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Abstract
We investigate the control of evaluation strategies in a variant of
the λ-calculus derived through the Curry-Howard correspondence
from LJF, a sequent calculus for intuitionistic logic implementing
the focusing technique. The proof theory of focused intuitionistic
logic yields a single calculus in which a number of known λ-calculi
appear as subsystems obtained by restricting types to a certain
fragment of LJF. In particular, standard λ-calculi as well as the
call-by-push-value calculus are analysed using this framework,
and we relate cut elimination for LJF to a new abstract machine
subsuming well-known machines for these different strategies.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Proof theory, Lambda-calculus and related systems

Keywords Intuitionistic Logic, Curry-Howard, Lambda-calculus,
Focusing, Polarities, Evaluation Strategies, Abstract Machines

1. Focusing and Computation
Understanding the notion of computation has been a question of
great interest to many logicians since the inception of the so-called
Curry-Howard correspondence, contributing to the development
of the functional paradigm, using expressive type systems, or the
introduction of logic programming. The logical perspective on
computation is now centered around a couple of results in proof
theory, the most important ones being normalisation for natural
deduction and focalisation in the sequent calculus. Normalisation
provides an operational semantics of languages based on the pure
λ-calculus, just as proof search in a focused sequent calculus gives
the semantics of a logic programming language [2].

Over the last decades, the “proofs-as-programs” approach has
been extended from its original form in a natural deduction setting
to sequent calculus systems [21]. This required a departure from
the traditional syntax of the λ-calculus [5], and lead to insights
on various forms of computation [17]. On another side, following
the “proof-search-as-computation” idea, the advent of focusing [2]
as a technique stemming from the analysis of the sequent calculus
through linear logic [19] provided clean logical foundations for
logic programming, for linear logic as well as for more standard
logics [26]. Over time, the scope of focusing has broadened, the
role of the associated polarities has been investigated [24], and the
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perception of this result has shifted from a proof search technique
to an important normal form in the sequent calculus and in other
logical formalisms [6, 8].

The crucial observation at this point is that the variants of the
λ-calculus using the sequent calculus formalism to provide some
insights on reduction strategies are focused calculi [14, 21]where
a certain form of focusing constrains reduction. In such a calculus,
only terms enforcing one particular strategy can be typed, and
the corresponding proof system is a fragment of the focused
system for intuitionistic logic. Our goal is to give a computational
interpretation for (a variant of) the focused system LJF of Liang
and Miller [26], and show how the resulting λ-calculus provides
a means of fine-grained control of the reductions involved in the
evaluation of λ-terms. In particular, we show that the λκ-calculus,
which we introduce as a language of proof-terms for LJF, contains
the standard call-by-name and call-by-value calculi, obtained from
the fragments LJT and LJQ. The methodology we follow here
has its importance: we wish to interpret LJF as a system entirely
justified using proof-theoretical arguments, rather than an ad-hoc
system for particular strategies. This approach confirms the two
natural representations of the most standard strategies — CBN
and CBV — in the focused type system, but it also reveals the tight
connection between LJF and call-by-push-value [25], in which the
two standard strategies can be embedded. The relation between
CBPV and focusing was conjectured but still unclear: we establish
it in details and discuss their differences.

The ability to control the reduction strategy of a term through
dedicated operators, reflected at the level of types by the presence
of explicit polarity shifts — the key ingredient in the focalisation
result — is a striking example of double discovery. Indeed, the
focusing technique was a rather syntactic artifact of linear logic
that rose to the status of “éminence grise” in proof theory, while
the call-by-push-value language stems from the thorough analysis
of the semantics of the two major functional paradigms. Their
convergence is a sign of their significance.

Moreover, we study the extraction of an abstract machine from
the cut elimination procedure of a given focused proof system,
and show how the procedures for the LJT and LJQ fragments of
LJF yield essentially the most natural machines implementing
CBN and CBV: the KAM [23] and the CEK machine [18]. Then, we
describe an abstract machine implementing cut elimination in
the LJF system and show how it relates to the CK-style machine
defined in the literature for CBPV [25].

The investigation starts with the definition of the λκ-calculus,
the computational interpretation of LJF proofs, a discussion of
its properties and the relation between reduction rules and cut
elimination, in Section 2. The expressivity of LJF is illustrated
in Section 3, by considering the fragments LJT and LJQ, and by
showing that the general proof-theoretical approach based upon
focusing yields the expected results. This is further demonstrated
in Section 4 by introducing abstract machines, and we describe
a general scheme meant to derive a machine from some given
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Γ , x : ↓N , [N] � k : M
fl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : ↓N ` x k : M

Γ � p : [P]
fr −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` dpe : ↑P

Γ , x : P ` t : M
bl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [↑P] � κx .t : M

Γ ` t : N
br −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � btc : [↓N]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ , x : P ` t : N
ir −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : P ⊃ N

Γ � p : [P] Γ , [N] � k : M
il −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [P ⊃ N] � p :: k : M

N ∈ {a−,↑P}
axl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [N] � ε : N

P ∈ {a+,↓N}
axr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P � x : [P]

Γ ` t : N Γ , [N] � k : M
hcl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t k : M

Γ � p : [P] Γ , x : P ` t : N
hcr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` p to x .t : N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ , [M] � k : N Γ , [N] � m : L
fcl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ , [M] � k @ m : L

Γ � p : [P] Γ , x : P � q : [Q]
fcr+ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ � p to x .q : [Q]

Γ � p : [P] Γ , x : P, [N] � k : M
fcr− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ , [N] � p to x .k : M

Figure 1. Rules for the sequent calculus LJF and associated terms

focused cut elimination procedure. We consider the extracted CBV
and CBN machines and their relation to other machines. Then,
Section 5 is devoted to the comparison between the λκ-calculus
and CBPV, the key contribution being a bijection between the two
calculi — this result crucially depends on the particular flavour
of the LJF system presented in Section 2. We come there to the
conclusion that CBPV corresponds to a specific form of LJF where
maximal inversion is not enforced, called a weakly focused system.
This correspondence relies on the bidirectional [9] variant of the
CBPV system, and it involves the introduction of delays to account
for the ability to type λ-terms that are not η-long.

Related work. The impact of focalisation on the strategy used
to evaluate terms has been mostly studied in the setting of classical
logic, after the introduction of the λµµ̃-calculus by Curien and
Herbelin [10] and later refined in [11]. The analysis of polarities
in classical logic can be traced back to Girard [20], and the LKT
and LKQ systems [12], precursors of the LJT and LJQ systems.
Notice that studying directly the intuitionistic focused system
LJF allows to clarify the picture, and demonstrates how types for
values and computations in the λ-calculus differ in their polarities
[30]. On the purely logical level, our particular presentation of
LJF relates to the structural approach to focalisation [29], and
the question of polarity assigments in LJF studied in [28].

At the level of the λκ-calculus, the operations involved can
be traced to interpretations of LJ [15] or CBPV [25]. A relation
between sequent calculus systems and abstract machines has been
investigated using the λµµ̃ framework [3], and the connection
leading from explicit substitutions — related to “cuts” in natural
deduction — to abstract machines has been described from the
untyped perspective in [1]. Defining an abstract machine is here
presented as a process of extraction of information from a focused
cut elimination procedure.

2. A Computational Interpretation of LJF
In this section we will describe a focused sequent calculus called
LJF, with a few differences between our presentation and the
original [26]. The idea of focusing is that a careful analysis of
the properties of inference rules allows to classify them into two
categories, one for fully invertible rules, called asynchronous, and
one for partially invertible rules, which are called synchronous. It
has been observed that these rules can be organised in a particular
way inside any given proof — the result originated from linear
logic [2], but it has been generalised to many other logics. For
more details about the intuitive interpretation of focusing, we
refer the reader to one of the many descriptions available in the
literature, see for example [29].

There are essentially three differences between the system we
use here and the original version of LJF:

1. concerning polarities: in the original presentation of LJF, the
syntax of formulas is unpolarised, although the idea of polarity
is already present, and used for example in the rules initiating
and finishing the synchronous phases — we choose to make it
explicit using polarity shifts, which mediate between negative
and positive formulas,

2. concerning maximal inversion: the original presentation of LJF
enforces not only maximality of synchronous phases, it also
has maximal asynchronous phases, using the explicit inversion
context, while we drop this restriction to consider the weakly
focused version of LJF, although the strongly focused variant
is discussed in Section 6 — the computational behaviour of
maximal inversion is currently unclear,

3. concerning initial rules: it is customary to have atomic initial
rules in a focused calculus — one for negative atoms and one
for positive atoms — but we observe that this is not necessary,
and in particular one can prove from atomic initial rules the
admissibility of the initial rules on shifts.

Remark 2.1. Beyond the question of the computational meaning of
maximal inversion, enforcing such a structure in a natural deduction
setting [6] is difficult. Directly relating the “strongly” focused LJF to
the weakly focused CBPV would be problematic due to the impedance
mismatch between these systems.

As mentioned, the syntax of formulas in this variant of LJF is
explicitly polarised, based on the following grammar:

P,Q ::= a+ | ↓N M , N ::= a− | P ⊃ N | ↑P

and its inference rules are shown above in Figure 1. In the calculus
presented there, rules are annotated with terms and sequents
take the form of typing judgements, where Γ and ∆ denote sets
of labelled formulas. There are three forms of judgements in this
system, that we will now simply call LJF:

Γ ` t : N asynchronous
Γ , [N] � k : M left-synchronous
Γ � p : [P] right-synchronous

In the synchronous phase, the formula written inside brackets
is said to be “under focus”. By inspection of the inference rules,
it is clear that foci must always be the principal formulas of the
conclusions of the rules they appear in. Furthermore, this focus is
passed on to the subformulas of the focused formula. In this way,
focusing on a given formula ensures that it and its subformulas
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are decomposed in a maximal chain of inference steps. Conversely,
in the asynchronous phase, formulas can be decomposed in any
order. Choosing which formulas may be focused and when the
synchronous phase ends is made explicit in the rules introducing
the polarity shifts ↓ and ↑.

Since we only consider a weakly focused variant of LJF in this
paper, the number of cut rules is smaller than in [26]. Additionally,
we leave out entirely unfocused cuts (the Cut+ and Cut− of [26]),
as they are in fact not needed for the cut elimination proof, and
can easily be recovered as corollaries after the fact. Every cut rule
in our system thus has the property that the cut formula appears
under focus in one of the two premises.

Names of inference rules follow a uniform scheme. For the core
cut-free calculus, the first letter indicates whether the principal
formula is related to focusing, blurring, or implication. The second
letter indicates whether the principal formula is introduced on
the left or the right. For the cut rules, we distinguish between
the head cuts, where the principal reductions take place, and the
focused cuts which handle all the commutative cases. Note that
these can be distinguished by whether the conclusion contains a
focus or not. Finally, for each of the cut rules, it is the case that
the cut formula is focused in exactly one of the two premises. The
l or r annotation indicates the premise that is not focused, and
thus the premise which will be decomposed during cut reduction.

Judgments are annotated with terms of the λκ-calculus, an
extension of the λ-calculus based on the following grammar:

t, u ::= λx .t | x k | d pe | t k | p to x .t
k, m ::= ε | p :: k | κx .t | k @ m | p to x .k
p, q ::= x | btc | p to x .q

(1)

Note that there is a very tight correspondence between the proof
terms and the derivations of LJF. In a sense, the syntax of proof
terms was extracted from the calculus by a recipe we will sketch
now. The basic observation is the following: the focusing discipline
in many cases obviates the need for variable binding in the proof
terms. The prototypical example of this would be the il rule from
the unfocused LJ:

Γ , f : P ⊃ N ` t : P Γ , f : P ⊃ N , x : N ` u : M
il −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ , f : P ⊃ N ` let x = f t in u : M

In the focused setting, the second premise must decompose the
hypothesis x immediately, and it is therefore not necessary to
introduce an explicit binder for x . Consequently, the proof term
assignment for this rule in LJF is simply:

Γ � p : [P] Γ , [N] � k : M
il −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [P ⊃ N] � p :: k : M

According to this methodology, a binder should only occur when
decomposition is not immediately forced. This explains why only
bl and ir involve binders, while hcl and fcl do not.

The intuitive meaning of theλκ-calculus will be discussed later
in this section, but we first concentrate on the basic properties
of the LJF system shown in Figure 1. First, when comparing it to
the usual, unfocused system LJ for intuitionistic logic, we need to
define E(−) to be the following polarity erasure function, mapping
a polarised formula to its unpolarised counterpart:

E(a−) = a
E(↑P) = E(P)

E(a+) = a
E(↓N) = E(N) E(P ⊃ N) = E(P) ⊃ E(N)

Note that an unpolarised formula may be polarised in many
different ways, by choosing the polarity of atoms, or by inserting
redundant polarity shifts. In particular, we have E(↑↓N) = E(N)
and E(↓↑P) = E(P), and this enables a more fine-grained control
of the order in which formulas must be decomposed, since phases
are controlled by polarity shifts.

The most important property of focusing is that it is sound
and complete, regardless of the aforementioned choice of one
particular polarisation. Following [29], we will state this result
in terms of erasure.

Theorem 2.2. Given any negative formula N, the sequent ` E(N)
is provable in LJ if and only if ` N is provable in LJF.

Proof. The first direction follows immediately from the fact that
the rules of LJF are just more restricted versions of the rules
of LJ. To show completeness of LJF, one may show that the all
usual unfocused inference rules of LJ are admissible in LJF. This is
straightforward once cut rules have been proven admissible in the
focused system [29]. Alternatively, the result may be established
by the “grand tour” strategy, as seen for example in [26]. �

We now turn to the most important result concerning the LJF
focused system in this paper, describing the dynamics of proofs.

Theorem 2.3 (Cut elimination). The cut rules hcl, hcr, fcl, fcr+

and fcr− are admissible in LJF.

Proof. We proceed by lexicographical induction over the structure
of the cut formula and of the premises of the given cut. We assume
the two given input derivations to be cut-free, corresponding to a
strategy reducing the topmost cuts in the given derivation. Note
that because we are working with the focused versions of the cut
rule, every cut may be reduced by only considering cases on one
of the premises, specifically the premise where the cut formula
is not under focus. We show here only a few of the cases of the
cut elimination argument — the full proof may be found in the
appendix:

• Case hcl: if the first premise ends in ir then this is the principal
case for implication, and the reduction is:

D
Γ , x : P ` t : N

ir −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : P ⊃ N

E
Γ � p : [P]

F
Γ , [N] � k : M

il −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [P ⊃ N] � p :: k : M

hcl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` (λx .t) (p :: k) : M

D′ :: Γ ` p to x .t : N by hcr on (P,E,D),
Γ ` (p to x .t) k : M by hcl on (N ,D′,F).

• Case hcl: if the first premise ends in fr then this is the principal
case for negative shift, and the reduction is:

D
Γ � p : [P]

fr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` dpe : ↑P

E
Γ , x : P ` t : M

bl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [↑P] � κx .t : M

hcl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` dpe (κx .t) : M

Γ ` p to x .t : M by hcr on (P,D,E).

• Case hcr: if the second premise ends in fl then it is the principal
case for positive shift, and the reduction is:

D
Γ ` u : M

fr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
D′ :: Γ � buc : [↓M]

E
Γ , x : ↓M , [M] � k : N

bl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : ↓M ` x k : N

hcr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` buc to x .(x k) : N

E′ :: Γ , [M] � buc to x .k : N by fcr− on (↓M ,D′,E),
Γ ` u (buc to x .k) : N by hcl on (M ,D,E′).

and all other cases can be treated in a similar way. �
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From this cut elimination theorem, we now extract a system
of reduction rules on λκ-terms, by considering each case as one
rewrite on proof objects:

(λx .t) (q :: k) → (q to x .t) k
dqe (κx .t) → q to x .t
(x k) m → x (k @ m)

ε @ m → m
(q :: k) @ m → q :: (k @ m)
(κx .t) @ m → κx .(t m)

x to y.t → t{x/y}
p to x .(λy.t) → λy.(p to x .t)

p to x .dqe → dp to x .qe
p to x .(y k) → y (p to x .k)
buc to x .(x k) → u (buc to x .k)

x to y.q → q{x/y}
p to x .x → p
p to x .y → y

p to x .btc → bp to x .tc
x to y.k → k{x/y}
p to x .ε → ε

p to x .(q :: k) → (p to x .q) :: (p to x .k)
p to x .(κy.t) → κy.(p to x .t)

(2)

where, in the reductions where p appears we have a proviso that
states p should not be a variable. The reason for this is that we
wish to avoid the aliasing of names, created when bindings are
chained so that a value is pointed to by several names.

Computational interpretation. Such a rewrite system for λκ,
extracted from the cut elimination proof, specifies the intuitive
meaning to be attributed to each construct of the calculus. The
symbolsλ and κ as well as the to construction are binding variable
names. The calculus obeys the laws of α-conversion, and binders
are thus essentially treated as in the pure λ-calculus. An important
distinction to be made in λκ is that t denotes a term, having the
meaning of a computation, while p denotes a value, which is the
result of a computation. Finally, k represents a continuation.

Some of the constructs in λκ are standard operations from the
λ-calculus. Others are variations, such as the application (x k),
that can be thought of as a continuation k — or context — waiting
for a function to be plugged in the place of x . The term k can be
seen in most cases as a list of arguments given to the function
plugged for x , and after plugging we obtain a proper application
t k. Moreover, k @m represents here the concatenation of two list
of arguments, or the composition of two continuations. We can
observe how reduction defines the use of a list of arguments, in
the rule: (λx .t) (q :: k) → q to x .(t k)

Moreover, values can be bound to names, using the binder to
which acts as an explicit substitution of a value p for a variable x .
In the minimal system we are considering, values can be variables
and are otherwise formed by placing a term in a thunk, that should
be seen as delayed computations. The thunks can be forced by
applying them to a list of arguments:

buc to x .(x k) → u (buc to x .k)

where a copy of buc is passed on to the list, which may contain
occurrences of x . The two remaining constructs are perhaps the
most surprising ones, since they directly affect the control flow of
the term. A term dpe is indeed a computation that has finished, and
returns a value, so that it releases control of the computation. The
κx .t construction is the continuation that can then take control,
binding the result p to the name x and starting computation t,
as expressed in the rule:

dqe (κx .t) → q to x .t

which already appeared in [15], although its typing there is not
controlled by shifts and it requires no return construct to interact
with. Note that substitutions are here eagerly decomposed, and
propagated. We now turn to the properties of well-typedλκ-terms,
the usual ones being simple corollaries of cut elimination.

Corollary 2.4 (Subject Reduction). If Γ ` t : N and t → u then
we also have Γ ` u : N.

Proof. Each reduction corresponds to one of the cases of the cut
elimination argument, so the result is immediate. �

Moreover, cut elimination implies that reduction on well-typed
terms is well-behaved, and leads to normal forms, which are terms
typeable without the cut rules.

Corollary 2.5 (Normalisation). For a λκ-term t, if Γ ` t : N there
exists a normal term u such that Γ ` u : N and t →∗ u.

As mentioned before, the ways in which a cut might be reduced
are limited by the fact that the cut formula must be under focus
in either the first or the second premise. This restriction yields cut
elimination steps that are highly reminiscent of the steps used in
the tq-protocol in [13]. A slightly more permissive variant of this
protocol [16] may be summarised as follows:

1. if the cut formula is not principal in the second premise of the
cut we wish to reduce, we permute the cut into this premise,

2. if the cut formula is not principal in the first premise of the
cut, then we permute it into the first premise, and

3. if the cut formula is principal in both premises, then we reduce
it as a principal cut.

The main difference between these cut elimination procedures is
that when the first two cases are reduced in the tq-protocol, the
cut must be permuted as far up as possible in one step. In contrast,
we describe reductions as small steps, and more importantly we
do not consider cases where a cut permutes above some other
cut. As we will see in Section 4, it is necessary to introduce such
permutations between cuts to construct an abstract machine for
LJF, but the proof of normalisation is more challenging.

Note that λκ cannot simulate a unique β step separately from
other steps, since it is based on the syntax of the sequent calculus.
However, we will see how it can implement reduction in other
ways, and we observe that its reduction system is confluent, since
it is left-linear, and it has no critical pair — under the proviso on
variables applicable to the rules shown in (2). A particular interest
of λκ is that it has two remarkably well-behaved fragments that
correspond to the standard strategies used to reduce λ-terms.

3. Call-by-name and Call-by-value in LJF
In order to illustrate the expressivity of λκ and of the type system
obtained from LJF, we consider the two evaluation strategies
in the λ-calculus from which the two major lazy and strict
paradigms of functional programming are derived. As expected,
LJF introduces a uniform treatment of these systems that matches
the standard theories developed for these languages.

Call-by-name. The simplest strategy in the λ-calculus is to
use β repeatedly until a normal form is reached, disregarding the
shape of subterms. This is normally done following an outermost
order, and disallows reduction in the argument of an application.
This reduction strategy can be enforced by considering the type
system shown in Figure 2, based on the LJT system. The resulting
λ-calculus allows the application of a term to a list rather than a
single argument, based on the grammar:

t, u ::= x k | λx .t | t k | t[u/x]
k, m ::= ε | u :: k | k @ m | k[u/x]
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ax −−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [a] � ε : a

Γ ` u : A Γ , [B] � k : C
il −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [A⊃ B] � u :: k : C

Γ , x : A, [A] � k : B
foc −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ , x : A` x k : B

Γ , x : A` t : B
ir −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A⊃ B

Γ ` t : A Γ , [A] � k : B
hc −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t k : B

Γ , [B] � k : A Γ , [A] � m : C
fhc −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ , [B] � k @ m : C

Γ ` u : A Γ , x : A` t : B
mc −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t[u/x] : B

Γ ` u : A Γ , x : A, [B] � k : C
fmc −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ , [B] � k[u/x] : C

Figure 2. Rules for the sequent calculus LJT and associated terms

This type system was introduced in [21] as the first λ-calculus
isomorphic to a sequent calculus. In LJT, the hc cut represents a
β -redex, while reductions of fhc are simply administrative steps.
Remaining cuts embody the substitution process. Cut elimination
induces the following reductions, known to be call-by-name:

(λx .t) (u :: k) → t[u/x] k
(x k) m → x (k @ m)

ε @ m → m
(u :: k) @ m → u :: (k @ m)

(λz.t)[u/x] → λz.t[u/x]
(x k)[u/x] → u k[u/x]
(y k)[u/x] → y k[u/x]

ε[u/x] → ε
(t :: k)[u/x] → t[u/x] :: k[u/x]

(3)

The LJT proof system can be seen as a fragment of LJF through
a typeability-preserving translation of terms into λκ. The key idea
is that the argument of a function needs to be placed into a thunk,
to prevent reduction. This is consistent with the fact that buctox .t
essentially performs in λκ the substitution of u for x into t. The
translation is based on most LJT reductions appearing in LJF.

Definition 3.1. The translations Tt(·) and Tk(·) of λ-terms into
λκ-terms are given by the following equations:

Tt(x k) = x Tk(k)
Tt(λx .t) = λx .Tt(t)
Tt(t k) = Tt(t) Tk(k)

Tt(t[u/x]) = bTt(u)c to x .Tt(t)

Tk(k[u/x]) = bTt(u)c to x .Tk(k)
Tk(k @ m) = Tk(k) @ Tk(m)
Tk(u :: k) = bTt(u)c :: Tk(k)

Tk(ε) = ε

This translation is mostly homomorphic, and it reflects the
simplicity of the translation necessary at the type level:

T¹ a º = a− T¹A⊃ B º = ↓T¹Aº ⊃ T¹B º

where all formulas are made negative by introduction of a positive
shift on the left of implications to account for the positive formula
expected in LJF. We can now extend the translation to contexts in
the obvious way, translating each formula in a given Γ separately,
and prove that the translation preserves typeability.

Theorem 3.2. The translations Tt(·) and Tk(·) are type-correct:

(i) if Γ ` t : A then ↓T¹ Γ º ` Tt(t) : T¹Aº
(ii) if Γ , [B] � k : A then ↓T¹ Γ º, [T¹B º] � Tk(k) : T¹Aº

Proof. By mutual induction on the derivation. We only show the
case for the hcl cut t k, others are treated similarly:

E :: T¹ Γ º ` Tt(t) : T¹N º by induction,
F :: T¹ Γ º, [T¹N º] � Tk(k) : T¹M º by induction,

T¹ Γ º ` Tt(t) Tk(k) : T¹M º by hcl on E,F. �

Observe that inside of λκ, it is difficult to separate the LJT
fragment by looking only at the types of terms. Indeed, a term
with a type in the image of our translation might contain a cut on
a formula outside of this fragment. We now consider the dynamics
of λ and prove that reduction in this calculus is simulated through
reduction in λκ, after applying the translation.

Theorem 3.3. For any t and u in λ, if t → u then Tt(t)→+ Tt(u).

Proof. By inspection of the reduction rules of λ and of the result
of the translation Tt(·)— all cases appear in the appendix. �

Call-by-value. The second evaluation strategy commonly used
in functional programming states that the β rule should only be
applied when the argument is a value — a piece of code that has
been fully reduced. In practice, this is restricted to weak reduction,
where no reduction is performed under an abstraction, so that
the term λx .t is considered a value. This implies some form of
outermost reduction, but there is a choice between a left-to-right
and a right-to-left order of evaluation when a term is applied to
several arguments.

This strategy has been implemented as a λ-calculus typed
with the sequent calculus LJQ, as shown in Figure 3. The key
construct here is the generalised application, t[z = x u] similar
to the let binding used by Moggi [27] and it leads to the
representation of CBV in [10]. This form of application has already
been investigated in the context of computational interpretations
of LJ [22]. The grammar of this λq-calculus is:

t, u ::= dpe | p to x .t | t[z = x p] | t[u/x]
p, q ::= x | p to x .q | λx .t

where pto x is an operation allowing the binding of a value, while
the substitution of any non-value term is performed by [u/x],
representing the strict substitution never pushed until u is turned
into some value and a binding is created. In LJQ, the cuts follow
the same scheme of head-cuts and mid-cuts as in LJT, but there is
no focused mid-cut. Rewritings resulting from cut elimination in
LJQ correspond to a fragment of the reduction system of LJF — if
we follow the scheme described in Section 2, although the system
of [14] is quite different, in part due to modifications meant to
prove a result of strong normalisation for the calculus. Our rules
for λq are: z to x .t → t{z/x}

a to x .dpe → da to x .pe
a to x .t[z = w p] → (a to x .t)[z = w (a to x .p)]
a to x .t[z = x p] → (a to x .t)[(a to x .p) to y.u/z]

z to x .p → p{z/x}
a to x .x → a
a to x .z → z

a to x .(λz.t) → λz.(a to x .t)

t[dpe/x] → p to x .t
t[v[z = w p]/x] → t[v/x][z = w p]

where a always denotes the abstraction λy.u, a proviso reflecting
the fact that in LJQ, abstraction is made into a value by placing it
inside a thunk. In general, this system is obtained by translation,
originated in the embedding of the CBV implication in LJF using
polarity shifts.

Remark 3.4. We are considering a calculus for CBV that is slightly
different from the one found in [14] because that calculus would be
overly complicated for the task at hand. Indeed, its rewrite system
is specifically tailored to obtain a strong normalisation result, while
we are looking for a CBV calculus that fits the general scheme.
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ax −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : A� x : [A]

Γ , x : A` t : B
ir −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � λx .t : [A⊃ B]

Γ � p : [A]
foc −−−−−−−−−−−−−−−−−−−−−−
Γ ` dpe : A

∆ � p : [A] ∆, z : B ` t : C
il −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∆= Γ , x : A⊃ B ` t[z = x p] : C

Γ � p : [A] Γ , x : A` t : B
hc −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` p to x .t : B

Γ � p : [A] Γ , x : A� q : [B]
fhc −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ � p to x .q : [B]

Γ ` u : A Γ , x : A` t : B
mc −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t[u/x] : B
(no focused mid-cut)

Figure 3. Rules for the sequent calculus LJQ and associated terms

Key ideas are the use of a continuation binder κ to translate a
term under an application, and to place functions in thunks.

Definition 3.5. The translations Qt(·) and Qv(·) from λq to λκ are
given by the equations:

Qt(dpe) = dQv(p)e
Qt(p to x .t) = Qv(p) to x .Qt(t)
Qt(t[u/x]) = Qt(u)(κx .Qt(t))

Qt(t[z = x p]) = x (Qv(p) :: κz.Qt(t))

Qv(p to x .q) = Qv(p) to x .Qv(q)
Qv(λx .t) = bλx .Qt(t)c

Qv(x) = x

This translation is slightly more complex than the one for LJT,
as it involves the introduction of shifts in two positions when
translating an implication at the level of types:

Q¹ a º = a+ Q¹A⊃ B º = ↓(Q¹Aº ⊃ ↑Q¹B º)

in order to turn subformulas of the original formula into positive
formulas. In the case of a sequence of implications, for example in
a ⊃ (b ⊃ c), this will introduce a delay on the right of implications,
as seen in ↓(a ⊃ ↑↓(b ⊃ ↑c)), and this corresponds to the loss of
focus in the premise of the right implication rule, reflecting the
forceful integration of λx .t in the grammar of values. We now
prove that the translation preserves typeability, as in LJT.

Theorem 3.6. The translations Qt(·) and Qv(·) are type-correct:

(i) if Γ ` t : A then Q¹ Γ º ` Qt(t) : Q¹Aº
(ii) if Γ � p : [A] then Q¹ Γ º � Qv(p) : [Q¹Aº]

Proof. By mutual induction on the derivation. We show the case
for il, that is t[z = x p] where k = Qv(p) :: κz.Qt(t) so that we
have Q¹∆º= Q¹ Γ º, x : ↓(Q¹Aº ⊃ ↑Q¹B º)), and:

E :: Q¹∆º � Qv(p) : [Q¹Aº] by induction,
F :: Q¹∆º, z : T¹B º ` Qt(t) : Q¹C º by induction,
F′ :: Q¹∆º[↓Q¹B º] � κz.t : Q¹C º by bl on F,
F′′ :: Q¹∆º[Q¹Aº ⊃ ↓Q¹B º] � k : Q¹C º by il on E,F′,

Q¹∆º ` x k : Q¹C º by fl on F′′. �

The mc cut in λq is a β-redex, and therefore studying which
reduction equations it satisfies, we can learn that this system is
call-by-value. The main rule is t[dpe/x]→ pto x .t which will only
apply if the first premise is a value. Reading hc cuts as explicit
substitutions, this is the rule that we expect for CBV. Because the
first premise of the hc cut is a value, this guarantees that we will
only substitute values in a term, and not other terms. Once again,
we can prove that λκ simulates reduction in this calculus.

Theorem 3.7. For any t and u in λq, if t→ u then Qt(t)→+ Qt(u).

Proof. By inspection of the reduction rules of λq and of the result
of the translation Qt(·)— all cases appear in the appendix. �

4. Evaluation Strategies and Abstract Machines
In practice, the functional programming languages using lazy and
strict evaluation — based on CBN and CBV respectively — behave
differently, and use implementations specific to their evaluation
strategies. A detailed account of the operational semantics of a
language is specified by its abstract machine: it is the theoretical

representation of the code implementing an interpreter. At this
level, strategies appear clearly and the transitions of two given
machines can be compared intuitively — one could say that the
meaning of a strategy is revealed by its abstract machine.

The assumption of this section is that since LJF can shed light
on reduction strategies as a type system, it should already contain
all the information needed to define an abstract machine for the
strategies it can encode. We present here a recipe for building an
abstract machine from the cut elimination procedure defined for
a focused system.

Focused cuts and evaluation order. Given a focused sequent
calculus, there is a simple methodology to follow when designing
a cut elimination procedure based on rewrite rules: the reduction
of a cut should be driven by the bottom rule in the premise where
the cut formula appears unfocused. This uniquely identifies the
locus of reduction, as opposed to the situation in an unfocused
calculus. This is a requirement for the definition of an abstract
machine, which is essentially a fully deterministic procedure for
weak normalisation.

Following this idea, we have to consider which cut should be
picked first for reduction. A machine takes a term as input and
proceeds by decomposition of its structure: it is therefore natural
to opt for an outermost reduction, where the bottom cut in a given
proof is decomposed — more precisely, an abstract machine will
typically implement a weak form of reduction, and thus the last
rule in the proof should be a cut for any reduction to happen. In
this situation, the order of reduction is deterministically specified
by the aforementioned principle. But what should happen if the
rule above the targeted premise of this cut is itself a cut? Nowhere
in our cut elimination proof have we allowed two cuts to permute,
and this would not even be a solution since this could never yield
a terminating procedure. Logically, we are forced to consider the
two cuts as a block, and by induction we observe that in general,
the bottom of a proof during reduction will form a trunk of various
cut instances stacked one above the other, and the reductions will
happen at one of the leaves of this subtree.

Cut spines. Fortunately, a trunk of cuts need not be described
in an abstract machine in an unspecified form: most cuts permute
with other cuts and the task of designing the machine thus boils
down to the specification of a certain normal form of cut trunks
that will be interpreted as a machine architecture. We consider to
this end cut spines, sequences of cuts stacked together.

There are two dual notions of cut spines: in a left spine, another
smaller left spine appears in the left premise of a cut, whereas in
a right spine the smaller spine appears in the right premise. We
can describe these as lists of proofs, where the element at a node
is either the right or the left premise. The topmost cut in a spine
has one premise “outside of the list”, and this proof can be viewed
as an annotated empty list — we call it the target of a spine. We
can then write F[En, · · · ,E1] and [E1, · · · ,En]F for left and right
spines respectively. For example, we can see the proof:

G :: Γ ` L F :: Γ , [L] � M
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` M E :: Γ , [M] � N
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` N
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TJAM (call-by-name machine) QJAM (call-by-value machine)

〈 e | λx .t | u[g] · c 〉 → 〈 e, x : u[g] | t | c 〉
〈 e, x : t[g] | x k | c 〉 → 〈 g | t ‖ ◦ | k[e, x : t[g]] + c 〉

〈 e | t k | c 〉 → 〈 e | t ‖ ◦ | k[e] + c 〉
〈 e | t ‖ b | ε[g] + c 〉 → 〈 e | t | b{c} 〉

〈 e | t ‖ b | (u :: k)[g] + c 〉 → 〈 e | t ‖ b · u[g] | k[g] + c 〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

terminal configuration: 〈 e | λx .t | ◦ 〉

〈 e | dpe | x .t[g] · c 〉 → 〈 e | p ? x .t[g] | c 〉
〈 e | t[z = x p] | c 〉 → 〈 e | p ? y.u[ f ] | z.t[e] · c 〉 (x : (λy.u)[ f ] ∈ e)
〈 e | p to x .t | c 〉 → 〈 e | p ? x .t[e] | c 〉
〈 e | x ? z.t[g] | c 〉 → 〈 f | λy.u ? z.t[g] | c 〉 (x : (λy.u)[ f ] ∈ e)

〈 e | λx .u ? z.t[g] | c 〉 → 〈 g, z : (λx .u)[e] | t | c 〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

terminal configuration: 〈 e | dpe | ◦ 〉

Figure 4. Transitions for the TJAM and QJAM machines extracted from LJT and LJQ

as the left spine G[F,E] while the following proof:

E :: Γ � [P]
F :: Γ , x : P � [Q] G :: Γ , x : P, y : Q ` N
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ , x : P ` N
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` N

is the right spine [E,F]G. Although one can use other groupings
of cuts to organise the cut trunk at the bottom of a proof, these
patterns will be the basic bricks for building our machines.

Stacks and environments. We can make one step further in
the definition of the machines by observing different properties of
left and right spines. The left premise of intuitionistic cuts has the
cut formula in the right-hand side, and therefore they can never
permute above any other cut in this premise. As a consequence,
the elements of a left spine cannot be exchanged: their order is
fixed and they really form a list. Conversely, cuts can permute
along their right premise provided there is no actual dependency
of a premise on the cut formula, and hence the elements of a
right spine can be exchanged under that condition.

This leads us to the definition of two data structures commonly
used in abstract machines: stacks and environments. A left spine
can be used as a stack, while right spines in which all elements
are independent proofs can be seen as an environment. In practice,
it is convenient to consider all elements of an environment closed,
which corresponds to proofs of sequents with the left-hand side
empty. Note that in a right spine, the target proof has access to all
cut formulas, each of them being bound to a name if not focused,
and present in the left-hand side of the topmost right premise. A
term reduced against some stack will thus be the target of a left
spine, and the target of a right spine if reduced in an environment
— we can easily extend the notion of target so that a term can be
viewed on top of both a stack and an environment.

Program and machine syntax. When defining a machine for
a λ-calculus with a focused type system, the language of programs
is given, it is that of terms in this calculus. However, not all cuts
should be included in the language, but rather only head cuts that
are used to type a computation. Any other cut has a bureaucratic
meaning, appearing as byproduct of elimination of head cuts: the
extra cuts are the logical counterpart of the machine architecture,
and they translate into particular machine configurations. In LJF,
for example, only hcl and hcr are unfocused head cuts, and in LJT
and LJQ only hc cuts are. Note that head cuts belong to the syntax
of the language but also translate to machine configurations, as
they get integrated into the cut trunk during reduction:

machine syntax
§

extra cuts

basic rules
head cuts

ª

program syntax

whereas extra cuts appear by reduction inside the cut trunk and
are therefore always part of the representation of the machine
architecture — their reduction represents implementation details
of the abstract machine.

The protocol to follow in the creation of an abstract machine
for a given focused sequent calculus is in the end quite mechanical,
as it consists essentially in the identification of a normal form for
trunks of cuts, equivalent to the definition of an architecture for
the machine, usually based on standard data structures such as
environments and stacks. The rest is constrained by the logical
system and its cut elimination procedure. We can now turn to the
definition of a machine for λκ and its fragments, following these
principles to design it on logical grounds.

Data structures for LJF. In the particular situation of this
system, environments are built from value bindings and we will
consider all elements of an environments to be closed. This can be
achieved by associating to each element a local environment to
close its free variables. Therefore, the environments we use are a
recursive data structure. Moreover, we need lists containing values
and continuations that are also closed with local environments. In
precise terms, the grammar of lists and environments is:

c, d ::= ◦ | p[e] · c | (x .t[e]) · c
e, f , g ::= ◦ | e, x : p[g]

This language is used to describe the architecture of a machine,
but all of these constructs have a representation in terms of the
λκ-calculus. The translation is the following:

¹r[◦]ºe = r ¹r[e, x : p[g]]ºe = ¹p[g]ºe to x .¹r[e]ºe
¹◦ºc = ε ¹p[e] · cºc = ¹p[e]ºe :: ¹cºc
¹(x .t[e]) · cºc = κx .(¹t[e]ºe¹cºc)

where r represents an object that is either t, q or k. Note that in
the construction (x .t[e]) · c, the x is not bound in c, so that this
translation into λκ does not exploit the full scope of κx . We need
to add the following reductions to the rewrite system:

(t m) k → t (m @ k)
p to x .(t k) → (p to x .t) (p to x .k)

p to x .(q to y.r) → (p to x .q) to y.(p to x .r)
(4)

where x ∈ fv(q) and r can be have the shape of either t, p or k, so
that some cuts can be permuted without looping. This is necessary
to implement on λκ-terms the behaviour of the sequences and
environments. These reductions participate in the maintenance
of the encoding in λκ of a machine configuration.

Building CBN and CBV machines. Based on ideas described
above, we define abstract machines, starting with LJT. The TJAM
shown in Figure 4 is created by adding to the λ system the first
two rules of (4) and defining machine configurations that support
the kind of cuts appearing in LJT. For this, we need to handle a
part of context as a difference list, which is just a list denoted by b
where an element x is added to the tail — we write b · x for this
operation. Moreover, we denote by b{c} the operation producing
a list by plugging a list c as the tail of b. We can now describe the
two kinds of configurations defining the TJAM architecture.
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Definition 4.1 (TJAM). The configurations of the TJAM are:

〈 e | t | c 〉 ¬ (¹t[e]ºe) ¹cºc
〈 e | t ‖ b | k[g] + c 〉 ¬ (¹t[e]ºe) ¹b{¹k[g]ºe @ ¹cºc}ºc

The first kind of configuration is used to reduce terms, and the
second is only necessary to normalise the structure holding lists of
arguments. From the transitions in Figure 4, we see that the TJAM
is essentially the KAM [23], extended to handle lists of arguments
and with some explicit mechanism to normalise stacks — it is not
needed in the original KAM, since it never pushes more than one
argument at a time on the stack.

Remark 4.2. The abstract machines we consider here are extremely
detailed, and one might wonder if this level of precision is useful. In
particular, the bureaucratic reductions maintaining the encoding of
configurations could be factored out and made silent. However, it is
always possible to make a machine more implicit if it represents all
the details, whereas in other direction one would have to recover
the precise behaviour of cut elimination that lead to the design of a
particular machine. For example, stack normalisation in the TJAM
can be made implicit, so that only a single kind of configuration is
needed. If we consider the terms encoding pure λ-terms in λ, we
observe that the machine transitions are exactly the ones defining
the KAM:

〈 e | λx .t | u[g] · c 〉 → 〈 e, x : u[g] | t | c 〉
〈 e, x : t[g] | x ε | c 〉 → 〈 g | t | c 〉
〈 e | t (u :: ε) | c 〉 → 〈 e | t | u[e] · c 〉

Figure 4 also presents the QJAM machine, extracted from the
LJQ cut elimination and using two configurations as well.

Definition 4.3 (QJAM). The configurations of the QJAM are:

〈 e | t | c 〉 ¬ ¹c{¹t[e]ºe}ºc
〈 e | p ? x .t[g] | c 〉 ¬ ¹c{¹p[e]ºe to x .¹t[g]ºe}ºc

This machine is quite different from the TJAM, as it is based on
a left spine of mc cuts, representing the stack c of a configuration.
It is built as opposite of the TJAM, and although it is slightly more
complex, one can observe the similarity to the CEK machine [18].
Also, the reduced cut is not at the bottom of the proof anymore,
but at the other end of the spine. The principle of its mechanism
is that only computed values can be pushed in the environment,
leading to a CBV reduction.

Multi-strategy machine. Following the same methodology,
we now derive a machine for the full λκ-calculus, based on the cut
elimination proof for LJF from Section 2. This machine is slightly
more complex that the previous ones, with three configurations.

Definition 4.4 (FJAM). The configurations of the FJAM are:

〈 e | t | c 〉 ¬ (¹t[e]ºe) ¹cºc
〈 e | t ‖ b | k[g] + c 〉 ¬ (¹t[e]ºe) ¹b{¹k[g]ºe @ ¹cºc}ºc
〈 e | p ? x .t[g] | c 〉 ¬ (¹p[e]ºe to x .¹t[g]ºe) ¹cºc

The implementation of this machine is quite similar to that of
the TJAM and the QJAM, but it unifies them by having all of their
modes of evaluation. The transitions for this machine are shown
in Figure 5: we can see that most of the transitions are reminiscent
of either one of the previous machines. It is also interesting to
see how a transition is represented in the term implementation.
Consider for example these reductions:

(λx .t)[e] (p[g] :: k) → (p[g] to x .t[e]) k
(buc[e] to z.t[g]) k → t[g, z : buc[e]] k

expressed in terms of environments, and corresponding to the
second and last transitions respectively. The basic idea of the FJAM
is to let the control flow be exchanged by the operators related
to a polarity shift. This illustrates how focusing provides explicit
mechanisms for influencing the reduction strategy.

FJAM (multi-strategy machine)

〈 e | dpe | x .t[g] · c 〉 → 〈 e | p ? x .t[g] | c 〉
〈 e | λx .t | p[g] · c 〉 → 〈 g | p ? x .t[e] | c 〉

〈 e, x : btc[g] | x k | c 〉 → 〈 g | t ‖ ◦ | k[e, x : btc[g]] + c 〉
〈 e | t k | c 〉 → 〈 e | t ‖ ◦ | k[e] + c 〉

〈 e | p to x .t | c 〉 → 〈 e | p ? x .t[e] | c 〉

〈 e | t ‖ b | ε[g] + c 〉 → 〈 e | t | b{c} 〉
〈 e | t ‖ b | (p :: k)[g] + c 〉 → 〈 e | t ‖ c · p[g] | k[g] + c 〉
〈 e | t ‖ b | (κx .t)[g] + c 〉 → 〈 e | t | (b · (x .t[g])){c} 〉

〈 e, x : p[ f ] | x ? z.t[g] | c 〉 → 〈 f | p ? z.t[g] | c 〉
〈 e | buc ? z.t[g] | c 〉 → 〈 g, z : buc[e] | t | c 〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

terminal configurations: 〈 e | dpe | ◦ 〉 〈 e | λx .t | ◦ 〉

Figure 5. Transitions for the FJAM machine extracted from LJF

The TJAMmachine can be emulated inside of the FJAMmachine,
this will be proved by translating TJAM machine configurations
into FJAM configurations, in such a way that reduction is preserved
by the translation. This works by mapping terms of LJT to
terms of LJF and preserving the invariant that all the values
in both the context and environment are thunks. The individual
components of a TJAM machine will be translated into a FJAM
machine component in the following way:

Te¹◦º = ◦
Te¹ e, x : t[g]º = Te¹ e º, x : bTt(t)c[Te¹ g º]

Tc¹◦º = ◦
Tc¹u[g] · c º = bTt(u)c[Te¹ g º] · Tc¹ c º
Tc¹ k[e] + c º = Tk(k)[Te¹ e º] + Tc¹ c º

Then, a TJAM configuration translates to a configuration of the
FJAM by applying the translation to each component, pointwise:

FT ¹ 〈 e | t | c 〉º = 〈Te¹ e º | Tt(t) | Tc¹ c º 〉
FT ¹ 〈 e | t ‖ c | d 〉º = 〈Te¹ e º | Tt(t) ‖ Tc¹ c º | Tc¹ d º 〉

Theorem 4.5 (TJAM in FJAM). Given any two TJAM configurations
U and V such that U → V , we have FT ¹U º →+ FT ¹V º.

Proof. By case analysis on the TJAM configurations and on possible
reductions — the full proof can be found in the appendix. �

Moreover, note that translation preserves terminal states. In a
similar way, we embed the QJAM inside the FJAM. This translation
is also done pointwise, although environments consist of thunks
that should be considered as values. The components of the QJAM
machine are translated as follows:

Qe¹◦º = ◦
Qe¹ e, x : p[g]º = Qe¹ e º, x : Qv(p)[Qe¹ g º]

Qs¹◦º = ◦
Qc¹ x .t[g]º = x .Qt(t)[Qe¹ g º]

Qs¹ c · s º = Qc¹ c º · Qs¹ s º

By applying the translations pointwise, we translate from a
QJAM configuration to a FJAM configuration as follows:

FQ ¹ 〈 e | t | s 〉º = 〈Qe¹ e º | Qt(t) | Qs¹ s º 〉
FQ ¹ 〈 e | p ? c | s 〉º = 〈Qe¹ e º | Qv(p) ? Qc¹ c º | Qs¹ s º 〉

Theorem 4.6 (QJAM in FJAM). Given any two QJAM configurations
U and V such that U → V , we have FQ ¹U º →+ FQ ¹V º.

Proof. By case analysis on the QJAM configurations and on possible
reductions — the full proof can be found in the appendix. �
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ax −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P � x ⇒ P

Γ � p⇐ P
ni −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` dpe ⇐ ↑P

Γ ` t ⇐ N
pi −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � btc ⇐ ↓N

Γ ` t ⇒ P ⊃ N Γ � p⇐ P
ie −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t p⇒ N

Γ , x : P ` t ⇐ N
ii −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t ⇐ P ⊃ N

Γ ` u⇒ ↑P Γ , x : P ` t ⇐ M
ne −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` u to x .t ⇐ M

Γ � p⇒ ↓N
pe −−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` F p⇒ N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ` t ⇒ N N ∈ {a−,↑P}
mt −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t ⇐ N

Γ ` t ⇐ N
ct −−−−−−−−−−−−−−−−−−−−−−
Γ ` t ⇒ N

Γ � p⇒ P P ∈ {a+,↓N}
mp −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ � p⇐ P

Γ � p⇐ P
cp −−−−−−−−−−−−−−−−−−−−−−
Γ � p⇒ P

Figure 6. Rules for bidirectional NJPV with associated terms

Remark 4.7. The FJAM supports the use of multiple strategies in
the sense that a term can be reduced partly under the CBN order,
and partly using CBV. This coexistence of opposite strategies is made
possible by the extra syntax in λκ-terms, reflected by polarity shifts
at the level of types. This is also the case of the call-by-push-value
machine [25], as we will see in the next section.

5. Call-by-push-value and LJF
As we have seen in the previous sections, the LJF system offers
a versatile framework for typing λ-terms extended by advanced
constructs, providing at least a partial control over the reduction
strategies. Of course, the introduction of shifts at the level of types
and the encodings given for CBN and CBV are reminiscent of the
call-by-push-value language [25] in which the markers U and F
establish the distinction between value types and computation
types. It appears clear that there is a connection here, but this
raises the question: are LJF and CBPV describing precisely the same
language? This section will show that they are almost the same,
but not exactly.

The type system defining CBPV is recalled in Figure 6, although
we use a bidirectional presentation that allows to isolate normal
forms as proofs not using the coercion rules ct and cp. We name
this system NJPV to emphasise that it is a natural deduction
calculus. For this reason, we remove the let construct found in
CBPV, as it can be implemented as follows:

Γ � p⇐ [P] Γ , x : P ` t ⇐ N
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` let p be x .t ⇐ N

≡

Γ � p⇐ P
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` dpe ⇐ ↑P
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` dpe ⇒ ↑P Γ , x : P ` t ⇐ N
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` dpe to x .t ⇐ N

or equivalently by a detour on the implication P ⊃ N . This rule
corresponds to a cut in a sequent calculus, leading to a reduction
in CBPV reflected as a reduction on the translation.

We have adapted the CBPV syntax to fit our general framework,
but one can easily see that U is ↓ and F is ↑, making b·c and d·e
stand for thunk and return respectively, while F denotes the forcing
of a value and the CBPV application p‘t is translated into t p.
Formally, we use the following grammar:

t, u ::= λx .t | t p | F p | dpe | u to x .t
p, q ::= x | btc

and the terms t p and F p are called synthesised terms, while the
others are checked terms, in reference to the form of the typing

rules. The operational semantics of this language is specified by
an abstract machine [25] derived from the CK machine. It has
configurations containing just a term and a stack, and transitions
involving the full substitution of a term for a variable in one step,
as opposed to the machines we used, that performed only local
operations. The transitions of the machine are:

〈u to x .t | s 〉 → 〈u | (to x .t) · s 〉
〈 dpe | (to x .t) · s 〉 → 〈 t{p/x} | s 〉

〈F btc | s 〉 → 〈 t | s 〉
〈 t p | s 〉 → 〈 t | p · s 〉

〈λx .t | p · s 〉 → 〈 t{p/x} | s 〉

in which the stack s contains either values or term continuations,
as shown in the typing rules below, found in [25], and presented
in the style of a focused sequent calculus, as these objects cannot
be typed in natural deduction style:

axl −−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [a] � ◦ : a

Γ � p : [P] Γ , [N] � k : M
il −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ , [P ⊃ N] � p · k : M

Γ , x : P ` t : N Γ , [N] � k : M
bc −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ , [↑P] � (x .t) · k : M

Since the operational semantics of CBPV is given through an
abstract machine, it is natural to compare it to the FJAMwe defined
for LJF. However, the CK machine is not an abstract machine the
same sense as the ones we presented here, as it performs actual
substitutions on terms instead of maintaining an environment.

In order to carry out the comparison, we introduce a variant of
this CK machine where substitutions are implemented using an
environment. Moreover, in order to limit inspection of the term
to its surface construct, we use a value-forcing marker F. These
changes require us to distinguish between a mode for evaluating
terms and another mode to treat values, as in the FJAM machine.
The grammar of contexts in this PVAM machine is:

c ::= ◦ | p[e] · c | (x .t[e]) · c | F · c

while environments are value bindings and programs terms of
CBPV. Transitions for this machine are shown in Figure 7, and one
can observe in particular that the reduction of F btc, performed
in one step in the CK machine, requires two steps, going through
value mode, in the PVAM machine. The syntax of the machine is
consistent with our previous framework, so that transitions may
be read intuitively as in the FJAM.

Natural deduction and sequent calculi. The machine we just
introduced is remarkably similar to the FJAM machine we have
previously extracted from LJF. However, they evaluate different
kinds of terms, as λκ is based on the sequent syntax of LJF and
CBPV on a natural deduction presentation. This is more generally
the difference separating the TJAM and QJAM machines from the
more standard KAM and CEK machines.

In order to have a clear technical overview of the relation of
the FJAM to the CBPV machine, we have defined a bidirectional
system that is easier to relate to the sequent calculus. In particular,
the coercion rules ct and cp closely correspond to cuts, and the
meet rules mt and mp to the identity axiom.

From the perspective of our comparison, we see that CBPV
and the λκ-calculus, typed by LJF, are not exactly the same: any
term typeable in λκmust be η-long — up to atoms but also shifts,
as for example ↓N can be the type of some variable x — while
in NJPV this restriction is not enforced. Of course, one could use
the η-expansion result of CBPV, valid at non-atomic types, but it
would hinder the correspondence between CBPV and λκ. Indeed,
if t has type N in CBPV and gets translated to a u of type N in LJF,
the η-expansion of t has type N in CBPV but the expansion of u
is not always typeable in LJF. To be more precise, the bijection is
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PVAM (call-by-push-value machine)

〈 e | u to x .t | c 〉 → 〈 e | u | (x .t[e]) · c 〉
〈 e | dpe | (x .t[e]) · c 〉 → 〈 e | p ? (x .t[e]) | c 〉

〈 e | F p | c 〉 → 〈 e | p ? F · c 〉
〈 e | t p | c 〉 → 〈 e | t | p[e] · c 〉

〈 e | λx .t | p[g] · c 〉 → 〈 g | p ? (x .t[e]) | c 〉
〈 e, x : p[ f ] | x ? z.u[g] | c 〉 → 〈 f | p ? z.u[g] | c 〉

〈 e | btc ? z.u[g] | c 〉 → 〈 g, z : btc[e] | u | c 〉
〈 e | btc ? F | c 〉 → 〈 e | t | c 〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

terminal configurations: 〈 e | dpe | ◦ 〉 〈 e | λx .t | ◦ 〉

Figure 7. Transitions for the PVAM machine for CBPV

between well-typed λκ terms and CBPV terms where all subterms
of functional type are η-long. This justifies from a computational
viewpoint the extension of the identity axiom to ↓N and ↑P: these
are the only non-atomic types in LJF that admit η-expansion.

Comparing machines. The translation between CBPV and
λκ proceeds in two steps: first we encode the implication − ⊃ −
of CBPV as ↑↓(− ⊃ −) to account for η-long normal forms found
in λκ, and this is reflected on terms, as for example:

¹t pº↑↓ = ¹tº↑↓ to x .(F x) ¹pº↑↓
¹λx .tº↑↓ = dbλx .¹tº↑↓ce

Next, we translate the resulting terms as well as the machine
configurations and observe the simulation of the transitions of
these machines. In the following, we assume that CBPV terms are
in η-long form.

Following the observations made about λ [21] we notice that
eliminations in natural deduction correspond to lists in a sequent
calculus, involved in an application. Similarly, to relate NJPV to
LJF we will translate synthesised terms by building a list and
using it as the argument in either a left focus rule or an hcl cut.
We can now give the full translation:

Pc(λx .t) = λx .Pc(t)
Pc(dpe) = dPv(p)e

Pc(u to x .t) = Pc(u | κx .Pc(t))
Pc(t) = Pc(t | ε) otherwise

Pc(t p | k) = Pc(t | Pv(p) :: k)
Pc(F p | k) = Pv(p | k)
Pc(t | k) = Pc(t) k otherwise

Pv(btc) = bPc(t)c
Pv(x) = x

Pv(x | k) = x k
Pv(p | k) = Pv(p) to x .x k otherwise

in which the last case, for Pv(p | k), is rather uninteresting in the
basic setting, where this p can only be btc. This would involve
more cases in the system extended with positive connectives, such
as disjunction. It is then easy to prove that this translation, on
pure terms, respects the typing derivations in NJPV and LJF.

Theorem 5.1. The translation from CBPV to λκ is type-correct:

(i) if Γ ` t ⇐ N then Γ ` Pc(t) : N
(ii) if Γ ` u⇒ N and Γ , [N] � k : M then Γ ` Pc(u | k) : M
(iii) if Γ � p⇐ P then Γ � Pv(p) : [P]
(iv) if Γ � q⇒ a+ then Γ � Pv(q) : [a+]
(v) if Γ � q⇒ ↓N and Γ , [N] � k : M then Γ ` Pv(q | k) : M

Proof. The proof proceeds by mutual induction over derivations,
following the structure of the translation. �

In order to proceed and translate machine configurations, we
will need a notion of applicative context, which is essentially a
list of application arguments with a hole for the function to be
applied. Such a context will correspond in λκ to a list of values
with a hole for the term applied, and it is defined as:

K ::= · | K p

In particular, any synthesised term u can be decomposed into
an applicative context composed with either F p or some checked
term t. The translation of machine states uses this fact to translate
synthesised terms. The environments and stacks are translated
pointwise using Fe¹ ·º and Fc¹ ·º respectively, and the terms are
translated using Pc(·). Note that inside a stack, the continuation
construct to x .t[e] is translated to x .Pv(t)[Fe¹ e º], and a value
p closed by an environment e is translated as Pv(p)[Fe¹ e º]. The
full translation of PVAM configurations to FJAM configurations is
based on a particular recursive definition meant to handle the
applicative contexts of CBPV. It is defined by three equations:

PF ¹ 〈 e | K{Fq} | s 〉º = PF ¹ 〈 e | q ? F | K[e] · s 〉º
PF ¹ 〈 e, x : p[g] | x ? F | s 〉º = PF ¹ 〈 g | p | s 〉º

PF ¹ 〈 e, x : p[g] | x ? z.u[ f ] | s 〉º = PF ¹ 〈 g | p ? z.u[ f ] | s 〉º

where the notation K[e] · s denotes the integration of a context
K into the stack s, specified using the equations · [e] · s = s and
K{p}[e] · s = K[e] · (p[e] · s). This is a meta-level operation, that
helps compute the stack configuration representing a term using
an applicative context. The rest of the translation, applicable after
all applicative contexts have been handled, is:

PF ¹ 〈 e | t | s 〉º
= 〈Fe¹ e º | Pc(t) | Fc¹ s º 〉

PF ¹ 〈 e | btc ? (to x .u[g]) | s 〉º
= 〈Fe¹ g, x : btc[e]º | Pc(u) | Fc¹ s º 〉

PF ¹ 〈 e | btc ? F | s 〉º
= 〈Fe¹ e º | Pc(t) | Fc¹ s º 〉

We can define Pc(K{u} | m) to be Pc(u | K @ m), where (K @ m)
is a notation for the list specified by the equations · @ m= m and
K{p} @ m= K @ (Pv(p) :: m), reminiscent of the treatment given
to applicative contexts in the translation of the PVAM machine. In
addition, we can prove the following simple lemma, used in the
final simulation result.

Lemma 5.2. The FJAM can always perform the following reduction:

〈Fe¹ e º | Pv(p) ? Fc¹ c º | Fc¹ s º 〉 →∗ PF ¹ 〈 e | p ? c | s 〉º

Proof. By induction on the structure of the value p and using the
definition of Pv(·) and PF ¹ ·º in particular. �

We finally come to the simulation result stating that the FJAM
can reduce terms as the PVAM would. Unlike the results for the
TJAM and QJAM machines, the simulation does not guarantee that
a step will yield at least one step inside the FJAM, because of the
representation of applicative context — as can be observed in the
statement of Lemma 5.2.

Theorem 5.3 (PVAM in FJAM). Given any two PVAM configurations
U and V such that U → V , we have PF ¹U º →∗ PF ¹V º.

Proof. By case analysis on the PVAM configurations and on possible
reductions. Reductions for the value mode hold immediately.
Then, terms can reduce to value mode as shown by Lemma 5.2. In
other cases, reduction is simulated with one step in FJAM for one
step in the PVAM. �
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The translation in the other direction is simpler, and it is worth
pointing out that both the hcl cut and hcr cut are translated by
using a coercion, exhibiting the tight relation between coercion
in natural deduction and cut in the sequent calculus.

Ft(λx .t) = λx .Ft(t)
Ft(x k) = Fk(F x | k)
Ft(dpe) = dFv(p)e
Ft(t k) = Fk(Ft(t) | k)

Ft(p to x .t) = (λx .Ft(t)) Fv(p)

Fk(t | ε) = t
Fk(t | p :: k) = Fk(t Fv(p) | k)
Fk(u | κx .t) = u to x .Ft(t)

Fv(x) = x
Fv(btc) = bFt(t)c

This is once again a translation that preserves the typeability
of terms from LJF to the NJPV system.

Theorem 5.4. The translation from λκ to CBPV is type-correct:

(i) if Γ ` t : N then Γ ` Ft(t)⇐ N
(ii) if Γ ` t : N and Γ , [N] � k : M then Γ ` Fk(t | k)⇐ M
(iii) if Γ � p : [P] then Γ � Fv(p)⇐ P

Proof. By mutual induction on the given derivations, based on the
translations given above and by inspection of the rules of NJPV
and LJF. �

A configuration of the FJAM machine will then relate to one in
PVAM by a simple translation, that has in this direction no problem
related to applicative contexts. Note that there are no list mode
configurations in the PVAM: these are mapped the same way as the
first configuration exiting the list mode. This is similar to what is
done for the value mode in the other translation. The translation
is defined as follows:

FP ¹ 〈 e | t | c 〉º
= 〈Pe¹ e º | Ft(t) | Pc¹ c º 〉

FP ¹ 〈 e | p ? c | s 〉º
= 〈Pe¹ e º | Fv(p) ? Pc¹ c º | Pc¹ s º 〉

FP ¹ 〈 e | t ‖ c | k[g] + s 〉º
= 〈Pe¹ e º | Ft(t) | Pc¹ c º+ k[Pe¹ g º] · s 〉

where k[e] · s is a notation specified by the following equations:

ε[g] · s = Pc¹ s º
(p :: k)[g] · s = Fv(p)[g] · (k[g] · s)
(κx .t)[g] · s = (x .Ft(t)[g]) · Pc¹ s º

and we can finally state the simulation of the FJAM machine inside
its CBPV counterpart.

Theorem 5.5 (FJAM in PVAM). Given any two FJAM configurations
U and V such that U → V , we have FP ¹U º →∗ FP ¹V º.

Proof. By case analysis on the FJAM configurations and on possible
reductions. �

We can therefore conclude that λκ and CBPV are describing
the same language, up to the question of η-expansion.

6. Interpreting Extensions of LJF
We now consider a few of the directions in which the preceding
analysis may be extended. The first and most obvious extension
would be to add more of the connectives of intuitionistic logic. As
an example, the inference rules for disjunction in LJF are shown
in Figure 8. In terms of the underlying proof theory, this requires
a small addition to the cut elimination process, corresponding to
the following reduction rules in the λκ calculus:

(inl p) to x .x[y.t | z.u] → p to y.(inl p) to x .t
(inr p) to x .x[y.t | z.u] → p to z.(inr p) to x .u

p to x .y[z.t | w.u] → y[z.p to x .t | w.p to x .u]

Γ � p : [P]
dr0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ � inl p : [P ∨Q]

Γ � p : [Q]
dr1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ � inr p : [P ∨Q]

∆, y : P ` t : N ∆, z : Q ` u : N
dl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∆= Γ , x : P ∨Q ` x[y.t | z.u] : N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ � p⇐ P
di0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ � inl p⇐ P ∨Q

Γ � p⇐Q
di1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ � inr p⇐ P ∨Q

Γ � p⇒ P ∨Q Γ , y : P ` t ⇐ N Γ , z : Q ` u⇐ N
de −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` p[y.t | z.u]⇐ N

Figure 8. Rules for disjunction in LJF above and NJPV below

These changes also lead to a change in the abstract machine,
in order to support this matching construction:

〈 eL | x[y.t | z.u] | c 〉 → 〈 g | p ? y.t[eL | c 〉
〈 eR | x[y.t | z.u] | c 〉 → 〈 g | p ? y.u[eR | c 〉
〈 e | inl p ? y.t[g | c] 〉 → 〈 g, y : inl p[e] | t | c 〉
〈 e | inr p ? y.t[g | c] 〉 → 〈 g, y : inr p[e] | t | c 〉

where eL = e, x : (inl p)[g] and eR = e, x : (inr p)[g]. The
same analysis as for the basic machine can be conducted here,
so that the disjunction in CBPV, generalised into a sum, can be
related to these additional operations in the FJAM. A number of
other connectives could be added to the system, but for example
conjunction being a negative would be simpler that disjunction.

Maximal Inversion. One feature of focusing that we explicitly
left out in our presentation of LJF is the asynchronous maximality,
which not the key feature of focused proofs — in terms of normal
forms — but is often adopted, in particular for proof search.
As mentioned previously, this is necessary in order to have a
calculus that does not enforce η-long normal forms. With this in
mind, it is informative to consider whether there is a reasonable
interpretation of the added structure coming from the maximal
asynchronous phases. Having atomic initial rules enforces the
η-long structure, that is driven by the type of the succedent, and
thus the context plays no role in determining whether a term is
η-long or not.

In a similar way, we can see maximal inversion as an extension
of the η-long form to a setting where we consider open terms.
In this case, whether a term is η-long in this extended sense is
driven by both the succedent and the antecedents. This would
lead to another notion of expansion, slightly more complex than
η since a term could be expanded along a free variable present in
the typing context. This is of particular interest if one intends to
reason about programs written in a system such as λκ: normally
this is done by considering η-long forms, but analysing the
structure of a typed, open λκ-term also requires dealing with free
variables in the context. As a general observation, systems based
on sequent calculi are more complicated but offer the possibility
of handling open terms in a principled way, and focusing provides
the necessary structure on sequent calculi.

7. Conclusion and Future Work
The fundamental idea of this paper is that focusing is not simply
an important normal form in pure proof theory, but is also relevant
to the computational interpretation of proof systems. We have
seen how in this setting, polarities can be related to evaluation
strategies in a precise way — this is sometimes viewed as folklore,
and has been investigated in particular cases, but never described
in a systematic fashion and in the general case.
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The fact that LJT and LJQ can be identified as fragments of
LJF was first noted in [26], albeit only at the level of provability,
and not in terms of the dynamics of cut elimination. In part, this is
because Liang and Miller do not specify a proof term language for
the LJF calculus, and consequently it is difficult to state formally
exactly how cut elimination in the three systems are related. As
we have shown here, the same tight correspondence exists at the
level of the operational semantics given by reduction rules.

We showed how to construct an abstract machine called FJAM
for the λκ-calculus by considering “cut trunks” as machine states,
and applying the same methodology to LJT and LJQ lead to the
TJAM and QJAM machines, variants of the KAM and CEK machines
following the principles of sequent-based calculi. This provides a
unifying framework in which the FJAM corresponds to the machine
given for CBPV and integrates the mechanisms of both paradigms
of functional programming, following a purely proof-theoretical
methodology. The fact that CBPV subsumes other paradigms [25]
is therefore explained by the fact that it harnesses the power of
polarities, which is exactly what focusing does in proof theory.

An important consequence of building a calculus on a logical
foundation is that extension to richer languages becomes an easy
task, as shown by the history of the Curry-Howard approach. We
used a bare minimum of logical connectives here: just implication,
in order to be able to construct an appropriate λ-calculus. In part,
this choice is forced by the comparison with LJT and LJQ, since
implication is the only connective shared by these systems. We
note however that all the results investigated extend to the full
range of connectives of LJF, as hinted in Section 6.

The approach to constructing abstract machines outlined in
this paper is based on viewing configurations of cuts as machine
states, and as observed this results in machines that are somewhat
low-level. Another recent approach to abstract machines is that of
distillation in the linear substitution calculus [1]. It would be quite
interesting to see if these approaches can be either combined or
contrasted, and in particular if this can assign a motivation to the
LSC methodology in terms of structural proof theory, especially
focusing — we have reasons to believe so, given the roots of the
LSC in proof-nets for linear logic.

The focused calculus LJF enjoys a special status among calculi
for intuitionistic logic because of the added structure enforced
therein by the focusing discipline. There are many other focused
calculi that admit the same analysis, such as intuitionistic linear
logic and its extensions with subexponentials [7] or fixpoints [4].
These logics enjoy well-behaved focused calculi, and we expect
that an abstract machine can be extracted from cut elimination by
following our methodology. Another interesting direction would
be to apply this approach to the variants of the λ-calculus defined
to interpreted classical logic with a stronger form of control.
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A. Cut admissibility for LJF
The following theorem establishes cut admissibility for LJF as
discussed in Section 2, with details of the cases.

Theorem A.1 (Cut admissibility). The rules hcl, hcr, fcl, fcr+ and
fcr− are admissible in LJF.

Proof. The proof proceeds by lexicographical induction on the
structure of the cut formula and the premises of the cut. Note
that this is also a proof of weak normalisation for the reduction
rules for LJF proof terms described previously. We assume the
given input derivations are cut-free, corresponding to a reduction
strategy that reduces the innermost redexes, corresponding to
the topmost cuts in the given derivation.

Note that because we are working with focused versions of
the cut rule, every cut may be reduced by only considering cases
on one of the premises, specifically the premise where the cut
formula is not under focus. In addition to this, we also show the
cases where the first premise ends in an axiom rule. This is to
justify the fact that we eagerly reduce cases that amount to simple
variable substitution.

A.1 Cases for hcl

First premise ends in ir (principal case for implication):

D
Γ , x : P ` t : N

ir −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : P ⊃ N

E
Γ � p : [P]

F
Γ , [N] � k : M

il −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [P ⊃ N] � p :: k : M

hcl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` (λx .t) (p :: k) : M

D′ :: Γ ` p to x .t : N by hcr on (P,E,D).
Γ ` (p to x .t) k : M by hcl on (N ,D′,F).

First premise ends in fr (principal case for negative shift):

D
Γ � p : [P]

fr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` dpe : ↑P

E
Γ , x : P ` t : M

bl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [↑P] � κx .t : M

hcl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` dpe (κx .t) : M

Γ ` p to x .t : M by hcr on (P,D,E).

First premise ends in fl (left-commutative case):

D
Γ , x : ↓M , [M] � k : N

fl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : ↓M ` x k : N

E
Γ , x : ↓M , [N] ` m : L

hcl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : ↓M ` (x k) m : L

Γ , x : ↓M , [M] � k @ m : L by fcl on (N ,D,E).
Γ , x : ↓M ` x (k @ m) : L by fl.

A.2 Cases for hcr:

First premise ends in axr:

axr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P � x : [P]

E
Γ , x : P, y : P ` t : N

hcr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P ` x to y.t : N

Γ , x : P ` t{x/y} : N by renaming substitution.

Second premise ends in fl (principal case for positive shift):

D
Γ ` u : M

fr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
D′ :: Γ � buc : [↓M]

E
Γ , x : ↓M , [M] � k : N

bl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : ↓M ` x k : N

hcr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` buc to x .(x k) : N

E′ :: Γ , [M] � buc to x .k : N by fcr− on (↓M ,D′,E).
Γ ` u (buc to x .k) : N by hcl on (M ,D,E′).

Second premise ends in fl (right-commutative case):

D
Γ � p : [P]

E
Γ , x : P, y : ↓M , [M] � k : N

fl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P, y : ↓M ` y k : N

hcr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , y : ↓M ` p to x .(y k) : N

Γ , y : ↓M , [M] � p to x .k : N by fcr− on (P,D,E).
Γ , y : ↓M ` y (p to x .k) : N by fl.

Second premise ends in ir (right-commutative case):

D
Γ � p : [P]

E
Γ , x : P, y : Q ` t : N

ir −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P ` λy.t : Q ⊃ N

hcr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` p to x .(λy.t) : Q ⊃ N

Γ , y : Q ` p to x .t : N by hcr on (P,D,E).
Γ ` λy.(p to x .k) : Q ⊃ N by ir.

Second premise ends in fr (right-commutative case):

D
Γ � p : [P]

E
Γ , x : P � q : [Q]

fr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P ` dqe : ↑Q

hcr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` p to x .dqe : ↑Q

Γ � p to x .q : [Q] by fcr+ on (P,D,E).
Γ ` dp to x .qe : ↑Q by fr.

A.3 Cases for fcl:

First premise ends in axl:

axl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [M] � ε : M

E
Γ , [M] � m : L

fcl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [M] � ε @ m : L

Γ , [M] � m : L by E.

First premise ends in il (left-commutative case):

D
Γ � p : [P]

E
Γ , [M] � k : N

il −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [P ⊃ M] � p :: k : N

F
Γ , [N] � m : L

fcl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [P ⊃ M] � (p :: k) @ m : L

E′ :: Γ , [M] � k @ m : L by fcl on (N ,E,F).
Γ , [P ⊃ M] � p :: (k @ m) : L by il on D and E′.

First premise ends in bl (left-commutative case):

D
Γ , x : P ` t : N

il −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [↑P] � κx .t : N

E
Γ , [N] � m : L

fcl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [↑P] � (κx .t) @ m : L
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Γ , x : P ` t m : L by hcl on (N ,D,E).
Γ , [↑P] � κx .(t m) : L by bl.

A.4 Cases for fcr+:

First premise ends in axr:

axr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P � x : [P]

E
Γ , x : P, y : P � p : [Q]

fcr+ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P � x to y.p : [Q]

Γ , x : P � p{x/y} : [Q] by renaming substitution.

Second premise ends in axr (right-commutative case):

D
Γ , y : P � p : [P]

axr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P, y : P � y : [Q]

fcr+ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , y : P � p to x .y : [Q]

Γ , y : P � y : [Q] by axr.

Second premise ends in axr (principal case):

D
Γ � p : [P]

axr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P � x : [P]

fcr+ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � p to x .x : [P]

Γ � p : [P] by D.

Second premise ends in br (right-commutative case):

D
Γ � p : [P]

E
Γ , x : P ` u : N

br −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P � buc : [↓N]

fcr+ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � p to x .buc : [↓N]

Γ ` p to x .u : N by hcr on (P,D,E).
Γ � bp to x .uc : [↓N] by br.

A.5 Cases for fcr−:

First premise ends in axr:

axr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P � x : [P]

E
Γ , x : P, y : P, [N] � k : M

fcr− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P, [N] � x to y.k : M

Γ , x : P, [N] � k{x/y} : M by renaming substitution.

Second premise ends in axl:

D
Γ � p : [P]

axl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P, [N] � ε : N

fcr− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [N] � p to x .ε : N

Γ , [N] � ε : N by axl.

Second premise ends in il:

D
Γ � p : [P]

E
Γ , x : P � q : [Q]

F
Γ , x : P, [N] � k : M

il −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P, [Q ⊃ N] � q :: k : M

fcr− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [Q ⊃ N] � p to x .(p :: k) : M

E′ :: Γ � p to x .q : [Q] by fcr+ on (P,D,E).
F′ :: Γ , [N] � p to x .k : M by fcr− on (P,D,F).

Γ , [Q ⊃ N] � (p to x .q) :: (p to x .k) : M
by il on E′ and F′.

Second premise ends in bl:

D
Γ � p : [P]

E
Γ , x : P, y : Q ` t : M

bl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : P, [↑Q] � κy.t : M

fcr− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , [↑Q] � p to x .(κy.t) : M

Γ , y : Q ` p to x .t : M by hcr on (P,D,E).
Γ , [↑Q] � κy.(p to x .t) : M by bl.

This completes the proof �

B. λ and λq reductions simulated in λκ
Reductions in λ can be simulated in λκ using the translations
Tt(·) and Tk(·) defined in Section 3.

Theorem B.1. For any t and u in λ, if t → u then Tt(t)→+ Tt(u).

Proof. By inspection of the reduction rules of λ and of the result
of the translation Tt(·):

Tt((λx .t)(u :: k)) = (λx .Tt(t))(bTt(u)c :: Tk(k))
→ bTt(u)c to x .Tt(t)
= Tt(t[u/x] k)

Tt((x k) m) = (x Tk(k)) Tk(m)
→ x (Tk(k) @ Tk(m))
= Tt(x (k @ m))

Tt((λz.t)[u/x]) = bTt(u)c to x .λz.Tt(t)
→ λz.bTt(u)c to x .Tt(t)
= Tt(λz.t[u/x])

Tt((x k)[u/x]) = bTt(u)c to x .x Tk(k)
→ Tt(u) (bTt(u)c to x .Tk(k))
= Tt(u k[u/x])

Tt((y k)[u/x]) = bTt(u)c to x .y Tk(k)
→ y (bTt(u)c to x .Tk(k))
= Tt(y k[u/x])

�

Theorem B.2. For any lists k and m in λ, if t → u then Tk(t)→+
Tk(u).

Proof. By inspection of the reduction rules of λ and of the result
of the translation Tk(·):

Tk(ε @ m) = ε @ Tk(m)
→ Tk(m)

Tk((u :: k) @ m) = (bTt(u)c :: Tk(k)) @ Tk(m)
→ bTt(u)c :: (Tk(k) @ Tk(m)
= Tk(u :: (k @ m))

Tk(ε[u/x]) = bTt(u)c to x .ε
→ ε
= Tk(ε)

Tk((t :: k)[u/x]) = bTt(u)c to x .(bTt(t)c :: Tk(k)
→ (bTt(u)c to x .bTt(t)c) :: bTt(u)c to x .Tk(k)
→ bbTt(u)c to x .Tt(t)c :: bTt(u)c to x .Tk(k)
= Tk(t[u/x] :: k[u/x])

�

Reductions in λq can be simulated in λκ using the translations
Qt(·) and Qv(·) defined in Section 3.

Theorem B.3. For any t and u in λq, if t→ u then Qt(t)→+ Qt(u).
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Proof. By inspection of the reduction rules of λq and of the result
of the translation Qt(·), notice that for all t ′ and variables x , y the
translation Qt(t ′{x/y}) = Qt(t ′){x/y}, furthermore let a = λy.u′,
so Qv(a) = bλy.Qt(u′)c:

Qt(z to x .t)
= z to x .Qt(t)
→ Qt(t){z/x}
= Qt(t{z/x})

Qt(a to x .dpe)
= Qv(a) to x .dQv(p)e
→ dQv(a) to x .Qv(p)e
= Qt(da to x .pe)

Qt(a to x .t[z = w p])
= Qv(a) to x .w (Qv(p) :: κz.Qt(t))
→ w (Qv(a) to x .(Qv(p) :: κz.Qt(t)))
→ w ((Qv(a) to x .Qv(p)) :: Qv(a) to x .κz.Qt(t))
→ w ((Qv(a) to x .Qv(p)) :: κz.Qv(a) to x .Qt(t))
= Qt((a to x .t)[z = w (a to x .p)])

Qt(a to x .t[z = x p])
= Qv(a) to x .x (Qv(p) :: κz.Qt(t))
→ (λy.Qt(u′)) (Qv(a) to x .(Qv(p) :: κz.Qt(t)))
→ (λy.Qt(u′)) ((Qv(a) to x .Qv(p)) :: Qv(a) to x .κz.Qt(t))
→ (λy.Qt(u′)) ((Qv(a) to x .Qv(p)) :: κz.(Qv(a) to x .Qt(t)))
→ ((Qv(a) to x .Qv(p)) to y.Qt(u′))(κz.(Qv(a) to x .Qt(t)))
= Qt((a to x .t)[(a to x .p) to y.u/z)

Qt(t[dpe/x])
= dQv(p)e (κx .Qt(t))
→ Qv(p) to x .Qt(t)
= Qt(p to x .t)

Qt(t[v[z = w p]/x])
= (y (Qv(p) :: κz.Qt(v))) (κx .Qt(t))
→ y ((Qv(p) :: κz.Qt(v)) @ (κx .Qt(t)))
→ y (Qv(p) :: ((κz.Qt(v)) @ (κx .Qt(t))))
→ y (Qv(p) :: κz.Qt(v) (κx .Qt(t)))
= Qt(t[v/x][z = w p])

�

Theorem B.4. For any value p and q in λq, if p → q then
Qv(p) →+ Qv(q).

Proof. By inspection of the reduction rules of λq and of the
result of the translation Qv(·), notice that for all p′ and variables
x , y the translation Qv(p′{x/y}) = Qv(p′){x/y}, furthermore let
a = λy.u′, so Qv(a) = bλy.Qt(u′)c:

Qv(z to x .p) = z to x .Qv(p)
→ Qv(p){z/x}
= Qv(p{z/x})

Qv(a to x .x) = Qv(a) to x .x
→ Qv(a)

Qv(a to x .z) = Qv(a) to x .z
→ z
= Qv(z)

Qv(a to x .(λz.t)) = Qv(a) to x .bλz.Qt(t)c
→ bQv(a) to x .λz.Qt(t)c
→ bλz.Qv(a) to x .Qt(t)c
= Qv(λz.a to x .t)

�

C. TJAM and QJAM simulated inside FJAM
The TJAM machine can be simulated inside FJAM as discussed in
Section 4.

Theorem C.1 (TJAM in FJAM). Given any two TJAM configurations
U and V such that U → V , we have FT ¹U º −→∗ FT ¹V º.

Proof. By case analysis on the TJAM configurations and on possible
reductions, notice that for all b and d the translation Tc¹ b{d}º =
Tc¹ b º{Tc¹ d º}:

FT ¹ 〈 e | λx .t | u[g] · c 〉º
= 〈Te¹ e º | λx .Tt(t) | bTt(u)c[Te¹ g º] · Tc¹ c º 〉
−→ 〈Te¹ g º | bTt(u)c ? x .Tt(t)[Te¹ e º] | Tc¹ c º 〉
−→ 〈Te¹ e º, x : bTt(u)c[Te¹ g º] | Tt(t) | Tc¹ c º 〉
= FT ¹ 〈 e, x : u[g] | t | c 〉º

FT ¹ 〈 e, x : t[g] | x k | c 〉º
= 〈Te¹ e º, x : bTt(t)c[Te¹ g º] | x Tk(k) | Tc¹ c º 〉
−→ 〈Te¹ g º | Tt(t) ‖ ◦ | Tk(k)[Te¹ e º, x : bTt(t)c[Te¹ g º]] + Tc¹ c º 〉
= FT ¹ 〈 g | t ‖ ◦ | k[e, x : t[g]] + c 〉º

FT ¹ 〈 e | t k | c 〉º
= 〈Te¹ e º | Tt(t) Tk(k) | Tc¹ c º 〉
−→ 〈Te¹ e º | Tt(t) ‖ ◦ | Tk(k)[Te¹ e º] + Tc¹ c º 〉
= FT ¹ 〈 e | t ‖ ◦ | k[e] + c 〉º

FT ¹ 〈 e | t ‖ b | ε[g] + d 〉º
= 〈Te¹ e º | Tt(t) ‖ Tc¹ b º | ε[Te¹ g º] + Tc¹ d º 〉
−→ 〈Te¹ e º | Tt(t) | Tc¹ b º{Tc¹ d º} 〉
= FT ¹ 〈 e | t | b{d} 〉º

FT ¹ 〈 e | t ‖ b | (u :: k)[g] + d 〉º
= 〈Te¹ e º | Tt(t) ‖ Tc¹ b º | (bTt(u)c :: Tk(k))[Te¹ g º] + Tc¹ d º 〉
−→ 〈Te¹ e º | Tt(t) ‖ Tc¹ b º · bTt(u)c[Te¹ g º] | Tk(k)[Te¹ g º] + Tc¹ d º 〉
= FT ¹ 〈 e | t ‖ b · u[g] | k[g] + d 〉º

�

The QJAM machine can be simulated inside FJAM as discussed
in Section 4.

Theorem C.2 (QJAM in FJAM). Given any two QJAM configurations
U and V such that U → V , we have FQ ¹U º −→+ FQ ¹V º.

Proof. By case analysis on the QJAM configurations and on possible
reductions:

FQ ¹ 〈 e | dpe | x .t[g] · c 〉º
= 〈Qe¹ e º | dQv(p)e | x .Qt(t)[Qe¹ g º] · Qs¹ c º 〉
−→ 〈Qe¹ e º | Qv(p) ? x .Qt(t)[Qe¹ g º] | Qs¹ c º 〉
= FQ ¹ 〈 e | p ? x .t[g] | c 〉º

Let x : (λy.u)[ f ] ∈ e and x : bλy.Qt(u)c[Qe¹ f º] ∈ Qe¹ e º
FQ ¹ 〈 e | t[z = x p] | c 〉º

= 〈Qe¹ e º | x (Qv(p) :: κz.Qt(t)) | Qs¹ c º 〉
−→ 〈Qe¹ f º | λy.Qt(u) ‖ ◦ | (Qv(p) :: κz.Qt(t))[Qe¹ e º] + Qs¹ c º 〉
−→ 〈Qe¹ f º | λy.Qt(u) ‖ Qv(p)[Qe¹ e º] | (κz.Qt(t))[Qe¹ e º] + Qs¹ c º 〉
−→ 〈Qe¹ f º | λy.Qt(u) | Qv(p)[Qe¹ e º] · z.Qt(t)[Qe¹ e º] · Qs¹ c º 〉
−→ 〈Qe¹ e º | Qv(p) ? y.Qt(u)[Qe¹ f º] | z.Qt(t)[Qe¹ e º] · Qs¹ c º 〉
= FQ ¹ 〈 e | p ? y.u[ f ] | z.t[e] · c 〉º

FQ ¹ 〈 e | p to x .t | c 〉º
= 〈Qe¹ e º | Qv(p) to x .Qt(t) | Qs¹ c º 〉
−→ 〈Qe¹ e º | Qv(p) ? x .Qt(t)[Qe¹ e º | Qs¹ c º 〉
= FQ ¹ 〈 e | p ? x .t[e] | c 〉º
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Let x : (λy.u)[ f ] ∈ e and x : bλy.Qt(u)c[Qe¹ f º] ∈ Qe¹ e º
FQ ¹ 〈 e | x ? z.t[g] | c 〉º

= 〈Qe¹ e º | x ? z.Qt(t)[Qe¹ g º] | Qs¹ c º 〉
−→ 〈Qe¹ f º | bλy.Qt(u)c ? z.Qt(t)[Qe¹ g º] | Qs¹ c º 〉
= FQ ¹ 〈 f | λy.u ? z.t[g] | c 〉º

FQ ¹ 〈 e | λx .u ? z.t[g] | c 〉º
= 〈Qe¹ e º | bλx .Qt(u)c ? z.Qt(t)[Qe¹ g º] | Qs¹ c º 〉
−→ 〈Qe¹ g º, z : bλx .Qt(u)c[Qe¹ e º] | Qt(t) | Qs¹ c º 〉
= FQ ¹ 〈 g, z : (λx .u)[e] | t | c 〉º

�
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