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Abstract 
Lattice modeling of proteins is commonly used in 

studying the protein folding problem. A finite number of 

possible conformations of lattice models enormously 

facilitates exploration of the conformational space. In this 

work, we suggest a method to search for the optimal lattice 

models that reproduced the off-lattice structures with 

minimal errors in geometry and energetics. The method is 

based on the self-consistent field optimization of a 

combined pseudoenergy function that includes two force 

fields: an “interaction field”, which drives the residues to 

optimize the chain energy, and a “geometrical field”, 

which attracts the residues towards their native positions. 

By varying the contributions of these force iields in the 
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combined pseudoenergy, one can also use the model 

building to test the accuracy of potentials: the better the 

potentials i.e., the more accurate the “interaction field”, the 

smaller contribution of the “geometrical field” is required 

for building accurate lattice models. 

Introduction 
Lattice modeling of proteins is widely used in the 

numerical investigations of protein folding kinetics and 

thermodynamics’-4. A finite number of possible 

conformations of lattice models enormously facilitates 

exploration of the conformational space of a molecule. 

The very first problem in lattice modeling is to build a 

lattice model, given molecular coordinates and a lattice. 

This model has to be reasonably precise in two respects: in 

reproducing the protein chain geometry and in reproducing 

the protein energetics. This is not a trivial task because the 

model also has to satisfy the conditions of chain 

connectivity and self-avoidin?-‘. A geometrically 

accurate lattice model that preserves chain connectivity 

can be built by dynamic programing6=l. Geometrically 

accurate self-avoiding models can be built by n self- 

consistent field (S(X)-bnsed optimization of the error 

function which includes terms penalizing overapping of 

the chain residues’. 

Jn this work, we extend the approach of SCF-based 

optimization for building energetically and geometrically 

accurate models. The method is demonstrated on a coarse 

cubic lattice of spacing 3.8& which is difficult for building 
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satisfactory models. 

M&OdS 
(a) A comEned energy function for hzttice models 

Let us consider a chain of N monomers (residues 

al,..., aN) with 3D coordinates x1,...,+ (for simplicity 

we will assume further that Xi is given by Cc-atom 

coordinate of ith residue of a protein chain; a 

generalization for chains with side groups can be done 

according to Ref.7) and let, vectors Ri, i = I ,..., N, 

give the lattice points corresponding to these residues in 

the lattice chain model. 

To optimize a lattice model of a protein chain with 

respect to both geometry and energy, we minimke a 

pseudoenergy function consisting of three terms: the term 

mainmining the chain connectivity, geometrical error and 

chain energy. 

The chain connectivity condition is included by the 

tHIIlS: 

I +=, otherwise 

where i = I,...,N- I _ ht this expression 

pi = lXi-Xi+Il is the actual distance between residues 

i and i + 1 (for a protein or-carbon chain without cys-Pro 

residues &3-S& and y limits the allowed deviation 

of inter-residue distance in the lattice model from its actual 

value; in this work, y = A/2, A is a lattice spacing. 

The geometrical error ftmctiorP, presented as: 

N 

EeJR,, --- 2~) = C fi(Ri) , (2) pseudoenergy V; 

i=I 

where 

I (Xi - R) 
2 

if R is one of the lattice 

f,(R) = points surrounding Xi ‘(3) 

I + 03, otherwise 

gives the deviation of the model from the actual 3D 

structure. The smaller the error function, the better the 

model. One can see that the standard root mean squared 

deviation of the lattice model with respect to the native 

structure (RMSD) is :E,,,/N)l”. 

The condition that Ri must be one of the lattice points 

surrounding Xi is specified for computational efficiency. 

(Theoretically, one can consider all lattice points as 

allowed for each of the chain residues.) 

In this study, we allow the points Ri to belong to only 

the first shell of 8 lattice points surrounding the point Xi. 

Our experiments show (see below) that the first shell is 

sufficient for building continuous lattice models. 

To take into account both lattice model energy, 

ECaI, RI,..., aN, RN}, and geometrical accuracy 

simultaneously, we suggest the following combined 

pseudoenergy function: 

N-I 

VCal, RI- aN’ N R } = C ‘i(Ri’Ri+I)+ 
i = 1 

N 

AECal, Rp---, aN’ N R )+(‘-A) C fi(Ri) 
i=l 

It is easy to see that by changing A from 0 to 1 one can 

scan all the possible cases between the most geometrically 

accurate models and the lowest energy models. 

Thus, the problem is to find the minimum of the 

min --- . mm V{al, RI,..., aN, RN> = 

Rl RN 
* * 

V aI, Rl,..-, alv, RN 

(5) 
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and to obtain the lattice model coordinates R;,..., Ri 

corresponding to this minimum. Then one can find the 
* * 

model chain energy E{al, RI,..: aNp <N} and the 

geometrical error E,, = E,,(RI,..., RN). 

In this study for energy calculations we use our 

recently derived lattice-adapted potentials9 which take into 

account both long- and short- range interactions, as shown 

in Fig.1. With these energy functions, the lattice model 

energy is presented as: 

ECal, RI,--, anr, RN> = 

N-5 N 

N-2 

c p1 
aiai + 2 

(IRi-Ri+21)+ 
i=I 
N-3 

c 
h(3) 

i = 1 
aiai+3(lRi-Ri+31)+ 

(6) 

N-4 

c h(4) 

i= 1 
aiai+4(lRimRi+41)+ 

N-2 _. - 

c 
i=l 

b~+l(IRi-Ri+21) 

N-3 

c 
b(3) 

i = 1 
ai+lai+2(lRi-Ri+31) 

The energy terms E, h”‘, hC3), ht4’, 
b(2) and b(3) are described in the legend 

to Fig.1 

(b) SCF-based optimization of the energy 
jkcti4m 

The energy function in the form given by Equation (4) 

cannot be * - - kl (as iu Refs.67) using dynamic 

programming because the “long-range” terms of Equation 

(6) depend on coordinates of non-neighborresidues. 

However, one can use a self-consistent field (SCF) 
~eorys’loJl to minimize such a function. 

The idea of the SCF approximation is to represent the 

result of the pairwise residue interactions as a modification 

of the 3D fields acting on the residues. When these 3D 

fields replace the long-range interactions of the residues, 

the effective chain energy has the form: 

Veff(R;,..., R;) = 

N-l N (7) 

c Ui(Ri, Ri + 1 I+ C yi(Ri) 
i=l i=l 

Here Y,(R) = f i(R) +AYi(R) isthepotential 

acting on a residue i at a point R. The term AYi (which 

modifks the potential fi) is the average potential “felt” by 

a residue i at a point R under a given distribution of the 

other residues in space. 

The distribution of residues is given by functions 

{FV,-(R)}, G=l,...,N); ~j(R) is a probability that 

residue j occupies lattice point R. The force field created by 

this distribution of residues in space is given by the 

potential: 

Ayi(R) = 5 C&a a (IR-rI)wj(rl+ 
j#i, r 

ij 

i-l,i+ 1 
4 

c O(N-i-k+l) . 

k=2 

c 
&k) 

T 
aiai+k(lR-~)Wi+k(r)+ 

8(i-2)Cbg2 l (IR-d)wi-2(~) + 
r 

o(N-i-~)Cb~)+l(IR-rI)Wi+Z(r)+ 
r 

Wi-31~b~~2ai l(IR-d)Wi-3(rl+ 
r 

(8) 



I,l>O 
Here O(Z) = 

0, othewise - 

For the sake of computational efficiency we treat 

short-range and long-range interactions in Equation (9) 

equally. The form of the energy function m-7) enables the 

use of 1D statistical mechanics of chain molecules to 

compute the probabilities {w:(R)} provided the 

potentials {Yi(R)} are given. The corresponding 

algorithm can be found in Ref8, Equations Q-(13). As a 

result, one obtains {W:(X)}, the probability functions 

for distribution of residues in field {‘Yi} , and 

free energy, F, of this distribution. This self- 

consistent solution can be found 

iteratively: one starts with some 

initial field AY?i=‘(R) , (i=l, _ _ ,N) , 

i-e, with A’3?ic1(R) = 0 (or with 

randomly generated AY$‘(R) ) , and 

obtains the {q=‘} probabilities. 

In the next step of the iteration 

(s12) one takes 

AY;(R) = cxAYy=-’ (R) + (I - tx)AY;-l(R) 

where O-xx1 (usually cx-O-5-0.9). 

a 

“A 
i-k2 

ii-l i+2 

A 1 
i i+3 
ii-l i+2 i+3 

A-CL 
i i-r-4 

c&& 
i+l 

i i-l-1 

A 
I, 

i-l i+2 

Then one uses the updated CAY”} val es to obtain 

{ Yi} potentials and then calculates 

H 

WT* , { AY;} 

values. According to general theo lo, efore self- 

consistency is attained, F always decreases with the 

iteration numbers when a value is chosen correctly, that is 

small enough. As a rule, we take ~0.8, but sometimes 

have to decrease it to eO.3 when otherwise we observe an 

increase of I;b compared with Fr-‘. 

The self-consistent solution is obtained when the 

probabilities {W’} no longer change upon iteration. 

This means that a self-consistent field is found and free 

energy minims is achieved; typically it takes -20-40 

iterations. 

In principle, the SCF solution can depend on the 

starting field. Below we show that this dependence is 

minor in our calculations. 

(c)A temperatureprotocolfor the lowest energy 
lattice modeks search 

A solution of SCF-equations at non-zero temperatures 

is a set of probabilities {W,(R)), i=I,...N. To get a 

unique model one needs to decrease a temperature to zero. 

Thus, one needs to use an annealing 

procedure : to start at some T #O , 

Fig. 1. Long-range and short-range interactions: resi- 
dues for which potentials are derived are shown by filled 
circles. (a) long-range interactions: Ii - ji 2 5 ; the 
potential &ai,(l) depends on the distance 1 between 

remote chain residues and on chemical sorts of these 
residues ai and aj; (b) short-range potentials 

hgii,,(lRi-Ri+,I) 2 h$i+3ClRi-Ri+jl)~ 

h~~i+,( IRi - Ri + 41) depend on the distance between 

terminal residues and their chemical sorts; (c) short- 

raw potentials ‘~‘(lRi-~-Ri+,l) ad 

b~~i+,( IRi_ I - Ri + 21) depend on chain bending in 

the intervening residues i (or i and i+l) that affects the 
distance between the terminal residues i-l, i+l. 

. 
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Fig. 2. Energy and entropy of a cram~m mokcule as a fimction 
of number of iterations in SCF-optimkation. The calculation are 
done with the combined energy function (5) at A=O.9 on a lattice of 
3.S& The protocols shown by filled, dashed and dotted lines corre- 
spond to three different randomly assigned starting fields; the tem- 
perature protocol used in annealing: T=l.O until the SCF solution is 
obtained; then T=O.5 until the new SCF-solution is not obtained; 
and then T=O 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0 

weighting factor A 

Fig. 3. (a) RMSD (fill e circles) and percentage of self-avoiding d 
models (open circles) as a function of the weighting factor A. The 
results are averaged over 10 proteins (PDB codes: lcm (46); ldtx 
(58); lptx (64); 2ctx (71); lcks (78); 2bop (85); 7pcy (98); 3sic (107); 
lbnd (109); 2rsl (120); chain lengths are given in parentheses); for 
each of the proteins 100 lattice models were built on a lattice of spac- 
ing 3.SA using the constraint of 8 allowed lattice points per residue; 
(b) Averaged per residue energy (filled circles) and the range of dis- 
persion (shown by the dashed lines) as a function of the weighting 
factor A; the mean energy of the actual off-lattice structures (-0.83) is 
given by the thin line. 

to obtain the corresponding SCF solution, then decrease nly one of the lowest energy chain pathways. 

temperature, obtain a new solution, etc., until zero Results and Discussion 
temperature is reached. To calculate the chain 

distribution at T = 0 , we use the statistical mechanics (a) Choice of the temperature protocol 

of 1D systems especially adapted to zero temperature12. In general, the chain models found by the SCF- 

This approach finds all the lowest energy pathways optimization depend on the starting field and on the 

while taking into account a possibility of ground state temperature protocol. This dependency results from 

degeneracy. Finally, dynamic programming singles out using of a self-consistent field approximationlo-*I. 
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Only de ‘iTinteraction field” (see Equation (9)) is a 

subject of this approximation. When A = 0, (Equation 

. 4), this field does not act; in this case one can take T = 0 

from the very beginning (or that is absolutely the same, 

one use dynamic programming) and come to the lowest 

pseudoenergy solution. When A # 0, different 

temperature protocols have different qualities. For 

example, one should not start at too low temperatures 

because it will trap de molecule in local minima. Our 

experiments show that one has to start with a moderate 

temperature (e.g. with T = 1 and decrease this 

temperature gradually- 

Figure 2 shows energy and entropy changes in the 

course of iterations for the temperature protocol which 

turned out to be one of the best. 

We checked this temperature protocol using 100 

different randomly chosen starting fields and found for a 

crambm molecule at A = I that the dispersion of the 

lattice model energies is -1 (m RT, tits). This is smaller 

than the energy variation caused by different lattice-protein 

orientation -4. 

(3) Searchfor the optiml models 

In Figure 3 we present averaged geometrical accuracy 

(RMSD), average residue energy and dispersion, and also a 

fraction of seIf-avoiding allowed to the chain to search for 

the lowest energy conformation. However, a deeper reason 

is that the employed lattice potentials are not models as 

functions of the weighting factor A of the pseudoenergy 

(see w-4). One can see that at A = 0.7 the SCF-based 

optimization algorithm builds a self-avoiding, and rather 

accurate (geometrically and energetically) lattice models- 

However, one can see also that at A 2 0.8 when the 

energy term dominates the pseudoenergy (4) the protein 

chain chooses an optimal lattice model which rather far 

from the true off-lattice chain pathway, i.e. RMSD is large. 

Theenergy of such a lattice model is significantly 

lower than the true off-lattice energy. The RMSD of the 

lattice models built at A - 1 approaches the maximal 

possible deviation 3.2L - A when 8 lattice points of 

the first shells are allowed per residue and even greater 

when two (43=64 lattice points) or three shells (63=216 

lattice points) are allowed. Fig.3 also shows the reduction 

in the number of self-avoiding models at A 2 0.8, i.e. 

when the energy term dominates. One of the reasons for 

this reduction is the use of a too narrow “tube” (only 8 

lattice points per residue in width) accurate enough to 

select the native structure, although they gave quite 

reasonable results in recognition of the native structure in 

threadingg. 

Thus, the SCF-based optimization algorithm for 

lattice model building appears to provide a more severe 

test for lattice potentials. 

Conclusion 

In this work we have suggested and tested the new 

approach for building lattice models of protein structure. 

The method builds lattice models using a SCF-based 

optimization of the combined pseudoenergy energy 

function which includes both potential energy and 

geometrical constraints terms (error function). geometrical 

constraints terms (error function). 

We have found the optimal combination of the energy 

and the geometrical constraints and have shown that one 

can reproduce off-lattice structures with minimal errors in 

geometry and energetics. The obtained models can be used 

as target structures in protein folding simulations held on 

3D lattices. 
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