.u)sub τ)vis; then stop with success

(letrec Env in s)top → (letrec Env in ssub)vis

(letrec x = s,Env in C[xsub]) → (letrec x = ssub,Env in C[xvis])

(letrec x = s, y = C[xsub],Env in t) → (letrec x = ssub, y = C[xvis],Env in t) where C 6= [·]
(letrec x = s, y = xsub,Env in t) → (letrec x = ssub, y = xnontarg,Env in t)

(seq s t)sub∨top → (seq ssub t)vis

(caseK s of alts)sub∨top → (caseK ssub of alts)vis

letrec x = svis∨nontarg, y = C[xsub],Env in t → Fail

(letrec x = C[xsub],Env in t) → Fail

(c) Computing reduction positions using labels in LRP, where a ∨ b means label a or label b. The algorithm does not
overwrite labels.

Fig. 9: Syntax, Typing rules, and Labeling for the Calculus LRP

equivalences and improvements in LRP, provided that they are well-typed. Reduction sequences in
LRP are mapped into LR-reduction sequences, of the same rln(.)-length, since we do not include type
reductions in the length measure.

However, there are more equivalences and improvements in LRP than in LR (see Sect. 6.2), since a
smaller set of contexts is taken into account: only those contexts need to be considered which leave the
expressions well-typed. Since LRP is a core language of (pure) Haskell [8] our results are applicable
there.

The extensions of LRP are type annotations at variables and constructors, and extra language
components, e.g. types as arguments, including a type reduction. This will be in system-F-style and
restricted to let-polymorphism [2, 12, 11, 23]. See also [18] for an analysis of typed LR of simulations
as a tool for correctness.

The calculus LRP is related to PolyPCF [12], a polymorphically typed PCF. Differences are that
LRP observes convergence in every context, while PolyPCF only observes convergence to list con-
texts; LRP employs a cyclic let, and the seq-operator, but not a fix-operator. These syntactical and
operational differences make contextual equivalencess essentially different in the two calculi.

The syntax of the calculus LRP is defined in Fig. 9a, where every data constructor c ∈ DK

has a polymorphic type type(c) of the form λa1, . . . ak.τ1 → . . . τar(c) → K(a1, . . . , ak). The typing
rules are in Fig. 9b- All expressions of a polymorphic type λa.ρ are of the form x :: ρ, Λ.e, (e τ),
and (letrec Env in e), other forms are not possible. A polymorphic abstraction is an expression of
the form Λa1, . . . , ak.λx.e, and a value is defined as an abstraction, a polymorphic abstraction, or a
constructor application.
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6.1 Semantics of LRP

The reduction rules in LRP extend the rules of LR by reductions for type abstractions and applications:

Definition 6.1. The reduction rules of the calculus LRP are:

(Tbeta) ((Λa.u)sub τ)→ u[τ/a]

and all other rules from LR (Fig. 2), extended by types and the extended syntax as follows:

– Every variable is labeled with a type.

– Fresh variables in rules are labeled with a type, which is derived in the rules (case-in) and (case-e)
from the types of the ti such that the types in the binding xi = ti are equal.

– In rule (cp) also polymorphic abstractions can be copied, i.e.
(cp-in) (letrec x1 = usub, {xi = xi−1}mi=2,Env in C[xvism ])
→ (letrec x1 = u, {xi = xi−1}mi=2,Env in C[u]), where u is an abstraction or a polymorphic ab-
straction.

The rules of the labeling algorithm are in Fig. 9c. If the labeling algorithm terminates without Fail,
then either a normal order redex is found, which is a superterm of the sub-marked subexpression, or the
evaluation is already finished (a WHNF). Reduction contexts, weak reduction contexts, surface and
top contexts are as for LR, extended by typing. For reductions we use the same notational conventions
as for LR.

Definition 6.2 (Normal Order Reduction in LRP). Let t be an expression. Then a single normal

order reduction step
LRP−−−→ is defined by first applying the labeling algorithm to t, and if the labeling

algorithm terminates successfully, then one of the rules in Definition 6.1 has to be applied, if possible,
where the labels sub, vis must match the labels in the expression t.

Definition 6.3. A weak head normal form (WHNF) in LRP is a value, or an expres-
sion of the form (letrec Env in v), where v is a value, or an expression of the form
(letrec x1 = (c

−→
t ), {xi = xi−1}mi=2,Env in xm).

An LRP-expression s converges, denoted as s↓, iff there exists a WHNF t such that s
LRP,∗−−−−→ t. Let

s, t be two LRP-expressions of the same type ρ. Then s and t are contextually equivalent (denoted by
s ∼c t), iff for all contexts C[· :: ρ]: C[s]↓ ⇐⇒ C[t]↓.

One can verify that contextual equivalence also satisfies the type substitution properties of logical
relations (see for example [12]): If s :: τ ∼c t :: ρ, then also (s :: ρ)[τ ′/a] ∼c t :: ρ[τ ′/a], and if
s :: λa.ρ ∼c t :: λa.ρ, then also (s :: λa.ρ) τ ∼c (t :: λa.ρ) τ .

Definition 6.4. The type erasure function ε : LRP → LR maps LRP-expressions to LR-expressions
by removing the types, the type information and the Λ-construct. In particular: ε(s τ) = ε(s), ε(Λa.s) =
ε(s), ε(x :: ρ) = x, and ε(c :: ρ) = c.

Clearly,
LRP−−−→-reductions are mapped by ε to LR-normal-order reductions where exactly the

(Tbeta)-reductions are omitted.

Proposition 6.5. As a translation of calculi, ε is adequate, i.e. ε(e1) ∼LRP ε(e2) =⇒ e1 ∼c e2; and
it is resource-preserving.

The translation ε is not fully abstract. An example are the equivalences by (caseId), see below.
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·
T,caseId//

LRP,a ��

·
LRP,a��

·
T,caseId

// ·

(21)

·
T,caseId//

LRP,lcase ��

·

· T,caseId

::

(22)

·
T,caseId//

LRP,case−c ��

·

LRP,absezz·

(23)

·
T,caseId //

LRP,case ��

·
T,cpcx
ss·

· T,gc,∗
33

· T,cpx,∗
33

(24)

·
LRP,case �� T,caseId

zz·

(25)

Fig. 10: Diagrams for (caseId)

6.2 Improvement in LRP

The measure for estimating the time consumption of computation also in LRP is rln(t). It is not
necessary to count (TBeta)-reductions, since every normal-order reduction sequence of s consisting
only of type-reductions terminates, and there are most O(n) such steps where n is the size of the
expression s. The size of type expressions may grow large by the call-by-name type reduction. However,
using dags for compressing the types leads to a polynomial size grow of types.

Definition 6.6. Let s, t be two LRP-expressions of the same type ρ. We define the improvement
relation � for LRP: Let s � t iff s ∼c t and for all contexts C[· :: ρ]: if C[s], C[t] are closed, then
rln(C[s]) ≤ rln(C[t]). If s � t and t � s, we write s ≈ t.

The following facts are valid and can easily be verified:

1. For closed LRP-expressions s, the equation rln(s) = rln(ε(s)) holds.
2. The reduction rules and extra transformations in their typed forms can also be used in LRP. They

are correct program transformations and improvements.

For η ∈ {≤,=,≥} and a class of contexts X we define: For s, t of type ρ the relation s ./η,X t (in
LRP) holds iff for all X-contexts X[· : ρ]: if X[s], X[t] are closed, then rln(X[s]) η rln(X[t]). The
context lemma for improvement also holds for LRP with almost the same proof.

Lemma 6.7 (Context Lemma for improvement). Let s, t be LRP-expressions of type ρ. Then
s ./η,R t (or s ./η,S t or s ./η,T t) implies s ./η,C t,

We end this section by showing that the transformation (caseId) is an improvement in LRP, where
(caseId) is defined as:

(caseK s of (pat1 → pat1) . . . (pat|DK | → pat|DK |))→ s

The rule (caseId) is the heart also of other type-dependent transformations, and it is only correct
under typing, i.e. in LRP, but not in LR, which can be seen by trying the case s = λx.t.

Lemma 6.8. Let s
T,caseId−−−−−→ t. If s is a WHNF, then t is a WHNF. If t is a WHNF, then

s
LRP,lll,∗−−−−−→ LRP,case,0∨1−−−−−−−−→ LRP,lll,∗−−−−−→ s′ where s′ is a WHNF.

Lemma 6.9. If s↓ ∧ s T,caseId−−−−−→ t, then t↓ and rln(s) ≥ rln(t).

Proof. Let s
T,caseId−−−−−→ t and s

LRP,k−−−−→ s′ where s′ is a WHNF. We use induction on k. For k = 0

Lemma 6.8 shows the claim. For the induction step, let s
LRP−−−→ s1. The diagrams in Fig. 10 describe

all cases how the fork s1
LRP←−−− s

T,caseId−−−−−→ can be closed. For diagram (21) we apply the induction

hypothesis to s1
T,caseId−−−−−→ t1 which shows t1↓, rln(s1) ≥ rln(t1) and thus also t↓ and rln(s) ≥ rln(t).

For diagram (22) the induction hypothesis shows the claim. For diagram (23) we have t↓, since (abse)

is correct. Moreover, t
T,abse−−−−→ s′ is equivalent to s′

T,ucp∨gc,∗−−−−−−−→ t and Theorem 3.2 (3) and (5) show
rln(s′) = rln(t). Thus also rln(s) ≥ rln(t). For diagram (24) we have t↓, since (cpcx),(gc), and (cpx)
are correct. Theorem 3.2 shows that rln(s) > rln(s′) = rln(t), since (cpcx),(cpx) and (gc) do not
change the measure rln(·). For diagram(25) the claim obviously holds.
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Theorem 6.10. (caseId) is an improvement.

Proof. Lemma 6.8 and the diagrams in Fig. 10 can be used to show (by induction on the sequence

for t) that if s
T,caseId−−−−−→ t and t↓, then s↓, since the used existentially quantified transformations are

correct and diagram 22 can only be applied finitely often. Then the context lemma for ∼c (which
states that convergence preservation and reflection in reduction contexts suffices to ∼c, see e.g. [17])
and Lemma 6.9 show that (caseId) is correct. Finally, the context lemma for improvement (Lemma 6.7)
and Lemma 6.9 show that (caseId) is an improvement.

7 Conclusion

We have proved that in the call-by-need functional core language LR, common subexpression elimina-
tion is an improvement, which appears to be a novel and useful result, and proves a conjecture in [9].
Since counting in [9] is based on an abstract machine, and our counting on a subset of the reduction
rules, we analysed the differences and proved that these are not substantial. We defined a polymor-
phic call-by-need lambda calculus LRP as a variant of LR, and defined a corresponding improvement
theory.

Future work is to extend the improvement theory and application to more program transformations.
Work on resource usage like space in call-by-need calculi is [3], which can be used as a starting point
for further research on other forms of improvements.
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A Proof of Theorem 3.6

The following diagrams cover all cases of overlappings between normal order reduction and an (iS, cp)-
transformation where iS means that the closure of (cp) in surface contexts, but excluding (no, cp)
reductions. The diagrams are obtained from Lemmas B.8 and B.9 of the appendix of [20]3.

· iS,cp //
no,a
��

·
no,a
��

·
no∨iS,cp

// ·

· iS,cp //
no,a
��

·
no,a{{·

a ∈ {(lbeta), (case), (seq), (lll)} a ∈ {(lbeta), (case), (seq)}

(26) (27)

· iS,cp //
no,cp

��

·
no,cp
��

·
no,a
��

·
no,a
��

·
no∨iS,cp

// ·
iS,cp

// ·

a ∈ {(lbeta), (seq)}

(28)
We will use these diagrams to prove Theorem 3.6 which is repeated here:

Theorem A.1. Let t be a closed LR-expression with t ↓ t0.

If t
C, cp−−−−→ t′ then rln(t) = rln(t′).

Proof. We use the context lemma 3.5 for improvement for the relation ≈, i.e., we show (cp) ⊆ ./=,S to

derive ./=,C = ≈. Let s be closed and s
S,cp−−→ s′. We already know that s ∼c s′, hence we can assume

that s ↓, which implies s′ ↓. We can also assume that the reduction is not normal order since in this
the claim is trivial.

We prove rln(s) = rln(s′) by induction on rln(s) and then on the length of a normal order
reduction. If the length is 0, then s is a WHNF, and hence s′ is a WHNF.

If s
a−→ s1 for a ∈ {(lbeta), (case), (seq)}, then rln(s1) = rln(s) − 1. Either diagram (26) or (27)

holds. In the former case we can apply the induction hypothesis, and in the latter case the claim
obviously holds.

If s
no,cp−−−→ s1, then there are two cases: s1 is a WHNF. In this case it is easy to see that there is a

WHNF s2 with s′
no,cp−−−→ s2, and the claim holds. The other case is that diagram (28). Then s1

no,a−−→ s2
and rln(s2) = rln(s)− 1. Hence we can apply the induction hypothesis twice, and obtain the claim.

If s
no,lll−−−→ s1, then diagram (26) applies, and we can apply the induction hypothesis, we have

s′
no,lll−−−→ s1, and since rln(s′) = rln(s1), we obtain rln(s) = rln(s′).

B On the number of rlnall-reductions in LR

We show by a counter example that the identity-translation from LR with rlnall into LR with rln

is not resource-preserving.
We first prove a lemma which shows that the number of (lapp)-reductions can be quadratic in the

number of applications, while the number of (lbeta)-, (case)-, and (seq)-reductions is linear:
Let us write idi as an abbreviation for the expression λxi.xi.

Lemma B.1. For an environment Env and a number n ≥ 1, let s = letrec Env in (id1 . . . idn).

Then the equality rlnall(s) =
n · (n+ 3)− 4

2
and rln(s) = n− 1 holds.

3 we do not distinguish between (cpd)- and (cpt)-transformations as in [20] and simply write (cp)
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Proof. By induction on n: For n = 1, the expression is a WHNF, and thus rln(s) = rlnall(s) = 0.
For n = 2 the normal order reduction is as follows:

letrec Env in (id1 id2)
no,lbeta−−−−−→ letrec Env in letrec x1 = id2 in x1
no,llet−−−−→ letrec Env , x1 = id2 in x1
no,cp−−−→ letrec Env , x1 = id2 in id2

and thus rln(s) = 1 and rlnall(s) = 3.
For the induction step, let n ≥ 3. We consider the normal order reduction of s:

letrec Env in id1 id2 . . . idn
no,lbeta−−−−−→ letrec Env in ((letrec x1 = id2 in x1) id3 . . . idn)
no,lapp,n−2−−−−−−−→ letrec Env in (letrec x1 = id2 in (x1 id3 . . . idn))
no,llet−−−−→ letrec Env , x1 = id2 in (x1 id3 . . . idn)
no,cp−−−→ letrec Env , x1 = id2 in (id2 id3 . . . idn)

By the induction hypothesis, we have

rlnall(s) = (n+ 1) +
(n− 1) · (n+ 2)− 4

2
=
n · (n+ 3)− 4

2

and rln(s) = n− 2 + 1 = n− 1.

However, the previous lemma is not sufficient to disprove resource-preservation, since the size of
the input-expression is c ∗ n. Thus, in the remainder of the section we show, that we can generate the
input expression s (from Lemma B.1) with n = c ∗ 2m from an expression of size d ∗m (where c, d > 0
are constants).

Let us assume that Peano-numbers are available with constructors S and Z and let us write (Sn Z)
for the n-th peano number.

First consider the expression

s2m := letrec n = (S2m Z), f = F in f n

where F := λx.(case x of ((S y) -> f y id) (Z -> id))

Then s2m
no,∗−−→ letrec Env in (id1 . . . id2m+1) where the number of (no,case)- and (no,lbeta)-

reductions is 2 ∗ (2m + 1). However, for constructing the counter-example the representation of the
Peano number is insufficient, since the size of s2m is O(2m) which is too large. Hence, we use a shared
representation of the Peano representation of 2m which replaces the binding for n in the expression
s2m , and thus let

t2m := letrec x20 = λh.S h, {x2i = λh.x2i−1(x2i−1h)}mi=1,
h0 = Z, h2m = x2m h0,
f = F

in f h2m

One can verify that h2m indeed represents 2m as a Peano number, and that evaluating h2m results in
a binding h2m = S h2m−1, and iteratively evaluating h2m−1, h2m−2, . . .h1 (which f does) results in an
expression

letrec h0 = Z, {hi = S hi−1}2
m

i=1, Env in (id1 . . . id2m+1).

Clearly, for counting (lbeta)- and (case)-reductions, the reductions for evaluating the 2m calls to f
are still 2 ∗ (2m + 1), but there are additional (lbeta)-reductions for decompressing the number which
we will count in the following.

During generation and evaluation of the bindings for hi, they are of one of the following forms
(ignoring some intermediate forms, which are removed by (lll)-reductions):
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1. hi = S hi−1, or
2. hi = x2j hk, where k + 2j = i, or
3. hi = (x2j (x2j hk)), where k + 2 ∗ 2j = i.

We analyze the connection (in the reduction) between these three possible forms, where we will also add
some (gc)- and (cpx)-transformations, which does not break our counting, since both transformations
do not change the rln(·) measure.

1. For case (1) the binding hi is successfully evaluated and no more (lbeta)-reductions are necessary
for this binding.

2. For case (2) we consider two subcases.
(a) Assume that j > 0. Then the evaluation is

hi = (x2j hk)
cp−→ hi = (λh.x2j−1 (x2j−1 h)) hk
lbeta,llet−−−−−→ hi = x2j−1 (x2j−1 h), h = hk
cpx,gc−−−−→ hi = x2j−1 (x2j−1 hk).

Thus with one (lbeta) step, we derive a binding of type (3)
(b) Assume that j = 0. Then the evaluation is

hi = (x20 hi−1)
cp−→ hi = (λh.S h) hi−1
lbeta,llet−−−−−→ hi = S h, h = hi−1
cpx,gc−−−−→ hi = S hi−1.

Thus with one (lbeta) step, we derive a binding of type (1).
3. For case (3), the reduction is

hi = (x2j (x2j hk))
cp−→ hi = (λh2j+k.(x2j−1 (x2j−1 h2j+k)) (x2j hk))
lbeta,llet−−−−−→ hi = (x2j−1 (x2j−1 h2j+k)), h2j+k = (x2j hk).

Thus with one (lbeta) step we a derive a binding of type (3) and additionally generate a binding
of type (2).

The following ideas help to prove that the generation of hi is unique. First note that generating
bindings of type (1) terminates, since the indices get smaller in every step. For uniqueness, which
means that every hi is generated only once, the following invariant can be used in an induction proof:
Let H be the environment consisting of all the bindings of the three forms. Let g(b) for bindings b
of type (1) be 1, for b = {hi = x2j hk} of type (2) let g(b) = 2j , and for b = {hi = (x2j (x2j hk))}
of type (3), let g(b) = 2j+1. Let g(H) =

∑
b∈H g(b). Then the rules for type (2) and (3) remove one

binding and add 1 or 2, but leave the sum invariant. Hence, by induction, and since the start we have
g(H) = 2m, exactly 2m bindings are created. It is also easy to see that every number will be generated.

Now we calculate the sum of the (lbeta)-reductions: Case (1) does not require (lbeta)-reductions,
case (3) can only occur 2m − 1 times (since there are no more generated hi-bindings), case (2a) can
also only occur 2m − 1 times (since it results in case (3)), and case (2b) can occur 2m times (i.e.
once for each binding hi). This results in 3 ∗ 2m − 2 (lbeta)-reductions for decompressing the Peano-
number. Summing up the essential reductions for decompressing the Peano-number, for unfolding the
definition of f , and for evaluating letrec Env in (id1 . . . id2m+1) (Lemma B.1) yields rln(t2m) =
3 ∗ 2m − 2 + 2 ∗ (2m + 1) + ((2m + 1)− 1) = 6 ∗ 2m.

However, by Lemma B.1 rlnall(t2m) ≥ c∗22∗m = c∗(2m)2 for some constant c, and size(t2m) = d∗
m for some constant d. Since for all positive integers k, (2m)2 is asymptotically larger than mk∗2m, the
translation from LR with measure rln(·) into LR with measure rlnall(·) is not resource-preserving.
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letrec E1, E2

in (letrec E′1
in r)

T,pcgE //

no,llet−in

��

letrec

E1, E2

in rα

letrec

E1, E2, E
′
1

in r

T,pcgE

==

letrec E1, E2

in (

(
letrec E′1
in r

)
u)

T,pcgE //

no,lapp

��

letrec

E1, E2

in (rα u)

letrec E1, E2,

in

(
letrec E′1
in (r u)

)
T,pcgE

99

letrec

x = (letrec E′1 in r),
E1, E2

in s

T,pcgE //

no,llet−e

��

letrec

x = rα,
E1, E2

in s

letrec x = r, E′1, E1, E2

in s

T,pcgE

::

(a) Typical cases for diagram (2)

letrec x = (letrec E in r), E1

x′ = (letrec E′ in r′), E′1 E2

in R−[x]

no,llet−e
��

T,pcgE // letrec x = (letrec E in r), E1, E2α
in R−[x]α

no,llet−e

��
letrec x = r, E,E1

x′ = (letrec E′ in r′), E′1, E2

in R−[x]
C,llet

//
letrec x = r, E,E1

x′ = r′, E′, E′1, E2

in R−[x]
T,pcgE

// letrec x = r, E,E1, E2α
in R−[x]α

(b) Typical case for diagram (3)

letrec x = v, z = R−[x], E1,
x′ = v′, z′ = R−[x′], E′1, E2

in R−0 [z]

no,cp−e
��

T,pcgE // letrec x = v, z = R−[x], E1, E2α
in R−0 [z]α

no,cp−e

��
letrec x = v, z = R−[v], E1,

x′ = v′, z′ = R−[x′], E′1, E2

in R−0 [z]
C,cp
//
letrec x = v, z = R−[v], E1,

x′ = v′, z′ = R−[v′], E′1, E2

in R−0 [z]
T,pcgE

// letrec x = v, z = R−[v], E1, E2α
in R−0 [z]α

(c) Typical case for diagram (4)

R[seq (c (letrec E1, E
′
1 in r)) s]

T,pcgE //

no,seq

��

R[seq (c (letrec E1 in rα)) s]

no,seq

ss
R[s]

(d) Typical case for diagram (5)

Fig. 11: Typical cases for the diagrams for (pcgE)

C Diagrams for pcgE and pcg

C.1 Diagrams for pcgE

Inspecting all overlappings of a normal order reduction step and a (pcgE)-transformation shows that
all overlappings between a normal order reduction step and a (T ,pcgE)-transformation can be closed
by one of the diagrams shown in Figs. 4.

Diagram (1) describes the case of a non-critical overlap where the steps can be commuted. Dia-
gram (2) covers the case, where a letrec-expression which is part of an (no,lll)-redex is removed by
(pcgE), i.e. three typical cases are shown in Fig. 11a

Diagram(3) covers the cases where a binding environment is removed which includes a letrec-
expression which is a duplicate of a letrec-expression that is part of a (no,llet)-redex is removed (pcgE).
A typical case is is in Fig. 11b.

Diagram (4) covers the case where the normal order reduction modifies parts of a letrec-
environment which is a duplicate used by the (pcgE)-transformation. A typical case is in Fig. 11c.

Diagram (5) covers the case where the (pcgE)-redex is removed by the normal order reduction,
an example is given in Fig. 11d. Diagram (6) covers the case where the (pcgE)-redex is copied by the
normal order reduction, an example is given in Fig. 12a.
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The seventh diagram (7) covers the case where the environment shared by (pcgE) contains a
constructor application used by (no,case) reduction. An example is given in Fig. 12b.

The seventh diagram (8) covers the case where the redex of a (no,case) is shared by (pcgE). An
example is given in Fig. 12c.

C.2 Diagrams for pcg

We inspect the overlappings between normal-order reduction steps and top-context-applications of
(pcg). Some easy cases (which need not be treated by a diagram) are the following:

– The (T ,pcg)-transformation is also an inverse (C,cp) or an inverse (C,cpx) transformation. Ex-

amples are letrec x = λy.y in (λy′.y′) (λz.z)
T,pcg−−−→ letrec x = λy.y in x (λz.z) and

letrec x = λy.y, x = y, z = y in r
T,pcg−−−→ letrec x = λy.y, x = y, z = x in r.

– The normal order reduction step is a (no,cp)-reduction and leads to a WHNF, e.g. letrec x =

λy.y, z = λy.y in x
no,cp−−−→ letrec x = λy.y, z = λy.y in λy.y

For the remaining cases at least one of the diagrams shown in Figs. 5 is applicable.
We explain the diagrams in Fig. 5 and gives exemplary instances of the diagrams:
Diagram (9) describes the case where the reductions can be commuted. Diagrams (10) and (11)

cover the cases where a (no,cp)-reduction is followed by a (no,lbeta)-reduction, and the shared expres-
sion is inside the copied expression. Typical cases for the second and third diagram are in Figs. 13a
and 13c.

Diagram (12) describes the cases where the normal order reduction modifies the subexpression
which occurs twice and is shared by the (cpg)-transformation. Three prototypical expressions and
overlappings for diagram (12) are show in Fig. 13e

Diagram(13) covers the case, that the duplicated expression is inside the first argument of seq or
in an unused alternative of a case-expression. A typical case is given in Fig. 13f.

Diagram (14) covers the case that the duplicated subexpression is a letrec-expression which is
deconstructed by an (no, llet)-reduction. A typical case is given in Fig. 13g. Diagram (15) covers the
case that the scrutinee of a case-expression is one of the duplicated expressions. A typical case is
given in Fig. 13h.
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letrec x = (y u),
y = λz.(letrec E in s), E

in x

no,cp

��

T,pcgE // letrec x = (y u), y = λz.s, E
in x

no,cp

��
letrec x = (λz.(letrec E in s) u)

y = λz.(letrec E in s), E
in x

T,pcgE,T,pcgE
//
letrec x = (λz.s u),

y = λz.s, E
in x

(a) Typical case for diagram (6)

letrec x = c s1 s2,
x′ = c s1 s2

in case x of c y1 y2 -> t

no,case

��

T,pcgE // letrec x = c s1 s2,
in case x of c y1 y2 -> t

no,case

��
letrec x = c w1 w2, w1 = s1, w2 = s2,

x′ = c s1 s2
in letrec y1 = w1, y2 = w2 in t

T,abs
//
letrec x = c w1 w2, w1 = s1, w2 = s2,

x′ = c w′1 w
′
2, w

′
1 = s1, w

′
2 = s2

in letrec y1 = w1, y2 = w2 in t
T,cpgE

// letrec x = c w1 w2, w1 = s1, w2 = s2,
in letrec y1 = w1, y2 = w2 in t

(b) Typical case for diagram (7)

letrec

x = case y of

c z1 z2 → t,
x′ = case y of

c z′1 z
′
2 → t′,

y = c s1 s2
in x

no,case

��

T,pcgE //

letrec

x = case y of

c z1 z2 → t,
y = c s1 s2
in x

no,case

��letrec

x = letrec

z1 = w1,
z2 = w2

in t,
x′ = case y of

c z′1 z
′
2 → t′,

y = c w1 w2,
w1 = s1,
w2 = s2
in x

C,case
//

letrec

x = letrec

z1 = w1,
z2 = w2

in t,
x′ = letrec

z′1 = w′1,
z′2 = w′2
in t′,

y = c w′1 w
′
2,

w′1 = w1,
w′2 = w2,
w1 = s1,
w2 = s2
in x

C,cpx,∗,C,gc,∗
//

letrec

x = letrec

z1 = w1,
z2 = w2

in t,
x′ = letrec

z′1 = w1,
z′2 = w2

in t′,
y = c w1 w2,
w1 = s1,
w2 = s2
in x

T,cpgE
//

letrec

x = letrec

z1 = w1,
z2 = w2

in t,
y = c w1 w2,
w1 = s1,
w2 = s2
in x

(c) Typical case for diagram (8)

Fig. 12: Typical cases for the diagrams for (pcgE), cont’d.
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letrec z = r′′, x = λx′.r′′ in (x u)
T,pcg //

no,cp ��

letrec z = r′′, x = λx′.z in (x u)

no,cp��
letrec z = r′′, x = λx′.r′′

in ((λx′.r′′) u)

no,lbeta ��

letrec z = r′′, x = λx′.z
in ((λx′.z) u)

no,lbeta��
letrec z = r′′, x = λx′.r′′

in (letrec x′ = u in r′′) T,pcg
// letrec z = r′′, x = λx′.z
in (letrec x′ = u in r′′) T,pcg

// letrec z = r′′, x = λx′.z
in (letrec x′ = u in z)

(a) Typical case for diagram (10)

letrec z = r′′, x = λx′.r′′ in (seq x u)
T,pcg //

no,cp ��

letrec z = r′′, x = λx′.z in (seq x u)

no,cp��
letrec z = r′′, x = λx′.r′′

in (seq (λx′.r′′) u)

no,seq ��

letrec z = r′′, x = λx′.z
in (seq (λx′.z) u)

no,seq��
letrec z = r′′, x = λx′.r′′

in u T,pcg
// letrec z = r′′, x = λx′.z
in u

letrec z = r′′, x = λx′.z
in u

(b) Typical case for diagram (10) with seq

letrec z = x u, x = λx′.r
in (x u)

T,pcg //

no,cp ��

letrec z = x u, x = λx′.r in z

no,cp��
letrec z = x u, x = λx′.r
in ((λx′.r) u)

no,lbeta
��

letrec z = ((λx′.r) u), x = λx′.r
in z

no,lbeta��

letrec z = x u, x = λx′.r
in (letrec x′ = u in r) C,cp;C,lbeta

//
letrec z = (letrec x′ = u in r),

x = λx′.r
in (letrec x′ = u in r)

T,pcg
//
letrec z = (letrec x′ = u in r),

x = λx′.r
in z

(c) Typical case for diagram (11)

letrec z = seq x u, x = λx′.r
in (seq x u)

T,pcg //

no,cp ��

letrec z = seq x u, x = λx′.r in z

no,cp��
letrec z = seq x u, x = λx′.r
in (seq (λx′.r) u)

no,seq

��

letrec z = (seq (λx′.r) u), x = λx′.r
in z

no,seq��

letrec z = seq x u, x = λx′.r
in u C,cp;C,seq

//
letrec z = u,

x = λx′.r
in u

T,pcg
//
letrec z = u,

x = λx′.r
in z

(d) Typical case for diagram (11) with (seq)
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letrec x = (r u) in C[(r u)]
pcg //

no,lbeta
��

letrec x = (r u) in C[x]

no,lbeta
��

letrec x = (r u)
in C[(letrec y = u in r′)] C,lbeta

//
letrec x =
(letrec y = u in r′)
in C[(letrec y = u in r′)]

T,pcg
// letrec x = (letrec y = u in r′)
in C[x]

letrec x = r
in C[r]

T,pcg //

no,a ��

letrec x = r
in C[x]

no,a��
letrec x = r
in C[r′] C,a,∗

// letrec x = r′

in C[r′] T,pcg
// letrec x = r′

in C[x]

letrec x = r
in M [x, r]

T,pcg //

no,a ��

letrec x = r
in M [x, x]

no,a��
letrec x = r′

in M [x, r] C,a,∗
// letrec x = r′

in M [x, r′] T,pcg
// letrec x = r′

in M [x, x]

(e) Typical cases for diagram (12)

R[seq (c C[r]) s]

no,seq ��

T,pcg // R[seq (c C[x]) s]

no,seqss
R[s]

(f) Typical case is for diagram (13)

letrec

x = (letrec E1 in s2)
in M [x, (letrec E1 in s2)]

T,pcg //

no,llet
��

letrec

x = (letrec E1 in s2)
in M [x, x]

no,llet
��

letrec

E1, x = s2
in M [x, (letrec E1 in s2)]

T,pcgE
//
letrec

E1, x = s2
in M [x, s2]

T,pcg
//
letrec

E1, x = s2
in M [x, x]

(g) Typical case for diagram (14)

letrec x = (c s1 s2)
in C[case (c s1 s2) of

(c z1 z2) -> r[z1, z2]]

T,pcg //

no,case ��

letrec x = (c s1 s2)
in C[case x of

(c z1 z2) -> r[z1, z2]]

no,case��
letrec x = c s1 s2 in

C[letrec
y1 = s1, y2 = s2

in r[y1, y2]]

C,lll,∗
//
letrec x = c s1 s2,
y1 = s1, y2 = s2

in C[r[y1, y2]]
T,pcg,pcg

//
letrec x = c y1 y2,
y1 = s1, y2 = s2

in C[r[y1, y2]]

letrec x = c y1 y2,
y1 = s1, y2 = s2

in C[letrec z1 = y1, z2 = y2
in r[z1, z2]]

C,cpx,cpx,gc
oo

(h) Typical case for diagram (15)

letrec x = case y of

(c z1 z2) -> r[z1, z2],
y = (c s1 s2)

in R−[case y of

(c z1 z2) -> r[z1, z2]]

T,pcg //

no,case

��

letrec x = case y of

(c z1 z2) -> r[z1, z2],
y = (c s1 s2)

in R−[x]

no,case

��
letrec x = case y of

(c z1 z2) -> r[z1, z2],
y = (c u1 u2),
u1 = s1, u2 = s2

in R−[letrec z1 = u1, z2 = u2

in r[z1, z2]]

S,case
//

letrec x = (letrec
z1 = u′1, z2 = u′2
in r[z1, z2])

y = (c u′1 u
′
2),

u′1 = u1, u
′
2 = u2,

u1 = s1, u2 = s2
in R−[letrec

z1 = u1, z2 = u2

in r[z1, z2]]

T,cpx,∗,gc,∗
//

letrec x = (letrec
z1 = u1, z2 = u2

in r[z1, z2])
y = (c u1 u2),
u1 = s1, u2 = s2

in R−[letrec
z1 = u1, z2 = u2

in r[z1, z2]]

T,pcg
//

letrec x =
(letrec z1 = u1, z2 = u2

in r[z1, z2]),
u1 = s1, u2 = s2,
x = (c u1 u2)

in R−[x]

(i) Typical case for diagram (16)

Fig. 13: Typical cases for the diagrams for (pcg), cont’d.


